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UNCERTAINTY QUANTIFICATION IN THE NUMERICAL
SOLUTION OF COUPLED SYSTEMS BY INVOLUTIVE

COMPLETION
———————————–

B. MOHAMMADI, MATHEMATICS, UNIV. MONTPELLIER

AND

J. TUOMELA, DEPT. MATH & PHYS., UNIV. EASTERN FINLAND

———————————–

Abstract. We address the issue of epistemic uncertainty quantification in
the context of constrained differential systems. To illustrate our approach we
have chosen a certain chromatographic adsorption model which is a coupled
system of partial differential, ordinary differential and algebraic equations. The
difficulty in solving this type of a system is that typically certain unknowns lack
a natural time evolution equation. The standard approach in such cases is to
devise specific numerical schemes which somehow try to take into account the
implicit structure of the system. In our approach, we complete the system by
finding the appropriate missing evolution equations. This makes the system
overdetermined and more complicated in some way but, on the other hand,
the completed system provides extra information useful for error estimation
and uncertainty quantification. We will also show that reducing the epistemic
uncertainties also leads to better estimations of aleatory uncertainties.

1. Introduction

In the field of Uncertainty Quantification (UQ) the uncertanties are classified
in epistemic (reducible) and aleatory (irreducible) categories [1, 4, 6, 9, 20]. There
are two main approaches to estimate aleatory uncertainties. One can use either
statistical techniques directly or derive new models including the stochastic fea-
tures of the parameters. The methods in the latter class are usually intrusive
[5, 22]. An important issue with all these methods is their high computational
complexity. To overcome this limitation one usually introduces low-order models
[15, 17, 18] which are then used for UQ instead of the initial high-fidelity models.

Epistemic uncertainties, on the other hand, can be reduced by improving the
modeling or solution procedures and it is one of our objectives to show how this
can be done in the context of constrained coupled differential systems. Unlike
classical numerical errors, epistemic uncertainties concern both the continuous
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2 UNCERTAINTY QUANTIFICATION BY INVOLUTION

and discrete levels. They can be reduced improving either the models or their
discretizations. This paper concerns both issues as an initial model is first aug-
mented before discretization. More precisely, we aim at addressing the uncertain-
ties related to the numerical solution of differential systems which have constraints
or in other words which are overdetermined. We propose a systematic and con-
structive approach which produces new equations whose solutions quantify the
level of the uncertainties on the variables. It is based on a reformulation of the
initial system by completing the system, i.e. adding appropriate differential con-
sequences to the system. This means that we work on the continuous level before
any discretization.

We expect the completed system to be more suitable for discretization because
the constraints are then better taken into account. Hence typically some stan-
dard discretization method which gives poor results when applied to the original
system will be accurate and robust when applied to the completed system. We
can thus easily use generic commercial tools to solve our problem. Moreover our
approach makes it easier to reach higher accuracy by increasing the accuracy
of the discretization for a particular variable without being limited by possible
compatibility issues of discretizations of different variables. For instance, we pre-
viously showed that the inf-sup condition (see e.g. [3]) for the Stokes problem
disappears after our reformulation: the system stays stable even with higher order
discretizations for the pressure than velocity [12].

In general our aim is to incorporate the new features obtained by completing
the given system as upgrades of existing solvers. In this way the considerable
effort required in developing a new code from scratch is avoided [13]. These
techniques are not very well known in the numerical simulation communities but
hopefully the present paper will help to popularize them further.

We will illustrate our approach by analyzing a well known model of packed-
bed chromatography. The physical idea of this interesting model is that there are
several substances in the ambient fluid which are adsorbed on the boundary of the
domain of the flow. This leads to a system where there are convection diffusion
equations, ordinary differential equations and nonlinear algebraic equations.

The challenge of solving this kind of the system comes from the algebraic part
of the system. Previous studies have treated the algebraic part of the problem
as constraints and devised special methods such that the constraints would be as
well satisfied as possible, see [10, 11] and references therein. The drawback is that
different systems may well require different methods. To address this difficulty
we use our general methodology and differentiate the constraints to obtain new
dynamic equations for the ”remaining” or ”algebraic” variables. Remarkably this
will always give a (nonlinear) convection diffusion equation for any constraints.
Hence we can write time evolution equations for all variables and use any standard
method to solve them. Since we can monitor the constraints we can then correct
the solution such that it stays on the constraint manifold.
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We think that this is useful for epistemic uncertainty reduction of constrained
systems because, unlike for the initial systems, all relevant constraints of the
problem are explicitly included in the completed system. In this way the errors
related to constraints can effectively be controlled and the computations thus be-
come more stable because one does not need to worry about possible instabilities
due to the violation of constraints.

From the completed system we derive a related system, called the augmented
system, which contains some new variables. They play the role of local uncer-
tainty estimators and require only a very low extra computational cost. These
variables can also be estimated for the initial system, as well as for different dis-
cretizations and so they provide a natural framework to measure the evolution
of the uncertainties in various cases.

To implement our approach we start with an existing program where the con-
straints are imposed by using the Newton’s method. Typically there are problems
of convergence. Then we modify the program taking into account the completed
and augmented system that we derived from the initial system. In particular we
use the dynamics of the new equations to initialize the Newton iterations. This
improves greatly the convergence properties of the method.

We will also analyze the impact of our reformulation on aleatory uncertainties
when the functioning physical parameters of the model are not known exactly, but
their probability density function (PDF) is assumed to be known. In particular,
resolving the constraints accurately has a clear impact on the prediction of the
first and second order moments of the variables.

In order to quantify uncertanties it is very important to analyze how uncer-
tanties propagate. We introduce small perturbations at the inlet boundary and
study how they propagate through the domain. It is seen that, unlike the initial
model, the augmented model damps high frequency components very fast, as
theoretical considerations predicted.

In section 2 we recall the general background information about PDE systems
which are needed in our formulation. In section 3 we describe the general form
of the model and study its structural properties. In section 4 we introduce a
particular model of 2 substances which was given in [10, 11] and formulate it
according to our approach. In section 5 we give the numerical results and discuss
the impact of our formulation on the epistemic and aleatory uncertainties. In
particular, we show that it is not always possible to separate these two sources
of uncertainties.

2. Involutive, completed and augmented systems

Let us first briefly outline our general approach to constrained systems. For
more details we refer to [2, 7, 8, 12, 13, 16, 19, 21]. Let us consider a system:

Ãu = f̃ . (1)
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This is the physical model we start with. This initial model contains in our
case partial differential, ordinary differential and algebraic equations. Now dif-
ferentiating these equations we obtain new equations which we call differential
consequences or integrability conditions of the initial system. Evidently if u is a
smooth solution then it will also satisfy all the differential consequences of the
system.

One may say that by computing differential consequences one makes explicit
some information of the system which is only implicit in the original system. In
particular one can thus analyze some structural properties of the system which is
not possible using the initial system. Now it is a deep theorem in formal theory of
PDE [2, 16, 19, 21] that (under certain relatively mild conditions) it is sufficient
to differentiate the system a finite number of times to obtain ”full” structural
information the system. The system thus obtained is called the involutive form
of the given system.

Note in particular that in spite of the highly abstract nature of the theorem the
implications of the theorem are quite constructive. To look for the involutive form
one needs only to differentiate and eliminate variables which even in nonlinear
case is fairly feasible using Gröbner basis techniques which are readily available in
many computer algebra systems. It turns out that for the purposes of numerical
computation it is sometimes convenient to use not the full involutive form of
the system, but to add just some of the integrability conditions to the original
system. Hence we will use the term completed system to indicate that we may
not use the full involutive system.

In all cases completed systems have more equations than unknowns. One
possible way to deal with this is to solve the system in the least square sense.
Another approach which we advocate here is to make the system square again by
introducing new variables which will also play the role of error and uncertainty
estimators.

Let us denote by A0 the operator obtained form Ã by adding some appropriate
differential consequences to it and consider the completed system:

A0u = f. (2)

The right hand side f is obtained from f̃ in the process of computing the differen-
tial consequences. However, since A0 is overdetermined and has more equations
than unknowns there are usually no solutions if f is chosen arbitrarily. Hence
our problem (2) has no solutions unless f satisfies some compatibility conditions.
These conditions are given by a compatibility operator A1 such that A1A0 = 0
and (2) has a solution only if A1f = 0.

Since A1 contains important information about our system we will use it in
the numerical solution. Let us now introduce some function spaces Vi such that
Ai : Vi → Vi+1 and consider the following complex:

0 // V0
A0 // V1

A1 // V2 // 0.
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In the ideal situation this complex is exact ; i.e. A0 is injective, A1 is surjective
and image(A0) = ker(A1) . This suggests that we could decompose V1 as:

image(A0)⊕ image(AT1 ) = V1,

where AT1 is the formal transpose of A1. This decomposition means that it is
indeed possible to find some functional framework in which the combined operator
(A0, A

T
1 ) is bijective. So instead of trying to solve the system (2) in some least

square sense, we introduce an auxiliary variable z and solve

A0y + AT1 z = f. (3)

We call this system the augmented system. The augmented system is square.
In previous works, we have shown how to proceed with this approach for quite

general coupled differential systems (see [12, 13, 14] for examples of applications
on constrained physical systems such as the Stokes and Navier-Stokes equations
and coupled systems for microfluidic ionic flows). In this work we will illustrate
the approach with a chromatography model.

3. Application to a coupled chromatography model

We consider a fluid flow where there are several substances whose concentra-
tions interest us. The concentrations of the substances are supposed to be so
small that the flow can be considered to be independent of them. Further it
is realistic to suppose that the flow is one dimensional and even constant. We
denote by x the coordinate of the domain along the flow and by v the velocity
field.

Let Cj be the concentration of the substance j in the fluid phase, Sj concen-
tration in the solid phase and Ej the equilibrium concentration. We suppose
that there are ` substances and denote C =

(
C1, . . . , C`

)
and similarly for other

variables.
First we have identical differential equations for the components of C and S.

Ct − dCxx + v Cx + αk(E − S) = 0

St − k(E − S) = 0
(4)

Here d, α and k are some positive constants. In what follows we assume that v is
constant. Hence we have simple convection diffusion equations for C and ODE
for S. To close the system we have in addition an algebraic equation

g(E,C) = 0 , g : R2` → R` (5)

To get more information about the time evolution of E we differentiate the above
equation. In the following ∂t denotes the total derivative with respect to t and
∂Eg is the differential of g with respect to variables E. The second differentials
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are denoted similarly. This gives

∂tg = ∂Eg Et + ∂Cg Ct = 0

∂xg = ∂Eg Ex + ∂Cg Cx = 0

∂xxg = ∂x
(
∂Eg Ex

)
+ ∂Cg Cxx + (∂ECg)(Ex, Cx) + (∂CCg)(Cx, Cx) = 0

Using these and the original equations (4) we obtain an evolution equation for
E:

∂Eg Et−d ∂x
(
∂Eg Ex

)
+ v ∂Eg Ex

−d (∂ECg)(Ex, Cx)− d (∂CCg)(Cx, Cx)− αk∂Cg
(
E − S

)
= 0

(6)

Note that in addition to smoothness we did not need to assume any particular
property of g to derive this equation. Of course this is highly nonlinear in
general. However, we have the following necessary condition for the equation (6)
to be reasonable.

Lemma 1. Suppose that C and S are known and ∂Eg is invertible. Then the
linearization of (6) is parabolic.

Proof. With the above hypothesis the linearized equation is of the form

Et − dExx + lower order terms = 0

�

The hypothesis that ∂Eg is invertible is perfectly reasonable since this guaran-
tees by implicit function theorem that the variables E could actually be solved in
terms of C using the constraint equations (5). In other words if this hypothesis
were not satisfied then that would cast some doubt on the validity of the model
itself.

It is somewhat curious that otherwise the lemma is valid whatever the actual
constraint map g is. Even the diffusion constant is always the same for both E
and C.

Our new system can now be written as

Ct − dCxx + v Cx + αk(E − S) = 0

St − k(E − S) = 0

∂Eg Et − d ∂x
(
∂Eg Ex

)
+ v ∂Eg Ex

− d (∂ECg)(Ex, Cx)− d (∂CCg)(Cx, Cx)− αk∂Cg
(
E − S

)
= 0

g(E,C) = 0

(7)

Let us finally denote u = (C, S,E) and write the above system simply as A0u = 0.
Let us then introduce the operator

A1 =
(
− ∂Cg, 0,−1, ∂t − d ∂xx + v ∂x

)
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This operator codes the calculations by which we found the new equation (6) and
hence A1A0 = 0. We call A1 the compatibility operator of A0. Now using the
same idea as in our previous papers [12, 14] we introduce the augmented system

A0u+ AT1 z = 0

where z are new variables. Writing this out in full gives

Ct − dCxx + v Cx + αk(E − S)− (∂Cg)T z = 0

St − k(E − S) = 0

∂Eg Et − d ∂x
(
∂Eg Ex

)
+ v ∂Eg Ex

− d (∂ECg)(Ex, Cx)− d (∂CCg)(Cx, Cx)− αk∂Cg
(
E − S

)
− z = 0

zt − d zxx − v zx + g(E,C) = 0

(8)

Note in particular that convection for z is ”backwards”. For the exact solution z
would be identically zero so we can use it to quantify and analyze the numerical
error. Note that formally z is a solution of the equation

A1A
T
1 z = ztt − 2dzxxt + d2zxxxx − v2zxx + (I + ∂Cg(∂Cg)T )z = 0

Now I+∂Cg(∂Cg)T is symmetric and positive definite so let us perform the linear
stability analysis in the scalar case and consider

ztt − 2dzxxt + d2zxxxx − v2zxx + b z = 0

where b > 0. Looking for the plane waves one finds that there are solutions of
the form

z(x, t) = exp
(
i(kx−

√
b+ v2k2t)− dk2t

)
(9)

Hence the high frequency components are strongly damped but low frequency
components can propagate. We might therefore expect similar behavior also for
the augmented model. This would also imply that the physical model itself is
quite robust with respect to small high frequency perturbations of the concen-
trations.

4. two substances

Let us now consider a specific model with two substances (salt and a certain
protein) [10, 11]. Hence there are two algebraic equations g1 = g2 = 0 which we
now describe. In the following all βi are some positive constants. First we have
a simple equation

g2 = E2 + β1E
1 − β0 = 0

The map g1 is more complicated. In general we can write it as follows:

g1 = K12γ2C
2
(
γ̄1E

1
)β2 − γ̄2β2E2

(
γ1C

1
)β2 = 0



8 UNCERTAINTY QUANTIFICATION BY INVOLUTION

Here K12 is the equilibrium constant, γj are liquid activity coefficients and γ̄j
are surface activity coefficients. Now we somewhat simplify the model given in
[10, 11] by taking γ2 = γ̄1 = γ̄2 = 1 and γ1 = exp(β4C

1). This gives

g1 = K12C
2(E1)β2 − β2E2(C1)β2 exp(β3C

1)

where β3 = β2β4. Now computing ∂Eg we can check that det(∂Eg) > 0 as long
as values of E and C remain strictly positive.

Since g2 is simply a linear equation we can eliminate the variable E2 from
the system. Let us now write the equations in this case and for simplicity of
notation we denote E = E1 and note that now z is scalar. Let us further denote
ψ(E, S) =

(
E − S1, β0 − β1E − S2

)
. Then the initial system we can be written

as

Ct − dCxx + v Cx + αk ψ = 0

St − k ψ = 0

f(E,C) =K12C
2Eβ2 − β2(β0 − β1E)(C1)β2 exp(β3C

1) = 0

(10)

Here f : R3 → R and we denote M = f−1(0). Hence the solution should be such
that it stays on the surface/manifold M . Note that M is smooth for positive
values of variables but it is singular when E = C1 = 0. Thinking M as a graph
over (C1, C2) plane for Cj positive it is seen that 0 < E < β0/β1, see Figure 1.

One can say that M has 4 distinct regimes:

(i) the low plateau M0 where E ≈ 0
(ii) the high plateau M1 where E ≈ β0/β1

(iii) the slope M2 where one rises steeply from M0 to M1 along C1 direction.
(iv) the wall M3 where C2 ≈ 0

The curvature of the surface is very big when one moves from one regime to
another. One may summarize this by saying that the nonlinearities of M are
very strong but geometrically the shape of M is quite simple.

When we specialize the equation (6) to the case where we have only one con-
straint equation it is helpful to introduce the following notations

fE =
∂f

∂E
, ∇Cf =

( ∂f

∂C1
,
∂f

∂C2

)
, fij =

∂2f

∂Ci∂Cj

Note that f12 = f22 = 0. Then we can write the new equation as

fEEt − d ∂x
(
fEEx

)
+ fE v̂Ex − d f11(C1

x)2 − αk〈∇Cf, ψ〉 = 0

where v̂ = v − d 〈∇CfE, Cx〉
fE
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Figure 1. The constraint surface of the model (10).

Hence the completed system is

Ct − dCxx + v Cx + αk ψ = 0

St − k ψ = 0

fEEt − d ∂x
(
fEEx

)
+ fE v̂Ex − d f11(C1

x)2 − αk〈∇Cf, ψ〉 = 0

f(E,C) = 0

(11)

Let us again denote the above system simply as A0u = 0. The compatibility
operator is thus

A1 =
(
−∇Cf, 0,−1, ∂t − d ∂xx + v ∂x

)
This gives the augmented system

Ct − dCxx + v Cx + αk ψ −∇Cf z = 0

St − k ψ = 0

fEEt − d ∂x
(
fEEx

)
+ fE v̂Ex − d f11(C1

x)2 − αk〈∇Cf, ψ〉 − z = 0

zt − d zxx − v zx + f(E,C) = 0

(12)
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5. Numerical results

The aim of the simulations that follow is to explore three issues. First, we
illustrate how to use the extra information contained in the augmented system
in a given simulation program. Moreover we show how this in turn gives a much
more accurate solution than the one obtained with the original program. Then
we discuss the impact of our new formulation on epistemic uncertainties (related
both to the modeling and to the numerical scheme). Finally we give an example of
the impact on aleatory uncertainties in a situation where a parameter is uniformly
distributed over an interval.

In the description of the model problem all quantities related to length are
in centimeters, time is in seconds and concentrations are moles per litre. We
consider a one dimensional domain of length 1. The constants of the model are
set as in [10, 11]:

α = 1.38 k = 6.0 β0 = 12.0 β1 = 0.0334

β2 = 4.91 β3 = 2.51 K12 = 1.05 · 1010.

5.1. Basic setting of computations. Suppose we have a program solving the
system (10). We denote by h the space discretization parameter and the time
step is given by δt = 0.2h2/(d+h|v|). The program uses explicit Euler scheme for
the time discretization and standard finite differences for space discretization. To
handle transport related stability issues the advection term has been discretized
using a second order upwind scheme. This introduces a numerical viscosity which
is bounded by 0.5h |v|. We have done the simulations with two different meshes
corresponding to h = 10−2 and h = 5 · 10−3. The velocity and the diffusion
coefficients were chosen as v = 1 and d = 0.1. Thus for the coarser mesh the
numerical viscosity is less than 0.005. Despite the fact that this is quite small
compared to d it appears to be necessary to use an upwind scheme to stabilize
the calculations.

The initial concentrations are set to zero. Since v > 0 we must specify the
inlet values at the left boundary for C1 and C2. These were chosen as C1

in = 1
and C2

in = 0.3. Since z should be as small as possible it has been initially set to
zero and zin = 0 and (zx)out = 0.

5.2. Solution of the initial system. We compute z even for the initial model,
without otherwise using its value when computing the values of other variables.
In this way z can be seen as an error indicator as well as an uncertainty indicator
even for the initial system (see section 5.4). This leads to the following discrete
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form of the system (10):

1

δt
(Cn+1

h − Cn
h )− (d+ 0.5h|v|)Cn

xx,h + v Cn
x,h + αk ψnh = 0,

1

δt
(Sn+1

h − Snh )− k ψnh = 0,

En+1
h ← f(En+1

h , Cn+1
h ) = 0,

1

δt
(zn+1
h − znh)− d znxx,h − v znx,h + f(En+1

h , Cn+1
h ) = 0,

(13)

Since E variable has no natural time evolution equation in the initial system we
must use the algebraic equation f(E,C) = 0 in (13) to compute E at the next
time instant. Note that efficient and accurate solution of the the algebraic equa-
tion is the main issue with model (13) since the time evolution of the differential
equations is standard. Our aim is to show how to use our augmented model to
remove this difficulty.

The original program uses Newton iterations at each time and for each mesh
point to compute E:

En,p+1
h = En,p

h −
(
fE(En,p

h , Cn+1
h )

)−1
f(En,p

h , Cn+1
h ), En+1

h = En,∞
h ,

f(En,p
h , Cn+1

h ) = K12C
2,n+1
h (En,p

h )β2 − β2(β0 − β1En,p
h )(C1,n+1

h )β2 exp(β3C
1,n+1
h )

As stopping criteria it uses the value of the constraint and a bound on the number
of iterations in p.

5.3. Using the augmented system. The basic idea is to take advantage of the
dynamical equation for E given in (12) and use it to provide a better initialization
for the Newton iterations. Hence given Cn+1, En and Sn+1 we first compute an
intermediate value Ẽn which we then use as an initial value for Newton iteration
if |f | > tol:

Ẽn
h = En

h+δt
(
f
n+1/2
E,h

)−1 (
d ∂x

(
f
n+1/2
E,h En

x,h

)
− fn+1/2

E,h v̂
n+1/2
h En

x,h

+d f11(C
1,n+1
x,h )2 + αk〈∇Cf

n+1/2
h , ψ

n+1/2
h 〉+ znh

)
,where

f
n+1/2
h =f(En

h , C
n+1
h )

ψ
n+1/2
h =

(
En
h − S

1,n+1
h , β0 − β1En

h − S
2,n+1
h

)
v̂
n+1/2
h =v − d 〈∇Cf

n+1/2
E,h , Cn+1

x,h 〉 /f
n+1/2
E,h .

(14)

But equation (14) involves several nonlinear expressions and brings new difficul-
ties. Recall that zh can be considered as a local measure of the error. Hence
neglecting the nonlinear terms would typically increase greatly the value of |zh|.
However, (14) is only used as an initialization to the Newton’s method so we
expect that |zh| is much reduced if the iteration converges successfully. Hence
it is conceivable that one can simplify (14) considerably, and yet maintain the
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good convergence properties. We propose the following formula as a candidate
for such a compromise:

Ẽn
h = En

h + δt
(
dEn

xx,h − (f
n+1/2
E,h )−1znh

)
. (15)

Indeed it turns out that with this choice the Newton iterations always succeed.
In Figure 2 we show the ratio of the number of failures to the number of the dis-
cretization points at each time step for two meshes. Here by failure we mean that
after the prescribed number of iterations the convergence criterion |f | ≤ tol was
not fulfilled. To pursue the computation in these cases we used the final iteration
of the Newton procedure. One can therefore deduce that in our discrete solu-
tion of the initial model the constraint f(E,C) = 0 is far from being adequately
satisfied. It is also interesting to investigate how much the Newton iteration
changes the computed solution. In Figure 3 we compare the solutions obtained
by using (15) without projection to the case where (15) is used to initialize the
Newton iterations. It is seen that the projection is necessary in the regions where
the solution changes rapidly. One remarks that the error decreases with mesh
refinement only in regions where the solution is smooth. Mesh refinement will
not therefore remove the need for this final projection. Actually the need for
projection increases for finer meshes in area of rapid variations.

In Figure 4 the computed solutions are plotted both for the initial and aug-
mented model. The variables C1, S1, E and z are shown at times t = 0.3 and
t = 0.6 over the domain for the two meshes. Improving the solution of the
constraint equation by an initialization with our new evolution equation for E
reduces the mesh dependency of the solution.

5.4. New variable z as a measure of epistemic uncertainties. The variable
z is an indicator of the epistemic uncertainty both at the continuous and the
discrete levels. It can be used, for instance, to measure the impact of mesh
refinements on the solution when a reference solution is not available. In Figure
4 one can see that some of the deviations between the solutions of augmented
and initial systems decrease with mesh refinement. However, some qualitatively
incorrect features remain present in the solution obtained by the initial model
such as jumps and non-monotonic behaviors. Hence, another interest of the
approach is that mesh independence of the solution is achieved much faster when
the constraint is better solved. The pertinence of these solution is confirmed by
z distributions.

5.5. Impact on aleatory uncertainties. Now let us see the impact of our
reformulation on aleatory uncertainties. These are irreducible and related to
uncertain data. Let us first consider an interval-based simulation where some of
the physical parameters are given as probability distributions on an interval and
not as a single value. For instance, we can consider that the transport velocity
v is a random variable which is uniformly distributed on the interval [0.8, 1.2].
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The initial and the augmented models have been simulated on uniform 20 and
40 points sampling of this interval on the 100 points mesh. This coincides with a
classical first order numerical integration over a uniform discretization of interval
[0.8, 1.2].

We are interested in mean values and standard deviations of the variables at
different times over the domain. These quantities are of importance in robust
engineering design which is often based on the control of the first and second
order moments.

To see the impact of the sampling size on the numerical evaluation of the mo-
ments we consider two different samplings of size 20 and 40. In Figure 5 these
cases are compared on the 100 points mesh. One sees that a 20 points discretiza-
tion of the interval is nearly sufficient for an accurate numerical integration and
evaluation of the two moments. We see no difference on the mean and slight
overestimation of the standard deviation with the 20 points sampling. This is
less problematic in robust design than an underestimation.

In Figure 6 we use 40 points sampling to compare the expected values IE(C1)

and standard deviations
(
IE((C1)2)−IE(C1)2

)1/2
of C1 at times t = 0.3 and t = 0.6

for the two models for the 100 and 200 points meshes. One sees that imperfect
resolution of the constraint leads to a large overestimation of the second order
moment of the variable. Most importantly, the error reaches its maximum nearly
where the first moments by the two methods coincide. This overestimation of
the second order moment is even more visible for E and S in Figures 7 and 8.
One also remarks that the distributions of the moments are nearly the same for
the two meshes when the constraint is well resolved. This therefore gives more
confidence on these moments since they are less sensitive to the quality of the
discretization than the results obtained with the initial model.

Prediction of higher order moments and extreme values is of major importance
for most engineering applications and one sees here an example of how reducing
the epistemic uncertainties leads to better estimations of aleatory uncertainties.

5.6. Propagation of perturbations from inlet boundaries. Another clas-
sical source of aleatory uncertainty is the imprecise nature of the boundary con-
ditions. For instance, instead of being deterministic as above, the inlet values
(at the left boundary of the domain since v > 0) for C1 and C2 can have a time
dependent random component. As an example we consider the case where the
inlet values are normally distributed: C1

in = N (1, σ1) and C2
in = N (0.3, σ2). This

modeling of uncertain inlets is reasonable as the signal to noise ratio is usually
known in practice. We consider here a signal to noise ratio (SNR) of 5%. This
introduces a high frequency component in the solution from the inlet boundary.
The plane waves computed in (9) make us expect that the high frequency compo-
nents of the augmented system are heavily damped. Therefore the uncertainties
introduced through the boundary conditions would disappear when propagating
in the domain. Figure 9 shows the distributions for C1, E and S1 in the domain
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at times 0.3 and 0.6 for 20 independent simulations with the randomly perturbed
boundary conditions for C1 and C2. We can see indeed that the perturbations
do not propagate and remain very much located near the inlet left boundary.
This is particularly clear for the variable C1. A nice indication of this behavior is
through z profiles which, in particular, show drops where the variables E and S1

have jumps. In comparison the indicator z, also estimated for the initial model
(see lower curves in Figure 4), does not present any such behavior.

6. Conclusion

We have discussed the quantification of epistemic uncertainties in the context
of numerical solution of constrained coupled systems. We have shown how our
constructive algorithm for the derivation of the involutive and augmented sys-
tems provides a framework for a systematic estimation of these variabilities. The
approach has been illustrated on a coupled set of partial differential, ordinary
differential and algebraic equations modeling adsorption chromatography. The
key idea has been to complete the system so that all variables have natural evo-
lution equations. In particular, it has been shown that the approach naturally
introduces extra variables which also play the role of epistemic uncertainty esti-
mators.

Working with existing software, our aim has been to introduce minimal changes
in the code. It has been shown how a suitable initialization for Newton iterations
used for the solution of the constraint and a control of the error through the
additional variable of the augmented model improves both the robustness of the
numerical scheme and the accuracy of the solution obtained.

The impact of the approach on the quantification of aleatory uncertainties
has also been discussed by estimating the first and second order moments in a
situation when only the probability distribution of some parameters are known.
It has been shown that the prediction of the standard deviation can be quite
inaccurate when the constraint in the model is not properly solved. This is of
major importance in engineering applications as a robust design of a system
is often based on the minimization of the mean value of a functional under a
constraint on its second order moment.

Finally, the impact of uncertainties in boundary conditions has been discussed.
Numerical results recover the properties predicted by the theory for the aug-
mented model where one expects fast damping of the high frequency components
of the solution introduced through small perturbations at the boundaries. This
behavior is well illustrated by the indicator z which clearly behaves differently
for the initial and augmented systems.

From a practical point of view, this shows that chromatographic adsorption
techniques are robust with respect to small and high frequency perturbations of
the species concentration and therefore cannot be used to discriminate between
two samples if those are only high frequency perturbations of each other.
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