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Explicit lower bounds for the cost of fast controls for some
1-D parabolic or dispersive equations, and a new lower
bound concerning the uniform controllability of the 1-D

transport-diffusion equation

Pierre Lissy ∗†

19 mars 2015

Abstract
In this paper, we prove explicit lower bounds for the cost of fast boundary controls for

a class of linear equations of parabolic or dispersive type involving the spectral fractional
Laplace operator. We notably deduce the following striking result: in the case of the heat
equation controlled on the boundary, the Miller’s conjecture formulated in [Geometric bounds
on the growth rate of null-controllability cost for the heat equation in small time, J. Differential
Equations, 204 (2004), pp. 202-226] is not verified. Moreover, we also give a new lower bound
for the minimal time needed to ensure the uniform controllability of the one-dimensional
convection-diffusion equation with negative speed controlled on the left boundary, proving
that the conjecture formulated in [J.-M. Coron and S. Guerrero, Singular optimal control: A
linear 1-D parabolic-hyperbolic example, Asymptot. Anal., 44 (2005), pp. 237-257] concerning
this problem is also not verified at least for negative speeds.

The proof is based on complex analysis, and more precisely on a representation formula for
entire functions of exponential type, and is quite related to the moment method of Fattorini
and Russell.

1 Introduction

1.1 Presentation of the problems
Let us consider the 1-D Laplace operator ∆ with domain D(∆) := H1

0 (0, L) and state space
H := H−1(0, L). It is well-known that −∆ : D(∆) → H−1(0, L) is a positive definite operator
with compact resolvent, the k-th eigenvalue is

λk =
k2π2

L2
,

with eigenvector

ek(x) := sin

(
kπx

L

)
.

Thanks to the continuous functional calculus for positive self-adjoint operators, one can define any
positive power of −∆. Let us consider here some α > 1 and let us call ∆α/2 := −(−∆)α/2.
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In what follows, we will consider two types of controlled equation on (0, T ) × (0, L), one of
parabolic type, that we write as{

yt = ∆α/2y + bu in (0, T )× (0, L),

y(0, ·) = y0 in (0, L),
(1)

and one of dispersive type, that we write as{
yt = i∆α/2y + bu in (0, T )× (0, L),

y(0, ·) = y0 in (0, L),
(2)

where, for every ϕ ∈ D(∆α/2),
b(ϕ) = −(∆−1ϕ)′(0),

i.e.
b := δ′0 ◦∆−1,

and u ∈ L2((0, T ),K), K := R (for (1)) or C (for (2)).
Equation (1) can modelize anomaly fast or slow diffusion (see for example [14]), whereas (2)

can be used to study the energy spectrum of a 1-D fractional oscillator or for some fractional
Bohr atoms (see for example [9]). For both equations, the most interesting case for physicists is
α ∈ (1/2, 1].

If α ∈ 2N∗, one can observe, using integrations by parts, that b corresponds to a boundary
control on the left side on the (α/2−1)-th derivative of y, so that b can be considered as a natural
extension of the boundary control in the case of non-even α. This kind of controls has already
been introduced in [17, Section 3.3] to give some negative results about the control of fractional
diffusion equations with α 6 1 and in [13, Sections 3.2 and 3.3] as an application of some results
about the cost of fast controls for some classes of abstract parabolic or dispersive equations.

One can prove, using the result of [8] for diagonal semigroups and scalar control, that b is an
admissible control operator (see also [13, Section 3.2 and 3.3]). Moreover, it is well-known that
these equations are null-controllable in arbitrary small time (see [4] for the parabolic case and for
example [13] for the dispersive case). Hence, one can easily prove (see for example [1, Chapter
2, Section 2.3]) that for every y0 ∈ H, there exists a unique optimal (for the L2((0, T ),K)-norm)
control uopt ∈ L2((0, T ),K) bringing y0 to the equilibrium state 0, the map y0 7→ uopt is then
linear continuous. The norm of this operator is called the optimal null control cost at time T (or in
a more concise form the cost of the control), denoted CH(T, L, α) for equation (1) and CS(T, L, α)
for equation (2). Let us recall that these constants are also the smallest constants C > 0 such
that for every y0 ∈ H, there exists some control u driving y0 to 0 at time T with

||u||L2((0,T ),K) 6 C||y0||H .

Our first goal is mainly to continue the study done in [13]. In this article, the author proved
precise upper bounds concerning the cost of the control for some large classes of linear parabolic
or dispersive equations (including notably (1) and (2) for α > 2) when the time T goes to 0, where
the underlying “elliptic” operator was chosen to be self-adjoint or skew-adjoint with eigenvalues
roughly as kα or ikα for some α > 2 when k → +∞. The author also proved some lower bounds
that were optimal concerning the power of T involved, but these estimates were not precise enough
to understand what was the dependence of the cost of the control with respect to L and α. Here,
we will in fact be able to give precise lower-bounds for equations (1) and (2) as soon as α > 1 (and
not only α > 2), which will then generalize a little bit the study of lower bounds initiated in [13].
Moreover, in the dispersive case, we will see that in the particular case α = 2 (i.e. the classical
Schrödinger equation controlled on one side of the boundary), we will find again the lower bound
that is conjectured to be the optimal one by Miller in [15], but a very surprising result is that in
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the case of the heat equation controlled on one side of the boundary (i.e. (1) with α = 2), our
lower bound will be twice bigger than the one expected according to the conjecture done by Miller
in [16], and commonly accepted up to now (see notably [3], [13] or [19]). We will then formulate
a new conjecture for this problem.

Remark 1 Here, for the sake of simplicity (and because we think that it is enough for our pur-
pose), we chosed to treat only the case of equations (1) and (2). However, the results given below
might be adapted to the following more general cases

yt +Ay = bu

or
yt + iAy = bu,

where A is a positive selfadjoint operator on some Hilbert Space H with eigenvalues λn (the corre-
sponding eigenvector being denoted en), with the assumption that (λn)n>1 is a regular increasing
sequence of positive numbers verifying moreover that there exist some α > 1 and some R > 0 such
that

λn = Rnα + O
n→∞

(nα−1),

and b is a scalar control input, i.e. b ∈ D(A)′ and u ∈ L2((0, T ),K), where K := R or C), and
the sequence (| < b, ek >(D(A)′,D(A)) |)k∈N∗ is bounded from above and below (see [13]).

Understanding the behavior of fast controls is of interest in itself but it may also be applied
(at least in some cases) to study the uniform controllability of transport-diffusion equations in the
vanishing viscosity limit as explained in [11] and [12] because of the strong connection existing
between these problems and highlighted in these references. In fact, the technique of the proof we
will give here to estimate the cost of fast controls for equations (1) and (2) can also be used to
obtain a new result for the transport-diffusion problem that we introduce now.

Let us consider some constant M > 0 and some viscosity coefficient ε > 0. We are interested
in the following family of transport-diffusion equations

yt − εyxx −Myx = 0 in (0, T )× (0, L),

y(·, 0) = v(t) in (0, T ),

y(·, L) = 0 in (0, T ),

y(0, ·) = y0 in (0, L),

(3)

with initial condition y0 ∈ H−1(0, L) and control v ∈ L2(0, L) (remark that the speed of the
convection term is negative). If ε is taken equal to 0 and if the initial condition y0 is taken in
L2(0, L), we obtain a transport equation at constant speed:

yt −Myx = 0 in (0, T )× (0, L),

y(·, L) = 0 in (0, T ),

y(0, ·) = y0 in (0, L),

(4)

which is known to be null-controllable if and only if T > L/M , the optimal control in L2-norm is
in this case the null function since we do not act on the equation. As before, one can define for
equation (3) some cost of the control CTD(T, L,M, ε), and in the sequel we will precisely study its
dependence with respect to ε at fixed T, L,M . Such a family of equations will be said uniformly
controllable at time T if and only if CTD(T, L,M, ε)→ 0 as ε→ 0 and non-uniformly controllable
otherwise. As we will see later, the typical behavior of this kind of equations is that the cost of
the control explodes for small enough T and decreases exponentially for large enough T when ε
tends to 0. Our goal here will be to give a new lower bound for the minimal time needed to ensure
uniform controllability.
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1.2 State of the art
We will restrict here mainly to recall results in the 1-D case (the situation is far more compli-

cated in the multidimensional case, see for example [15] and [16]). The first results concerning the
cost of fast boundary controls have been obtained in the case of heat and Schrödinger equations.
Concerning the one-dimensional heat equation on (0, T ) × (0, L) with boundary control on one
side, the time-dependence of the cost of the boundary control is ' exp (β+/T ) for some constant
β > 0 (see [7] for the lower bound and [18] for the upper bound), where the notation β+ means
that we simultaneously have that the cost of the control is & exp(β/T ) and . exp(K/T ) for every
K > β as close as β as we want (the implicit constant in front of the exponential may explode
when we get closer to β because it seems to be a fraction of some power of T ). The constant β
verifies

L2/4 6 β 6 3L2/4.

The best upper bound was obtained in [19] and the lower bound in [16]. These estimates on β
were the best that were known up to now. For the Schrödinger equation on (0, T ) × (0, L) with
boundary control on one side, one also has that the dependence in time of the cost of the boundary
control is under the form ' exp(β̃+/T ) for some constant β̃ > 0. The constant β̃ verifies

L2/4 6 β̃ 6 3L2/2.

The upper bound is obtained in [19] and the lower bound in [15]. These estimates on β̃ are the
best that are known up to now. In both cases, it was conjectured that the lower bound is optimal,
i.e. that one can choose

β = β̃ = L2/4.

We will call from now on these conjectures on β and β̃ the Miller’s conjectures.
Let us mention that, in the case of the heat equation, there exists another conjecture concerning

sharp integral observability estimates and that is stronger than the previous one, see [3] and [12],
which concerns the observability of the heat equation. More precisely, it was proved in [3] that
there exists some constant Cint(T, L) such that∫ ∞

0

∫ L

0

e−
L2

2t |ϕ(t, x)|2dxdt 6 Cint(T, L)

∫ T

0

|∂xϕ(t, 0)|2dt, (5)

where ϕ is a solution on the (forward) free heat equation
ϕt − ϕxx = 0 in (0, T )× (0, L),

ϕ(·, 0) = 0 in (0, T ),

ϕ(·, L) = 0 in (0, T ),

ϕ(0, ·) = ϕ0 in (0, L).

(6)

with ϕ ∈ L2(0, L). However, since (5) was obtained thanks to a reasoning by contradiction, the
authors were unable to estimate precisely the constant Cint(T, L).

A natural conjecture (cf. [3, Section 1.2, Section 3.2, Section 5] and also [12]) would be that
the constant Cint(T, L) does not blow up in a too violent way, in the following sense: For every
δ > 0 and L > 0, one can choose Cint(T, L) such that

Cint(T, L) = O
T→0

(e
δ
T ),

because this would notably give, after some easy computations, the Miller’s conjecture (see [3]
and [12]) and also the Coron-Guerrero conjecture for positive speeds (cf. [12]), with L2 initial
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conditions (and not H−1 initial conditions, but it has only a neglecting impact on the cost of the
control). From now on, we will call this conjecture the Ervedoza-Zuazua conjecture.

These results were later generalized to other self-adjoint or skew-adjoint elliptic operators by
the author in [13]. More precisely, it was proved that if we consider some abstract linear control
system with “boundary” control and where the elliptic operator associated to the system is skew-
adjoint or self-adjoint with eigenvalues having a behaviour roughly as Rkα or iRkα when α > 2,
then the cost of the control is bounded from above by exp

(
K/(RT )1/(α−1)

)
where K is some

explicit constant depending on α, and is bounded from below by exp
(
C/T 1/(α−1)), where C is

some non-explicit constant independant of T (but depending on R and α). However, in this case,
because of the lack of explicit lower bound and some lack of optimization in the computations of
the upper bound, it was impossible to deduce some reasonable conjecture concerning the exact
behaviour of the cost of the control.

Concerning the transport-diffusion equation, let us recall the known results in the case of
negative speed, which is interesting us here. Since one can prove (see [2, Appendix A]) that
the solution of (3) with initial condition y0 ∈ L2(0, L) converges in some sense to the one of
(4) when ε → 0, one might reasonably expect that CTD(T, L,M, ε) → +∞ for T < L/M and
CTD(T, L,M, ε)→ 0 for T > L/M (the fact that we consider initial conditions in H−1 here is not
a problem and only comes from the fact that we want to consider an admissible control operator,
it has only a neglecting impact on the cost of the control).

However, it is proved in [2] that one has

CTD(T, L,M, ε) > Ce
K
ε

for some constants C,K independent of ε if T < L/(2M) forM > 0. This surprising result led the
authors to make the following conjecture concerning positive results for the uniform controllability
of the family of equations (3) for large enough times:

CTD(T, L,M, ε)→ 0

as ε → 0+ as soon as T > 2L/M . From now on, we will call this conjecture the Coron-Guerrero
conjecture. In [2], it is proved the exponential decay of the cost of the control when ε → 0+ for
sufficiently large time, the estimate on this time was improved in [5] and then [11], the later article
making the link between this problem and the cost of fast controls for the heat equation. This
study was also extended to varying in time and space (and regular enough) speedM and arbitrary
space dimension in [6].

1.3 Main results and comments
In this section, we are going to give the main results of this paper and some additional com-

ments.
The first result of this article is the following, which concerns equation (1):

Theorem 1.1 For every T > 0, L > 0 and α > 1, one has

CH(T, L, α) > C

√
L(2π)2αT

2α
α−1

2π
√
T

(
(2π)αT

α
α−1 +

(
2Lα

α sin( πα )

) α
α−1

)2 exp

(
2

1
α−1 (α− 1)L

α
α−1

(α sin
(
π
α

) α
α−1 T

1
α−1

− παT

Lα

)
.

(7)

Notably, applying (7) for α = 2, we have

CH(T, L, 2) > C
8
√
Lπ4T 4

π
√
T (16π2T 2 + L4)

2 exp

(
L2

2T
− π2T

L2

)
,
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which is twice bigger than the usual conjecture. As a consequence, the usual Miller’s conjecture
made in [16], and the stronger Ervedoza-Zuazua conjecture made in [3] and studied in details in
[12], are not verified .

Our second result concerns equation (2):

Theorem 1.2 For every T > 0, L > 0 and α > 1, one has

CS(T, L, α) > C

√
L(2π)2αT

2α
α−1

2π
√
T

(
(2π)2αT

2α
α−1 +

(
L

α sin( π2α )

) 2α
α−1

) exp

(
(α− 1)L

α
α−1

2
(
α sin

(
π
2α

)) α
α−1 T

1
α−1

)
. (8)

Notably, applying (8) for α = 2, we have

CS(T, L, 2) > C
8L1/2π4T 4

π
√
T (16π2T 2 + L4/4)

exp

(
L2

4T

)
,

and we find again the Miller’s conjecture made in [15] for the Schrödinger equation.

The last result is the following, and concerns equation (3):

Theorem 1.3 For every M > 0, T > 0, L > 0 and ε > 0, one has

CTD(T, L,M, ε) >

(
|M |3 + ε3

ε3L3

)1/2
L2

2πε
√
T
(

1 + (LM)2

8(πε)2

) exp

(
L|M |√

2ε
− M2T

4ε
− π2εT

L2

)
. (9)

Notably, CTD(T, L,M, ε) explodes as soon as

M2T

4ε
<
L|M |√

2ε
,

i.e.

T <
2
√

2L

|M |
,

which is very surprising. As a consequence, the Coron-Guerrero conjecture given in [2] is also not
verified for negative speeds.

Let us give additional remarks:

Remark 2 1. The same computations for positive speed of propagation for (3) (which would
correspond to M < 0 here in equation (3)) do not improve the existing result given in [2]
(i.e. T > L/|M | as a lower bound for the time needed for the uniform controllability).

2. If we compare the results given in Theorems 1.1 and 1.2 to the one given in [13] concerning
upper bounds, we see that they do not really have the same shapes. In fact, the quantity
sin(π/(2α)) which was in the parabolic case in [13] appears here in the dispersive case
and conversely for the quantity sin(π/α). The author was not able to understand deeply
the reason of this lack of unity. However, one possible explanation is that the moment
method, as it is usually applied (that is to say study a Weierstrass product issued from the
eigenvalues, and then compensate it with some appropriate multiplier in order to apply the
Paley-Wiener Theorem) is maybe not totally adapted from the viewpoint of the cost of the
control.
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3. It is very surprising that the dispersive case gives a lower bound that is twice less that the
one in the parabolic case. In fact, if we think a little bit about the computations done in
many articles concerning the dispersive case ([15], [19] or [13] for example), we always
obtain an upper bound for the dispersive case which is twice the one for the parabolic case
(because of the study of the Weierstrass product that is used in the moment method, where
the asymptotic upper bound at infinity is different in the two cases). Hence, it seems more
“logical” that the cost of the control for the dispersive case is the same or twice as for the
parabolic case, and not half.

4. By using the results given in [11], we see that if we assume that we were able to prove that
CS(T, L, 2) ' eL

2/(2T ), then we would obtain new upper bound for the transport-diffusion
problem (T > (2

√
2)L/|M | and T> (2

√
2+2)L/|M | resp. for positive and negative speeds).

5. Since the Ervedoza-Zuazua conjecture is not verified, one can think on how to replace it. A
natural substituation would be the following one: for every solution ϕ of (6), we have∫ ∞

0

∫ L

0

e−
L2

t |ϕ(t, x)|2dxdt 6 Cint(T, L)

∫ T

0

|∂xϕ(t, 0)|2dt,

where Cint(T, L) is growing subexponentially in 1/T . Unfortunately, this inequality is not
verified. Let us prove it by contradiction. If this inequality where true, then, using the
computations of [12, Page 101], we would obtain the uniform controllability of (3) as soon
as T > (1 +

√
3)L/M ' 2.73L/M , which cannot be true because of Theorem 1.3 and the

fact that 2
√

2 ' 2.82.

The results and preceding remarks lead us to the following open questions:

Open Questions

Are the lower bounds given in Theorems 1.1, 1.2 and 1.3 optimal? Are the lower bounds in
the case of the heat and Schrödinger equations (i.e. α = 2) optimal?

The author believes that this might be true at least for the heat equation or more generally
for equation (1), but is more sceptical concerning equation (2) and has no idea for equation (3).
Moreover, according to the previous remark, the author thinks that it might not be possible to
find some integral observability estimate similar to (5) with subexponential (in 1/T ) constant in
the right-hand side.

2 Proofs of Theorems 1.1, 1.2 and 1.3
The proofs are based on the following idea: we are going to consider the optimal control

associated to the first eigenfunction, and then we will study the Fourier transform of this control,
which is an entire function of exponential type and with some prescribed zeros. In some sense,
this idea comes from the moment method of [4], but we use it in a “reverse” way compared to what
is done usually: we do not construct the control thanks to the Paley-Wiener Theorem (this will
only give upper bounds) but we assume that the control exists and we see what we can deduce
if we remark that it verifies the moment problem. After some rescaling and translations, we are
then led to study an entire function of exponential type with some prescribed zeros, and we use
a representation formula for functions of exponential type in order to make a link between the
value and the functions and the repartition of its zeros on the upper half-plane. Let us mention
that this idea has already been used in [2] to derive lower bounds for the problem of the uniform
controllability of the transport-diffusion equation. The main differences here are that we were
able to find a better result in the case of negative speed, and we also that were able to extend

7



significantly the scope of the method to other cases than a singular limit, i.e. to the case of study of
the cost of fast controls for (1) and (2), where the eigenvalues have a very different behaviour from
the ones of equation (3), which is interesting in itself and highlights one more time the connection
between the uniform controllability and the cost of fast controls.

Remark 3 An alternative proof of Theorems 1.1, 1.2 and 1.3 would have been to consider the
control associated to some eigenfunction eN for some N large enough depending on α, T and L
and to do the same computations. In fact, this will not give better results than the proof presented
here, and we can say that in some sense, the rescaling and translation arguments that are appearing
during the proof of the theorems is quite equivalent to looking at high frequencies.

2.1 Proof of Theorem 1.1
In all what follows, C will always be a numerical constant independant of the parameters. We

define y0 ∈ H−1(0, L) as follows:

y0(x) := sin
(πx
L

)
. (10)

According to [1, Page 106], (with ε = 1 and M → 0), there exists some numerical constant C
such that

||y0||2H−1(0,L) 6 CL3. (11)

We consider u the optimal control associated to this initial condition, which verifies by definition
and thanks to estimate (11)

||u||L2(0,L) 6 CH(T, L, α)||y0||H−1(0,L) 6 CCH(T, L, α)L3/2. (12)

Proceeding as in [1, Page 106-107], we obtain (because of the fact that y(T, .) = 0 and the definition
by transposition of the solutions of (1))

kπ

L

∫ T

0

u(t) exp

(
kαπα

Lα
t

)
dt = −

∫ L

0

sin
(π
L

)
sin

(
kπ

L

)
dx. (13)

Let us define the complex function v by

v(z) :=

∫ T/2

−T/2
u

(
t+

T

2

)
exp(−ist)dt. (14)

Using (13) and (14), we deduce that

v

(
i
πα

Lα

)
= −L

2

2π
exp

(
−π

αT

2Lα

)
, (15)

and for every k ∈ N with k > 1 we have

v

(
i
kαπα

Lα

)
= 0. (16)

We deduce, using (14) and (12), that

|v(z)| 6 exp

(
T |Im(z)|

2

)∫ T

0

|u(t)|dt

6 CH(T, L, α)
√
T exp

(
T |Im(z)|

2

)
||y0||H−1(0,L)

6 CCH(T, L, α)
√
T exp

(
T |Im(z)|

2

)
L3/2.

(17)
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Let us consider some numerical parameter β > 0 to be chosen later. We introduce

f(z) := v

(
z − iβL

α
α−1

T
α
α−1

)
. (18)

Inequality (17) becomes

|f(z)| 6 CCH(T, L, α)
√
T exp

(
|Im(z)− βL

α
α−1 |

2T 1/(α−1)

)
L3/2. (19)

One has, for k ∈ N and k > 1, and thanks to (16),

f(bk) = 0, (20)

where bk verifies
bk − iL

α
α−1 β

T
α
α−1

=
ikαπα

Lα
,

i.e.

bk := i

(
L

α
α−1 β +

T
α
α−1 kαπα

Lα

)
. (21)

We also have, thanks to (15),

f(b1) = −L
2

2π
exp

(
−π

αT

2Lα

)
, (22)

where

b1 := i

(
L

α
α−1 β +

T
α
α−1πα

Lα

)
. (23)

Using the usual representation of the functions of exponential type given for example in [10,
Theorem p.56], we have, for every z such that Im(z) > 0,

ln(|f(z)|) =

∞∑
1

ln

(
|z − al|
|z − al|

)
+ σx2 +

x2
π

∫
R

ln(|f(τ)|)
|τ − z|2

dτ,

where σ is the type of f , which verifies thanks to (19) that

σ 6
1

2T
1

α−1

. (24)

We apply this equality at point b1, then we use (23) (remark that b1 is a pure imaginary number)
and (24) to obtain

ln(|f(b1)|) 6
∞∑
1

ln

(
|b1 − al|
|s− al|

)
+
L

α
α−1 β

2T
1

α−1

+
Tπα

2Lα
+
b1
π

∫
R

ln(|f(τ)|)
τ2 + |b1|2

dτ, (25)

where the ak are all the roots of f of positive imaginary part.
Let us study the right-hand side of this equality.
1. First term of the right-hand side: We study

I :=

∞∑
l=1

ln

(
|b1 − al|
|b1 − al|

)
.

9



One remark that we have, due to the fact that b1 ∈ iR and that Im(al) > 0, for every l,

|b1 − al|
|b1 − al|

< 1.

Hence, we deduce that

I 6
∞∑
2

ln

(
|b1 − bl|
|s− bl|

)
=

∞∑
2

ln

(
(kα − 1)T

α
α−1πα/Lα

2L
α
α−1 β + (kα + 1)T

α
α−1πα/Lα

)

6
∫ ∞
2

ln

(
xαT

α
α−1πα/(2βL

α2

α−1 )

1 + xαT
α
α−1πα/(2βL

α2

α−1 )

)
dx.

(26)

We use the change of variables

τ :=
πT

1
α−1

(2β)
1
αL

α
α−1

x.

Hence we obtain

I 6
L

α
α−1 (2β)

1
α

T
1

α−1π

∫ ∞
2πT

1
α−1

(2β)
1
α L

α
α−1

ln

(
τα

1 + τα

)
dτ. (27)

We call

A :=
2πT

1
α−1

(2β)
1
αL

α
α−1

. (28)

Using an integration by parts, we obtain∫ ∞
A

ln

(
τα

1 + τα

)
dτ = −A ln

(
Aα

1 +Aα

)
− α

∫ ∞
A

1

1 + τα
dτ. (29)

One can write ∫ ∞
A

1

1 + τα
dτ =

∫ ∞
0

1

1 + τα
dτ −

∫ A

0

1

1 + τα
dτ. (30)

It is well-known that ∫ ∞
0

1

1 + τα
dτ = Γ

(
α− 1

α

)
Γ

(
1 +

1

α

)
.

Using the Euler reflection formula for the Γ function and the relation Γ(z+ 1) = zΓ(z), we
deduce that ∫ ∞

0

1

1 + τα
dτ =

π

α sin(πα )
. (31)

Concerning the second term of (30), we have∫ A

0

1

1 + τα
dτ 6 A,

hence
2

A

∫ A

0

1

1 + τα
dτ 6 2. (32)

Putting together (26), (28), (29), (31) and (32), we deduce that

∞∑
1

ln

(
|b1 − al|
|s− al|

)
6 2 ln

(
1 +

2βL
α2

α−1

(2π)αT
α
α−1

)
− L

α
α−1 (2β)

1
α

sin(πα )T
1

α−1

+ 2. (33)

10



2. Concerning the third time of the right-hand-side, an easy changing of variables gives

|b1|
∫
R

dτ

τ2 + |b1|2
= π.

Hence, using the fact that τ is real and (19), we deduce that

b1
π

∫
R

ln |f(τ)|
τ2 + b21

dτ 6
βL

α
α−1

2T
1

α−1

+ ln(CCH(T, L, α)
√
TL3/2). (34)

Using (22), (25), (33) and (34), we deduce that

ln

(
L2

2π

)
− παT

2Lα

6 2 ln

(
1 +

2βL
α2

α−1

(2π)αT
α
α−1

)
− L

α
α−1 (2β)

1
α

sin(πα )T
1

α−1

+
βL

α
α−1

T
1

α−1

+ 2 +
παT

2Lα
+ ln(CCH(T, L, α)

√
TL3/2),

(35)
hence there exists a numerical constant C such that

CH(T, L, α) > C
L1/2(2π)2αT

2α
α−1

2π
√
T ((2π)αT

α
α−1 + 2βL

α2

α−1 )2
exp

(
L

α
α−1 (2β)

1
α

sin(πα )T
1

α−1

− βL
α
α−1

T
1

α−1

− παT

Lα

)
.

Now, we optimize β by trying to maximize what is inside the exponential. We find

β = 2
1

α−1

(
1

α sin(πα )

) α
α−1

,

and we deduce

CH(T, L, α) > C

√
L(2π)2αT

2α
α−1

2π
√
T

(
(2π)αT

α
α−1 + 2

α
α−1

(
Lα

α sin( πα )

) α
α−1

)2 exp

(
2

1
α−1 (α− 1)L

α
α−1

(α sin(π/α))
α
α−1T

1
α−1

− παT

Lα

)
.

2.2 Proof of Theorem 1.2
The computations are very similar to the one of the previous part, hence we are going to skip

some details. We define y0 ∈ H−1(0, L) as in (10). We consider u the optimal control associated
to this initial condition, which verifies by definition and thanks to estimate (11)

||u||L2(0,L) 6 CS(T, L, α)||y0||H−1(0,L) 6 CCS(T, L, α)L3/2. (36)

Proceeding as before, we obtain

kπ

L

∫ T

0

u(t) exp

(
ikαπα

Lα
t

)
dt = −

∫ L

0

sin
(π
L

)
sin

(
kπ

L

)
dx. (37)

Let us define the complex function v by

v(z) :=

∫ T/2

−T/2
u(t+

T

2
) exp(−ist)dt. (38)

Using (37) and (38), we deduce that

v

(
−π

α

Lα

)
= −L

2

2π
exp

(
− iπ

αT

2Lα

)
. (39)

11



and for every k ∈ N with k > 1 we have

v

(
−k

απα

Lα

)
= 0. (40)

We also have, using (38) and (36), that

|v(z)| 6 exp

(
T |Im(z)|

2

)∫ T

0

|u(t)|dt 6 CCS(T, L, α)
√
T exp

(
T |Im(z)|

2

)
L3/2. (41)

Let us consider some numerical parameter β > 0 to be chosen later. We introduce

f(z) := v

(
−z + iβL

α
α−1

T
α
α−1

)
. (42)

Inequality (41) becomes

|f(z)| 6 CCS(T, L, α)
√
T exp

(
|Im(z)− βL

α
α−1 |

2T
1

α−1

)
L3/2. (43)

One has, for k ∈ N and k > 1, and thanks to (40),

f(bk) = 0, (44)

where bk verifies

bk :=
T

α
α−1 kαπα

Lα
+ iL

α
α−1 β. (45)

We also have, thanks to (15),

f(b1) = −L
2

2π
exp

(
− iπ

αT

2Lα

)
, (46)

where

b1 :=
T

α
α−1 kαπα

Lα
+ iL

α
α−1 β. (47)

Using the same representation theorem as in the proof of Theorem 1.1, we have for every z such
that Im(z) > 0,

ln(|f(z)|) =

∞∑
1

ln

(
|z − al|
|z − al|

)
+ σx2 +

x2
π

∫
R

ln(|f(τ)|)
|τ − z|2

dτ,

where
σ 6

1

2T
1

α−1

. (48)

We apply this equality at point b1 and use (47) and (48) to obtain

ln(|f(b1)|) 6
∞∑
1

ln

(
|b1 − al|
|s− al|

)
+
L

α
α−1 β

2T
1

α−1

+

∫ +∞

−∞

ln(|f(τ)|)
τ2 + |b1|2

dτ, (49)

where the ak are all the roots of f of positive imaginary part.
Let us study the right-hand side of this equality.

12



1. First term of the right-hand side: We study

I :=

∞∑
l=1

ln

(
|b1 − al|
|b1 − al|

)
.

As before, one obtains that

I 6
∞∑
2

ln

(
|b1 − bl|
|s− bl|

)
=

∞∑
2

ln

 (kα − 1)T
α
α−1πα/Lα√

(2L
α
α−1 β)2 + ((kα + 1)T

α
α−1πα/Lα)2



6
∫ ∞
2

ln

 xαT
α
α−1πα/(2βL

α2

α−1 )√
1 +

(
xαT

α
α−1πα/(2βL

α2

α−1 )
)2
 .

(50)

We use the same change of variables

τ :=
πT

1
α−1

(2β)1/αL
α
α−1

x,

so that we obtain

I 6
L

α
α−1 (2β)

1
α

πT
1

α−1

∫ ∞
2πT

1
α−1

(2β)
1
α L

α
α−1

ln

(
τα√

1 + τ2α

)
dτ. (51)

Using an integration by parts, we obtain∫ ∞
A

ln

(
τα√

1 + τ2α

)
dτ = −A

2
ln

(
A2α

1 +A2α

)
− α

∫ ∞
A

1

1 + τ2α
dτ, (52)

where A was defined in (28). We have∫ ∞
A

1

1 + τ2α
dτ =

∫ ∞
0

1

1 + τ2α
dτ −

∫ A

0

1

1 + τ2α
dτ. (53)

Using (31), we deduce that ∫ ∞
0

1

1 + τ2α
dτ =

π

2α sin( π2α )
. (54)

Concerning the second term of (53), we still have

2

A

∫ A

0

1

1 + τ2α
dτ 6 2. (55)

Putting together (28), (50), (52), (54) and (55), we deduce that

∞∑
1

ln

(
|b1 − al|
|s− al|

)
6 ln

1 +

(
2βL

α2

α−1

(2π)αTα/(α−1)

)2
− L

α
α−1 (2β)

1
α

2 sin( π2α )T
1

α−1

+ 2. (56)

2. Concerning the third time of the right-hand-side, we obtain exactly as before and according
to (47)

b1
π

∫
R

ln(|f(τ)|)
τ2 + |b1|2

dτ 6
βL

α
α−1

2T
1

α−1

+ ln(CCS(T, L, α)
√
TL3/2). (57)

13



Using (46), (49), (56) and (57), we deduce that

ln

(
L2

2π

)
6 ln

1 +

(
2βL

α2

α−1

(2π)αTα/(α−1)

)2
− α L

α
α−1 (2β)1/α

2α sin( π2α )T
1

α−1

+
βL

α
α−1

T
1

α−1

+ 2 + ln(CCS(T, L, α)
√
TL3/2),

(58)
hence there exists a numerical constant C such that

CS(T, L, α) > C
L1/2(2π)2αT

2α
α−1

2π
√
T ((2π)2αT

2α
α−1 + 4β2L

2α2

α−1 )
exp

(
L

α
α−1 (2β)

1
α

2 sin( π2α )T
1

α−1

− βL
2α
α−1

T
1

α−1

)
.

Now, we optimize β by trying to maximize what is inside the exponential. We find

β =
1

2

(
1

α sin( π2α )

) α
α−1

,

and we deduce

CS(T, L, α) > C
L1/2(2π)2αT

2α
α−1

2π
√
T

(
(2π)2αT

2α
α−1 +

(
Lα

α sin( π2α )

) 2α
α−1

) exp

(
(α− 1)L

α
α−1

2(α sin( π2α ))
α
α−1T

1
α−1

)
.

2.3 Proof of Theorem 1.3
The computations are very similar to the ones done in [1, Pages 106-109], so we are going to

skip some points. First of all, we choose the initial condition as

y0(x) := sin
(πx
L

)
exp

(
−Mx

2ε

)
.

Using [1, Pages 106-107], one has

||y0||H−1(0,L) 6 C
ε3L3

|M |3 + ε3
.

We consider u the optimal control associated to this initial condition, which verifies by definition

||u||L2(0,L) 6 CTD(T, L,M, ε)||y0||H−1(0,L) 6 CCTD(T, L,M, ε)
ε3L3

|M |3 + ε3
. (59)

Following [1, Page 107], we see that if we consider

v(z) :=

∫ T/2

−T/2
u

(
t+

T

2

)
exp(−ist)dt, (60)

we have

v
(
i
π

L

)
= − L2

2πε
exp

(
−π

2εT

2L2
− M2T

8ε

)
(61)

and for every k ∈ N with k > 1 we have

v

(
i
k2π2

L2

)
= 0. (62)
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We deduce, using (60) and (59), that

|v(z)| 6 exp

(
T |Im(z)|

2

)∫ T

0

|u(t)|dt 6 CTD(T, L,M, ε)
√
T exp

(
T |Im(z)|

2

)
||y0||H−1(0,L)

6 C

(
ε3L3

|M |3 + ε3

)1/2

CTD(T, L,M, ε)
√
T exp

(
T |Im(z)|

2

)
.

(63)
Let us introduce

f(s) := v
( s

4ε

)
. (64)

Then inequality (63) becomes

|f(z)| 6 C

(
ε3L3

|M |3 + ε3

)1/2

CTD(T, L,M, ε)
√
T exp(

T |Im(z)|
8ε

). (65)

One has, for k ∈ N and k > 1 and thanks to (62)

f(bk) = 0, (66)

where bk verifies

bk := i

(
M2 +

4k2ε2π2

L2

)
. (67)

We also have, thanks to (61),

f(b1) = − L2

2πε
exp

(
−π

2εT

2L2
− M2T

8ε

)
, (68)

where

b1 := i

(
M2 +

4ε2π2

L2

)
. (69)

Using the same representation theorem, one has, for every z such that Im(z) > 0,

ln(|f(z)|) =

∞∑
1

ln

(
|z − al|
|z − al|

)
+ σx2 +

x2
π

∫
R

ln(|f(τ)|)
|τ − z|2

dτ,

that we apply at point b1:

ln(|f(b1)|) =

∞∑
1

ln

(
|b1 − al|
|b1 − al|

)
+
TM2

8ε
+
επ2

2L2
+
|b1|
π

∫
R

ln(|f(τ)|)
τ2 + |b1|2

dτ. (70)

Let us study separatly the terms of the right-hand side.
1. First term of the right-hand side: we can proceed as we did before, and we obtain

∞∑
1

ln

(
|b1 − al|
|b1 − al|

)
6
∞∑
2

ln

(
(k2−1)ε2π2

L2

M2/2 + (k2+1)ε2π2

L2

)
6
∫ ∞
2

ln

(
ε2π2x2

L2M2/2 + ε2π2x2

)
dx.

We use the change of variables

τ :=

√
2πε

L|M |
x.
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Hence we obtain
∞∑
1

ln

(
|b1 − al|
|b1 − al|

)
6
L|M |√

2πε

∫ ∞
2
√

2πε
L|M|

ln

(
τ2

1 + τ2

)
dτ.

Using an integration by parts, we easily obtain

∞∑
1

ln
|b1 − al|
|b1 − al|

6 2 ln(1 +
(LM)2

8(πε)2
)− L|M |√

2ε
+ 2. (71)

2. Third term: using the fact that τ is real, we have Im(τ) = 0 and then by (65) and
straightforward computations

|b1|
π

∫
R

ln(|f(τ)|)
τ2 + |b1|2

dτ 6 ln

((
ε3L3

|M |3 + ε3

)1/2

CCTD(T, L,M, ε

)
√
T ). (72)

Conclusion: by using (68), (70) , (71) and (72), we deduce that

ln

(
L2

2πε

)
− π2εT

2L2
− M2T

8ε

6 2 ln

(
1 +

(LM)2

8(πε)2

)
−L|M |√

2ε
+2+ln

((
ε3L3

(|M |3 + ε3

)1/2

CCTD(T, L,M, ε)
√
T

)
+
TM2

8ε
+
επ2T

2L2
.

Hence, we obtain

CTD(T, L,M, ε) > C

(
|M |3 + ε3

ε3L3

)1/2
L2

2πε
(

1 + (LM)2

8(πε)2

)2√
T

exp

(
L|M |√

2ε
− M2T

4ε
− π2εT

L2

)
.
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