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nicolas.papadakis@math.u-bordeaux.fr

Abstract. This work is about the use of regularized optimal-transport
distances for convex, histogram-based image segmentation. In the con-
sidered framework, fixed exemplar histograms define a prior on the sta-
tistical features of the two regions in competition. In this paper, we
investigate the use of various transport-based cost functions as discrep-
ancy measures and rely on a primal-dual algorithm to solve the obtained
convex optimization problem.
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1 Introduction

Optimal transport Optimal transport theory has received a lot of attention
during the last decade as it provides a powerful framework to address problems
which embed statistical constraints. Its successful application in various image
processing tasks has demonstrated its practical interest (see e.g. [7,8,11,5]). Some
limitations have been also shown and partially addressed, such as time complex-
ity, regularity and relaxation [1,4].

Segmentation Statistical based image segmentation has been thoroughly stud-
ied in the literature, first using parametric models (such as the mean and vari-
ance), and then empirical distributions combined with adapted statistical dis-
tances, such as the Kullback-Leibler divergence. In this work, we are interested
in the use of the optimal transport framework for Image segmentation. This has
been first investigated in [7] for 1D features, then extended to multi-dimensional
features using approximations of the optimal transport cost [5,9], and adapted to
region-based active contour in [9], relying on a non-convex formulation. In [12],
a convex formulation is proposed, making use of sub-iterations to compute the
proximity operator of the Wasserstein distance, which use is restricted to low
dimensions.

In this paper, we extend the convex formulation for two-phase image segmen-
tation of [14] for non-regularized as well as regularized [1,2] optimal transport
distances. This work shares some common features with the recent work of [3]
in which the authors investigate the use of the Legendre-Fenchel transform of
regularized transport cost for imaging problems.
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2 Convex histogram-based image segmentation

2.1 Notation

We consider here vector spaces equipped with the scalar product 〈. , .〉 and
the norm ‖.‖ =

√
〈. , .〉. The conjugate operator of A is denoted by A∗ and

satisfies 〈Ax, y〉 = 〈x,A∗y〉. We denote as 1n and 0n ∈ Rn the n-dimensional
vectors full of ones and zeros respectively, xT the transpose of x, and ∇ the
discrete gradient operator, while Id stands for the identity operator. The operator
diag(x) defines a square matrix whose diagonal is x. Functions ιS and 1S are
respectively the characteristic and indicator functions of a set S. Proj and Prox
stands respectively for the Euclidean projection and proximity operator. The set
Sk,n := {x ∈ Rn+, 〈x, 1n〉 = k} is the simplex of histogram vectors (S1,n being
therefore the discrete probability simplex of Rn).

2.2 General formulation of distribution-based image segmentation

Let I : x ∈ Ω 7→ I(x) ∈ Rd be a color image, defined over the N -pixel
domain Ω (N = |Ω|), and F a feature-transform of n-dimensional descriptors
FI(x) ∈ Rn. We would like to define a binary segmentation u : Ω 7→ {0, 1} of
the whole image domain, using two fixed probability distributions of features a
and b. Following the variational model introduced in [14], we consider the energy

J(u) = ρ TV (u) +D(a, h(u)) +D(b, h(1− u)) (1)

where ρ ≥ 0 is the regularization parameter,

• the fidelity terms are defined using D(., .), a dissimilarity measure between
features;

• h(u) is the empirical discrete probability distribution of features FI using
the binary map u, which is written as a sum of Dirac masses

h(u) : y ∈ Rn 7→ 1∑
x∈Ω u(x)

∑
x∈Ω

u(x)δFI(x)(y) ;

• TV (u) is the total variation norm of the binary image u, which is related to
the perimeter of the region R1(u) := {x ∈ Ω |u(x) = 1} (co-area formula).

Observe that this energy is highly non-convex since h is a non linear operator,
and that we would like to find a minimum over the non-convex set {0, 1}N .

2.3 Convex relaxation of histogram-based segmentation energy

The authors of [14] propose some relaxations and a reformulation in order to
handle the minimization of energy (1) using convex optimization tools.

Probability map The first relaxation consists in using a segmentation variable
u : Ω 7→ [0, 1] which is a weight function (probability map). A threshold is
therefore required to get a binary segmentation of the image into two regions
Rt(u) := {x ∈ Ω |u(x) ≥ t} and its complement Rt(u)c.
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Feature histogram The feature histogram of the probability map is denoted
HX (u) and defined as the quantized, non-normalized, and weighted his-
togram of the feature image FI using the relaxed variable u : Ω 7→ [0, 1] and a
feature set X = {Xi ∈ Rn}1≤i≤MX

composed of MX bins

(HX (u))i =
∑
x∈Ω

u(x)1CX (i)(FI(x)), ∀ i ∈ {1, . . .MX}

where i a bin index, Xi is the centroid of the corresponding bin, and CX (i) ⊂ Rn
is the corresponding set of features (e.g. the Voronöı cell obtained from hard
assignment method). Therefore, we can write HX as a linear operator

HX : u ∈ RN 7→ 1X ·u ∈ RMX , with 1X (i, j) := 1 if FI(j) ∈ CX (i), 0 otherwise.

Note that 1X ∈ RMX×N is a fixed assignment matrix that indicates which
pixels of FI contribute to each bin i of the histogram. As a consequence,
〈HX (u), 1X〉 =

∑
x∈Ω u(x) = 〈u, 1N 〉, so that HX (u) ∈ SMX ,〈u, 1〉.

Exemplar histograms The segmentation is driven from two fixed histograms
a ∈ SMa,1 and b ∈ SMb,1, which are normalized (i.e. sum to 1), have respective
dimension Ma and Mb, and are obtained using the respective sets of features A
and B. In order to measure the similarity between the non-normalized histogram
HAu and the normalized histogram a, while obtaining a convex formulation, we
follow [14] and consider the fidelity term D (a〈u, 1N 〉, HAu), where the constant
vector a has been scaled to HAu ∈ SMa,〈u, 1〉.

Segmentation energy Observe that the problem can now be written as finding
the minimum of the following energy

Ẽ(u) = ρ TV (u) + 1
γD (a〈u, 1N 〉, HAu) + 1

N−γD (b〈1N − u, 1N 〉, HB(1N − u)) .

The constant γ ∈ (0, N) is meant to compensate for the fact that the binary
regions Rt(u) and Rt(u)c may have different size. More precisely, as we are
interested in a discrete probability segmentation map, we consider the following
constrained problem:

min
u∈[0,1]N

Ẽ(u) = min
u∈RN

{
E(u) := Ẽ(u) + ι[0,1]N (u)

}
.

Simplification From now on, and without loss of generality, we will assume
that all histograms are computed using the same set of features, namely A = B.
We will also omit unnecessary subscripts in order to simplify notation. Moreover,
we also omit the parameter γ since its value seems not to be critical in practice,
as demonstrated in [14]. Finally, introducing linear operators

A := a1TN ∈ RM ·N and B := b1TN ∈ RM ·N (2)

such that Au = (a1TN )u = a〈u,1N 〉, we have the following minimization problem:

min
u

ρ‖∇u‖+D(Au,Hu) +D(B(1− u), H(1− u)) + ι[0,1]N (u). (3)
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Notice that matrix H ∈ RM ·N is sparse (with N non zero values) and A and B
are of rank 1, so that storing or manipulating these matrices is not an issue.

In [14], the distance function D was defined as the L1 norm. In the following
sections, we investigate the use of similarity measure based on optimal transport,
which is known to be more robust and appropriate for histogram comparison.
The next paragraph details the optimization framework used in this work.

2.4 Optimization

In order to solve (3), we consider the following dualization of the problem
using the Legendre-Fenchel transforms of the L2 norm and the function D

min
u∈RN

max
pA,qA,pB ,qB∈R

M

pC∈R
2N

〈Hu, pA〉+ 〈Au, qA〉+ 〈H(1− u), pB〉+ 〈B(1− u), qB〉+ 〈∇u, pC〉

+ ι[0,1]N (u)−D∗(pA, qA)−D∗(pB , qB)− ι‖.‖6ρ(pC), (4)

where ι‖.‖6ρ is the characteristic function of the convex `2 ball of radius ρ, while
D∗ is the dual of the function D. In order to accommodate the different models
studied in this paper, we assume here that D∗ is a sum of two convex functions
D∗ = D∗1 + D∗2 , where D∗1 is non-smooth and D∗2 is differentiable and has a
Lipschitz continuous gradient.

We recover a general primal-dual problem of the form

min
u

max
p
〈Ku, p〉+ ι[0,1]N (u) +H(u)− F ∗(p)−G∗(p), (5)

with primal variable u ∈ RN and dual vector p = [pTA, q
T
A, p

T
B , q

T
B , p

T
C ]T ∈

R4M+2N , where

• K = [HT , AT ,−HT ,−BT ,∇T ]T ∈ R(4M+2N)×N is a sparse, linear operator;

• H is convex and smooth ( H(u) = 0 in the setting of problem (5)) with
Lipschitz continuous gradient ∇H with constant LH ;

• ι[0,1]N (u) is convex and non-smooth;

• F ∗(p) = D∗1(pA, qA) +D∗1(pB , qB) + ι‖.‖6ρ(pC) is convex and non-smooth;

• G∗(p) = D∗2(pA, qA) +D∗2(pB , qB)− 〈H1N , pB〉 − 〈B1N , qB〉 is convex and
differentiable with Lipschitz constant LG∗ .

To solve this problem, we consider the precondionned primal dual algorithm
of [6] {

uk+1 = Proj[0,1]N
(
uk − τ(KT pk +∇H(uk))

)
pk+1 = ProxσF∗

(
pk + σ(K(2uk+1 − uk)−∇G∗(pk))

) (6)

that converges to a saddle point of (5) as soon as (see for instance [6])(
1
τ − LH

) (
1
σ − LG∗

)
> ‖K‖2. (7)
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3 Monge-Kantorovitch distance for image segmentation

3.1 Wasserstein Distance and Optimal Transport problem

Optimal Transport problem We consider in this work the discrete formu-
lation of the Monge-Kantorovitch optimal mass transportation problem (see
e.g. [13]) between a pair of histograms a ∈ SMa,k and b ∈ SMb,k. Given a fixed
assignment cost matrix CA,B ∈ RMa×Mb between the corresponding histogram
centroids A = {Ai}1≤i≤Ma

and B = {Bj}1≤j≤Mb
, an optimal transport plan

minimizes the global transport cost, defined as a weighted sum of assignments

∀ (a, b) ∈ S, MK(a, b) := min
P∈P(a,b)

{
〈P, C〉 =

Ma∑
i=1

Mb∑
j=1

Pi,jCi,j

}
. (8)

The sets of admissible histogram and transport matrices are respectively

S := {a ∈ RMa , b ∈ RMb | a ≥ 0, b ≥ 0 and 〈a, 1Ma
〉 = 〈b, 1Mb

〉}, (9)

P(a, b) := {P ∈ RMa×Mb
+ , P1Mb

= a and PT1Ma
= b}. (10)

Observe that the norm of histograms is not prescribed in S, and that we only
consider histograms with positive entries since null entries do not play any role.

Wasserstein distance When using Ci,j = ‖Ai − Bj‖p, then Wp(a, b) =
MK(a, b)1/p is a metric between normalized histograms. In the general case
where C does not verify such a condition, by a slight abuse of terminology we
will refer to the MK transport cost function as the Monge-Kantorovich distance.

Monge-Kantorovich distance In the following, due to the use of duality, it
would be more convenient to introduce the following reformulation:

∀ a, b MK(a, b) = min
P∈P(a,b)

〈P, C〉+ ιS(a, b). (11)

LP formulation We can rewrite the optimal transport problem as a linear
program (LP) with vector variables. The primal and dual problems write

MK(α) = min
p∈RMa·Mb

s.t. p≥0, LT p=α

〈c, p〉+ ιS(α) = max
β∈RMa+Mb

s.t. Lβ≤c

〈α, β〉. (12)

where α is the concatenation of histograms: αT = [aT , bT ] and the unknown
vector p ∈ RMa·Mb corresponds to the bi-stochastic matrix P being read column-
wise (i.e. Pi,j = pi+(j−1)·Ma

). The Ma +Mb linear marginal constraints on p are

defined by the matrix LT ∈ R(Ma+Mb)×(MaMb) through equation LT p = α, where

LT =

[
1Mb

eT1 1Mb
eT2 · · · 1Mb

eTMa

IdMb
IdMb

· · · IdMb

]
with ei(j) = δi−j ∀ j ≤Mb.

Note that we have the following property: (Lα)i,j =
(
L
[
a
b

])
i,j

= ai + bj .

The dual formulation shows that the function MK(α) is not strictly convex
in α. We draw the reader’s attention to the fact that the indicator of set S is not
required anymore with the dual formulation, which will later come in handy.
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Dual distance From Eq. (12), we have that the Legendre–Fenchel conjugate of
MK writes simply as the characteristic function of the set Lc := {β |Lβ−c ≤ 0}

∀β ∈ RMa+Mb , MK∗(β) = ιLβ6c(β). (13)

3.2 Integration in the segmentation framework

We propose to substitute in problem (3) the dissimilarity functions by the
convex Monge-Kantorovich optimal transport cost (11).

In order to apply our minimization scheme described in (6), we should be
able to compute the proximity operator of MK∗, which is the projection onto
the convex set Lc. However, because the linear operator L is not invertible, we
cannot compute this projector in a closed form and an optimization problem
should be solved at each iteration of the process (6) as in [12].

Bidualization To circumvent this problem, we resort to a bidualization to
rewrite the MK distance as a primal-dual problem. First, we have that MK∗(β) =
f∗(Lβ) with f∗(r) = ιr≤c(r), so that f(r) = 〈r, c〉+ ιr≥0(r). Then,

MK∗(β) = f∗(Lβ) = max
r
〈r, Lβ〉 − f(r) = max

r
〈r, Lβ − c〉 − ι·≥0(r)

MK(α) = max
β
〈α, β〉 − f∗(Lβ) = max

β
〈α, β〉+ min

r
〈r, c− Lβ〉+ ι·≥0(r)

= min
r

max
β
〈r, c〉+ ι·≥0(r) + 〈α− LT r, β〉.

(14)

Segmentation problem Plugging the previous expression into Eq. (4) enables
us to solve it using algorithm (6). Indeed, introducing new primal variables

rA, rB ∈ RM2

related to transport mapping, we recover the following primal
dual problem

min
u∈RN

rA,rB∈RM
2

max
pA,qA,pB ,qB∈R

M

pC∈R
2N

〈Hu, pA〉+ 〈Au, qA〉+ 〈H(1− u), pB〉+ 〈B(1− u), qB〉

〈rA, c− L
[
pA
qA

]
〉+ 〈rB , c− L

[
pB
qB

]
〉+ 〈∇u, pC〉

+ ι[0,1]N (u) + ι·≥0(rA) + ι·≥0(rB)− ι‖.‖6ρ(pC).

(15)

Observe that now we have a linear term H(u, rA, rB) = 〈rA + rB , c〉 whose
gradient has a Lipschitz constant LH = 0. We have also gained extra non smooth
characteristic functions ι·≥0, whose proximity operators are trivial (projection

onto the positive quadrant RM2

+ : proxι≥0
(x) = max{0, x}).

Advantages and drawback The main advantage of this new segmentation
framework is that it makes use of optimal transport to compare histograms of fea-
tures, without sub-iterative routines such as solving optimal transport problems
to compute sub-gradients or proximity operators (see for instance [1,12]), or with-
out making use of approximation (such as the Sliced-Wasserstein distance [9],
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generalized cumulative histograms [8] or entropy-based regularization [2]). Last,
the proposed framework is not restricted to Wasserstein distances, since it en-
ables the use of any cost matrix, and does not depend on features dimensionality.

However, a major drawback of this method is that it requires two additional
primal variables rA and rB whose dimension is M2 in our simplified setting, M
being the dimension of histograms involved in the model. As soon as M2 � N ,
the number of pixels, the proposed method could be significantly slower than
when using L1 as in [14] due to time complexity and memory limitation. This
is more likely to happen when considering high dimensional features, such as
patches or computer vision descriptors, as M increases with feature dimension n.

4 Regularized MK distance for image segmentation

As already mentioned in the last section, the previous approach based on op-
timal transport may be very slow for large histograms. In such a case, we propose
to use instead the entropy smoothing of optimal transport recently proposed and
investigated in [1,2,3], that may offer increased robustness to outliers [1]. While
it has been initially studied for probability simplex S1, we here investigate its
use for our framework with unnormalized histograms on S.

4.1 Sinkhorn distances MKλ

The entropy-regularized optimal transport problem (11) on set S (Eq. (9)) is

MKλ(a, b) := min
P∈P(a,b)

{
〈P, C〉 − 1

λh(P )
}

+ ιS(a, b), (16)

where the entropy of the matrix P is defined as h(P ) := −〈P, logP 〉. Thanks
to the negative entropy term which is strictly convex, the regularized optimal
transport problem has a unique minimizer, denoted P ?λ , which can be recovered
using a fixed point algorithm studied by Sinkhorn (see e.g. [1]). The regularized
transport cost MKλ(a, b) is thus referred to as the Sinkhorn distance.

Interpretation Another way to express the negative entropic term is:

−h(p) : p ∈ Rk+ 7→ KL(p‖1k) ∈ R, with k = Ma ·Mb

that is the Kullback-Leibler divergence between transport map p and the uniform
mapping. This shows that, as λ decreases, the model encourages smooth, uniform
transport so that the mass is spread everywhere. This also explains why this
distance shows better robustness to outliers, as reported in [1]. To conclude, one
thus would like to use in practice large values of λ to be close to the original
Monge-Kantorovich distance, but low enough to deal with feature perturbation.

Structure of the solution First, the Sinkhorn distance (16) reads as

MKλ(α) := min
p∈RMa·Mb

s.t. p≥0, LT p=α

〈p, c+ 1
λ log p〉+ ιS(α).

(17)
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As demonstrated in [1], when writing the Lagrangian of this problem with a
multiplier β to take into account the constraint LT p = α, we can show that the
respective solutions p?λ and P ?λ of problem (16) and (17) write

log p?λ = λ(Lβ − c)− 1⇔ (logP ?λ )i,j = λ(ui + vi − Ci,j)− 1 with β =

[
u
v

]
.

Remark 1. The constant −1 is due to the fact that we use the unnormalized KL
divergence KL(p‖1k), instead of KL(p‖ 1k1k) for instance.

Sinkhorn algorithm Sinkhorn showed that the alternate normalization of rows
and columns of any positive matrix M converges to a unique bistochastic matrix
P = diag(x)M diag(y). The following fixed-point iteration algorithm can thus
be used to find the solution P ?λ : setting Mλ = e−λC , one has

P ?λ = diag(x∞)Mλ diag(y∞) where xk+1 =
a

Mλ yk
and yk+1 =

b

MT
λ x

k
,

where a and b are the desired marginals of the matrix. This result enables us to
design fast algorithms to compute the regularized optimal transport plan, and
the the Sinkhorn distance or its derivative, as demonstrated in [1,2].

4.2 Legendre–Fenchel transformation of Sinkhorn distance MKλ

Now, in order to use the Sinkhorn distance in algorithm (6), we need to
compute its Legendre-Fenchel transform, which has been expressed in [2].

Proposition 1 (Cuturi-Doucet). The convex conjugate of MKλ(α) reads

MK∗λ(β) = 1
λ 〈Qλ(β),1〉 with Qλ(β) := eλ(Lβ−c)−1. (18)

We obtain a simple expression of the Legendre–Fenchel transform which is C∞,
but unfortunately, its gradient is not Lipschitz continuous.

To overcome this problem, we propose two solutions in the next paragraphs:
either we use a new normalized Sinkhorn distance (§ 4.3), whose gradient is
Lipschitz continuous (§ 4.4), or we rely on the use of proximity operator (§ 4.6).

4.3 Normalized Sinkhorn distance MKλ,≤N on S≤N

As the set S of admissible histograms does not prescribe the sum of his-
tograms, we consider here a different setting in which the histograms’ total mass
are bounded above by N , the number of pixels of the image domain Ω

S≤N :=
{
a ∈ RMa , b ∈ RMb

∣∣∣ a > 0, b > 0, 〈a, 1Ma〉 = 〈b, 1Mb
〉 ≤ N

}
. (19)

Moreover, as the transport matrix P ?λ is not normalized (i.e. 〈P ?λ , 1〉 ≤ N), we
also propose to use a slightly normalized variant of the entropic regularization:

h̃(p) := Nh
(
p
N

)
= −N KL

(
p
N ‖1

)
= −〈p, log p〉+ 〈p, 1〉 logN. (20)
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Corollary 1. The convex conjugate of the normalized Sinkhorn distance

MKλ,≤N (α) := min
p∈RMa·Mb

s.t. p≥0, LT p=α

{
〈p, c+ 1

λ log p− logN
λ 1〉

}
+ ιS≤N (α) (21)

reads, using the matrix-valued function Qλ(.) 7→ eλ(L.−c)−1 defined in (18)

MK∗λ,≤N (β) =

{ N
λ 〈Qλ(β),1〉 if 〈Qλ(β),1〉 6 1

N
λ log〈Qλ(β),1〉+ N

λ if 〈Qλ(β),1〉 > 1
(22)

Proof. The proof [10, A.1] is omitted here for the sake of shortness.

Observe that the dual function MK∗λ,≤N (β) is continuous for 〈Qλ(β?), 1〉 = 1.
Note also that the optimal matrix now is written P ?λ = NQλ(β?) if 〈Qλ(β?), 1〉 ≤
1, and P ?λ = N Qλ(β

?)
〈Qλ(β?), 1〉 otherwise.

4.4 Gradient of MK∗
λ,≤N

From Corollary 1, we can express the gradient of MK∗λ,≤N which is contin-
uous (writing Q in place of Qλ(β) to simplify expression)

∇MK∗λ,≤N (β) =

 N
(
Q1Mb

,1TMa
Q
)

if 〈Q,1〉 6 1

N
〈Q,1〉

(
Q1Mb

,1TMa
Q
)

if 〈Q,1〉 > 1
. (23)

We emphasis here that we retrieve a similar expression than the one originatively
demonstrated in [3], where the authors consider the Sinkhorn distance on the
probability simplex S1 (i.e. the special case where N = 1 and 〈Q,1〉 = 1).

Proposition 2. The gradient ∇MK∗λ,≤N is a Lipschitz continuous function of
constant LMK∗ bounded by 2λN .

Proof. The proof [10, A.2] is omitted here for the sake of shortness.

4.5 Optimization using ∇MK∗
λ,≤N

The general final problem we want to solve can be expressed as:

min
u
ρ TV (u)+MKλ,≤N (Hau,Au)+MKλ,≤N (Hb(1− u), B(1− u))+ι[0,1]N (u). (24)

Using the Legendre–Fenchel transform, the problem (24) can be reformulated
as:

min
u

max
pA,qA

pB ,qB ,pC

〈Hau, pA〉+ 〈Au, qA〉+ 〈Hb(1 − u), pB〉+ 〈B(1 − u), qB〉+ 〈∇u, pC〉

+ ι[0,1]N (u)−MK∗λ,6N (pA, qA)−MK∗λ,6N (pB , qB)− ι‖.‖6ρ(pC),

and can be optimized with the algorithm (6). Using proposition 2, ∇G∗ is a
Lipschitz continuous function with constant LG∗ checking LG∗ = 2LMK∗ +
‖Hb‖ + ‖B‖ = 2λN + ‖Hb‖+ ‖B‖, where N is the number of pixels. It will be
large for high resolution images and huge for good approximations of the MK
cost (i.e. λ� 1). Such a scheme may thus involve a very slow explicit gradient
ascent in the dual update (6). In such a case, we can resort to the alternative
scheme proposed in the next subsection.
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4.6 Optimization using proximity operator of MK∗
λ∗

An alternative optimization of (24) consists in using the proximity operator
of MK∗λ. Since we cannot compute the proximity operator of MK∗λ in a closed
form, we resort instead to a bidualization, as previously done in Section 3.2.

Considering now the normalized function MKλ(α) using entropy normaliza-
tion (20) on set S, we thus have MK∗λ(β) = N

λ 〈Qλ(β),1〉 = g∗λ(Lβ).

Proposition 3. The proximity operators of g∗λ(q) = N
λ 〈e

λ(q−c)−1, 1〉 is

proxτg∗λ(p) = p− 1

λ
W
(
λτNeλ(p−c)−1

)
. (25)

where W is the Lambert function, such that w = W (z) is solution of wew = z.
The solution is unique as z = λτNeλ(p−c)−1 > 0.

Proof. The proof [10, A.3] is omitted here for the sake of shortness.

Remark 2. Note that the Lambert function can be evaluated very fast.

5 Experiments

Experimental setting In this experimental section, exemplar regions are de-
fined by the user with scribbles (see Figures 1 to 5). These regions are only used
to built prior histograms, so erroneous labeling is tolerated. Histograms a and
b are built using hard-assignment on M = 8n clusters, which are obtained with
the K-means algorithm. We use either RGB color (F = Id and n = d = 3) or the
gradient color norm (F = ‖∇.‖ and again n = d = 3) features. The cost matrix
is defined from the Euclidean metric ‖·‖ in Rn space, combined with the concave
function 1− e−γ‖·‖, which is known to be more robust to outliers. Region Rt(u)
is obtained with threshold t = 1

2 , as illustrated in Figure 1. Approximately 1
minute is required to run 500 iterations and segment a 1 Megapixel color image.

Results Figure 1 shows the influence of the threshold t used to get a binary
segmentation. A small comparison with the model of [14] is then given in Fig-
ure 2. This underlines the robustness of optimal transport distance with respect
to bin-to-bin L1 distance. Contrary to optimal transport, when a color is not
present in the reference histograms, the L1 distance does not take into account
the color distance between bins which can lead to incorrect segmentation. The
robustness is further illustrated in Figure 3. It is indeed possible to use a prior
histogram from a different image, even with a different clustering of the feature
space. Note that it is not possible with a bin-to-bin metric, which requires the
same clustering. Figure 4 shows comparisons between the non-regularized model,
quite fast but high dimensional model, with the regularized model, using a low
dimensional formulation. One can see that setting a large value of λ gives inter-
esting results. On the other hand, using a very small value of λ always yields
poor segmentation results. Some other results are proposed in the supplementary
material (Section B).

Some last examples on texture segmentation are presented in Figure 5 where
the proposed method is perfectly able to recover the textured areas.
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6 Conclusion and future work

Several formulations have been proposed in this work to incorporate transport-
based distances in convex variational model for image processing, using either
regularization of the optimal-transport or not.

Different perspectives have yet to be investigated, such as the final thresh-
olding operation, the use of capacity transport constraint relaxation [4], of other
statistical features, of pre-conditionned optimization algorithms, and the exten-
sion to region-based segmentation and to multi-phase segmentation problem.
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Input t = 0.9 t = 0.5 t = 0.1
Fig. 1. Influence of the threshold on OT segmentation (λ =∞).
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Input L1 OT (λ =∞)
Fig. 2. Robustness of OT with respect to L1: the blue colors that are not in the
reference histograms are considered as background with OT distance and as foreground
with the L1 model, since no color transport is taken into account.

Input histograms Segmentation 1 Segmentation 2 Segmentation 3

Fig. 3. Illustration of the interest of optimal transport for comparison of histograms.
Prior histograms taken from image 1 are used to segment images 2 and 3.

Input λ =∞ λ = 100 λ = 10
Fig. 4. Comparison of segmentations obtained from the proposed models. The input
areas are used to compute the reference color distributions a and b. The non-regularized
model corresponds to λ = +∞, increasing regularization effects are then shown.

Input λ =∞ Input λ =∞
Fig. 5. Texture segmentation using histograms of gradient norms.
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