

Hemispheric Ozone: Current Understanding & Future Directions

Kathy Law
LATMOS-CNRS, UPMC, Paris, France

- Motivation
- Observational evidence: « background » vs episodes
- Hemispheric transport and trends
- Pollutant export, processing and import (deposition)
- Concluding remarks future directions

Motivation

Climate: Ozone Radiative Forcing

Global mean RF = $0.4 \text{ Wm}^{-2} + /- 30\%$

HEMISPHERIC POLLUTION: OZONE REGIONAL AIR QUALITY STANDARDS

O₃ import into receptor regions

Ozone measurements on west coast of continents show levels approaching or exceeding levels of ambient standards

Long-Range Transport: Implications for AQ management

- What are the magnitudes of different fractions contributing to pollutant levels?
- How will fractions change in the future?
- How efficiently can each fraction be mitigated?
- What policies and programs are needed?

Observational Evidence

Hemispheric Ozone from Space

Tropospheric ozone column satellite data - mix of long-range transport, chemical production/loss and natural sources (stratosphere) [Ziemke et al., 2006]

O₃ precursors: plume events

Forest fire and anthropogenic CO plumes seen by MOPITT satellite in July 2004 (*NRC*, 2010)

Troposphere: plumes of different ages

Receptor regions see broad spectrum of concentrations

Vertical CO and O3 profiles - MOZAIC aircraft @ 2-10km over west coast USA, summer (HTAP, 2010)

« Plumes » only account for 1-2% of air masses

All NH influenced by anthrop. pollution (even at remote sites)

« Background » not a very useful concept

Pollution is global

Hemispheric Transport & Trends

Observed Ozone: Mix of Origins

Analysis of natural, inter-continental and local contributions to surface O₃ (southern England) Derwent et al. (2008)

HTAP Findings

Relative Annual Intercontinental Response (RAIR) Metric : changes outside a region/ changes in all regions

- At least 30% surface O_3 response in a receptor region is due to changes outside the region (NOx, CO, VOCs) + 30-50% from CH4
- External contribution more important when 'local' sources are more regulated and at lower concentrations
- Implications for ozone trends (past and future)

Observed Ozone Trends

- Local + inter-continental impacts reflected by changing average concentrations (anthrop. + natural)
- Since 1950 O₃ in northern midlatitudes has increased by at least a factor of two – most likely due to anthrop. emissions
- O₃ continues to increase in certain regions (e.g. downwind Asia) – especially in winter and spring
- Slowing trends in central Europe and North America

Parrish et al., 2012 +

spring-time « background » ozone trends

also Logan et al. (2012) & other studies

Changes in Observed Ozone Seasonal Cycle

Parrish, Law, et al., 2013; also Cooper et al., 2014

- Shift to earlier max. ozone increases in winter/spring
- Implications for "chronic health effects" & crops (growing season)
- Why? (shifting emissions patterns (EU/NA, AS♠) coupled to large-scale transport (e.g. NAO), strat. flux, climate change?)
- Global models first results suggest they have difficulties

Northern Hemisphere Ozone Trends: Europe

Modelled trends:

- 50% of observed trends
 1950-2000 (AR5 emissions)
- 25-40% of observed slowing (over Europe)
- Larger summer EU trends than winter (opposite to obs.)
- Overestimate 2000 concs.

Parrish et al., (2014, JGR in revision)

Modelled trends appear to be driven by precursor emission trends (e.g. NOx)

Not capturing increases over Asia and N. America (west)

Parrish et al., (2014, JGR in revision)

Pollutant (ozone) Export, Processing & Import

CAM4chem versus SCIAMACHY NO2 (trop. columns)

HTAP 2010 Findings

Modelled Seasonal Cycles (2001)

Large spread across models - ensemble mean generally captures observed monthly mean surface O₃ but **there are notable biases**

Ozone Deposition onto Vegetation

Fig. 3. Number of days when daily maximum 8 h average O_3 concentration > $100 \,\mu g \, m^{-3}$ during the June to July period in 2006 for (i) "reference", (ii) "no stress" and (iii) "stress" scenarios.

ozone thresholds – chronic impacts even at low concs (< 35 ppbv)

Missing Processes?

Brown & Stutz (2012)

Halogen chemistry, (CINO2, BrO) Saiz-Lopez & von Glasow (2012)

POLMIP: POLARCAT Model Inter-comparison Project

Models vs MOZAIC (July 2008)

Transport of ozone and precursors to the Arctic:

9 global models + WRF-Chem

Low biases in CO over source regions & Arctic driven by OH biases at mid-latitudes (+ vertical transport biases)

High ozone bias over source regions in UT (stratospheric ozone flux)

Monks et al. (2014), Arnold et al. (2014)

Global Oxidising Capacity = OH concentration

OH radicals control the lifetimes of many greenhouse gases (CH₄, O₃, HCFCs)

Crowther, Law, Pyle, et al, CORSAIRE meeting at Airbus (2002!!)

POLMIP: evaluation using ARCTAS data (July 2008)

POLMIP Model PAN:CO (July, column ratios)

Courtesy Steve Arnold UNIVERSITY OF LEEDS

Plume processing: Alaskan Forest Fire Plume (July 2004)

ICARTT Lagrangian Analysis: Import of Alaskan FF plume into European PBL

ICARTT Lagrangian Analysis: Import of Alaskan FF plume into European PBL

Net production during 8 days + net ozone import into European PBL

(Real et al., 2007) – Photochemical Lagrangian calculations

Asian pollution contributing to high surface O₃ events, Implication for attainment of tighter standards in WUS

Importance of Ozone Import

14 regional models:12 used GEMS boundary conditions& run using same emissions

Winter (western N. America)

- Systematic low biases in ozone boundary conditions from global models lead to underestimation of regional model ozone at the surface
- Significant penetration of signal into the regional model domain

Summer

 Biases in FT ozone during summer but not affecting surface O3 (large biases)

AQMEII: Solazzo et al. (2013)

Linearized results of 6 models (Wild et al., 2012):

Role of CH₄ in Future O₃ Scenarios

O₃ Change in 4 emission scenarios

CH₄, Regional, & Imported Components of O₃ Change in "High" Scenario

Components of O₃ Change in "Low" Scenario

 CH_4 is an important determinant of future O_3 levels, offsetting benefits of regional controls.

Hemispheric Ozone: Challenges

- Hemispheric ozone (increasingly) important depends on local (AQ) versus hemispheric control (CLRTAP) (CH4) esp. as local emissions decrease and thresholds are lowered
- Ozone source attribution + trends understanding still incomplete (datasets like IAGOS invaluable)
- **Pollutant import** much less well evaluated → focused area of research (high time resolution vertical profiles, e.g. on regional carriers ...)