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Abstract. We discuss complexity issues in time dependent adjoint evaluation. We ad-
dress the question of storage complexity and redundant calculation of intermediate states
in adjoint calculations for time dependent flows. Parallel in time solutions are introduced
in reverse time integration together with reduced order modelling for the recovery of
intermediate forward states between checkpoints. The approach is illustrated on an
identification problem from partial macroscopic variables fields observations and also in
the context of shape sensitivity evaluation in fluids for the pressure and viscous drag
coefficients.
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1. Introduction

Large dimensional sensitivity analysis is of utmost importance in many applications among
which optimization and design, of shapes for instance, or identification of parameters in
models or contours in an image or in a flow. The interest for sensitivity analysis also grows
with the increasing needs for uncertainty quantification in simulations and the curse of
dimensionality with the limitations of statistical tools when control spaces are of large
dimension.

For instance, the first order Sobol indices [35, 36] for a functional J(X), X = (X1, .., Xn) ∈
Π ⊂ IRn of random inputs Xi=1,..,n can be estimated if the sensitivities of the functional
with respect to the entries are known and are bounded. More precisely, one can prove that
[36]:

si1 =
V ar(IE(J(X)|Xi))

V ar(J)
≤ C

V ar(J)

∫
Π

(
∂J

∂Xi

)2

dxi,

where C gives an information on Π. In particular, in cases where Xi are Gaussian variables
Xi = N(µi, σ

2
i ) we have C = σ2

i /V ar(J). Hence, when available, gradients can be useful
beyond their traditional applications and also address quantitative robustness issues both
in simulation and design. The interest for the gradients grows even more if these are
accessible through an adjoint formulation with a cost of evaluation independent of n.

Adjoint techniques have been widely used with fluids, and in particular for aeronautics
applications, with first applications back to the 70’s [31, 32]. They are now the natural way
to obtain the sensitivity of a functional in high dimensional control spaces. One difficulty
is that developing an adjoint solver means extra development effort and also difficulty to
maintain the adjoint code up to date with respect to the forward solver.

Automatic differentiation (AD) [12] tools have been of some help reducing the program-
ming effort. But they appear often inefficient without some intervention and monitoring
by the programmer. In previous works we showed how to use discrete adjoint construc-
tions for large dimensional sensitivity analysis in robust shape design through adequate
multi-point optimization [23, 24, 25] avoiding any sampling of a large dimensional control
space.
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But most of the previous works with the adjoint, in aeronautics for instance, is for steady
flow configurations and the question of the complexity of backward sensitivity analysis for
time dependent problems still remains an issue. This question concerns, for instance, the
storage of forward states necessary during backward integration and the difficulty with
redundant calculations in case of partial storage.

2. Summary of the work

The paper aims at discussing the complexity issues in time dependent adjoint calculations
with emphasis on the identification of hidden parallelism. It proposes different possible
strategies to break this complexity introducing a priori information on the physics of the
problem and the use of meta-models when available.
The ingredients we propose are generic. We illustrate them on a model problem and for
the flow solution by a Lattice Boltzmann Method (LBM). LBM is a good example as both
the steady and unsteady situations follow a same calculation procedures and it is chal-
lenging as the volume of data in time is much higher than with classical incompressible
Navier-Stokes fluid solvers (i.e. per time step, in 2D a minimum of 9 variables per node
with the D2Q9 lattice instead of 3 with a Navier-Stokes solver and in 3D a minimum of
19 with the D3Q19 lattice instead of 4). Also, LBM consists of successive applications of
two linear and nonlinear operators which need each specific treatment with the adjoint.
A major interest here is to see how to reduce the complexity of these sensitivity eval-
uations using reduced order modelling and functional reformulation. These are specially
interesting in situations where the simulation chain cannot be fully differentiated, because
of being partly available as a black-box solver for instance.
We discuss two situations. First we show that drastic simplification of the contributing
terms to the sensitivity can be achieved for some specific functionals through the incom-
plete sensitivity concept [26]. Then, we see how the introduction of Bayesian-like a priori
assumption on the behavior of a variable permits to improve the prediction of the sensi-
tivities.
The paper illustrates its ingredients through two applications. First, the pertinence of the
different strategies for the exact and approximate adjoints is analyzed on a problem of
contours identification from partial macroscopic field observation where a level set param-
eterization is used to account for the presence of obstacles in the field. Then, incomplete
sensitivity theory is used to reduce the complexity of adjoint evaluations for a shape sensi-
tivity analysis problem for cost functions based on the pressure and viscous contributions
to the aerodynamic drag coefficient.

3. Flow solver

As we said, the ingredients of the paper can be used with any time integration procedure.
We choose to illustrate the approach with a Lattice Boltzmann Method for the solution of
low speed flows and described in appendix A. We emphasis, in particular, on the Lattice
Boltzmann Method chosen, the way solid walls are accounted for through a regularized
level set function and the implementation of the boundary conditions for and finally the
steps which are taken at each time iteration by the solver. This latter is important to our
discussion on adjoint formulation.
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3.1. Backward linearization of a flow solver

Let us consider the Navier-Stokes equations for incompressible fluids with initial u(0, x) =
u0(x) and appropriate boundary conditions describing the velocity vector field u and pres-
sure p for (t, x) ∈ [0, T ]× Ω:

ut + (u.∇)u− ν∆u+∇p = 0, ∇.u = 0. (3.1)

And its adjoint equations (see [31, 32, 26] for instance for details) for the solution of
Lagrange multipliers ũ and p̃ having the same structure than u and p respectively, with
final value ũ(T, x) = 0 and appropriate boundary conditions:

− ũt − (∇ũ)Tu+ (∇u)ũ− ν∆ũ−∇p̃ = −Ju, −∇.ũ = −Jp. (3.2)

The equations involve the partial derivatives of a functional J . In the sequel, we see several
examples of J .
Hence, backward linearization of time dependent nonlinear state equations, such as this
Navier-Stokes equations, requires the storage of the intermediate states (here u(t, x), 0 ≤
t ≤ T ).
In the Navier-Stokes equations, this is due to the presence of the nonlinear advection
operator (u.∇)u and the right-hand sides, the other operators being linear (i.e. ∇p, ν∆u,
∇.u).
It is fair to think that switching to a Lattice Boltzmann formulation should not modify
this complexity. On the other hand, the LBM would have an enormous advantage over
the classical PDE based formulation in sensitivity analysis. Considering the steps of our
Lattice Boltzmann formulation in appendix A, one sees that unlike in the PDE based
formulation where the nonlinearity is in the transport operator, the nonlinearity there is
in the collision step which is at the origin of the diffusion mechanism in the Navier-Stokes
equations. We develop this analysis in the next section.

4. Sensitivity analysis

The time dependent nonlinear equations solver we use to illustrate our ingredients (based
on a Lattice Boltzmann Method presented in appendix A) appears as part of the following
dependency chain in an optimization or identification problem:

ψ → {f(ψ, t), t ∈ [0, T ]} → J(ψ,U(f(ψ, t ∈ [0, T ]))), (4.1)

where ψ is the independent variable (here the shape parameterization). U = (ρ, u)t gathers
the macroscopic density and velocity distributions, f = (f0, .., fq)

t (for a DdQq stencil)
and J is a scalar functional. To be accurate, one should have also considered the inde-
pendent physical parameters (τ, ωi, ci, etc.). But, this would have brought unnecessary
complications to the notations.

As presented in sections 11.1 and 11.4, f can be formally seen as solution of a time
dependent equation involving a first order time derivative:

∂tf + F (f ,U(f), ψ) = 0, f(0) = f0(ψ), (4.2)

where f0(ψ) is the initial density distribution on the lattice. Now consider a functional
involving an integral over time and the macroscopic variables. Steady situations or when
the functional is defined at a given time are particular cases of this:

J =

∫
(0,T )×Ω

j(ψ,U(f(ψ, t))), (4.3)

where Ω denotes the lattice. There is usually no direct dependency between j and f as the
functionals usually involve macroscopic quantities.
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4.1. Adjoint formulation

Let us formally describe the adjoint method in the context of the LBM time dependent
equations.

Linearizing J with respect to ψ one has:

∇
ψ
J =

∫
(0,T )×Ω

(j
ψ

+ jUU
f
f
ψ

).

In this expression U
f

is easy to get as the relation (11.2) between f and U is algebraic.
Also, j

ψ
and jU are usually easy to analytically derive. f

ψ
, on the other hand, is costly to

get as it requires the linearization of the LBM solver.
The linearized LBM solver for f

ψ
can be formally seen as:

∂t(fψ) + F
ψ

+ (FUU
f

+ F
f
)f
ψ

= 0, f
ψ

(0) = f ′0(ψ). (4.4)

It permits to write for all function φ (where φ has the same structure than f):

0 =

∫
(0,T )×Ω

(
∂t(fψ) + F

ψ
+ (FUU

f
+ F

f
)f
ψ

)
φ.

We introduce the adjoint LBM operator F∗(f ,U(f), ψ) = (FUU
f
+F

f
)∗ which corresponds

to the adjoint of one step of the LBM described in section 11.4. This operator will be
defined using automatic differentiation in section 5. Beyond what presented here, the
LBM operator might be quite complex, including other ingredients to account for extra
physics or numerical accuracy (turbulence modelling, wall functions, higher order scheme,
etc). It is therefore interesting to handle the definition of F∗ in an automatic manner and,
in particular, separate it from the mentioned intermediate states storage complexity.

Integrating by parts and using F∗ we have:

0 =

∫
(0,T )×Ω

(−∂tφ+ F∗ φ)f
ψ

+

∫
Ω

[φf
ψ

]T0 +

∫
(0,T )×Ω

φF
ψ

(f ,U(f), ψ).

Introducing the linear backward adjoint problem, we have:

∂tφ+ F∗(f ,U(f), ψ)φ = jUU
f
(f), φ(T ) = 0. (4.5)

Which permits to eventually have:∫
(0,T )×Ω

jUU
f
f
ψ

=

∫
Ω
φ(0)f ′0(ψ)−

∫
(0,T )×Ω

φF
ψ

(U, ψ), (4.6)

with φ solution of the backward adjoint equation (4.5) for the chosen final condition.
If there is no direct dependency between the initial condition f(0) and ψ the first term

in the right-hand-side vanishes. In our implementation of the LBM, the initial density
distribution is uniform and the presence of the obstacles are accounted for at step 2 of the
algorithm given in section 11.4 and then at each of the time iterations. This is actually
where the direct dependency in ψ is in F and linearizing (11.5) provides F

ψ
.

As described in section 11.3 we use either periodic, slip or no-slip boundary conditions
for the density f . These give the corresponding boundary conditions for the adjoint variable
φ.

Suppose Nd is the lattice size in d dimensions in space, then calculation and memory
complexities can be estimated. Variable fψ in (4.5) is of size qN2d. Calculating fψ means

therefore solving Nd times equation (4.2). We recover the expected complexity of the direct
mode. On the other hand, as f , φ is of dimension qNd but for its calculation we need states
f in the reverse order because of the backward integration in time in (4.5).

One possibility to avoid this difficulty is to consider an approximation of the adjoint
by considering only one time step in the direct LBM solution [8]. Previous tentative with
automatic differentiation of LBM codes [17, 20] also show that brute force approach cannot
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be successful because of this storage complexity issue even with the introduction of a
check-pointing technique to optimize the balance between intermediate storage and state
recalculation [12, 14, 13, 11]. We discuss these options in the next section.

5. Discrete adjoint by Automatic Differentiation

The previous analysis has been implemented by automatic differentiation applied to our
Lattice Boltzmann solver. In this section, we describe how the Tapenade AD tool [14]
treats this problem. Appendix B gives a short description of automatic differentiation in
direct and reverse modes.
Our LBM program can be seen taking the following steps. The program linking the inde-
pendent variables to the functional J is called the forward code.

Forward code:
f = given, J = 0,
do iter = 1,.., itermax (time iterations)

f1 = l1(f) (collision, n1 relations, l1 : IRqNd → IRqNd
)

f2 = l2(f1) (transport and boundary conditions, n2 relations, l2 : IRqNd → IRqNd
)

f = f2 this is a linear operation and no storage is necessary.

U = l3(f) (macroscopic variables, n3 relations, l3 : IRqNd → IR(d+1)Nd
)

J = J + l4(U) (cost function, n4 relations, l4 : IR(d+1)Nd → IR)
done
The number of substitutions (’=’ relationship) roughly describes the size of a program.

What is inside the loop is the kernel of our LBM code and we will discuss how to separate
its linearization from the rest of the program.

The adjoint code method [14, 26] (see appendix B for an example) considers a given
computer program in the reverse order of execution and produces a new program where a
given line y = y + g(x) of the initial program gives px = px + g′py. A new complementary
variable is introduced at each substitution and the intermediate forward states have been
stored before each substitution for reverse integration (except if the program is identified
to be linear with respect to its inputs).

A given complementary variable px has the same structure than x. Hence, below pf , pf1

and pf2 are in IRqNd
, pU in IR(d+1)Nd

and pJ is scalar. All the complementary variables
receive a zero initialization, except the last one which is set to one which constitutes the
initialization of the first variable in the reverse integration.

After executing the direct LBM code above and storage of all intermediate variables, a
sketch of the reverse mode code is as follows:

Reverse code:
pJ = 1,pf = pf1 = pf2 = 0,pU = 0,
do iter = itermax, .., 1 (reverse time iterations)

pU = pU + l′∗4 (U(iter))pJ, with l′∗4 : R→ IRqNd

pf = l′∗3 (f(iter))pU, with l′∗3 : R(d+1)Nd → IRqNd

pf2 = pf

pf1 = l′∗2 (f1(iter))pf2 with l′∗2 : RqN
d → IRqNd

pf = l′∗1 (f(iter))pf1 with l′∗1 : RqN
d → IRqNd

done
This is how the tapenade AD tool works and generates the discrete adjoint code.

5



B. Mohammadi

6. Storage complexity of the AD reverse code

The total memory necessary for storage in our situation can be estimated as itermax(qNd(n1+
n2) + (d+ 1)Ndn3).
One can reduce the storage complexity in such a situation accepting redundant calcula-
tions. Checkpointing is available in tapenade [11, 13]. One defines optimal storage mo-
ments and recompute missing variables in between. This reduces the storage complexity
to log2(itermax)(qNd(n1 + n2) + (d + 1)Ndn3) which is still very demanding. This is the
best complexity we can have if applying the AD tool directly to the whole code without
any user intervention.

6.1. User intervention

We would like to go one step further requiring some user intervention. After the previous
differentiation giving the reverse code with the mentioned storage complexity, we apply the
automatic differentiation tool individually to each operator li, i = 1, 2, 3, 4 and generate
l′∗i . The user gathers the operators li and l′∗i and generates new operators we call li ∪
l′∗i . The user then assembles these pieces to build the reverse code with the aim of not
storing more than one intermediate density by time iteration in the forward run. Applied
together with the checkpointing strategy the total storage requirement can be reduced to
log2(itermax)qNd. This is the best one could expect in term of storage complexity and it is
obviously still very challenging. In addition, this is achieved introducing a huge amount of
redundant calculations. Figure 1 shows a sketch of this strategy. One of our aims here is to
reduce or remove these redundant calculations and also, if possible, reduce even more the
storage complexity. We will see that these can be achieved in specific physical situations
and also introducing dynamic meta-models based on checkpoint states.

Checkpoints (stored states) 

Forward 

Backward 

Intermediate states not stored 

f(iter) by redundant 

forward calculations or by 

meta-model based state 

reconstruction 

iter 
itermax 

Redundant Forward 

Figure 1. Sketch of our forward/redundant forward/backward combina-
tion, or when the redundant forward is replaced by a meta-model based
reconstruction of non available intermediate states using checkpoint states.

6.2. Steady flows

A major complexity reduction can be achieved when looking for steady flows as limit
solutions in a time marching procedure. Again, our LBM solver can be seen as discrete
form of (4.2):

fn+1 = fn − F (fn,U(fn), ψ), f0 = given, (6.1)
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and steady solution is when ‖fn+1− fn‖ → 0. We denote by f∞ this solution. The reverse
code can be seen as discrete form of equation (4.5) and taking advantage of the fact that
we look for the sensitivity for the stationary solution, we replace f(t) in this equation by
f∞:

∂tφ+ F∗(f∞,U(f∞), ψ)φ = jUU
f
(f∞), φ(T ) = 0. (6.2)

This can be achieved in our reverse code in section 5 by replacing f(iter) by f(itermax)
which corresponds to the steady solution by the forward code and itermax is the number of
iterations which were necessary to reach it. This, however, represents many manipulations
of the AD generated codes by the user (which are not easy to read in general). A simpler
way to proceed is to differentiate one iteration of the forward code and then change the
number of iterations in the backward loop to itermax and initiate the calculation with
the stationary solution, previously computed. These practical issues aside and the final
(steady) state being obviously available, there is no extra storage requirement [3, 34, 26].

6.3. Meta-models to avoid redundant calculations

Up to now we did not introduce any major approximation, even when addressing the
steady state situation. At this point we propose to introduce dynamic meta-models for
the density to avoid the redundant calculations to recover unavailable states between two
checkpoints. Of course, many reduced order modelling approaches exist and the choice of a
particular meta-model heavily depends on the domain of application and the nature of the
equations. The checkpointing theory tells how to choose ncp checkpoint locations in order
to minimize the redundant calculations [11]. As with our meta-models we will not have any
redundant calculations, we equidistribute our ncp checkpoints every itermax/ncp iterations.
Let us present the idea with data interpolation which is the most simple approach to build
a reduced-order model based on a polynomial parametric approximation of a function
known over a set of points. For instance, using a linear combination of f at checkpoints Ti
we have for 1 ≤ t ≤ itermax:

f̃(t, x) =

ncp∑
j=1

λj(t)f(Tj , x), 0 ≤ λj(t) ≤ 1, (6.3)

where λj(t) are, for instance, barycentric functions such that

ncp∑
j=1

λj(t) = 1, and λj(Ti) = δij .

 

Checkpoints (only two states stored) and 

intermediate states constructed by meta-models 

for partial backward integration 

Forward 

Backward iter 

0 

itermax 

Figure 2. Partial forward/backward accumulation with only two check-
point states stored and dynamically erased.
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6.4. Partial forward/backward accumulation

Another major simplification one might be tempted with is to consider the backward
integration only on a partial forward time window. This is illustrated in figure 2. To have
a more detailed description of this choice consider functional (4.3) and, for the sake of
simplicity, n + 1 uniformly distributed checkpoints at t = Ti, i = 0, .., n. The functional
can be rewritten as:

J =
n∑
i=1

∫ Ti

Ti−1

∫
Ω
j(ψ,U) = −

1∑
i=n

∫ Ti−1

Ti

∫
Ω
j(ψ,U), (6.4)

with T0 = 0 and Tn = T . These representations are interesting as they permit to localize
in time the derivation with respect to ψ. Reconsidering the analysis presented in section
4.1 for each interval ]Ti−1, Ti[ we have:

n∑
i=1

∫
(Ti−1,Ti)×Ω

jUU
f
f
ψ

=
n∑
i=1

(∫
Ω
φ(Ti−1)f ′ψ(Ti−1)−

∫
(Ti−1,Ti)×Ω

φF
ψ

(U, ψ)

)
, (6.5)

where f ′ψ(Ti−1) = 0 as there is obviously no direct dependency between ψ and f(Ti−1).
The adjoint variable φ over this time interval is solution of:

∂tφ+ F∗(f ,U(f), ψ)φ = jUU
f
(f), φ(Ti) = φ+(Ti), (6.6)

where φ+(Ti) indicates the solution at time t = Ti of the adjoint equation over the interval
(Ti, Ti+1) with φ+(Tn) = 0.

Partial forward/backward accumulation can be defined by simply setting φ+(Ti) = 0
for all i. And the introduction of a meta-model for f can be seen as solving:

∂tφ+ F∗(f̃ ,U(f̃), ψ)φ = jUU
f
(f̃), φ(Ti) = φ+(Ti), (6.7)

where f̃(t ∈]Ti−1, Ti[) is a linear interpolation between checkpoints f(Ti−1) and f(Ti).

6.5. Parallel fixed point partial backward with meta-forward

We introduced two ingredients to address two difficulties in adjoint calculation for time
dependent situations: forward states storage and redundant calculations in case of partial
storage. And, we presented two alternatives to address these issues: meta-model construc-
tion for intermediate state recovery and partial forward/backward accumulation. Of course,
each of them introduces some approximations and therefore errors. Here we would like to
reduce some of these uncertainties taking advantage of the natural parallelism present in
the two ingredients as illustrated in figure 3.

Figure 3 indicates how a fixed point iteration can be created over independent problems
for cells (Ti−1, Ti), i = 1, .., n where on each cell one solves a partial meta-forward/backward
accumulation problem using the two ingredients presented above:

∂tφk + F∗(f̃ ,U(f̃), ψ)φk = jUU
f
(f̃), φk(Ti) = φ+

k−1(Ti), (6.8)

where φ+
k−1(Ti) indicates the adjoint computed at the previous fixed point iteration by the

sub-problem solved on cell (Ti, Ti+1). The fixed point iterations aim at removing the error
in the partial accumulation which can be measured at its kth iteration by:

εb =

n−1∑
i=1

‖φk(Ti)− φk−1(Ti)‖. (6.9)

At each iteration of the fixed point, a cell problem on (Ti−1, Ti) is independent once
it receives the adjoint φ+

k (Ti) accumulated over cell (Ti, Ti+1). Eventually, it then has to

communicate to the cell (Ti−2, Ti−1) his contribution at t = Ti−1 denoted by φ+
k (Ti−1).
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Checkpoints (two stored states) and intermediate 

states constructed by a meta-model 

Meta-forward: 

meta-model 

based forward 

Partial meta-

forward/backward 

accumulation 

i-1 i 

Fixed point iteration 

on parallel cells   

Cell (i-1,i) 

Adjoint from 

cell  (i,i+1) 

Adjoint to 

cell  (i-2,i-1) 

Figure 3. Parallel partial meta-forward/backward accumulations for in-
dependent cells (i− 1, i), i = 1, .., n.

Of course, the approximation due to the introduction of the meta-model for intermediate
states recovery will still be present.

6.5.1. Links with the multiple shooting and the parareal algorithms

This algorithm is similar in spirit to the multiple shooting algorithm [2] and to the parareal
method [15, 9]. In these methods, introduced independently by the authors, the solution of
a Cauchy problem is replaced by those of parallel coupled forward initial value problems
on successive sub-intervals as in our case. The motivations for the introduction of the
methods have been different and related to parallelization in time for the latter and error
and stability control in solution of differential algebraic equations for the former.

With these algorithms, solution of problem (4.2) on (0, T ) = ∪i=1,n(Ti−1, Ti) is replaced
by iterations (denoted by k) of n parallel sub-problems:

∂tfk + F (fk,U(fk), ψ) = 0, fk(Ti−1) = f−k−1(Ti−1), on cell (Ti−1, Ti), (6.10)

where f−k−1(Ti−1) comes from the solution of the sub-problem for cell (Ti−2, Ti−1) if i > 1 as
fk(T0) = f0 is given for all k. An error indicator, similar to (6.9) measures the convergence
of the forward parallel iterations:

εf =

n−1∑
i=1

‖fk(Ti)− fk−1(Ti)‖. (6.11)

The complexity of these algorithms in term of number of iterations necessary to reduce
sufficiently εf and εb is difficult to predict in distributed situations involving the solution
of partial differential equations. With ordinary differential equations this complexity is
bounded by n as we will see in section 7. This complexity can be reduced by using a
reduced order model acting as either a preconditioner or in a sequential predictor step as
in the parareal method [15, 9]. An interest of such splitting approaches is the possibility
of using different numerical methods on the different cells, with different accuracy for
instance.
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7. A model problem

Let us illustrate the previous alternatives on a simple model:

vt = sin((v2 + 1)t), v(0) = v0 = 0, J(v0) =

∫ 100

0
v2(t)dt.

Of course, in this case a direct linearization is possible because the control parameter is
one dimensional. But, we would like to evaluate dJ/dv0 with an adjoint formulation as in
section 4.1. Denoting the adjoint variable by v∗ and here F being sin((v2 + 1)t), a similar
analysis than above gives for expression (4.6):

dJ

dv0
=

∫ 100

0
2vvv0 = v∗(0)v′0(v0)−

∫ 100

0
v∗Fv0 = v∗(0),

as v′0(v0) = 1 and Fv0 = 0. To remain close to our LBM problem, the equation is solved
with a backward Euler scheme with a time step of 0.1 s. Figure 4 shows dJ/dv0 evaluated
backward with a full adjoint (100 forward states stored) and using 5, 10 and 20 uniform
checkpoints and between a linear interpolation as meta-model. We see that increasing
the number of checkpoints improves the accuracy of the gradient as reducing the size
of the time subdomain improves the accuracy of the meta-model. This approximation
permits therefore to provide the adjoint with a prescribed memory requirement for the
checkpoints. The necessary memory growths with the requested accuracy for the gradient.
The necessary precision usually increases during an optimization with a descent method.
Figure 5 shows the impact of partial reverse accumulation presented in figure 2. We saw
that with this algorithm only two checkpoints are stored and dynamically reallocated and
again a meta-model is used for intermediate states reconstructions. Here the best result
is with fewer checkpoints which is reasonable as the partial reverse integration covers a
larger portion of the whole integration time. Without a meta-model, fewer checkpoints
would have implied more redundant calculations.

To go one step further and address this loss of accuracy, figure 6 shows the application
of the parallel fixed point iterations applied to the partial backward accumulation with
exact and meta-forward states described in 6.4. One sees that with 5 checkpoints and exact
forward states the gradient is fully recovered after 3 iterations of the fixed point algorithm.
The error indicator εb given by (6.9) is shown during fixed point iterations for 5, 10 and 20
checkpoints and it shows that the number of the fixed point iterations necessary to recover
the gradient increases linearly with the number of the checkpoints and is bounded by the
this number.

More generally, for the solution of backward ordinary differential equations, a worse
case analysis gives a maximum of n iterations of the algorithm to fully remove the error
introduced by the partial backward accumulation approximation. Indeed, n iterations will
permit to an information at Tn = T to reach T0 = 0 as in a sequential calculation. One
saw from figure 6 that the number of iterations is often much less than n. This analysis
cannot be simply extended to distributed systems involving partial differential equations
as with the LBM method as we will see in section 9.

The error introduced in the gradient when using a meta-model for the intermediate
states cannot be removed with this fixed point iterations. It can, however, be reduced
increasing the number of checkpoints. One sees that a compromise can be found with 20
checkpoints between accuracy, absence of redundant calculations and checkpoints storage.
One also takes advantage of the fact that the calculations on the 20 cells between two
checkpoints are fully parallel.
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Figure 4. Model problem 7: full adjoint versus 5, 10 and 20 uniform check-
points with the intermediate states reconstructed from these by a linear
interpolation.
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Figure 5. Same than figure 4 but with partial reverse accumulation and
dynamic reallocation of the checkpoints. The same intermediate states re-
construction has been applied.

8. Low complexity models and specific functionals

Our aim in this section is to see how to reduce the complexity of these sensitivity evalua-
tions using reduced order modelling and functional reformulation. Indeed, we have observed
that some functionals are more suitable for sensitivity evaluation in term of calculation
complexity [26]. One situation where this observation receives even more importance is
when the functional enters in the domain of application of the concept of incomplete sen-
sitivities. Beyond the computational complexity issue, the necessity for such alternatives
also comes from the fact that it is not always possible to proceed with the linearization of
the direct simulation chain used for the definition of J . Let us reconsider the simulation
chain (4.1) where the variables have been split in two categories following their nature in
term of computational complexity. This is a very common situation.
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Figure 6. Parallel fixed point iterations of partial backward accumulation
with meta-forward states described in 6.4. Upper left: with 5 checkpoints
and exact forward states the gradient is fully recovered after 3 iterations of
the fixed point algorithm. Upper right: the error in the gradient is due to
the forward states between checkpoints based on a meta-model. Lower-left:
error εb by (6.9) during fixed point iterations for 5, 10 and 20 checkpoints.
Lower-right: same but with meta-forward states. One sees that a com-
promise can be found with 20 checkpoints between accuracy, absence of
redundant calculations and checkpoints storage.

ψ → q(ψ)→ {f(q(ψ), t), t ∈ [0, T ]} → J(ψ, q(ψ),U(f(q(ψ), t ∈ [0, T ]))), (8.1)

where q is cheap to compute and represents here geometrical quantities. The other de-
pendent variables f and U are expensive to compute as solution of the LBM solver. The
gradient of J with respect to ψ is:

∇
ψ
J = J

ψ
+ (Jq + JUUf

fq)qψ , (8.2)

where J
ψ
, Jq and JU are easy to access and are usually provided by the user as external

modules in an industrial simulation platform. fq and q
ψ

are, on the other hand, difficult
to access. Also, the major part of the cost of this evaluation is due to U

f
fqqψ and its

evaluation with an adjoint method has been discussed throughout the paper. Today’s
industrial simulation platforms are more and more based on black-boxes and commercial
packages not enabling the user for a direct access to the source of the codes. Linearizing
the simulation codes by automatic differentiation is therefore off the table. In the same
way, it is quite inconceivable to develop in house adjoint solvers when the cost function
calculation relies on commercial packages. The only realistic gradient calculation approach
with black-boxes is with finite difference approximation which has a cost proportional to
the size of the control parameter space. This approach therefore is not an option either.
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Suppose we have q̃ and Ũ two reduced order models for q and U with relations Φq̃(ψ) =

q(ψ) and ΨŨ(q̃(ψ)) = U(q(ψ)). Φ and Ψ are transfer functions which will be frozen during

the linearization. One aims through Ũ to remove the dependency with respect to f , using
macroscopic fluid models for instance. We consider the following approximate simulation
chain where black-box and high complexity terms have been approximated:

J̃ : ψ → q̃(ψ)→ Ũ(q̃(ψ))→ J
(
ψ,Φq̃(ψ),ΨŨ(q̃(ψ))

)
. (8.3)

We need both q̃ and Ũ as q is now often part of a black-box package as when using
Computer Aided Design (CAD) tools.

Linearizing (8.3) gives:

∇
ψ
J̃ = J

ψ
+ (Jq + JU(ΨŨq̃ (Ψ−1U)))Φq̃

ψ
, (8.4)

where Ũq̃ (Ψ−1U) indicates the linearization of the reduced order model around the high-

fidelity solution U restricted to the domain of definition of Ũ.
If this approach is effective, one will not need anymore to store or reconstruct f or even

U during forward iterations.
One interesting example of approximate modelling concerns Hadamard incomplete sen-

sitivity formulation. This is an example of simplification in the continuous level. However,
it only concerns specific functionals [26, 27] where:

• the cost function J and control ψ have a same domain of definition (e.g. a shape
and an aerodynamic coefficient defined over it),

• J is a product of geometry by state functions J(ψ) = G(ψ, q(ψ)) S(U(q(ψ))).

If these requirements hold, we can use an incomplete evaluation of this gradient, neglecting
the sensitivity with respect to the state, leading to the approximation ∇ψJ̃ ∼ Jψ +JUqψ =
∇
ψ
G S. This is very interesting as ∇

ψ
f can often be analytically calculated. And, if not,

an approximate model q̃ can be used as described above leading to ∇
ψ
J̃ = J

ψ
+ jU(Φq̃

ψ
).

Finally, the approach is also interesting because the quantities involved are all locally
defined on the domain of definition of ψ and do not involve the full domain of definition
of the state variable U. In the case of the shape optimization problem, for instance, there
will be no field variable linearized as everything will be defined on the shape.

One can go one step further from incomplete sensitivities introducing low order models
such as simple algebraic relations in Ũ [26]. We give examples of such algebraic relations
in section 9.2 to address minimal drag sensitivity analysis where the incomplete sensitivity
approximation is improved with the introduction of the cosine relation for the macroscopic
pressure distribution over a shape and a priori assumptions for the behavior of the velocity
in the normal direction to the shape.

9. Numerical examples

Now we illustrate our adjoint implementation for the LBM with the D2Q9 stencil presented
in appendix A applied to a contour identification and a shape optimization problem.
We show in particular how to use reduced order models and incomplete evaluations of
sensitivities to break the complexity of adjoint evaluations.

9.1. Contour recognition

Non intrusive recognition of a body using partial observations of some macroscopic field
is an important domain of application. It is obvious that reducing the computational
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Figure 7. On a 100 × 100 lattice: L1, L2 and L∞ unit balls and χ given
by (11.4). On the right: contours for the macroscopic pressure and norm of
the the macroscopic velocity after 10000 iterations of the LBM.

complexity and improving the speed of the identification is interesting and helps making
the necessary device more portable and cheap. We would like to test the pertinence of
our adjoint formulations on this problem and see how the adjoint calculations can be
accelerated. Also, because the aim is to detect the contours, the choice of the functional
is free as far as it helps reducing the calculation complexity.

A typical functional is given by the measure of the deviation of a macroscopic velocity
field u from observations uobs and put under the form of (4.3), it reads:

J(ψ) =

∫ T

0

∫
Ωobs

j(ψ, u(t, x)), (9.1)

where j(ψ, u) = (u(t, x)− uobs(t, x))tW tCW (u(t, x)− uobs(t, x)), involving the covariance
matrix C of the observation. C is diagonal if the observations are independent and with the
diagonal element function of the variance of the observations. W is a diagonal weighting
matrix which permits to give more importance to some of the data. These matrices can
depend on time as well if the quality of the data acquisition is variable in time for instance.
Ωobs is the domain of observation which is usually only a subset of the whole calculation
domain. This can also be a function of time if the spatial observation window changes
with time. This is a very general formulation and we have used it, for instance, for the
identification of the effective rigidity of the lithosphere using for uobs the interseismic
velocity field from surface global positioning system (GPS) data in time and space [1].

As this is a test problem to evaluate the pertinence of the different adjoint formulations,
we would like to avoid any other sources of error and only concentrate on the complexity
issues in terms of memory and redundant calculations. We consider uobs(t ∈ [0, T ], x)
where T denotes 100 iterations of the LBM solver. We consider a set of simple obstacles
given in figure 8 on a 100 × 100 lattice. 100 iterations permits to a given information to
cross the domain. The observation domain Ωobs represents 1% of the calculation domain.
An indication of this and the iso-contours of dJ/dψ by a full adjoint calculation with 7
checkpoints are given in figure 8. The number of stored state is 7, just above log2(100)
and is chosen by tapenade in order to minimize the redundant calculations to reconstruct
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missing intermediate states during backward adjoint integration. This is the reference
solution.

7 checkpoints is affordable but 100 iterations is a very small compared to what is nec-
essary with the LBM where the number of iterations is usually of several thousands. With
10000 iterations, the number of checkpoints will be 14 which is still acceptable. Therefore,
the real difficulty is not a storage question but comes from very penalizing redundant
forward calculations to recover intermediate states between the checkpoints. As we said,
in tapenade the checkpoints are distributed in order to minimize these, but they can
also be distributed uniformly or, in order for the reduced order model to fit best the
state history, minimizing for instance the interpolation error [4] as in mesh adaptation
by metric control [10]. One can measure the error one commits substituting a function
of time f(t) by its linear interpolation πδ(t)f constructed from f given on n checkpoints

distributed following δ(t) by |f−πδ(t)f | ≤ cδ2|f ′′|. The distribution law δ(t) can be chosen

as δ(t) = min(δmax,max(δmin, ε/
√
|f ′′|)) in order to equi-distribute this error. ε is an in-

dication of the level of the error and δmax and δmin are cut-off bounds to avoid very large
or small values for δ. Hence, n given checkpoints from T0 = 0 can be distributed following
δ(t) by Ti = Ti−1 + δ(Ti−1) such that Tn = T . Uniform distribution of the checkpoints
can be obviously realized with δ = T/n. As f is not a scalar function and has 9 compo-
nents in D2Q9, one must adapt the distribution δ(t). The simplest way is to replace |f ′′|
by max(|f ′′i |, i = 1, .., 9). One could also introduce different checkpoints for each of the 9
component (but then we need to handle conservation issues).

Hence, to avoid redundant calculations and provide a possible parallel solution we use
the ingredients presented in sections 6.4 and 6.5 with in particular the parallel fixed point
partial reverse accumulation algorithm with 5 uniformly distributed checkpoints. Figure 9
shows four snapshots of the evolution of dJ/dψ at iterations 5, 10, 15 and 20 of the parallel
fixed point partial reverse accumulation to be compared to the full gradient presented in
figure 8. One sees that unlike with the ordinary differential equation in section 7 here the
number of iterations necessary has been much larger than the number of checkpoints. But
still, no intermediate states have been stored and no redundant calculations performed.
The reduced order model is again a linear interpolation between checkpoints. This could be
improved using more sophisticated reduced order models to recover missing informations
in the gradient in figure 9. One could also adapt the distribution of the checkpoints as
suggested above. But these are not central to our discussion.

9.2. Minimal drag design

We discuss Hadamard incomplete sensitivity and the use of reduced order models for the
pressure and viscous drags evaluation through the comparison of these with full adjoint
based gradients with respect to shape deformations.

Consider the mean pressure and viscous contributions to the drag coefficient over at time
t where the macroscopic quantities come from our LBM solver: Cd(t) = Cpd(t) + Cvd (t).
Linearization of these functionals permits also to address situations where an integral over
time of these quantities is involved such as in a functional of mean drag over time.

Let us first illustrate our purpose with the linearization of the pressure drag coefficient
for a shape described by ψ (here scalar for simplicity):

Cpd(t) =
1

2ρ∞‖u∞‖2

∫
shape(ψ)

p(t, q(ψ))(u∞ .n(q(ψ)), (9.2)

where superscript ∞ indicates inflow conditions.
We are in the validity domain of Hadamard incomplete sensitivities described in section

8 with S = p and G = n.
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Ωobs 
Identified contours 

Figure 8. Contour identification from partial macroscopic field observa-
tion. Left: target shapes and two examples of the observation domain Ωobs

each making 1% of the total domain. Right: dJ/dψ by full adjoint of the
LBM for J defined by (9.1) for the two observation domains.

 

  

Forward states reconstructed from 5 uniformly distributed checkpoints 

Forward states reconstructed from 5 checkpoints minimizing the interpolation error  

Figure 9. Contour identification from partial macroscopic field observa-
tion. Four snapshots of dJ/dψ at iterations 5, 10, 15 and 20 of the parallel
fixed point partial reverse accumulation to be compared to the full gradient
presented in figure 8. The forward states are either reconstructed from 5
uniformly distributed checkpoints (upper) and when the checkpoints are
distributed in order to reduce the interpolation error between f and πδf .

Let us analyze the incomplete sensitivity approximation in a situation where the pressure
is given analytically from the cosine-square law: p(ψ) = ptot(u∞ · n(ψ))2 where ptot is the
total pressure function of the inflow conditions.

We therefore have p(ψ)u∞ .n(ψ) = ptot(u∞ · n(ψ))3. Its derivative with respect to ψ is
(pu∞ · n)

ψ
= (pu∞) · n

ψ
+ p

ψ
(u∞ · n) = 3ptotu∞(u∞ · n)2n

ψ
. The first term in the sum is

what we called above incomplete sensitivity and is (pu∞)n
ψ

= ptotu∞(u∞ .n)2n
ψ
.

We see that if the pressure is defined by the cosine-square law, the exact and incomplete
derivatives only differ by a factor of 3 and have the same sign.
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Now what happens when the pressure comes from the LBM method and is given by
p = 1/3

∑
i fi. The expression above can be rewritten as pu∞ .n = p|u∞ | cos( u∞

|u∞ |
.n). The

incomplete sensitivity is therefore p(u∞ .n)
ψ

= −p|u∞ | sin( u∞
|u∞ |

.n) = 0 when n is aligned

with u∞ . The incomplete sensitivity fails therefore for these area. On the other hand, the
model tells us that the pressure sensitivity with respect to shape variations vanishes if
those are along the normal to the shape such that n

ψ
= 0. But this is compatible with the

’macroscopic’ pressure boundary condition pn = 0 even if not used in the LBM.
We therefore expect the incomplete sensitivity to be a good approximation of the gra-

dient if the macroscopic pressure verifies the zero normal pressure condition and if the
shape deformation parameterization is along the normal to the shape. As in our level set
parameterization n = ∇ψ/|∇ψ|, this latter means that the variation δψ must be along the
normal such that: |δψ| = δψ.n.

Now, it is interesting to notice that a descent method can also be interpreted as a
Hamilton-Jacobi equation for the motion of the level set in the direction normal to the
shape:

ψt = −∇
ψ
J = −V∇ψ, ψ(0) = given,

with V =
∇
ψ
J

|∇ψ| . n. The incomplete sensitivity provides therefore a good approximation for

the gradient of the pressure drag. We see that sensitivity evaluation can be dramatically
simplified in some situations.

Figure 10 shows a comparison of ∇
ψ
Cpd(t) with the macroscopic pressure distribution

obtained from f after 100 iterations of the LBM solver. It also shows the error one commits
with the incomplete sensitivity approximation. The error between the ith component of
the gradient of a functional J and its approximation J̃ is estimated through:

η = sgn(∇
ψ
Ji∇ψ

J̃i)|∇ψ
Ji −∇ψ

J̃i|. (9.3)

Two remarks can be made. First that the sign of the incomplete sensitivity is always
correct as η is always positive. Second that the level of the error is about three orders of
magnitude less than the gradient and is in particular concentrated where the condition
pn = 0 might not be well realized (e.g. at corners).
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Figure 10. Left: pressure drag sensitivity ∇
ψ
Cpd(t) with full adjoint.

Right: Local error between the full and incomplete evaluation of the gradi-
ent by indicator η from (9.3).
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We discussed above on how to reduce the complexity of sensitivity evaluation for the
pressure drag. The other contribution to the drag coefficient is the viscous drag which
involves the boundary integral over the shape of the viscous contribution to the Newtonian
stress tensor D(t, q(ψ)) = −ν(∇u(t, q(ψ)) + ∇ut(t, q(ψ))) involving the gradient of the
macroscopic velocity u = 1/ρ

∑
i cifi:

Cvd (t) =
1

2ρ∞‖u∞‖2

∫
shape(ψ)

(D(t, q(ψ)).n(q(ψ))).u∞ . (9.4)

Here again we are in the validity domain of Hadamard incomplete sensitivities described
in section 8 with S = D and G = n. Figure 12 shows a comparison of ∇

ψ
Cvd (t) with the

macroscopic velocity distribution obtained from f after 100 iterations of the LBM solver.
It also shows the error one commits with the incomplete sensitivity approximation through
indicator (9.3). We see that the incomplete sensitivity prediction does not perform so well
in this situation with its sign often incorrect.

One interesting way to go further is to take advantage of the fact that the velocity must
satisfy a no-slip boundary condition. This is unlike with the pressure where a Dirichlet
boundary condition is not explicitly prescribed. This a priori available information can be
exploited as in Bayesian methods. Let us express the velocity in the domain by:

u(t, ψ) = w(ψ)v(t, w(ψ)), (9.5)

where w tends to zero with the distance ψ to the shape in order for u to satisfy a homo-
geneous Dirichlet boundary condition on the shape and v is free and selected in order for
wv to satisfy the state equations (for instance with v = u/w where w 6= 0). The behavior
of w is a priori selected (say linear in ψ for simplicity).

     

 

 

 

 

 

 

  

v 

w 

Macroscopic velocity u 

Figure 11. A snapshot of the macroscopic velocity u and its decomposi-
tion from (9.5).

Now, sensitivity analysis for a functional J (such as the viscous drag J = Cvd ) with
respect to the shape gives:

∇
ψ
J = J

ψ
+ Jqqψ + Ju(wv

ψ
+ vw

ψ
),
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which reduces at ψ = 0 to J
ψ

+ Jqqψ + Juv, because w is chosen such that w
ψ

= 1
and w(ψ = 0) = 0. Therefore, in cases where the near-wall dependency of the solution
with respect to the distance to the shape can be reasonably guessed the sensitivity with
respect to shape variations normal to the wall can be obtained without linearizing the state
equation. Figure 12 shows an example of such decomposition with a linear dependency in
ψ for w.

Figure 12 shows how this can improve the incomplete sensitivity prediction. Indeed,
introducing this a priori information on the behavior of the velocity normal to the shape,
information which is frozen during linearization, the sign of the gradient is now always
correct and its amplitude is better predicted. This is therefore a very powerful approach
and complete the Hadamard incomplete sensitivity approximation.

  

Error indicator between exact and incomplete sensitivities improved with the u=v w decomposition 
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Figure 12. Top: viscous drag sensitivity∇
ψ
Cvd (t) with full adjoint. Lower-

left: Local error between the full and incomplete evaluation of the gradient
by indicator η from (9.3). Lower-right: same but taking advantage of de-
composition (9.5).

These examples are good indications of how reduced order approximations can fully
remove the adjoint calculation and drastically reduce the complexity of sensitivity evalu-
ations, especially penalizing in time dependent problems.

Acknowledgements The discrete adjoint Lattice Boltzmann solver has been obtained
using Tapenade automatic differentiation tool developed at INRIA-Sophia Antipolis.
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10. Concluding remarks

The complexity of sensitivity evaluations in adjoint mode has been discussed for time
dependent problems. The different ingredients have been illustrated in the context of a
lattice Boltzmann solver chosen because challenging in term of the number of variables per
node and per time step. The techniques used here to reduce storage complexity in reverse
mode of differentiation can be applied to any time marching solver. If an automatized
differentiation is targeted, the paper shows the different steps a user should take before the
application of automatic differentiation tools which are not necessarily efficient if directly
applied to the code.

11. Appendix A: Lattice Boltzmann Method

This section shortly describes the ingredients of Lattice Boltzmann Methods.

11.1. Lattice Boltzmann solver

Lattice Boltzmann Method (LBM) [21] is a smoothed alternative to lattice gas automata. It
is capable of solving low speed flow configurations. It mainly gained in popularity because
of its algorithmic simplicity making it suitable for parallelization. Our discussion is general
and addresses a generic DdQq stencil in d space dimension with q velocities (c0, .., cq−1)
on a d-dimensional (d = 2 or 3) square or cubic lattice. The notations are classical with
c0 = 0 at the lattice center, etc. [18]. The evolution of the distribution function fi(x, t) is
given by the Lattice Boltzmann equation with the BGK collision operator:

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = −1

τ
(fi − feqi ), i = 0, 1, .., q − 1, (11.1)

where x denotes the coordinate in the physical space. τ = 3ν+∆t/2 is the relaxation time
related to the kinematic velocity ν. c = h/∆t is the lattice constant. We unitize h and ∆t
such that c = 1. feqi is the equilibrium distribution function given by:

feqi = ωiρ

(
1 +

ci.u

c2
s

+
1

2

(ci.u)2

c4
s

− 1

2

u.u

c2
s

)
, i = 0, 1, 2, .., q − 1,

where ωi are positive weights depending on the stencil chosen. cs =
√

3/3 is the speed
of sound. The macroscopic variables ρ, the fluid density, u, its velocity, and p, the fluid
pressure, are related to fi, i = 0, ..q − 1 through:

ρ(x, t) =
∑
i

fi(x, t), u(x, t) =
1

ρ

∑
i

cifi(x, t), p = ρc2
s = ρ/3. (11.2)

Numerical examples in section 9 are with the D2Q9 stencil. This popular implementation
[18] uses nine velocities (c0, .., c8) on a two-dimensional square lattice. We use the classical
notation where c0 = 0 is at the lattice center and c1 is toward east, c2 north, c3 west,
c4 south, c5 north-east, etc. ci = c(cos((i − 1)π/2), sin((i − 1)π/2))t for i = 1, .., 4 and
ci =

√
2c(cos((2i− 9)π/4), sin((2i− 9)π/4))t for i = 5, .., 8. The weights ωi are ω0 = 4/9,

ωi = 1/9 for i = 1, .., 4 and ωi = 1/36 for i = 5, .., 8.

11.2. Level set parameterization

The level set method, first introduced in [5] and [6] and popularized in [28] is an established
technique to represent moving interfaces. Immersed boundary, fictitious domain methods
as well as penalizing methods using forcing to account for the presence of curved and
moving boundaries in cartesian meshes belong to the same class and have been widely
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used in different applications [30, 16, 19, 33, 7, 29, 22]. A review of these is presented in
[8] together with an application with the LBM.
A level set parameterization is based on the signed Euclidean distance function ψ (other
choices of distance are possible) to the boundary Γ which is described by the zero-level
curve of ψ:

Γ = {x ∈ Ω : ψ(x) = 0}, ψ(x) = ± inf
y∈Γ
|x− y|,

with the convention of a plus sign if x ∈ Ω and minus sign otherwise:

ψ|Γ = 0, ψ|IRd\Ω < 0, ψΩ > 0. (11.3)

For a given shape given by (11.3), the normal to Γ is n = ∇ψ/|∇ψ| at ψ = 0, which is
useful for Neumann and slip boundary conditions and also for sensitivity evaluation with
respect to deformation normal to the shape as presented in section 9.2.
More precisely, ψ known, we account for the boundary conditions in the state equation
using a relaxed normalized distance function χ(ψ), (0 ≤ χ(ψ) ≤ 1). This is necessary when
the iso-(ψ = 0) and the lattices do not exactly coincide. More details are given in section
11.3 in the context of the LBM. The relaxation is defined through an explicit regularization
expression:

χ = max(0,
ψ

|ψ|+ εh
), (11.4)

where ε ∼ 0.01 and h = 1 in the LBM.

11.3. Boundary conditions

We use three types of boundary conditions: no-slip, slip and periodic. The no-slip condition
is for obstacles and the slip and periodic conditions for external boundaries.
The slip condition is somehow similar to the no-slip one but with a different condition on
the velocities. The two conditions can be summarized as:

no-slip condition:fi = fj , if ci = −cj and slip condition: fi = fj , if ci.cj = 0,

where fi and fj , i, j = 1, .., q − 1 are two densities in an element of the lattice.
To account for the presence of walls defined by the level set function one needs to identify
the nodes where no-slip boundary condition must be enforced. To make this decision one
applies the mask defined by χ on the lattice. An example of this is shown in figure 7 with
periodic boundary conditions on the external boundaries.
When χ = 0, this is clearly an obstacle node and the fluid is bounced back from those
playing the role of the no-slip boundary condition. The velocity vector of all fluid densities
is inverted, so all the fluid densities are sent back to the node where they were located
before the last propagation step (see section 11.4), but with opposite velocity vector. For
nodes in the buffer zone where 0 < χ < 1 we proceed with a linear interpolation follow-
ing the value of χ between the propagated density (χ = 1) and the bounced back value
(χ = 0). This representation is similar to the porous boundary representation in [8]. This
formulation can be improved but this is not central to our discussion. Such constructions
are necessary when the obstacle does not exactly match the nodes of the lattice.
The periodic condition is simply implemented linking the north and south nodes of two
facing elements of the lattice in the top and bottom boundaries and the east and west
nodes of two facing elements in the right and left boundaries.
The flow direction is enforced by density redistribution in the first lattice column: the west
nodes densities are reduced by the suitable D2Q9 ratio and the east ones increased by the
same. This is done as far as positivity can be ensured.
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11.4. Some implementation details

At each time step the solver achieves the following tasks which can be taken in different
orders that presented here:

• collision step with relaxation parameter 1/τ applied from equation (11.1):

f̃i(x, t) = fi(x, t)−
1

τ
(fi(x, t)− feqi (x, t)), i = 0, 1, .., q − 1,

where ρ and u in feqi (x, t) are evaluated from (11.2) using fi(x, t).

• density propagation where all fluid densities are propagated from free nodes (non
body) along the lattice connection lines to their next neighbors made available by
the periodic boundary conditions on the external boundaries:

K (χfi(x+ ci, t+ 1) + (1− χ)fi(x− ci, t+ 1)) = f̃i(x, t), i = 0, 1, .., q − 1. (11.5)

This step takes into account the no-slip boundary condition on obstacles as de-
scribed in section 11.3 through a linear interpolation in the buffer area. K is a
scaling factor to enforce local density conservation and is given by the ratio of the
sum of the densities over q − 1 nodes of an element of the lattice (excluding the
central node) before and after the interpolation.

12. Appendix B: Principles of Automatic Differentiation by examples

We would like to give a brief description of automatic or algorithmic differentiation meth-
ods which permit to compute derivatives in discret level from a computer code linking the
independent variables to the functional.
Consider the problem of finding j′(u) when j(u) is given by a computer program.

12.1. The direct mode of AD

Because the program is made of differentiable lines, j′ can be computed by differentiating
every line and adding them to the computer program immediately above each line. For
instance,

Program for j . Lines to add

x = (1 + u) ∗ log(u) dx = (1 + u) ∗ du/u+ log(u)

z = x+ cos(u) dz = dx− sin(u) ∗ du
j = x ∗ z dj = dx ∗ z + x ∗ dz.

If this new program is run with u=u0, du=1, dx=0, dz=0, dj=0, then dj is the derivative
of j with respect to u at u0. This is called the direct mode of AD.

12.2. The reverse mode of AD

The reverse mode of AD is similar to the continuous adjoint method presented in section
4.1 and aims to provide the gradient with a cost independent of the number of variables
in the program. Let us interpret this mode introducing the Lagrangian of the code above
by associating to each variable in the program a dual variable p, except for the last line
for which p = 1 (each line of a computer code is seen as an equality constraint and the
final line as the cost function):

L = p1[x− (1 + u) log(u)] + p2[z − x− cos(u)] + j − xz (12.1)

22



PARALLEL REVERSE TIME INTEGRATION

Stationarity with respect to intermediate variables in reverse order (z, x) gives

∂L

∂z
= 0 = x+ p2

∂L

∂x
= 0 = z − p2 cos(u) + p1.

This gives p2 first, and then p1, and then dj/du is

j′ =
∂L

∂u
= p2x sin(u)− p1(log(u) +

1 + u

u
).

This is different from the direct mode in term of complexity because whatever the number
of independent variables, the adjoint variables pi are evaluated only once. A powerful
technique to avoid the Lagrange method is to use reverse accumulation and this is how
Tapenade works as presented in section 5 for our LBM code. More precisely, for each
assignment y = y + f(x), the dual expression is px = px + f ′py with px and py the dual
variables associated to x and y. Hence, for (px = 0, py = 1) as initialization, this gives
px = f ′. The previous example becomes

px = pz = pu = 0, pj = 1,

px = px + zpj , pz = pz + xpj ,

px = px + pz, pu = pu − sin(u)pz,

j′ = pu + (log(u) +
1 + u

u
)px.

This approach can be used to directly write ’by hand’ the adjoint code. This can also be
seen as an alternative to deriving the continuous adjoint and programming it.
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