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Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation

In this paper, we prove explicit lower bounds for the cost of fast boundary controls for a class of linear equations of parabolic or dispersive type involving the spectral fractional Laplace operator. We notably deduce the following striking result: in the case of the heat equation controlled on the boundary, the Miller's conjecture formulated in [Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time, J. Differential Equations, 204 (2004), pp. 202-226] is not verified. Moreover, we also give a new lower bound for the minimal time needed to ensure the uniform controllability of the one-dimensional convection-diffusion equation with negative speed controlled on the left boundary, proving that the conjecture formulated in [J.-M. Coron and S. Guerrero, Singular optimal control: A linear 1-D parabolic-hyperbolic example, Asymptot. Anal., 44 (2005), pp. 237-257] concerning this problem is also not verified at least for negative speeds.

The proof is based on complex analysis, and more precisely on a representation formula for entire functions of exponential type, and is quite related to the moment method of Fattorini and Russell.

Introduction

Presentation of the problems

Let us consider the 1-D Laplace operator ∆ with domain D(∆) := H 1 0 (0, L) and state space H := H -1 (0, L). It is well-known that -∆ : D(∆) → H -1 (0, L) is a positive definite operator with compact resolvent, the k-th eigenvalue is

λ k = k 2 π 2 L 2 ,
with eigenvector e k (x) := sin kπx L .

Thanks to the continuous functional calculus for positive self-adjoint operators, one can define any positive power of -∆. Let us consider here some α > 1 and let us call ∆ α/2 := -(-∆) α/2 .

In what follows, we will consider two types of controlled equation on (0, T ) × (0, L), one of parabolic type, that we write as y t = ∆ α/2 y + bu in (0, T ) × (0, L), y(0, •) = y 0 in (0, L),

and one of dispersive type, that we write as y t = i∆ α/2 y + bu in (0, T ) × (0, L),

y(0, •) = y 0 in (0, L), (2) 
where, for every

ϕ ∈ D(∆ α/2 ), b(ϕ) = -(∆ -1 ϕ) (0), i.e. b := δ 0 • ∆ -1 ,
and u ∈ L 2 ((0, T ), K), K := R (for (1)) or C (for (2)). Equation ( 1) can modelize anomaly fast or slow diffusion (see for example [START_REF] Metzler | The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[END_REF]), whereas (2) can be used to study the energy spectrum of a 1-D fractional oscillator or for some fractional Bohr atoms (see for example [START_REF] Guo | Some physical applications of fractional Schrödinger equation[END_REF]). For both equations, the most interesting case for physicists is α ∈ (1/2, 1].

If α ∈ 2N * , one can observe, using integrations by parts, that b corresponds to a boundary control on the left side on the (α/2 -1)-th derivative of y, so that b can be considered as a natural extension of the boundary control in the case of non-even α. This kind of controls has already been introduced in [17, Section 3.3] to give some negative results about the control of fractional diffusion equations with α 1 and in [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF]Sections 3.2 and 3.3] as an application of some results about the cost of fast controls for some classes of abstract parabolic or dispersive equations.

One can prove, using the result of [START_REF] Ho | Admissible input elements for systems in Hilbert space and a Carleson measure criterion[END_REF] for diagonal semigroups and scalar control, that b is an admissible control operator (see also [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF]Section 3.2 and 3.3]). Moreover, it is well-known that these equations are null-controllable in arbitrary small time (see [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] for the parabolic case and for example [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF] for the dispersive case). Hence, one can easily prove (see for example [1, Chapter 2, Section 2.3]) that for every y 0 ∈ H, there exists a unique optimal (for the L 2 ((0, T ), K)-norm) control u opt ∈ L 2 ((0, T ), K) bringing y 0 to the equilibrium state 0, the map y 0 → u opt is then linear continuous. The norm of this operator is called the optimal null control cost at time T (or in a more concise form the cost of the control), denoted C H (T, L, α) for equation [START_REF] Coron | Control and nonlinearity[END_REF] and C S (T, L, α) for equation [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF]. Let us recall that these constants are also the smallest constants C > 0 such that for every y 0 ∈ H, there exists some control u driving y 0 to 0 at time T with

||u|| L 2 ((0,T ),K) C||y 0 || H .
Our first goal is mainly to continue the study done in [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF]. In this article, the author proved precise upper bounds concerning the cost of the control for some large classes of linear parabolic or dispersive equations (including notably (1) and (2) for α 2) when the time T goes to 0, where the underlying "elliptic" operator was chosen to be self-adjoint or skew-adjoint with eigenvalues roughly as k α or ik α for some α 2 when k → +∞. The author also proved some lower bounds that were optimal concerning the power of T involved, but these estimates were not precise enough to understand what was the dependence of the cost of the control with respect to L and α. Here, we will in fact be able to give precise lower-bounds for equations (1) and (2) as soon as α > 1 (and not only α 2), which will then generalize a little bit the study of lower bounds initiated in [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF]. Moreover, in the dispersive case, we will see that in the particular case α = 2 (i.e. the classical Schrödinger equation controlled on one side of the boundary), we will find again the lower bound that is conjectured to be the optimal one by Miller in [START_REF] Miller | How Violent are Fast Controls for Schrödinger and Plate Vibrations?[END_REF], but a very surprising result is that in the case of the heat equation controlled on one side of the boundary (i.e. (1) with α = 2), our lower bound will be twice bigger than the one expected according to the conjecture done by Miller in [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF], and commonly accepted up to now (see notably [START_REF] Ervedoza | Sharp observability estimates for the heat equations[END_REF], [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF] or [START_REF] Tenenbaum | New blow-up rates of fast controls for the Schrödinger and heat equations[END_REF]). We will then formulate a new conjecture for this problem.

Remark 1 Here, for the sake of simplicity (and because we think that it is enough for our purpose), we chosed to treat only the case of equations (1) and (2). However, the results given below might be adapted to the following more general cases

y t + Ay = bu or y t + iAy = bu,
where A is a positive selfadjoint operator on some Hilbert Space H with eigenvalues λ n (the corresponding eigenvector being denoted e n ), with the assumption that (λ n ) n 1 is a regular increasing sequence of positive numbers verifying moreover that there exist some α > 1 and some R > 0 such that

λ n = Rn α + O n→∞ (n α-1 ),
and b is a scalar control input, i.e. b ∈ D(A) and u ∈ L 2 ((0, T ), K), where K := R or C), and the sequence (| < b, e k > (D(A) ,D(A)) |) k∈N * is bounded from above and below (see [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF]).

Understanding the behavior of fast controls is of interest in itself but it may also be applied (at least in some cases) to study the uniform controllability of transport-diffusion equations in the vanishing viscosity limit as explained in [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF] and [START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF] because of the strong connection existing between these problems and highlighted in these references. In fact, the technique of the proof we will give here to estimate the cost of fast controls for equations ( 1) and ( 2) can also be used to obtain a new result for the transport-diffusion problem that we introduce now.

Let us consider some constant M > 0 and some viscosity coefficient ε > 0. We are interested in the following family of transport-diffusion equations

         y t -εy xx -M y x = 0 in (0, T ) × (0, L), y(•, 0) = v(t) in (0, T ), y(•, L) = 0 in (0, T ), y(0, •) = y 0 in (0, L), (3) 
with initial condition y 0 ∈ H -1 (0, L) and control v ∈ L 2 (0, L) (remark that the speed of the convection term is negative). If ε is taken equal to 0 and if the initial condition y 0 is taken in L 2 (0, L), we obtain a transport equation at constant speed:

     y t -M y x = 0 in (0, T ) × (0, L), y(•, L) = 0 in (0, T ), y(0, •) = y 0 in (0, L), (4) 
which is known to be null-controllable if and only if T L/M , the optimal control in L 2 -norm is in this case the null function since we do not act on the equation. As before, one can define for equation (3) some cost of the control C T D (T, L, M, ε), and in the sequel we will precisely study its dependence with respect to ε at fixed T, L, M . Such a family of equations will be said uniformly controllable at time T if and only if C T D (T, L, M, ε) → 0 as ε → 0 and non-uniformly controllable otherwise. As we will see later, the typical behavior of this kind of equations is that the cost of the control explodes for small enough T and decreases exponentially for large enough T when ε tends to 0. Our goal here will be to give a new lower bound for the minimal time needed to ensure uniform controllability.

State of the art

We will restrict here mainly to recall results in the 1-D case (the situation is far more complicated in the multidimensional case, see for example [START_REF] Miller | How Violent are Fast Controls for Schrödinger and Plate Vibrations?[END_REF] and [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF]). The first results concerning the cost of fast boundary controls have been obtained in the case of heat and Schrödinger equations. Concerning the one-dimensional heat equation on (0, T ) × (0, L) with boundary control on one side, the time-dependence of the cost of the boundary control is exp (β + /T ) for some constant β > 0 (see [START_REF] Güichal | A lower bound of the norm of the control operator for the heat equation[END_REF] for the lower bound and [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF] for the upper bound), where the notation β + means that we simultaneously have that the cost of the control is exp(β/T ) and exp(K/T ) for every K > β as close as β as we want (the implicit constant in front of the exponential may explode when we get closer to β because it seems to be a fraction of some power of T ). The constant β verifies L 2 /4 β 3L 2 /4.

The best upper bound was obtained in [START_REF] Tenenbaum | New blow-up rates of fast controls for the Schrödinger and heat equations[END_REF] and the lower bound in [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF]. These estimates on β were the best that were known up to now. For the Schrödinger equation on (0, T ) × (0, L) with boundary control on one side, one also has that the dependence in time of the cost of the boundary control is under the form exp( β+ /T ) for some constant β > 0. The constant β verifies

L 2 /4 β 3L 2 /2.
The upper bound is obtained in [START_REF] Tenenbaum | New blow-up rates of fast controls for the Schrödinger and heat equations[END_REF] and the lower bound in [START_REF] Miller | How Violent are Fast Controls for Schrödinger and Plate Vibrations?[END_REF]. These estimates on β are the best that are known up to now. In both cases, it was conjectured that the lower bound is optimal, i.e. that one can choose

β = β = L 2 /4.
We will call from now on these conjectures on β and β the Miller's conjectures.

Let us mention that, in the case of the heat equation, there exists another conjecture concerning sharp integral observability estimates and that is stronger than the previous one, see [START_REF] Ervedoza | Sharp observability estimates for the heat equations[END_REF] and [START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF], which concerns the observability of the heat equation. More precisely, it was proved in [START_REF] Ervedoza | Sharp observability estimates for the heat equations[END_REF] that there exists some constant

C int (T, L) such that ∞ 0 L 0 e -L 2 2t |ϕ(t, x)| 2 dxdt C int (T, L) T 0 |∂ x ϕ(t, 0)| 2 dt, (5) 
where ϕ is a solution on the (forward) free heat equation

         ϕ t -ϕ xx = 0 in (0, T ) × (0, L), ϕ(•, 0) = 0 in (0, T ), ϕ(•, L) = 0 in (0, T ), ϕ(0, •) = ϕ 0 in (0, L). (6) 
with ϕ ∈ L 2 (0, L). However, since [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] was obtained thanks to a reasoning by contradiction, the authors were unable to estimate precisely the constant C int (T, L).

A natural conjecture (cf. [3, Section 1.2, Section 3.2, Section 5] and also [START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF]) would be that the constant C int (T, L) does not blow up in a too violent way, in the following sense: For every δ > 0 and L > 0, one can choose C int (T, L) such that

C int (T, L) = O T →0 (e δ T ),
because this would notably give, after some easy computations, the Miller's conjecture (see [START_REF] Ervedoza | Sharp observability estimates for the heat equations[END_REF] and [START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF]) and also the Coron-Guerrero conjecture for positive speeds (cf. [START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF]), with L 2 initial conditions (and not H -1 initial conditions, but it has only a neglecting impact on the cost of the control). From now on, we will call this conjecture the Ervedoza-Zuazua conjecture.

These results were later generalized to other self-adjoint or skew-adjoint elliptic operators by the author in [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF]. More precisely, it was proved that if we consider some abstract linear control system with "boundary" control and where the elliptic operator associated to the system is skewadjoint or self-adjoint with eigenvalues having a behaviour roughly as Rk α or iRk α when α 2, then the cost of the control is bounded from above by exp K/(RT ) 1/(α-1) where K is some explicit constant depending on α, and is bounded from below by exp C/T 1/(α-1) , where C is some non-explicit constant independant of T (but depending on R and α). However, in this case, because of the lack of explicit lower bound and some lack of optimization in the computations of the upper bound, it was impossible to deduce some reasonable conjecture concerning the exact behaviour of the cost of the control.

Concerning the transport-diffusion equation, let us recall the known results in the case of negative speed, which is interesting us here. Since one can prove (see [2, Appendix A]) that the solution of (3) with initial condition y 0 ∈ L 2 (0, L) converges in some sense to the one of (4) when ε → 0, one might reasonably expect that C T D (T, L, M, ε) → +∞ for T < L/M and C T D (T, L, M, ε) → 0 for T > L/M (the fact that we consider initial conditions in H -1 here is not a problem and only comes from the fact that we want to consider an admissible control operator, it has only a neglecting impact on the cost of the control).

However, it is proved in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] that one has

C T D (T, L, M, ε) Ce K ε
for some constants C, K independent of ε if T < L/(2M ) for M > 0. This surprising result led the authors to make the following conjecture concerning positive results for the uniform controllability of the family of equations ( 3) for large enough times:

C T D (T, L, M, ε) → 0
as ε → 0 + as soon as T > 2L/M . From now on, we will call this conjecture the Coron-Guerrero conjecture. In [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF], it is proved the exponential decay of the cost of the control when ε → 0 + for sufficiently large time, the estimate on this time was improved in [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] and then [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF], the later article making the link between this problem and the cost of fast controls for the heat equation. This study was also extended to varying in time and space (and regular enough) speed M and arbitrary space dimension in [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF].

Main results and comments

In this section, we are going to give the main results of this paper and some additional comments.

The first result of this article is the following, which concerns equation ( 1):

Theorem 1.1 For every T > 0, L > 0 and α > 1, one has

C H (T, L, α) C √ L(2π) 2α T 2α α-1 2π √ T (2π) α T α α-1 + 2L α α sin( π α ) α α-1 2 exp 2 1 α-1 (α -1)L α α-1 (α sin π α α α-1 T 1 α-1 - π α T L α . (7) 
Notably, applying [START_REF] Güichal | A lower bound of the norm of the control operator for the heat equation[END_REF] for α = 2, we have

C H (T, L, 2) C 8 √ Lπ 4 T 4 π √ T (16π 2 T 2 + L 4 ) 2 exp L 2 2T - π 2 T L 2 ,
which is twice bigger than the usual conjecture. As a consequence, the usual Miller's conjecture made in [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF], and the stronger Ervedoza-Zuazua conjecture made in [START_REF] Ervedoza | Sharp observability estimates for the heat equations[END_REF] and studied in details in [START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF], are not verified .

Our second result concerns equation ( 2):

Theorem 1.2 For every T > 0, L > 0 and α > 1, one has

C S (T, L, α) C √ L(2π) 2α T 2α α-1 2π √ T (2π) 2α T 2α α-1 + L α sin( π 2α ) 2α α-1 exp (α -1)L α α-1 2 α sin π 2α α α-1 T 1 α-1 . (8)
Notably, applying (8) for α = 2, we have

C S (T, L, 2) C 8L 1/2 π 4 T 4 π √ T (16π 2 T 2 + L 4 /4) exp L 2 4T ,
and we find again the Miller's conjecture made in [START_REF] Miller | How Violent are Fast Controls for Schrödinger and Plate Vibrations?[END_REF] for the Schrödinger equation.

The last result is the following, and concerns equation ( 3):

Theorem 1.
3 For every M > 0, T > 0, L > 0 and ε > 0, one has

C T D (T, L, M, ε) |M | 3 + ε 3 ε 3 L 3 1/2 L 2 2πε √ T 1 + (LM ) 2 8(πε) 2 exp L|M | √ 2ε - M 2 T 4ε - π 2 εT L 2 . (9) 
Notably, C T D (T, L, M, ε) explodes as soon as

M 2 T 4ε < L|M | √ 2ε , i.e. T < 2 √ 2L |M | ,
which is very surprising. As a consequence, the Coron-Guerrero conjecture given in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] is also not verified for negative speeds. Let us give additional remarks:

Remark 2 1. The same computations for positive speed of propagation for (3) (which would correspond to M < 0 here in equation (3)) do not improve the existing result given in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] (i.e. T > L/|M | as a lower bound for the time needed for the uniform controllability).

2. If we compare the results given in Theorems 1.1 and 1.2 to the one given in [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF] concerning upper bounds, we see that they do not really have the same shapes. In fact, the quantity sin(π/(2α)) which was in the parabolic case in [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF] appears here in the dispersive case and conversely for the quantity sin(π/α). The author was not able to understand deeply the reason of this lack of unity. However, one possible explanation is that the moment method, as it is usually applied (that is to say study a Weierstrass product issued from the eigenvalues, and then compensate it with some appropriate multiplier in order to apply the Paley-Wiener Theorem) is maybe not totally adapted from the viewpoint of the cost of the control.

3. It is very surprising that the dispersive case gives a lower bound that is twice less that the one in the parabolic case. In fact, if we think a little bit about the computations done in many articles concerning the dispersive case ( [START_REF] Miller | How Violent are Fast Controls for Schrödinger and Plate Vibrations?[END_REF], [START_REF] Tenenbaum | New blow-up rates of fast controls for the Schrödinger and heat equations[END_REF] or [START_REF] Lissy | On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension[END_REF] for example), we always obtain an upper bound for the dispersive case which is twice the one for the parabolic case (because of the study of the Weierstrass product that is used in the moment method, where the asymptotic upper bound at infinity is different in the two cases). Hence, it seems more "logical" that the cost of the control for the dispersive case is the same or twice as for the parabolic case, and not half.

4. By using the results given in [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF], we see that if we assume that we were able to prove that C S (T, L, 2) e L 2 /(2T ) , then we would obtain new upper bound for the transport-diffusion problem

(T > (2 √ 2)L/|M | and T> (2 √ 2 + 2)L/|M | resp.
for positive and negative speeds).

5. Since the Ervedoza-Zuazua conjecture is not verified, one can think on how to replace it. A natural substituation would be the following one: for every solution ϕ of (6), we have

∞ 0 L 0 e -L 2 t |ϕ(t, x)| 2 dxdt C int (T, L) T 0 |∂ x ϕ(t, 0)| 2 dt,
where C int (T, L) is growing subexponentially in 1/T . Unfortunately, this inequality is not verified. Let us prove it by contradiction. If this inequality where true, then, using the computations of [12, Page 101], we would obtain the uniform controllability of (3) as soon as T > (1 + √ 3)L/M 2.73L/M , which cannot be true because of Theorem 1.3 and the fact that 2 √ 2 2.82.

The results and preceding remarks lead us to the following open questions:

Open Questions

Are the lower bounds given in Theorems 1.1, 1.2 and 1.3 optimal? Are the lower bounds in the case of the heat and Schrödinger equations (i.e. α = 2) optimal?

The author believes that this might be true at least for the heat equation or more generally for equation [START_REF] Coron | Control and nonlinearity[END_REF], but is more sceptical concerning equation ( 2) and has no idea for equation [START_REF] Ervedoza | Sharp observability estimates for the heat equations[END_REF]. Moreover, according to the previous remark, the author thinks that it might not be possible to find some integral observability estimate similar to [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] with subexponential (in 1/T ) constant in the right-hand side.

2 Proofs of Theorems 1.1, 1.2 and 1.3

The proofs are based on the following idea: we are going to consider the optimal control associated to the first eigenfunction, and then we will study the Fourier transform of this control, which is an entire function of exponential type and with some prescribed zeros. In some sense, this idea comes from the moment method of [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], but we use it in a "reverse" way compared to what is done usually: we do not construct the control thanks to the Paley-Wiener Theorem (this will only give upper bounds) but we assume that the control exists and we see what we can deduce if we remark that it verifies the moment problem. After some rescaling and translations, we are then led to study an entire function of exponential type with some prescribed zeros, and we use a representation formula for functions of exponential type in order to make a link between the value and the functions and the repartition of its zeros on the upper half-plane. Let us mention that this idea has already been used in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] to derive lower bounds for the problem of the uniform controllability of the transport-diffusion equation. The main differences here are that we were able to find a better result in the case of negative speed, and we also that were able to extend significantly the scope of the method to other cases than a singular limit, i.e. to the case of study of the cost of fast controls for (1) and ( 2), where the eigenvalues have a very different behaviour from the ones of equation ( 3), which is interesting in itself and highlights one more time the connection between the uniform controllability and the cost of fast controls.

Remark 3 An alternative proof of Theorems 1.1, 1.2 and 1.3 would have been to consider the control associated to some eigenfunction e N for some N large enough depending on α, T and L and to do the same computations. In fact, this will not give better results than the proof presented here, and we can say that in some sense, the rescaling and translation arguments that are appearing during the proof of the theorems is quite equivalent to looking at high frequencies.

Proof of Theorem 1.1

In all what follows, C will always be a numerical constant independant of the parameters. We define y 0 ∈ H -1 (0, L) as follows:

y 0 (x) := sin πx L . ( 10 
)
According to [1, Page 106], (with ε = 1 and M → 0), there exists some numerical constant C such that

||y 0 || 2 H -1 (0,L) CL 3 . ( 11 
)
We consider u the optimal control associated to this initial condition, which verifies by definition and thanks to estimate ( 11)

||u|| L 2 (0,L) C H (T, L, α)||y 0 || H -1 (0,L) CC H (T, L, α)L 3/2 . ( 12 
)
Proceeding as in [1, Page 106-107], we obtain (because of the fact that y(T, .) = 0 and the definition by transposition of the solutions of ( 1))

kπ L T 0 u(t) exp k α π α L α t dt = - L 0 sin π L sin kπ L dx. ( 13 
)
Let us define the complex function v by

v(z) := T /2 -T /2 u t + T 2 exp(-ist)dt. (14) 
Using ( 13) and ( 14), we deduce that

v i π α L α = - L 2 2π exp - π α T 2L α , (15) 
and for every k ∈ N with k > 1 we have

v i k α π α L α = 0. ( 16 
)
We deduce, using ( 14) and [START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF], that

|v(z)| exp T |Im(z)| 2 T 0 |u(t)|dt C H (T, L, α) √ T exp T |Im(z)| 2 ||y 0 || H -1 (0,L) CC H (T, L, α) √ T exp T |Im(z)| 2 L 3/2 . ( 17 
)
Let us consider some numerical parameter β > 0 to be chosen later. We introduce

f (z) := v z -iβL α α-1 T α α-1 . (18) 
Inequality [START_REF] Miller | On the Controllability of Anomalous Diffusions Generated by the Fractional Laplacian[END_REF] becomes

|f (z)| CC H (T, L, α) √ T exp |Im(z) -βL α α-1 | 2T 1/(α-1) L 3/2 . ( 19 
)
One has, for k ∈ N and k > 1, and thanks to [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF],

f (b k ) = 0, ( 20 
)
where b k verifies b k -iL α α-1 β T α α-1 = ik α π α L α , i.e. b k := i L α α-1 β + T α α-1 k α π α L α . ( 21 
)
We also have, thanks to [START_REF] Miller | How Violent are Fast Controls for Schrödinger and Plate Vibrations?[END_REF],

f (b 1 ) = - L 2 2π exp - π α T 2L α , (22) 
where

b 1 := i L α α-1 β + T α α-1 π α L α . ( 23 
)
Using the usual representation of the functions of exponential type given for example in [10, Theorem p.56], we have, for every z such that Im(z) > 0,

ln(|f (z)|) = ∞ 1 ln |z -a l | |z -a l | + σx 2 + x 2 π R ln(|f (τ )|) |τ -z| 2 dτ,
where σ is the type of f , which verifies thanks to (19) that

σ 1 2T 1 α-1 . (24) 
We apply this equality at point b 1 , then we use (23) (remark that b 1 is a pure imaginary number) and ( 24) to obtain

ln(|f (b1)|) ∞ 1 ln |b 1 -a l | |s -a l | + L α α-1 β 2T 1 α-1 + T π α 2L α + b 1 π R ln(|f (τ )|) τ 2 + |b 1 | 2 dτ, (25) 
where the a k are all the roots of f of positive imaginary part.

Let us study the right-hand side of this equality.

1. First term of the right-hand side: We study

I := ∞ l=1 ln |b 1 -a l | |b 1 -a l | .
One remark that we have, due to the fact that b 1 ∈ iR and that Im(a l ) > 0, for every l,

|b 1 -a l | |b 1 -a l | < 1.
Hence, we deduce that

I ∞ 2 ln |b 1 -b l | |s -b l | = ∞ 2 ln (k α -1)T α α-1 π α /L α 2L α α-1 β + (k α + 1)T α α-1 π α /L α ∞ 2 ln x α T α α-1 π α /(2βL α 2 α-1 ) 1 + x α T α α-1 π α /(2βL α 2 α-1 ) dx. (26) 
We use the change of variables

τ := πT 1 α-1 (2β) 1 α L α α-1
x.

Hence we obtain

I L α α-1 (2β) 1 α T 1 α-1 π ∞ 2πT 1 α-1 (2β) 1 α L α α-1 ln τ α 1 + τ α dτ. (27) 
We call

A := 2πT 1 α-1 (2β) 1 α L α α-1 . (28) 
Using an integration by parts, we obtain

∞ A ln τ α 1 + τ α dτ = -A ln A α 1 + A α -α ∞ A 1 1 + τ α dτ. (29) 
One can write

∞ A 1 1 + τ α dτ = ∞ 0 1 1 + τ α dτ - A 0 1 1 + τ α dτ. (30) 
It is well-known that

∞ 0 1 1 + τ α dτ = Γ α -1 α Γ 1 + 1 α .
Using the Euler reflection formula for the Γ function and the relation Γ(z + 1) = zΓ(z), we deduce that

∞ 0 1 1 + τ α dτ = π α sin( π α ) . (31) 
Concerning the second term of (30), we have

A 0 1 1 + τ α dτ A, hence 2 A A 0 1 1 + τ α dτ 2. ( 32 
)
Putting together (26), (28), (29), (31) and (32), we deduce that

∞ 1 ln |b 1 -a l | |s -a l | 2 ln 1 + 2βL α 2 α-1 (2π) α T α α-1 - L α α-1 (2β) 1 α sin( π α )T 1 α-1 + 2.
(33) 2. Concerning the third time of the right-hand-side, an easy changing of variables gives

|b 1 | R dτ τ 2 + |b 1 | 2 = π.
Hence, using the fact that τ is real and ( 19), we deduce that

b 1 π R ln |f (τ )| τ 2 + b 2 1 dτ βL α α-1 2T 1 α-1 + ln(CC H (T, L, α) √ T L 3/2 ). (34) 
Using ( 22), ( 25), ( 33) and (34), we deduce that

ln L 2 2π - π α T 2L α 2 ln 1 + 2βL α 2 α-1 (2π) α T α α-1 - L α α-1 (2β) 1 α sin( π α )T 1 α-1 + βL α α-1 T 1 α-1 + 2 + π α T 2L α + ln(CC H (T, L, α) √ T L 3/2 ), (35) 
hence there exists a numerical constant C such that

C H (T, L, α) C L 1/2 (2π) 2α T 2α α-1 2π √ T ((2π) α T α α-1 + 2βL α 2 α-1 ) 2 exp L α α-1 (2β) 1 α sin( π α )T 1 α-1 - βL α α-1 T 1 α-1 - π α T L α .
Now, we optimize β by trying to maximize what is inside the exponential. We find

β = 2 1 α-1 1 α sin( π α ) α α-1
, and we deduce

C H (T, L, α) C √ L(2π) 2α T 2α α-1 2π √ T (2π) α T α α-1 + 2 α α-1 L α α sin( π α ) α α-1 2 exp 2 1 α-1 (α -1)L α α-1 (α sin(π/α)) α α-1 T 1 α-1 - π α T L α .

Proof of Theorem 1.2

The computations are very similar to the one of the previous part, hence we are going to skip some details. We define y 0 ∈ H -1 (0, L) as in [START_REF] Koosis | The logarithmic integral I[END_REF]. We consider u the optimal control associated to this initial condition, which verifies by definition and thanks to estimate [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF] 

||u|| L 2 (0,L) C S (T, L, α)||y 0 || H -1 (0,L) CC S (T, L, α)L 3/2 . ( 36 
)
Proceeding as before, we obtain

kπ L T 0 u(t) exp ik α π α L α t dt = - L 0 sin π L sin kπ L dx. ( 37 
)
Let us define the complex function v by

v(z) := T /2 -T /2 u(t + T 2 ) exp(-ist)dt. (38) 
Using ( 37) and (38), we deduce that

v - π α L α = - L 2 2π exp - iπ α T 2L α . ( 39 
)
and for every k ∈ N with k > 1 we have

v - k α π α L α = 0. (40) 
We also have, using (38) and (36), that

|v(z)| exp T |Im(z)| 2 T 0 |u(t)|dt CC S (T, L, α) √ T exp T |Im(z)| 2 L 3/2 . ( 41 
)
Let us consider some numerical parameter β > 0 to be chosen later. We introduce

f (z) := v -z + iβL α α-1 T α α-1 . (42) 
Inequality (41) becomes

|f (z)| CC S (T, L, α) √ T exp |Im(z) -βL α α-1 | 2T 1 α-1 L 3/2 . ( 43 
)
One has, for k ∈ N and k > 1, and thanks to (40),

f (b k ) = 0, (44) 
where b k verifies

b k := T α α-1 k α π α L α + iL α α-1 β. ( 45 
)
We also have, thanks to [START_REF] Miller | How Violent are Fast Controls for Schrödinger and Plate Vibrations?[END_REF],

f (b 1 ) = - L 2 2π exp - iπ α T 2L α , (46) 
where

b 1 := T α α-1 k α π α L α + iL α α-1 β. (47) 
Using the same representation theorem as in the proof of Theorem 1.1, we have for every z such that Im(z) > 0,

ln(|f (z)|) = ∞ 1 ln |z -a l | |z -a l | + σx 2 + x 2 π R ln(|f (τ )|) |τ -z| 2 dτ, where σ 1 2T 1 α-1 . ( 48 
)
We apply this equality at point b 1 and use (47) and (48) to obtain

ln(|f (b1)|) ∞ 1 ln |b 1 -a l | |s -a l | + L α α-1 β 2T 1 α-1 + +∞ -∞ ln(|f (τ )|) τ 2 + |b 1 | 2 dτ, (49) 
where the a k are all the roots of f of positive imaginary part.

Let us study the right-hand side of this equality.

1. First term of the right-hand side: We study

I := ∞ l=1 ln |b 1 -a l | |b 1 -a l | .
As before, one obtains that

I ∞ 2 ln |b 1 -b l | |s -b l | = ∞ 2 ln   (k α -1)T α α-1 π α /L α (2L α α-1 β) 2 + ((k α + 1)T α α-1 π α /L α ) 2   ∞ 2 ln     x α T α α-1 π α /(2βL α 2 α-1 ) 1 + x α T α α-1 π α /(2βL α 2 α-1 ) 2     . (50) 
We use the same change of variables

τ := πT 1 α-1 (2β) 1/α L α α-1
x, so that we obtain

I L α α-1 (2β) 1 α πT 1 α-1 ∞ 2πT 1 α-1 (2β) 1 α L α α-1 ln τ α √ 1 + τ 2α dτ. (51) 
Using an integration by parts, we obtain

∞ A ln τ α √ 1 + τ 2α dτ = - A 2 ln A 2α 1 + A 2α -α ∞ A 1 1 + τ 2α dτ, (52) 
where A was defined in (28). We have

∞ A 1 1 + τ 2α dτ = ∞ 0 1 1 + τ 2α dτ - A 0 1 1 + τ 2α dτ. (53) 
Using (31), we deduce that

∞ 0 1 1 + τ 2α dτ = π 2α sin( π 2α ) . (54) 
Concerning the second term of (53), we still have

2 A A 0 1 1 + τ 2α dτ 2. ( 55 
)
Putting together (28), (50), ( 52), ( 54) and (55), we deduce that

∞ 1 ln |b 1 -a l | |s -a l | ln   1 + 2βL α 2 α-1 (2π) α T α/(α-1) 2   - L α α-1 (2β) 1 α 2 sin( π 2α )T 1 α-1 + 2.
(56) 2. Concerning the third time of the right-hand-side, we obtain exactly as before and according to (47)

b 1 π R ln(|f (τ )|) τ 2 + |b 1 | 2 dτ βL α α-1 2T 1 α-1 + ln(CC S (T, L, α) √ T L 3/2 ). (57) 
Using ( 46), ( 49), ( 56) and (57), we deduce that

ln L 2 2π ln   1 + 2βL α 2 α-1 (2π) α T α/(α-1) 2   -α L α α-1 (2β) 1/α 2α sin( π 2α )T 1 α-1 + βL α α-1 T 1 α-1 + 2 + ln(CC S (T, L, α) √ T L 3/2 ), (58) 
hence there exists a numerical constant C such that

C S (T, L, α) C L 1/2 (2π) 2α T 2α α-1 2π √ T ((2π) 2α T 2α α-1 + 4β 2 L 2α 2 α-1 ) exp L α α-1 (2β) 1 α 2 sin( π 2α )T 1 α-1 - βL 2α α-1 T 1 α-1
. Now, we optimize β by trying to maximize what is inside the exponential. We find

β = 1 2 1 α sin( π 2α ) α α-1
, and we deduce

C S (T, L, α) C L 1/2 (2π) 2α T 2α α-1 2π √ T (2π) 2α T 2α α-1 + L α α sin( π 2α ) 2α α-1 exp (α -1)L α α-1 2(α sin( π 2α )) α α-1 T 1 α-1 .

Proof of Theorem 1.3

The computations are very similar to the ones done in [1, Pages 106-109], so we are going to skip some points. First of all, we choose the initial condition as

y 0 (x) := sin πx L exp -M x 2ε .
Using [1, Pages 106-107], one has

||y 0 || H -1 (0,L) C ε 3 L 3 |M | 3 + ε 3 .
We consider u the optimal control associated to this initial condition, which verifies by definition 

k := i M 2 + 4k 2 ε 2 π 2 L 2 . ( 67 
)
We also have, thanks to (61), 

f (b 1 ) = - L 2 2πε exp - π 2 εT 2L 2 - M 2 T 8ε , (68) 
ln(|f (b 1 )|) = ∞ 1 ln |b 1 -a l | |b 1 -a l | + T M 2 8ε + επ 2 2L 2 + |b 1 | π R ln(|f (τ )|) τ 2 + |b 1 | 2 dτ. ( 70 
)
Let us study separatly the terms of the right-hand side.

1. First term of the right-hand side: we can proceed as we did before, and we obtain

∞ 1 ln |b 1 -a l | |b 1 -a l | ∞ 2 ln (k 2 -1)ε 2 π 2 L 2 M 2 /2 + (k 2 +1)ε 2 π 2 L 2 ∞ 2 ln ε 2 π 2 x 2 L 2 M 2 /2 + ε 2 π 2 x 2 dx.
We use the change of variables

τ := √ 2πε L|M |
x.

Hence we obtain

∞ 1 ln |b 1 -a l | |b 1 -a l | L|M | √ 2πε ∞ 2 √ 2πε L|M | ln τ 2 1 + τ 2 dτ.
Using an integration by parts, we easily obtain 

√ T + T M 2 8ε + επ 2 T 2L 2 .
Hence, we obtain

C T D (T, L, M, ε) C |M | 3 + ε 3 ε 3 L 3 1/2 L 2 2πε 1 + (LM ) 2 8(πε) 2 2 √ T exp L|M | √ 2ε - M 2 T 4ε - π 2 εT L 2 .

||u|| L 2 Following [ 1 ,

 21 (0,L) C T D (T, L, M, ε)||y 0 || H -1 (0,L) CC T D (T, L, M, ε) ε 3 L 3 |M | 3 + ε 3 .(59) Page 107], we see that if we considerv(z) := k ∈ N with k > 1 we have v i k 2 π 2 L 2 = 0.(62)We deduce, using (60) and (59), that |v(z)| exp T |Im(z)| 2 T 0 |u(t)|dt C T D (T, L, M, ε) has, for k ∈ N and k > 1 and thanks to (62) f (b k ) = 0, (66) where b k verifies b

where b 1 := i M 2 + 4ε 2 π 2 L 2 . 1 ln

 1221 (69) Using the same representation theorem, one has, for every z such that Im(z) > 0,ln(|f (z)|) = ∞ |z -a l | |z -a l | + σx 2 + x 2 π R ln(|f (τ )|) |τ -z| 2 dτ,that we apply at point b 1 :

∞ 1 ln |b 1 -a l | |b 1 -a l | 2 2 . 3 1/ 2 CC 2 CC

 11122322 Third term: using the fact that τ is real, we have Im(τ ) = 0 and then by (65) and straightforward computations|b 1 | π R ln(|f (τ )|) τ 2 + |b 1 | 2 dτ ln ε 3 L 3 |M | 3 + ε T D (T, L, M, ε √ T ).(72)Conclusion: by using (68), (70) , (71) and (72), we deduce that T D (T, L, M, ε)