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Abstract

Comparative genomic studies extensively rely on alignments of orthologous sequences. Yet, selecting, gathering, and
aligning orthologous exons and protein-coding sequences (CDS) that are relevant for a given evolutionary analysis can be
a difficult and time-consuming task. In this context, we developed OrthoMaM, a database of ORTHOlogous MAmmalian
Markers describing the evolutionary dynamics of orthologous genes in mammalian genomes using a phylogenetic frame-
work. Since its first release in 2007, OrthoMaM has regularly evolved, not only to include newly available genomes but
also to incorporate up-to-date software in its analytic pipeline. This eighth release integrates the 40 complete mammalian
genomes available in Ensembl v73 and provides alignments, phylogenies, evolutionary descriptor information, and
functional annotations for 13,404 single-copy orthologous CDS and 6,953 long exons. The graphical interface allows
to easily explore OrthoMaM to identify markers with specific characteristics (e.g., taxa availability, alignment size,
%G + C, evolutionary rate, chromosome location). It hence provides an efficient solution to sample preprocessed markers
adapted to user-specific needs. OrthoMaM has proven to be a valuable resource for researchers interested in mammalian
phylogenomics, evolutionary genomics, and has served as a source of benchmark empirical data sets in several meth-
odological studies. OrthoMaM is available for browsing, query and complete or filtered downloads at http://www.
orthomam.univ-montp2.fr/.
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Introduction
Orthologous protein-coding sequences (CDS) are of great
interest to study patterns of organismal evolution (species
phylogenies) and genomic processes (molecular evolution).
The wide use of exons and CDS in phylogenomics and com-
parative genomics is facilitated by the existence of several
independent databases of orthologs (Alexeyenko et al.
2006), each with their pros and cons. Some are generalist—
for example, COG/KOG (Tatusov et al. 2003), HOGENOM
(Dufayard et al. 2005), and InParanoid (Östlund et al. 2010),
some are taxonomically specialized—for example, OPTIC
(Heger and Ponting 2008) for vertebrates, INVHOGEN
(Paulsen and von Haeseler 2006) for nonvertebrates,
EvolMarkers (Li et al. 2012) for metazoans, FUNYBASE for
fungi (Marthey et al. 2008), GreenPhylDB (Conte et al.
2008) for plants, HOBACGEN (Perriere et al. 2000) for bacte-
ria, and some are built on functional information, such as
OrthoDisease (O’Brien et al. 2004). In particular taxonomic
groups, researchers have identified potentially useful phylo-
genetic DNA markers from complete genomes and have val-
idated their use in nonmodel species such as primates
(Horvath et al. 2008), actinopterygian fishes (Li et al. 2007),
or rosids (Duarte et al. 2010). However, these databases gen-
erally do not provide end-users with key parameters describ-
ing the evolutionary pattern of orthologs, and orientating
the choice of the molecular markers to be studied from the

viewpoint of phylogenomic and molecular evolution. Also,
few of them provide high-quality nucleotide and amino
acid alignments preserving the key underlying codon
structure.

OrthoMaM (Ranwez et al. 2007) is a database of
ORTHOlogous MAmmalian coding sequence Markers,
which helps filling these gaps. It provides high-quality
codon alignments of exon and CDS markers associated
with a detailed characterization of their evolutionary dynam-
ics in terms of phylogenetic signal, base composition, substitu-
tion rate, and chromosome location. Moreover, OrthoMaM
focuses only on one-to-one orthologs identified by Ensembl
(Flicek et al. 2014), that is, sequences for which no duplication
is detected since the last common ancestor of the corre-
sponding species. Indeed, as one-to-one orthologs are unaf-
fected by complex intragenomic processes such as gene
duplication or gene loss, the differences in their sequences
are ensured to have occurred through common descent and
therefore reflect the divergence between species.

Database Overview and Improvements
Mammalia is among the first animal taxa with many com-
plete genomes available and has been extensively used to
define most of the gold-standard methods in phylogenomic
and molecular evolution studies. Based on the 12 mammalian
genomes available in Ensembl v41, the first version of
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OrthoMaM was released in July 2007 and contained 3,170
exons (Ranwez et al. 2007).

Several major improvements have been made since then.
In the current version (OrthoMaM version 8, October 2013,
based on Ensembl v73), the database includes 6,953 exons
and covers 40 mammalian species. In addition to exons, full
orthologous CDS are now available. Queries have been made
more flexible and can be performed taxonomically. Results
can be dynamically sorted according to key descriptors, for
example, number of orthologs, alignment length, a parameter
of the among-site substitution rate heterogeneity, and G + C
nucleotide composition on third codon positions (%GC3).
The latter statistics has recently been connected to the per-
formance of CDS as phylogenetic markers (Romiguier et al.
2013). Nucleotide and amino acid alignments, maximum like-
lihood (ML) gene trees, and detailed marker information can
be downloaded for all exons and CDS. To improve readability,
the phylogenetic tree of each marker is colored according to
the major mammalian clades using the APE package (Paradis
2006). We also enriched the information associated with each
marker by linking exons to their corresponding CDS and in-
cluding functional annotations (gene ontology concepts)
graphically displayed thanks to OntoFocus (Ranwez et al.
2012) and Graphviz (Ellson et al. 2002). Figure 1 displays
screenshots associated with a given query on the
OrthoMaM website.

The current OrthoMaM release contains a total of 13,404
CDS markers covering half of the known mammalian genes
and providing a uniform representativity along chromosomes
(fig. 2a). However, the number of available CDS widely varies
among species, mainly because of the uneven sequencing
coverage of the corresponding genomes. Figure 2b provides

the phylogeny of the 40 species represented in OrthoMaM
together with the number of CDS available for the different
species and clades. For example, 973 CDS markers share the
full set of 36 placental mammals of OrthoMaM, and 5,806
CDS markers share the full subset of 10 primates.

The OrthoMaM Pipeline

Identification of Orthologous Sequences

We start by using Ensembl annotations (Flicek et al. 2014) to
identify one-to-one orthologous genes among pairs of three
high-coverage reference species (Homo–Mus, Homo–Canis,
and Mus–Canis). We then enrich each of those clusters of
one-to-one orthologs by adding sequences of additional
mammals that are annotated as one-to-one orthologs to
the human gene (Ranwez et al. 2007). Note that the chromo-
somal distribution of OrthoMaM human genes basically mir-
rors the distribution of the full set of Ensembl human genes
(fig. 2a), which is to be expected from an unbiased database.

Those clusters of one-to-one orthologous genes are turned
into clusters of one-to-one orthologous CDS by selecting the
longest transcript of each gene. We choose to consider the
longest sequence as this is the one used by Ensembl to define
the orthology relationships among genes, and this will max-
imize the evolutionary information to be analyzed.

The one-to-one orthologous exon clusters are not pro-
vided by Ensembl. Their identification is complicated by al-
ternative splicing and by the variability in number and length
of exons of a given gene across species. We tackle those
problems by relying on the alignments of the one-to-one
orthologous CDS to infer one-to-one orthology among
their exons. Each human exon annotated by Ensembl initiates
a one-to-one orthologous exon cluster. Exons from additional

FIG. 1. Screenshots from the OrthoMaM website. Here, we searched for CDS with 15–40 mammals, a relative evolutionary rate between 0.5 and 3, an a
parameter of the � distribution ranging from 1 to 1.5, and a GC3 between 22% and 35%. We got 23 target CDS and focused on the LRRC63 marker. We
then visualized the evolutionary dynamics parameters, the first 80 sites of the DNA alignment, and the corresponding phylogenetic tree.
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species are added to this cluster if they share a number of
identical amino acids greater than half the length of the CDS
alignment restricted to the candidate exon and the human
one. This similarity threshold ensures that no more than one
exon from a given species will be included in the predicted set
of orthologs. Initial exon alignments longer than 400 sites are
selected as our evolutionary marker descriptors are not
meaningful enough for shorter sequences. Clusters with less
than four sequences are discarded for the same reason.

Alignments and Trees

CDS and exon sequences are aligned at the codon level in two
steps. First, the translated amino acids are aligned using
MAFFT (Katoh et al. 2005) and gaps are reported onto the
nucleotide sequences. This alignment is then refined using
MACSE (Ranwez et al. 2011) to obtain a final codon align-
ment unaffected by frameshifts, misassemblies, and sequenc-
ing errors. Nucleotide and amino acid alignments are then
filtered to remove spurious sequences and/or codons using
trimAl (Capella-Gutiérrez et al. 2009). The filtering is con-
ducted under the “automated1” option, which has been spe-
cifically designed to clean alignments before conducting ML
phylogenetic inference. This step can yield final alignments
shorter than 400 sites though the average length is far higher
for both exons (956 sites) and CDS (1,850 sites). To ensure
data traceability, each sequence is linked to the corresponding
Ensembl CDS/exon. Moreover, each OrthoMaM alignment
is available for download before and after filtering. All previ-
ous releases of OrthoMaM also remain available through
the website.

The ML tree is identified for each marker by analyzing
codon alignments with RAxML (Stamatakis 2006) under
the general time reversible (GTR) + � model (Yang 1996).
We acknowledge that using the proper model of sequence
evolution is vital in probabilistic inference. However, we here
used the same model for all CDS and exons because 1) it
warrants a fair comparison among all markers of the database,
2) it is the one that best fits the majority of the markers
(Ranwez et al. 2007), 3) the GTR exchangeability matrix is
the only one available at the nucleotide level in RAxML,
and 4) the parameter-rich GTR + � model is more likely to
introduce increased variance rather than bias in the estimates
(Lemmon and Moriarty 2004).

All parameters describing the evolutionary dynamics of
exons and CDS are gathered by running PAUP* (Swofford
2003) on the ML tree inferred by RAxML. Branch lengths of
ML phylograms are also examined, and if some exceed the
unrealistic value of two substitutions per site, the correspond-
ing alignment is excluded from OrthoMaM. This phyloge-
netic-based filter enables to detect and remove markers
that likely contain misaligned sequences, misspecified open
reading frames, or misannotated paralogs.

Database Updates and Scalability

OrthoMaM is regularly updated and its pipeline is constantly
optimized to keep pace with the ever increasing number of
available genomes and software developments in the field.

Orthology annotation and sequences are now retrieved using
the BioMart facilities, which allow massive retrieval of
Ensembl data (Flicek et al. 2014). Those data are processed
by home made Java tools to identify clusters of one-to-one
orthologous CDS/exons. Phylogenetic analyses rely on shell
scripts to chain up-to-date software. The website is based on a
php/mysql database for query facilities and on XML/XSLT for
exchange and graphic representation of marker details. All
analyses are performed on the computing cluster of the
Montpellier Bioinformatics Biodiversity (MBB) platform.

Query Options

There are three entry points in OrthoMaM. First, exon and
CDS sections can be graphically browsed using a clickable
phylogeny and ideograms of human chromosomes. Second,
markers can be queried according to several of their key char-
acteristics, including: minimal alignment length, number of
sequences, mandatory species, base composition (%GC3), rel-
ative evolutionary rate of the marker, Ensembl gene identifier
or HUGO gene symbol (see fig. 1). Third, a BLAST (Altschul
et al. 1990) similarity search can be run to find OrthoMaM
markers related to a given request.

Examples of Contributions
OrthoMaM has proven its usefulness in several phylogenomic
and comparative genomic studies. We briefly list some of
them to illustrate the broad spectrum of analyses facilitated
by OrthoMaM. Our database has been used for developing
new markers in multigene phylogenetic studies (Zhou et al.
2011; Hassanin et al. 2013) and also as a source of large-
scale molecular data in phylogenomic (Parker et al. 2013;
Romiguier et al. 2013), molecular dating (Schrago and
Voloch 2013), and evolutionary genomic (Galtier et al. 2009;
Romiguier et al. 2010; Rorick and Wagner 2011; Lartillot 2013)
analyses. The high-quality codon alignments have also been
utilized as benchmark empirical data sets for testing new
analytical methods (Egan et al. 2008; López-Giráldez and
Townsend 2011; Li and Drummond 2012; Wu et al. 2013)
and for detecting footprints of purifying or positive selection
(Jobson et al. 2010; Laguette et al. 2012). Finally, the inferred
ML gene trees have served for assessing the performance of
supertree methods (Scornavacca et al. 2008; Ranwez et al.
2010). With the ongoing pace of mammalian genome
sequencing, we envision an enhanced potential for the uses
of OrthoMaM in comparative genomic studies aiming at
understanding the evolutionary dynamics of protein-coding
genes.

Future Prospects
The primary aim of OrthoMaM is to provide high-quality
genome scale alignments and phylogenetic analysis for one-
to-one orthologous exons and CDS among mammals. Its
analysis pipeline strategy has been adapted to cope with
the increasing number of mammalian genomes that will be
released in the upcoming years. This bioinformatic pipeline is
constantly improved and we are currently testing the possi-
bility of relying on codon-based phylogenetic inference using
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codon-phyML (Gil et al. 2013) and including in future releases
per branch dN/dS estimations using mapNH (Romiguier et al.
2012). Moreover, we are considering possible solutions to
filter only parts of a sequence in order to further improve
the quality of our codon alignments with respect to potential
exon annotation errors in CDS. We are also evaluating the
relevance of expanding the database toward noncoding mar-
kers, such as intronic, untranslated, and regulatory regions.
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