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ON THE COMPUTATION OF SET-INDUCED CONTROL LYAPUNOV
FUNCTIONS FOR CONTINUOUS-TIME SYSTEMS

MIRKO FIACCHINI∗, CHRISTOPHE PRIEUR∗ , AND SOPHIE TARBOURIECH†

Abstract. The paper presents a computation-oriented method for characterizing and obtaining local control
Lyapunov functions induced by particular star-shaped nonconvex sets for continuous-time nonlinear systems with
bounded inputs. For a given set, the necessary and sufficientconditions for the induced function to be a nonconvex
local control Lyapunov function are provided. The related convex problems for computing the exact region in
which the function is decreasing and the optimal control input are presented. The results are applied to the Brockett
integrator.
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1. Introduction. Although the first, pioneering contributions on invarianceand set-
theory in control appear in the seventies, see [5], these techniques gain and increase their
popularity since the nineties, after the publication of [7,8]. The importance of invariant
and contractive sets resides on their connection with stability and convergence of dynami-
cal systems, see the recent monograph for an overview [9] on the topic. It is proved in [7],
for instance, that in the context of linear parametric uncertain systems, polyhedral Lyapunov
functions, i.e. positive definite homogeneous functions induced by polytopes, represent a
universal class of Lyapunov functions. In the context of continuous-time nonlinear systems,
the characterization of the convex polyhedral Lyapunov functions has been considered in
[29]. More recently, the analogous results for linear discrete-time switched systems has been
proved to hold for a particular class of nonconvex sets-induced functions, see [20]. The fact
that stabilizability does not imply the existence of a convex Lyapunov function had been
proved for both continuous and discrete-time switched linear systems in [10]. A peculiarity
that makes particularly interesting set-theoretic methods is their relation with computation-
oriented techniques, as convex analysis and optimization,that permit their practical applica-
tion. In the last two decades, many research efforts have been directed to analyze and apply
set-theoretic and invariance methods in control, in the linear context, see [23, 28], as well as in
the nonlinear one, see [17, 14, 1, 18, 19] for discrete-time systems and [13, 27, 25, 39, 22, 24]
for particular classes of continuous-time and hybrid nonlinear systems.

The objective of this paper is to exploit the properties of viability theory to propose a
computation-oriented method to characterize and obtain nonconvex set-induced control Lya-
punov functions for a class of nonlinear continuous-time systems. Viability theory provides
a complete theoretical characterization of invariance andset-induced Lyapunov functions in
the differential inclusion framework. Viability is tightly related to the work of Aubin and
co-authors, see [4, 3, 2]. The results provided by viabilitytheory together with the methods
and techniques proper of convex analysis and optimization,see [6, 11, 35, 37], are the basis
of the approach.

In this paper, whose preliminary version is [21], we proposea computation-oriented
method to characterize and compute nonconvex set-induced control Lyapunov functions for
continuous-time nonlinear systems affine in the input with bounded input. Nonconvex homo-
geneous Lyapunov functions, in particular piecewise quadratic ones, have been employed to
prove stability for continuous-time affine systems, see [34]. The nonconvex sets considered
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2 SET-INDUCED CONTROL LYAPUNOV FUNCTIONS FOR CONTINUOUS-TIME SYSTEMS

here are a subclass of the star-shaped sets that have been widely studied by Rubinov and co-
authors, see for instance [36], and employed in [33, 31, 20].We consider in particular the
computationally suitable star-shaped sets determined by the intersection and union operators
and a finite number of half-spaces containining the origin intheir interior. Given one of these
nonconvex sets, and the induced polyhedral function as control Lyapunov candidate for the
nonlinear system, a necessary and sufficient condition for the function to be decreasing at a
point along a trajectory of the system is provided. Such a control Lyapunov function yields
local exponential stabilizability for the nonlinear constrained system. The exact region of the
state space in which the decreasing of the polyhedral Lyapunov function, and hence expo-
nential stability, is ensured by admissible inputs, is characterized. The optimal control input
guaranteeing maximal decreasing is obtained. Particular attention is devoted to the computa-
tional issues of such functions and control laws. Finally, the proposed method is applied to
the problem of characterizing the region of local exponential stabilizability for the Brockett
integrator, to show that nonconvexity might be necessary tohave exponential stabilizability
of nonlinear systems.

The paper is organized as follows: Section II presents the problem statement, Section III
recalls some definitions and results on viability theory. Section IV presents the nonconvex
sets employed and the induced homogeneous functions. In Section V the main results on
polyhedral control Lyapunov functions are stated. SectionVI is devoted to the computational
issues. In Section VII the method is applied to the Brockett integrator. The paper ends with a
section of conclusions.

Notation. Given n ∈ N, defineNn = {x ∈ N : 1 ≤ x ≤ n}. GivenA ∈ Rn×m, Ai with
i ∈ Nn denotes itsi-th row. Given a setD and a scalarα ≥ 0, denote the scalar multiple ofD
asαD= {αx : x∈D}. The interior ofD is denoted as int(D), with S (D) the set of subsets of
D. The unit ball inRn is Bn = {x∈Rn : ‖x‖2 ≤ 1}. Given a set-valued mapF :Rn →S (Rm),
its domain is dom(F) = {x∈ Rn : F(x) 6= /0}.

2. Problem statement. Consider the continuous-time system given by

(2.1) ẋ(t) = f (x(t),u(t)), for almost allt ≥ 0,

wherex(t) ∈ Rn is the state at timet, and with input boundsu(t) ∈ U(x(t)). This class
of systems can be represented by using the modeling framework referred to as differential
inclusion, characterized by the system

(2.2) ẋ(t) ∈ F(x(t)), for almost allt ≥ 0,

with set-valued mapF : Rn → S (Rn). Indeed, the constrained control systems (2.1) can be
expressed as a differental inclusion with

(2.3) F(x) = f (x,U(x)) = {y∈ Rn : y= f (x,u), u∈U(x)},

see [3]. Differential inclusions can be also used to approximate nonlinear systems ˙x(t) =
f (x(t)), provided thatf (x) ∈ F(x) for all x ∈ Rn, see [4, 3]. This characterization of the
system (2.1) is taken into account in this paper to apply results from viability theory, see [3].
The modeling framework considered in this paper is summarized in the following assumption.

ASSUMPTION 2.1. Assume that the system dynamics is given by (2.1) where f(x,u) =
g(x)+h(x)u with u∈U(x) where

(2.4) U(x) = {u∈ Rm : M ju≤ Nj(x), ∀ j ∈ Nnu},
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and g,Nj , with j ∈Nnu, are continuous with linear growth and h is continuous and bounded.
REMARK 2.2. The satisfaction of Assumption 2.1 is sufficient for the system to be an

affine control system and then also a Marchaud system, see [3]. A set-valued map is Mar-
chaud if its graph and domain are closed, the values F(x) are convex and the growth of F is
linear. Although many results based on viability theory apply to more general systems, the
case considered is relatively general and rather suitable for computational purposes.

The objective is to design a computation-oriented method for obtaining set-induced local
control Lyapunov functions, estimations of the basin of attraction and control inputs such
that the nonlinear continuous-time system (2.1) with state-dependent polytopic bounds on the
input is exponentially stable. As already pointed out, thisis equivalent to consider the system
(2.2) with set-valued map defined in (2.3). Moreover, the explicit formulation of the optimal
control law, maximizing the decreasing of the induced Lyapunov function, is provided.

REMARK 2.3. Assumption 2.1 is equivalent to consider a systemẋ(t) = f (x(t),u(t))
with bounds in the input such that U(x) is polytopic and U is a Marchaud map, see [3], with
F as in (2.3).

3. Viability theory and Lyapunov functions. We recall some definitions and results
on viability theory, which is strongly associated to the research of Aubin and co-authors, see
[4, 3, 2]. Many of those results are developed in the cited works, and references therein, under
assumptions which are more general than those required in this paper.

DEFINITION 3.1. Let V :Rn →R∪{±∞} be a nontrivial extended function and x belong
to its domain. For all y∈ Rn, define the extended function

(3.1) D↑V(x)(y) = lim inf
h→0+,v→y

V(x+hv)−V(x)
h

,

and refer to function D↑V(x) as thecontingent epiderivativeof V at x and say that the function
V is contingently epidifferentiableat x if for any y∈ Rn, D↑V(x)(y) > −∞ (or, equivalently,
if D↑V(x)(0) = 0).

Geometrically,D↑V(x)(y) is the extended function whose epigraph is the contingent cone
(and also the tangent one ifV is convex and closed) of the epigraph ofV at (x,V(x)), see [3].

REMARK 3.2. The contingent epiderivative is equal to the (lower) Dini derivative if V
is Lipschitz around a point x of its domain (Proposition 9.1.5 in [3]) and it is the support
function of the generalized gradient (and also of the subdifferential if V is convex), see [15],
under certain regularity assumptions. We use the contingent epiderivative to maintain the
coherence with viability theory and to deal also with nonconvex homogeneous functions.

In this paper, the properties and theorems concerning the Lyapunov functions for dif-
ferential inclusions (2.2), provided in [3, 2], are applied. We recall the characterization of
Lyapunov functions in the context of viability theory. Given a differential equation

(3.2) ẇ(t) =−ϕ(w(t)),

whereϕ : R+ → R is continuous with linear growth and a nonnegative extendedfunction
V : Rn →R+∪{+∞}, the objective is to provide a condition for the existence ofa solutionx
to the differential inclusion (2.2) ensuring

(3.3) ∀t ≥ 0, V(x(t))≤ w(t), w(0) =V(x(0)),

with w solution to (3.2). Clearly, ifϕ is selected such thatw converges to zero, then alsoV
converges to zero andx converges tox∈ dom(V) such thatV(x) = 0. The general definition
of Lyapunov function in the context of differential inclusion follows.
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DEFINITION 3.3. A nonnegative contingently epidifferentiable extended function V is a
Lyapunov functionof F associated with a functionϕ : R+ → R if and only if V is a solution
to thecontingent Hamilton-Jacobi inequalities

(3.4) inf
y∈F(x)

D↑V(x)(y)+ϕ(V(x))≤ 0, ∀x∈ dom(V).

We recall that contingently epidifferentiable means that for all x∈ dom(V), for all y∈Rn,
D↑V(x)(y)>−∞ and thatD↑V(x)(y) <+∞ for at least ay∈ Rn.

THEOREM 3.4. Consider the nonnegative contingently epidifferentiablelower semicon-
tinuous extended function V and the Marchaud map F: Rn →S (Rn). Then V is a Lyapunov
function of F associated withϕ if and only if for any x0 ∈ dom(V), there exist solutions x to
(2.2) and w to (3.2) satisfying property (3.3).

Theorem 3.4, proved in [3], is instrumental to compute control Lyapunov functions as
done in this paper.

4. Nonconvex polyhedral sets and functions. Consider first a polytope in the state
space containing the origin in its interior,Ω = {x ∈ Rn : Hx ≤ 1}, with H ∈ Rnh×n, and
the system (2.1) such that Assumption 2.1 holds. The gauge function is introduced here, see
[35, 37] for instance.

DEFINITION 4.1. Given a compact, convex setΩ ∈ Rn with 0∈ int(Ω), the gauge func-
tion ofΩ at x⊆ Rn is defined byΨΩ(x) = min

α≥0
{α ∈R : x∈ αΩ}.

For polytopicΩ containing the origin in its interior, the gauge function is

(4.1) ΨΩ(x) = min
α≥0

{α ∈ R : H jx≤ α,∀ j ∈Nnh}= max
j∈Nnh

{H jx}.

Consider the set̄Θ ⊆ Rn defined as

Θ̄ = {x∈Rn : ∃ j ∈Nnh̄
, s.t. H̄ jx≤ 1},

see an example in Figure 1 The closed, possibly nonconvex, set Θ̄ contains the origin in its
interior and is given by the union of the half-spaces defined by the inequalitiesH̄ jx≤ 1 with
j ∈ Nnh̃

.

FIG. 1. Nonconvex set̄Θ with nh = 2.
FIG. 2. Nonconvex set A∩B as in Example 4.4.

GivenΘ̄, we define overRn the following homogeneous function

(4.2) ΦΘ̄(x) = min
α

{α ∈ R : ∃ j ∈Nnh̄
, s.t. H̄ jx≤ α},
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which is the analogous of the gauge function for a nonconvex set Θ̄ with 0∈ int(Θ̄). Notice
thatΦΘ̄ is greater than 1 if and only ifx /∈ Θ̄ and the following equality holds

(4.3) ΦΘ̄(x) = min
i∈Nnh̄

{H̄ix}.

The analogy with the gauge function as in Definition 4.1 and equation (4.1) is evident.
For polytopic setsΩ with 0 ∈ int(Ω) we poseΦΩ(x) = ΨΩ(x) for all x ∈ Rn. Then the
functionΦΘ can be seen as an extension of the gauge function related to particular setsΘ,
possibly nonconvex. In the following, the formal definitionand properties ofΦΘ are given.

DEFINITION 4.2. Denote withC (Rn) the subsets ofRn that can be expressed by using
the intersection and the union operators and a finite number of closed half-spaces inRn

containing the origin in their interior.
Clearly any closed half-space containing the origin in its interior belongs toC (Rn).

Moreover, for anyB,C ∈ C (Rn), we have thatB∪C ∈ C (Rn) and B∩C ∈ C (Rn). The
following definition permits to construct functionsΦΘ related to any setΘ ∈ C (Rn).

DEFINITION 4.3. Given the half-space A= {x ∈ Rn : Hx ≤ 1}, with H ∈ R1×n, de-
fine ΦA(x) = Hx. Given two sets B,C ∈ C (Rn) defineΦB∪C(x) = min{ΦB(x),ΦC(x)} and
ΦB∩C(x) = max{ΦB(x),ΦC(x)}.

Then, the functionΦΘ can be defined for every setΘ ∈ C (Rn) and its domain isRn,
being it finite at everyx∈Rn.

EXAMPLE 4.4. Given a polytope A= {x∈ Rn : HA
i x≤ 1, ∀i ∈ Na} and a set B= {x∈

Rn : ∃ j ∈ Nb, s.t. HB
j x ≤ 1}, we have thatΦA∩B(x) = max

{

max
i∈Na

{HA
i x}, min

j∈Nb

{HB
j x}

}

, and

ΦA∪B(x) = min
{

max
i∈Na

{HA
i x}, min

j∈Nb

{HB
j x}

}

. The set A∩B is represented in Figure 2,

REMARK 4.5. The sets inC (Rn) form a particular subfamily of the called star-shaped
sets, introduced and characterized in the work by Rubinov and co-authors, see for instance
[36]. Also the functionΦΘ is analogous to the gauge function of a star-shape set as defined
and employed by Rubinov. Notice, nevertheless, that our definition is slightly different from
the gauge one, since it may take negative values. Despite thesubstantial analogy, we avoid
imposing its nonnegativity for simplicity as well as for maintaining the consistency in its
relation with the contingent epiderivative from viabilitytheory.

The intuitive definition provided above for the setΘ̄ and for the polytopesΩ are recov-
ered by using Definition 4.3. In fact, for allΘ ∈ C (Rn), ΦΘ is given by nested minima and
maxima of linear functions of the state.

We provide below some properties of the functionΦΘ(x) for seek of completeness. We
refer the reader to the work by Rubinov and co-authors for analogous considerations concern-
ing the gauge functions of star-shaped sets, see [36].

PROPOSITION4.6. GivenΘ ∈ C (Rn), the functionΦΘ : Rn → R is continuous, posi-
tively homogeneous of degree 1 and such that

(4.4) x∈ Θ ⇔ ΦΘ(x)≤ 1.

Moreover,ΦΘ is positive definite if and only ifΘ is bounded.
Proof. Homogeneity is due to the fact that functions min and max arepositively homo-

geneous of degree 1, i.e. mini{Hiαx} = α mini{Hix} and maxi{Hiαx} = α maxi{Hix} for
all α ≥ 0. From Definition 4.3,ΦΘ can be expressed as nested maxima and minima of linear
functions of the state. Continuity follows from the fact that max and min preserve continuity
and linear functions are evidently continuous. Equivalence (4.4) is proved by induction. First
notice that, ifΘ is given by one half-space, then the condition is satisfied byDefinition 4.3.
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Assume now that (4.4) holds for two setsB,C∈ C (Rn), we prove that this impliesx∈ B∪C
if and only if ΦB∪C(x)≤ 1. Indeed, we have

x∈ B∪C ⇔ x∈ B or x∈C ⇔ ΦB(x)≤ 1 or ΦC(x)≤ 1 ⇔
⇔ min{ΦB(x),ΦC(x)} ≤ 1 ⇔ ΦB∪C(x)≤ 1.

Analogous considerations yield to prove thatx∈B∩C if and only if ΦB∩C(x)≤ 1. Then using
the rule described in Definition 4.3 for constructing the setΘ, the equivalence (4.4) is proved.
Finally we prove thatΦΘ is positive definite if and only ifΘ is bounded. By construction
ΦΘ(0) = 0. To prove sufficiency, assume thatΦΘ is positive definite and consider anyx 6= 0.
ThenΦΘ(x)> 0 and, from positive homogeneity, there existsα = α(x) such thatΦΘ(αx)>
1, which means thatαx /∈ Θ. Thus, givenB a ball around the origin, there is a finitēα such
thatΘ ⊆ ᾱB and thenΘ is bounded. Necessity is proved by contradiction. Suppose thatΘ is
bounded and there is ¯x 6= 0 such thatΦΘ(x̄) < 0. Then, from positive homogeneity one has
thatΦΘ(α x̄) = αΦΘ(x̄)< 0 for all α > 0. Then the whole ray passing through ¯x is contained
in Θ, from (4.4), and henceΘ in unbounded, which contradicts the assumption.

COROLLARY 4.7. For every bounded A,B ∈ C (Rn) we have that B⊆ A if and only if
ΦA(x)≤ ΦB(x), for all x ∈Rn.

Proof. To prove necessity assume thatΦA(x) ≤ ΦB(x), for all x ∈ Rn, and consider
x ∈ B. From (4.4),ΦB(x) ≤ 1 which impliesΦA(x) ≤ 1 that is equivalent tox ∈ A. Thus
B ⊆ A. Sufficiency is proved by contradiction. Suppose thatB ⊆ A and that there is ¯x 6= 0
such thatΦA(x̄)> ΦB(x̄). From Proposition 4.6,ΦB(x̄)> 0 and then there isα = α(x̄) such
that ΦB(α x̄) = 1, for homogeneity, which is equivalent toα x̄ ∈ B. From the assumptions,
ΦA(α x̄)> 1 that meansα x̄ /∈ A and thenB* A, which contradicts the hypothesis.

We define the set of the indices of the active constraint ofΘ ∈ C (Rn) for determining
a function related toΘ which is connected, as shown in the following, to the contingent
epiderivative ofΦΘ. This is a computation-oriented tool for determining contractiveness
conditions and induced polyhedral Lyapunov functions, possibly nonconvex.

DEFINITION 4.8. GivenΘ ∈ C (Rn) denote with HΘ ∈RnG×n the matrix whose nG rows
are given by the normals to the half-spaces determiningΘ and

IΘ(x) = {i ∈ NG : HΘ
i x= ΦΘ(x)}

and ĪΘ(x) = NnG/IΘ(x). Given x∈ Rn, defineΘI (x) ∈ C (Rn) the set obtained by keeping
from the definition ofΘ the constraints related to j∈ IΘ(x).

That is, IΘ(x) denotes the indices of the active constraints of the level set of ΦΘ at x.
As proved below, the setΘI (x) is related to a computationally suitable representation ofthe
contingent epiderivative ofΦΘ atx.

EXAMPLE 4.9. Consider A,B ∈ C (Rn) as in Example 4.4. Then ifΘ = A∩B and
Ω = A∪B we have

(4.5)
ΦΘI (x)(y) = max

{

max{HA
i y : i ∈ Na∩ IΘ(x)}, min{HB

j y : j ∈Nb∩ IΘ(x)}
}

,

ΦΩI (x)(y) = min
{

max{HA
i y : i ∈ Na∩ IΩ(x)}, min{HB

j y : j ∈ Nb∩ IΩ(x)}
}

.

SinceΦΘ for boundedΘ ∈ C (Rn) is continuous, which implies contingent epidifferen-
tiability and lower semicontinuity, see [3], the result also applies to the case under analysis.
The subsequent result, valid for anyΘ ∈ C (Rn), is employed afterwards.

PROPOSITION4.10. ConsiderΘ ∈ C (Rn) with HΘ ∈ RnG×n. For every x∈ Rn there
exists a nonempty neighborhood N(x) such that

(4.6) ΦΘ(z) = ΦΘI (x)(z),
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for every z∈ N(x).
Proof. First notice that condition (4.6) is equivalent to say that, for everyz∈ N(x), there

is no j(z) ∈ ĪΘ(x) such thatH j(z)z= ΦΘ(z). To prove the result it is sufficient to define
N(x) = x+Bn(ε(x)) with

(4.7) ε(x) = min
z∈Rn

{

‖z− x‖2 : ∃ j ∈ ĪΘ(x), s.t. |H jz−ΦΘ(z)|= 0
}

,

and prove thatε(x) > 0. In fact, suppose by contradiction thatε(x) = 0. Then the point
z closest tox and such that there isj(z) ∈ ĪΘ(x) for which H j(z)z= ΦΘ(z), is z= x and
thenH j(z)z= H j(z)x = ΦΘ(x). However, this would meanj(z) ∈ IΘ(x), which contradicts
j(z) ∈ ĪΘ(x), then it is absurd, which allows concluding the proof.

The corollary below follows from Proposition 4.10 and the fact thatΦΘ(x) = ΦΘI (x)(x).
COROLLARY 4.11. GivenΘ ∈ C (Rn), for every x∈ Rn there exists a nonempty neigh-

borhood of the origin N0(x) such thatΦΘ(x+ v) = ΦΘ(x)+ΦΘI (x)(v), for every v∈ N0(x).
The following proposition is employed in the main result proof.
PROPOSITION4.12.GivenΘ ∈ C (Rn), ΦΘI (x)(x+v) = ΦΘI (x)(x)+ΦΘI (x)(v) holds for

every x,v∈ Rn.
Proof. The result is based on the fact thatα + maxi{β i} = maxi{α + β i} and α +

mini{β i}= mini{α +β i} and the fact thatΦΘI (x)(x) = HΘ
i x for all i ∈ IΘ(x).

Thus, the contingent epiderivative ofΦΘ at x depends onΦΘI (x) as proved below.
PROPOSITION4.13.Consider the bounded setΘ∈C (Rn). The contingent epiderivative

of ΦΘ at x is given by D↑ΦΘ(x)(y) = ΦΘI (x)(y), for all y∈ Rn.
Proof. As h→ 0+, we can assume thathv∈ N0(x) as in Corollary 4.11. From Corollary

4.11 and homogeneity ofΦΘ andΦΘI (x) , we have that

(4.8)
D↑ΦΘ(x)(y) = lim inf

h→0+,v→y

ΦΘ(x+hv)−ΦΘ(x)
h = lim inf

h→0+,v→y

ΦΘ(x)+ΦΘI (x)
(hv)−ΦΘ(x)

h

= lim inf
h→0+,v→y

hΦΘI (x)
(v)

h = lim inf
v→y

ΦΘI (x)(v).

SinceΦΘI (x) is continuous, the result follows.
LEMMA 4.14. For every x∈ Rn andΘ ∈ C (Rn), the setΓ = {v∈ Rn : ΦΘI (x)(v) ≤ 0}

is a closed cone.
Proof. From [3], the epigraph of the contingent epiderivative atx is a closed cone. Then

from Proposition 4.13, the epigraph ofΦΘI (x)(v) is a closed cone and so isΓ, since it is
the intersection of two cones inRn+1, i.e. the epigraph ofΦΘI (x)(v) and the closed cone
{y∈ Rn+1 : yn+1 = 0}.

LEMMA 4.15.Given yi ∈R with i ∈Ny, z∈R andα ∈R, thenmax{min
i∈Ny

{yi}, z} ≤ α if

and only if there exists j∈ Ny such thatmax{y j , z} ≤ α.
Proof. To prove necessity, suppose there isj ∈ Ny such that max{y j , z} ≤ α. From this

and max{min
i∈Ny

{yi}, z} ≤ max{y j , z} then max{min
i∈Ny

{yi}, z} ≤ α. For sufficiency, suppose that

max{min
i∈Ny

{yi}, z} ≤ α holds. The result is proved by posingj = argmin
i∈Ny

{yi} and noticing that

min
i∈Ny

{yi}= y j .

The lemma allows to formulate convex problems whose solution provides a characteri-
zation of the region in whichΦΘ decreases along the trajectory for an adequateu(x).

EXAMPLE 4.16.Consider the boundedΘ ∈ C (Rn) as in Example 4.9. If the cardinality
ofNb∩ IΘ(x) is greater than1, and since the minimum of linear functions may be nonconvex,
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then the functionΦΘI (x), defined in (4.5), might be nonconvex. From Lemma 4.15 we have
thatΦΘI (x)(y)≤ 0 if and only if there exists j∈ Nb∩ IΘ(x) such thatΦΘi

I (x)
(y)≤ 0 where

ΦΘ j
I (x)

(y) = max{max{HA
i y : i ∈ Na∩ IΘ(x)},H

B
j y}= max{{HA

i y : i ∈ Na∩ IΘ(x)},H
B
j y}.

The result in Lemma 4.15 and its application in Example 4.16 are based on the fact that,
given Ai ⊆ Rn, with i ∈ NI and B ⊆ Rn,

(

⋃

i∈NI

Ai
)

∩B =
⋃

i∈NI

(Ai ∩B) holds. The relation

with Lemma 4.15 stems from Definition 4.3, see also [36]. Thus, everyΘ ∈ C (Rn) can be
expressed as the finite union of convex sets, each obtained asthe intersection of half-spaces
A= {x∈ Rn : Hx≤ 1}, see Definition 4.3.

DEFINITION 4.17. Given x∈ Rn andΘ ∈ C (Rn), defineK j(x) ⊆ IΘ(x), with j ∈ NJ(x)
and J(x) ∈ N, such that

(4.9) ΘI (x) =
⋃

j∈J(x)

ΘK j (x), with ΘK j (x) =
⋂

k∈K j (x)

{

y∈ Rn : HΘ
k y≤ 1

}

.

Therefore, one has

(4.10) ΦΘI (x)(v) = min
j∈J(x)

{

ΦΘK j
(x)(v)

}

= min
j∈J(x)

{

max
k∈K j (x)

{HΘ
k v}

}

.

REMARK 4.18. Notice that, from Lemma 4.14, the sets{v∈ Rn : ΦΘK j
(x)(v) ≤ 0} are

convex cones.

5. Nonconvex polyhedral control Lyapunov functions and exponential stability. The
results presented in this section provide a computation-oriented characterization of exponen-
tial stabilizability through Lyapunov functions for systems (2.1) such that Assumption 2.1
holds. The objective is to determine a condition for the function ΦΘ with Θ ∈ C (Rn) to
be a local control Lyapunov function. For this, we provide computation-oriented necessary
and sufficient conditions for the existence ofu(x) ∈U(x) such that the contingent Hamilton-
Jacobi equation (3.4) is satisfied in a region. This would imply that ΦΘ is a local control
Lyapunov function and the system is locally asymptoticallystabilizable where such condi-
tions hold. Moreover, Theorem 3.4, applied withϕ(x) = λx andλ > 0, leads to conditions
on the existence of a trajectory of system (2.1) that exponentially converges to the origin. For
everyΘ ∈ C (Rn), the functionΦΘ is contingently epidifferentiable and then Theorem 3.4
can be applied withV(x) = ΦΘ(x).

THEOREM 5.1. Let Assumption 2.1 hold and consider the nonempty boundedΘ ∈
C (Rn). Then for every x∈Rn there exist u(x) ∈U(x) andK =K j(x), as in Definition 4.17,
such that

(5.1) HΘ
k

(

g(x)+h(x)u(x)+λx
)

≤ 0, ∀k∈ K ,

with λ > 0, if and only if there exists u(t) ∈ U(x(t)) for t ≥ 0, such that a solution to (2.1)
satisfies

(5.2) ΦΘ(x(t))≤ ΦΘ(x0)e
−λ t ,

for every x0 ∈ Rn.
Proof. The first step is to prove that the existence ofu(x) ∈U(x) such that

(5.3) ΦΘI (x)

(

g(x)+h(x)u(x)+λx
)

≤ 0,
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holds, is a necessary and sufficent condition for (5.2). Theorem 3.4, withV =ΦΘ andϕ(w) =
λw, and Proposition 4.13 imply that

(5.4) inf
u∈U(x)

ΦΘI (x)

(

g(x)+h(x)u(x)
)

+λ ΦΘ(x)≤ 0, ∀x∈ dom(ΦΘ) = Rn,

holds if and only if there existsu(t) ∈U(x(t)), for t ≥ 0, such that the solution to (2.1) fulfills
(5.2), which corresponds to condition (3.3) for the currentcase. From Proposition 4.12 and
homogeneity ofΦΘI (x) we have

ΦΘI (x)

(

g(x)+h(x)u(x)
)

+λ ΦΘ(x) = λ
(

ΦΘI (x)

(

λ−1g(x)+λ−1h(x)u(x)
)

+ΦΘI (x)(x)
)

=

= λ
(

ΦΘI (x)

(

λ−1g(x)+λ−1h(x)u(x)+ x
)

)

= ΦΘI (x)

(

g(x)+h(x)u(x)+λx
)

.

Noticing that condition (5.4) is equivalent to claim the existence ofu(x) ∈ U(x) such that
(5.3) is satisfied for allx∈Rn, the first part of the result is proved.

From Definition 4.17, condition (5.3) is equivalent to the existence ofK = Ki(x) such
that

ΦΘK j
(x)

(

g(x)+h(x)u(x)+λx
)

≤ 0,

which is also equivalent to (5.1), and then the result follows.
One implication of Theorem 5.1 and Remark 4.18 is thatΦΘ(x) decreases atx if and

only if the vector ˙x is contained, for appropriateu(x), in one of the convex cones whose union
determine the set{v∈ Rn : ΦΘI (x)(v)≤ 0}. Notice that this would imply that the contingent
epiderivative is negative along the trajectory.

REMARK 5.2. Theorem 5.1 yields a condition onΦΘ to be a global control Lyapunov
function for the system (2.1) under Assumption 2.1. The factthat the effective domain of
ΦΘ is Rn for everyΘ ∈ C (Rn) is implicitly used. Local Lyapunov functions can be defined
modifying adequately the function by defining it+∞ outside of the domain of attraction.

Then, we have proved that (5.1) withK = K j(x), satisfied byu(x) ∈ U(x), is a nec-
essary and sufficient condition forΦΘ(x) with boundedΘ ∈ C (Rn), to be a local control
Lyapunov function for system (2.1). Furthermore, the valueof ΦΘ(x(t)) is bounded above by
an exponentially decreasing function whose time constant is λ .

REMARK 5.3. The results presented above concerningΦΘ with boundedΘ ∈ C (Rn)
as potential control Lyapunov function, as well as the characterization of its contingent epi-
derivative at x throughΦΘI (x), are valid for more general functions, see [3, 15]. Nonetheless,
the functionΦΘ for Θ ∈C (Rn) is particularly suitable for computational purposes, as shown
below.

6. Computational issues. From Theorem 5.1, the satisfaction of condition (5.1), where
K = K j(x) identifies a convex cone determining the contingent epiderivative of ΦΘ(x), is
necessary and sufficient for the function induced byΘ to be decreasing atx. Then, from
the computational point of view, the first problem is to characterize the region where, given
a convex cone, the condition (5.1) can be satisfied. This issue is dealt with in Section 6.1.
After that, some aspects on the computation of the extreme points of the feasible region of the
dual problem are considered in Section 6.2. The interest resides in the fact that these points
completely characterize the region in which condition (5.1) is satisfied, and then where the
candidate function has a decreasing rate greater thanλ for an appropriateu(x). In Section 6.3,
it will be shown that these extremes determine also such a control input. Finally, the direct
implications for the original problem with potentially nonconvex contingent epiderivative are
presented in Section 6.4.
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6.1. Exact region of viability for convex cones. As illustrated in Section 4, the con-
tingent epiderivative ofΦΘ(x) is determined for everyx ∈ Rn by the union of convex cones
defined by the active constraints, see Definition 4.17.

DEFINITION 6.1. Given the setK ⊆ Nnh define

(6.1) RK = {x∈ Rn : k∈ K ⇒ HΘ
k x= ΦΘ(x)},

andΘK = {x∈Rn : HΘ
k x≤ 1, ∀k∈ K }.

That is,RK is the region in which the constraints indexed byK are active, possibly not
exclusively.

REMARK 6.2.Notice that RK might be empty and that the union of RK for all K ⊆Nnh

isRn. MoreoverΘK is a convex cone containing the origin in its interior and HΘ
k x=ΦΘK

(x)
for all k ∈ K and every x∈ RK .

We consider hereafter the region determined by a genericK ⊆ Nnh. GivenK ⊆ Nnh

andx∈ RK , as in (6.1), we define the following optimization problem, whose solution char-
acterizes the statesx∈ RK at which condition (5.1) holds.

DEFINITION 6.3 (Primal problem).Let Assumption 2.1 hold. GivenK ⊆ Nnh and
x∈ RK , define the following optimization problem:

(6.2)

αλ ,∗
K

(x) = min
α , u

α,

s.t. HΘ
i x≤ α, ∀i ∈ K ,

HΘ
k

(

g(x)+h(x)u+λx
)

+HΘ
k x−α ≤ 0, ∀k∈ K ,

M ju≤ Nj (x), ∀ j ∈ Nnu,
α ≥ 0.

A computation-oriented necessary and sufficient conditionfor (5.1) to hold atx ∈ RK

stems from the following proposition.
PROPOSITION6.4. GivenK ⊆ Nnh and x∈ RK , the optimal solutionαλ ,∗

K
(x) to the

primal problem (6.2) is such thatΦΘK
(x) = αλ ,∗

K
(x) if and only if there exists u∈U(x) such

that condition (5.1) holds at x. Furthermore,ΦΘK
(x)< αλ ,∗

K
(x) if and only if condition (5.1)

is not satisfied at x for any u∈U(x).
Proof. Suppose that condition (5.1) holds atx∈ RK for au(x) ∈U(x) and consider such

a u(x) that satisfies the third constraint of (6.2). Then the secondset of constraints in (6.2) is
satisfied by everyα ≥ 0 such thatΦΘK

(x) = HΘ
k x≤ α, as well as the first set of constraints.

Since the optimization problem minimizesα, its optimal value isΦΘK
(x), that proves the

necessity of the first part of the proposition. Concerning the sufficiency, suppose that the
optimal value of problem (6.2) is given byΦΘK

(x), i.e. suppose thatαλ ,∗
K

(x) = ΦΘK
(x).

Then the first set of constraints is satisfied by definition, infact HΘ
i x = ΦΘK

(x) = αλ ,∗
K

(x),

for all i ∈ K . Moreover, it follows thatHΘ
k x = αλ ,∗

K
(x) for all k ∈ K and then the second

set of constraints in (6.2) becomes the condition (5.1). Hence, the solutionαλ ,∗
K

(x) is equal
to theΦΘK

(x) if and only if the condition (5.1) is satisfied atx.

Furthermore we have thatΦΘK
(x) ≤ αλ ,∗

K
(x). Indeed, the value ofΦΘK

(x) would be
obtained as the optimum by removing the second set of constraints and solving the optimiza-
tion problem. However, since this problem has a larger feasible region, its optimum is smaller
than or equal toαλ ,∗

K
(x). Thenαλ ,∗

K
(x) cannot be smaller thanΦΘK

(x). This and the fact that

ΦΘK
(x) = αλ ,∗

K
(x) if and only if condition (5.1) is satisfied atx, imply that the optimal value

is greater thanΦΘK
(x) if and only if (5.1) is not fulfilled atx.
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Conditions for characterizing the regions of the state space in which (5.1) is satisfied are
provided below. Notice that (6.2) is a linear optimization problem inα andu with feasible
solutions. Then, strong duality holds in our case, see [11, 6]. Applying classical results from
duality for convex optimization problems we obtain the following problem, dual of (6.2).

DEFINITION 6.5 (Dual problem).Let Assumption 2.1 hold. GivenK ⊆ Nnh and x∈
RK , the dual of the linear optimization problem (6.2) is

(6.3)

Lλ ,∗
K

(x) = max
β ,δ ,σ

Lλ
K
(β ,δ ,σ ;x),

s.t. ∑
i∈K

βi + ∑
k∈K

δk ≤ 1,

∑
k∈K

δkHΘ
k h(x)+

nu

∑
j=1

σ jM j = 0,

β ≥ 0, δ ≥ 0, σ ≥ 0,

with

(6.4) Lλ
K
(β ,δ ,σ ;x) = ∑

i∈K

βiH
Θ
i x+ ∑

k∈K

δkH
Θ
k g(x)+ ∑

k∈K

δk(λ +1)HΘ
k x−

nu

∑
j=1

σ jNj(x).

The optimal value of the dual problem is such thatLλ
K
(β ,δ ,σ ;x) ≤ Lλ ,∗

K
(x) for all

feasible(β ,δ ,σ). We used the notation(β ,δ ,σ) in spite of (β (x),δ (x),σ(x)) for sim-
plicity. HenceLλ ,∗

K
(x) is the maximal lower bound ofαλ ,∗

K
(x) and, from strong duality,

Lλ ,∗
K

(x) = αλ ,∗
K

(x). Then,Lλ
K
(β ,δ ,σ ;x)≤ αλ ,∗

K
(x) for any feasible solution to (6.3).

PROPOSITION6.6. A necessary and sufficient condition for (5.1) to hold at x∈ RK is

(6.5) Lλ ,∗
K

(x)≤ HΘ
k x, ∀k∈ K ,

with Lλ ,∗
K

(x) as in (6.3), or, equivalently, Lλ
K
(β ,δ ,σ ;x) ≤ HΘ

k x for every(β ,δ ,σ) feasible
solution to (6.3).

Proof. From strong duality,Lλ ,∗
K

(x) = αλ ,∗
K

(x). This impliesHΘ
k x = ΦΘK

(x) ≤ Lλ ,∗
K

(x)

for all k∈ K , as proved for Proposition 6.4, and thenΦΘK
(x) = Lλ ,∗

K
(x) if and only if (5.1)

holds atx∈ RK . Then (5.1) holds atx∈ RK if and only if (6.5) is satisfied.
Posing the condition for (5.1) to hold in the inequality form(6.5), rather than as equality

constraintLλ ,∗
K

(x) = HΘ
k x for all k ∈ K , leads to convex optimization problems under ade-

quate assumptions onU(x). Consider the dual problem (6.3). GivenK ⊆ Nnh andx∈ RK ,
the problem of checking if (5.1) holds reduces to the maximization of a linear function over
a polyhedral set in the space of variablesβ , δ andσ . Then, the maximum is attained at an
extreme point or the problem is unbounded. Since the primal optimum exists and is bounded,
the analysis can be reduced to the extreme points of the dual problem feasibility region.

PROPERTY 6.7. The optimal value of the dual problem (6.3) is attained at an extreme
point of the feasibility region.

Proof. Since the origin is an extreme point of the feasibility region of the dual prob-
lem (6.3), which is bounded above by the primal optimal value, the result is implied by the
Fundamental Theorem of Linear Programming, see [6].

Based on Proposition 6.6 and Property 6.7, a computation-oriented necessary and suffi-
cient condition for (5.1) to hold alx∈ RK is presented below.

THEOREM 6.8. GivenK ⊆ Nnh, denote with(β p,δ p,σ p) the p-th extreme point of the
feasibility region of the dual problem (6.3), with p∈Nnv. The subset of x∈RK at which (5.1)
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holds is given by

(6.6) V
λ

K =
⋂

p∈Nnv

{x∈ Rn : Lλ
K (β p,δ p,σ p;x)≤ HΘ

k x, ∀k∈ K },

with Lλ
K

as in (6.4). The subset of x∈ RK at which (5.1) does not hold is

(6.7) V̄
λ

K =
⋃

p∈Nnv

{x∈ Rn : Lλ
K (β p,δ p,σ p;x)> HΘ

k x, ∀k∈ K }.

Proof. Property 6.7 implies that for allx∈ RK there existsp∗ = p∗(x) ∈ Nnv such that

Lλ
K
(β ,δ ,σ ;x) ≤ Lλ

K
(β p∗ ,δ p∗ ,σ p∗ ;x) = Lλ ,∗

K
(x),

for feasible(β ,δ ,σ). This and Proposition 6.6 prove the first claim. Similar considerations
and the fact thatΦΘK

(x) = HΘ
k x for all k∈ K for everyx∈ RK , prove the second claim.

The setV λ
K

, given by the intersection of subsets of the state space, is the exact region of
all x∈ RK where condition (5.1) is satisfied by an adequateu(x) ∈U(x). The only optimiza-
tion problem to solve for characterizingV λ

K
concerns the computation of the extremes of the

dual problem, the computation ofu(x) being not required.

6.2. Computation of the extremes of the dual feasible set. As shown above, to test if
(5.1) holds in the regionRK , with K ⊆ Nnh, requires to compute the extreme points of the
dual problem feasibility region. The formal definition of extreme point follows, see [6].

DEFINITION 6.9. Given a convex set C, x∈C is an extreme point of C if there are not
two points y∈C and z∈C and a scalarλ ∈ (0,1) such that x= λy+(1−λ )z.

Obtaining the extreme points of a polyhedron is rather computationally demanding in
general. We prove below that in this case the computation is less demanding.

THEOREM 6.10. GivenK ⊆ Nnh, with ni cardinality of K , any extreme(β ,δ ,σ) ∈
Rni+ni+nu of the feasible region of (6.3) is either such thatδ = 0, σ = 0 and all the entries of
β are0 except one equal to1, or such thatβ = 0 and(δ ,σ) is an extreme point of

(6.8)



















∑
k∈K

δiHΘ
i h(x)+

nu

∑
j=1

σ jM j = 0,

∑
k∈K

δi = 1,

δ ≥ 0, σ ≥ 0,

or it is the origin ofRni+ni+nu.
Proof. First denote the feasible set of (6.3) asFK and defineγ = ∑k∈K δi . The proof of

the theorem is substantially based on demonstrating that for every extreme point(β ,δ ,σ) of
FK , eitherγ = 0 or γ = 1. Indeed, if this is true, the values ofβ at the extremes ofFK can
be decoupled by the other dual variables. Notice that from (6.3) we have that, depending on
whetherγ = 0 or γ = 1, β at the extremes ofFK are the extremes of

(6.9)

{

∑
i∈K

βi ≤ 1,

β ≥ 0, γ = 0,
or

{

∑
i∈K

βi ≤ 0,

β ≥ 0, γ = 1.

Then, for every extreme such thatγ = 0, β is an extreme of the unit simplex inRni , that
is either the origin or a vector whose entries are all 0 exceptone equal to 1. Ifγ = 1 at an
extreme ofFK , thenβ = 0. We prove that ifFK has an extreme point such thatγ > 0,
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then it must be such thatγ = 1. We prove it by contradiction. Suppose that there exists
an extreme point ofFK such thatγ > 0 andγ 6= 1. Clearly, we must haveγ < 1 (besides
δi ≥ 0 for everyi ∈ K ) otherwise the first constraint in (6.3) would not be satisfied by any
β ≥ 0. Then denote ¯v = (β̄ , δ̄ , σ̄) the extreme point ofFK with ∑k∈K δ̄i = γ̄ = γ ∈ (0,1)
and consider ˆv = (0, γ̄−1δ̄ , γ̄−1σ̄) and v̌ = ((1− γ̄)−1β̄ ,0,0). First notice that ¯v is strictly
included in the segment whose endpoints are ˆv andv̌. In fact γ̄ ∈ (0,1) andγ̄ v̂+(1− γ̄)v̌=
(0, δ̄ , σ̄)+(β̄ ,0,0) = v̄. Moreover, both ˆv andv̌ are feasible points of the dual problem (6.3).
Indeed, from the fact that ¯v satisfies the constraints in (6.3), we have for ˆv:











∑
i∈K

0+ γ̄−1 ∑
k∈K

δ̄i = 1,

γ̄−1 ∑
k∈K

δ̄iHΘ
i h(x)+ γ̄−1

nu

∑
j=1

σ̄ jM j = 0,

and considering ˇv we have











∑
i∈K

β̄i
1−γ̄ +0≤ 1 ⇔ ∑

i∈K

β̄i + ∑
i∈K

δ̄i ≤ 1,

0+
nu

∑
j=1

0= 0.

Thus,v̄ is strictly contained in the segment belonging to the feasible region, then it is not an
extreme, see Definition 6.9, and this contradicts the assumption. Hence for every extreme
point ofFK , eitherγ = 0 (which is equivalent toδi = 0 for everyk∈ K ) or γ = 1.

Consider the case of extreme points(β ,δ ,σ) such thatγ = 0. Then, for what claimed
above,β is an extreme of the unit simplex inRni . We prove that, in this case, the only possible
value ofσ is 0. Suppose by contradiction that(β ,0,σ) is an extreme andσ 6= 0. Thenσ ≥ 0
and there isi ∈ Nnu such thatσi > 0 for which∑nu

j=1 σ jM j = 0. Clearly∑nu
j=1 ασ jM j = 0 for

everyα > 0, which means that(β ,0,ασ) ∈ FK for all α > 0. Hence for everyα1,α2 > 0
with 0 < α1 < 1 < α2, we have that(β ,0,σ) is strictly contained in the segment whose
endpoints are(β ,0,α1σ) and(β ,0,α2σ), which are inFK . Then(β ,0,σ) is not an extreme
point ofFK which contradicts the assumption. Hence, every extreme point of FK with γ = 0
is such thatβ is an extreme of the unit simplex inRni andσ = 0.

Finally, notice that ifγ = 1 then, necessarily,β = 0, see (6.9), and constraints in (6.3)
reduce to (6.8). Then(δ ,σ) must be an extreme point of (6.8).

From Theorem 6.10, the computation of the extreme points of the feasible set of (6.3),
polyhedron inRni+ni+nu, is reduced to the obtainment of the extreme points of the polyhe-
dron inRni+nu given by (6.8), with, we recall,ni cardinality ofK andnu number of linear
inequalities defining the set-valued mapU .

6.3. Optimal control input computation for convex cones. We have shown how to
determine whether and where condition (5.1) holds. Recall that the satisfaction of (5.1) im-
plies the existence of a local control law such that the valueof the set-induced Lyapunov
function decreases along one trajectory of the closed-loopsystem. We consider the problem
of the computation of such a control action, possibly optimal with respect to a performance
measure. One possibility is to look at the control law such that the decreasing rate of the
functionΦΘK

is maximized.
Every regionRK , as defined in (6.1), is taken into account independently. This leads to

a discontinuous optimal control law. Given ax∈ V λ
K

, that is anx at which the condition (5.1)
is satisfied by some admissible inputs, we provide a method for characterizing such inputs.

PROPOSITION6.11. Given theΘ ∈ C (Rn) andK ⊆ Nnh, the condition (5.1) holds at
x∈ V λ

K
for an adequate u if and only if there exist u∗ = u∗(K ,x) ∈ Rnu, (δ ∗,σ∗) ∈ Rni+nu
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andµ∗ = µ∗(K ,x) ∈ R satisfying

(6.10)















































M ju∗−Nj(x)≤ 0, ∀ j ∈ Nnu,
HΘ

k g(x)+HΘ
k h(x)u∗ ≤ µ∗, ∀k∈ K

δ ∗ ≥ 0, σ∗ ≥ 0,
σ∗

j (M ju∗−Nj(x)) = 0, ∀ j ∈ Nnu,

δ ∗
k (H

Θ
k g(x)+HΘ

k h(x)u∗− µ∗) = 0, ∀k∈ K

∑
k∈K

δ ∗
k = 1,

∑
k∈K

δ ∗
k HΘ

k h(x)+
nu

∑
j=1

σ∗
j M j = 0.

Proof. Condition (5.1) holds if and only if there existsu∈U(x) such that

(6.11)
−λ ΦΘK

(x)≥ min
u

max
k∈K

{HΘ
k g(x)+HΘ

k h(x)u}

s.t. M ju≤ Nj (x), ∀ j ∈Nnu,

as shown in the proof of Theorem 5.1. Fromx ∈ V λ
K

, condition (5.1) is satisfied for the
optimizeru of (6.11). Notice that the optimization problem in (6.11) isequivalent to

(6.12)

min
u,µ

µ

s.t. HΘ
k g(x)+HΘ

k h(x)u≤ µ , ∀k∈ K ,
M ju≤ Nj(x), ∀ j ∈ Nnu,

which is a linear programming problem inu andµ , parameterized inx. Since the Karush-
Kuhn-Tacker (KKT) conditions, given by (6.10), are necessary and sufficient for the primal-
dual optimality in this case, see [11], thenu∗, solution to (6.10), leads to satisfaction of (5.1).

From the practical point of view, the control inputu∗(K ,x) within the generic region
V λ

K
can be obtained by finding the extremes of (6.8). Indeed, the dual problem of (6.12) is

given by

(6.13)

max
σ ,δ

∑
k∈K

HΘ
k g(x)−

nu

∑
j=1

σ jNj(x),

s.t. ∑
k∈K

δkHΘ
k h(x)+

nu

∑
j=1

σ jM j = 0,

∑
k∈K

δk = 1,

δ ≥ 0, σ ≥ 0,

and then(δ ∗,σ∗) is a feasible solution to the dual problem (6.13), an optimalone, in fact.
Since the optimum of a linear optimization problem is attained at an extreme point, then the
extremes computed to determine the domainV λ

K
provide also the controlu∗ = u∗(K ,x). In

practice, for every extreme of (6.8), one can check whether the other constraints in (6.10)
admit a solution with respect tou∗ = u∗(K ,x) andµ∗ = µ∗(K ,x). This happens if and only
if u∗ andµ∗ are optimal for the primal (6.12). Moreover,σ∗ are such that the optimal control
satisfies

(6.14) M ju
∗ = Nj(x), ∀σ∗

j > 0.

Furthermore, ifδ ∗
i > 0 then the constraint min

u
max
k∈K

{HΘ
k g(x)+HΘ

k h(x)u}≥HΘ
i g(x)+HΘ

i h(x)u∗,

is active sinceHΘ
i g(x)+HΘ

i h(x)u∗ = µ∗.
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Besides being a condition for (5.1) to hold, and then forΦΘK
(x) to be decreasing, (6.10)

provides the potential control inputsu∗ which ensure the maximal decreasing rate along a
trajectory.

COROLLARY 6.12.GivenΘ∈C (Rn) andK ⊆Nnh, any u∗ = u∗(K ) solution to (6.10)
is optimal with respect to

(6.15) inf
u∈U(x)

ΦΘK

(

g(x)+h(x)u
)

,

and satisfies (5.1) if x∈ V λ
K

.
Proof. The results following directly from Proposition 6.11 and the considerations given

in its proof.

6.4. Exact region and optimal control for nonconvex epiderivative. Finally, the char-
acterization of the exact regions whereΦΘ(x), with Θ ∈ C (Rn), decreases and the computa-
tion of the control input that maximizes the decreasing ratecan be given.

PROPOSITION6.13. Let Assumption 2.1 hold and the nonempty boundedΘ ∈ C (Rn),
consider u∗(K j(x),x) andµ∗(K j(x),x) solutions to (6.10) withK = K j(x), for all j ∈ J(x)
as in Definition 4.17. The input u∗(x) = u∗(K j∗(x),x) such that

(6.16) j∗ = arg min
j∈J(x)

{

µ∗(K j(x),x)
}

,

is the optimizer of

(6.17) inf
u∈U(x)

D↑ΦΘ
(

g(x)+h(x)u
)

,

and satisfies (5.1) if and only if x∈ V
λ

K j∗ (x)
.

Proof. From Proposition 6.11 and Corollary 6.12,u∗(K j(x),x) and µ∗(K j(x),x) are
optimizer and optimum of (6.15), withK = K j(x). From Definition 4.17 and Theorem 5.1
we have that (6.17) is equivalent to

inf
u∈U(x)

min
j∈J(x)

ΦK j (x)

(

g(x)+h(x)u
)

= min
j∈J(x)

inf
u∈U(x)

ΦK j (x)

(

g(x)+h(x)u
)

= min
j∈J(x)

{

µ∗(K j(x),x)
}

,

and thus (5.1) holds if and only ifx∈ V λ
K ∗

j (x)
, see Proposition 6.11.

From the computational point of view, Proposition 6.13 means thatΦΘ(x) can be de-
creasing faster thanλ ΦΘ(x) at x if and only if x ∈ V λ

K j (x)
for at least one value ofj ∈ J(x).

Moreover, the optimal control is determined by the KKT conditions. Thus, computingV λ
K

for all possibleK ⊆Nnh would provide the exact characterization of the region whereΦΘ(x)
decreases and also the optimal control.

7. Brockett’s example. Consider the nonlinear system, called nonholonomic (or Brock-
ett’s) integrator [12], whose dynamics is







ẋ1 = u1,
ẋ2 = u2,
ẋ3 = x1u2− x2u1.

This system is interesting for applications, since it models the motion of vehicles in suitable
coordinates (see e.g. [38, 30]). It is also a well known example of a controllable system for
which the necessary Brockett’s condition for the existenceof a continuous stabilizing control
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law does not hold. The application of discontinuous stabilizing controller is then unavoidable.
Our method provides a new discontinuous stabilizing control law, alternative to other control
strategies (see e.g. [26, 32] and references therein). Suppose that the input constraint is
U(x) =U = {u∈ R2 : ‖u‖∞ ≤ 1}. The Brockett integrator satisfies Assumption 2.1 with

g(x) = 0, h(x) =





1 0
0 1

−x2 x1



 ,
M =

[

1 0 −1 0
0 1 0 −1

]T

,

N(x) =
[

1 1 1 1
]T

.

7.1. Convex level set Ω. Consider first the convex setΩ = {x∈ R3 : Hx≤ 1}, with

H =





1 1 −1 −1 0 0
1 −1 1 −1 0 0
0 0 0 0 1 −1





T

,

which is a cube inR3 and consider the upper horizontal facet related toHk = H5 = [0 0 1],
that isK = {5}, and the regionRK = {x∈R3 : x3 > max{|x1|, |x2|}}. From Theorem 6.10,
the nontrivial vertices of the dual problem feasibility region are















δH5h(x)+
nu

∑
j=1

σ j M j = 0

δ = 1,
σ ≥ 0,

⇒







−x2+σ1−σ3 = 0,
x1+σ2−σ4 = 0
σ ≥ 0,

with β = 0. The extremes depend onx1 andx2. By symmetry, we restrict the analysis to
x≥ 0. The extremes are given byσ p = [x2 0 0x1]

T and, from (6.14), the optimal control is

(7.1)















u∗1 = 1, u∗2 =−1, if x1 > 0, x2 > 0,
u∗1 ∈ [−1 1], u∗2 =−1, if x1 > 0, x2 = 0,
u∗1 = 1, u∗2 ∈ [−1 1], if x1 = 0, x2 > 0,
u∗1 ∈ [−1 1], u∗2 ∈ [−1 1], if x1 = 0, x2 = 0.

This means that if[x1 x2]
T is in the interior of the first orthant, the maximal decreasing rate

is given byu= [1 −1]T , if x1 (resp.x2) is zero then any admissible input such thatu∗2 =−1
(resp. u∗1 = 1) is optimal. Finally ifx1 = x2 = 0 every admissible input is optimal, indeed
leading to an horizontal direction, hence tangent to the surface. Any selection of such a
control law ensures that the decreasing rateλ of ΦΩ(x) is attained for allx∈ RK such that:

(7.2)
Lλ

K
(β p,δ p,σ p;x) =

6
∑

i=1
β p

i Hix+ δ pH5g(x)+ δ p(λ +1)H5x−
4
∑
j=1

σ p
j Nj(x)≤ H5x,

⇔ (λ +1)H5x−
4
∑
j=1

σ p
j Nj (x)≤ H5x, ⇔ λx3 ≤ x1+ x2,

from Theorem 6.8 and since the other extremes lead to constraints Lλ
K
(β q,δ q,σq;x) ≤ H5x

satisfied inRK . The geometrical meaning of (7.2) is that there is no direction of the differen-
tial inclusion heading sufficiently downward for ensuring adecreasing rateλ of the function
ΦΩ(x) if x∈ RK is too close to axisx3. The smaller isλ , the bigger is the region in which
such a contraction can be assured, as expected, and the null rate, i.e.λ = 0, is guaranteed in
the wholeRK . This is reasonable: in fact, ˙x3 can be done negative by appropriately selecting
the signs ofu1 andu2 and its maximal modulus is|x1|+ |x2|. That is, the maximal modulus
of the vertical component of ˙x is proportional to the distance (induced by the 1-norm) ofx
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from thex3 axis. This implies also that the system moves horizontally if x1 = x2 = 0 and then
stability can be assured, by posingλ = 0, but not the decreasing of the functionΦΩ.

ConsiderK = {1}, that is related to facet determined by the normal vectorH1 = [1 1 0],
and then such thatRK = {x ∈ R3 : x1 > 0, x2 > 0, |x3| < x1+ x2}. The nontrivial extreme
of the dual feasible region is given byβ p = 0, δ p = 1 andσ p = [0 0 1 1]T , which implies,
from (6.14), that the optimal control isu∗ = [−1 −1]T . Moreover, by computing the region
in which the contraction rateλ is attainable forΦΩ along one solution to the differential
inclusion, i.e. whereLλ

K
(β p,δ p,σ p;x)≤ H1x, we obtain the constraintλ (x1+ x2)≤ 2.

Finally consider the intersection between the upper horizontal facet and the vertical one
in the first orthant, i.e. the point at whichH1x = H5x = ΦΩ(x) and thenK = {1, 5} and
RK = {x∈R3 : x> 0, x3 = x1+ x2}. From Theorem 6.10, the nontrivial extremes are given
by β p = 0 and the extremes of (6.8) which result in this case

(7.3)















δ1H1h(x)+ δ5H5h(x)+
nu

∑
j=1

σ jM j = 0

δ1+ δ5 = 1,
σ ≥ 0,

⇒















δ1− δ5x2+σ1−σ3 = 0,
δ1+ δ5x1+σ2−σ4 = 0
δ1+ δ5 = 1,
σ ≥ 0,

that is the feasibility region of dual problem (6.13). To obtain the optimal input we con-
sider the extremes of the region (7.3) and check if the KKT conditions (6.10) can be satis-
fied. Among the extremes of (7.3) there are[δ1 δ5 σ1 σ2 σ3 σ4]

T = [0 1 x2 0 0 x1]
T and

[δ1 δ5 σ1 σ2 σ3 σ4]
T = [1 0 0 0 1x1]

T , which lead to the optimal control inR{1} andR{5},
analyzed above. Consider the first case, i.e.[δ1 δ5]

T = [0 1]T andσ = [x2 0 0 x1]
T which

impliesu∗ = [1 −1]T. Then the second and fourth constraints in (6.10) result in
{

u∗1+u∗2 ≤ µ∗,
x1u∗2− x2u∗1 = µ∗,

⇒

{

0≤ µ∗,
−x1− x2 = µ∗,

which has no solution sincex1 > 0 andx2 > 0. Analogously, for[δ1 δ5]
T = [1 0]T and

σ = [0 0 1 1]T we haveu∗ = [−1 −1]T and then from (6.10)

(7.4)

{

x1u∗2− x2u∗1 ≤ µ∗,
u∗1+u∗2 = µ∗,

⇒

{

x2 ≤ x1+ µ∗,
µ∗ =−2,

which means thatu∗ = [−1 −1]T is optimal forx > 0 andx2 ≤ x1−2, and the decreasing
rateλ is ensured forλ (x1+ x2) ≤ 2. Another potential extreme point of (6.10) is given by
[δ1 δ5]

T = [x2(1+x2)
−1 (1+x2)

−1]T , andσ = [0 0 0 1]T , extreme of (7.3), which constraints
the optimal input to haveu∗2 =−1. In this case the other constraints in (6.10) give

{

x1u∗2− x2u∗1 = µ∗,
u∗1+u∗2 = µ∗,

⇒ u∗1 =
1− x1

1+ x2
.

Then, the optimal control inR{1,5} = RK = {x∈R3 : x> 0, x3 = x1+x2} generates a sliding
motion on the surfaceRK , in fact such that ˙x3 = ẋ1+ ẋ2. Moreover, considering the bounds on
u (the first constraints in (6.10)), the state-dependent input is optimal in theRK if x2 ≥ x1−2,
which is (the closure of) the complement (with respect to theregion in whichx > 0) of the
region in whichu∗ = [−1 −1]T is optimal, see (7.4). The rateλ is ensured forλ (x1+x2)≤ 1.

Summarizing, if the active constraint is the upper horizontal facet, the optimal control in
the first orthant ofRn is (7.1), which makesx3 decrease. The functionΦΩ decreases with a
rate greater thanλ if the state is distant enough (in terms of 1-norm) from thex3 axis. For
x1 = x2 = 0, no decreasing is possible since all the inputs generate directions tangent to the
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FIG. 3. Nonconvex level setΘ. FIG. 4. Intersections ofΘ with the first orthant.

level set of the functionΦΩ. If the active constraint isx1 + x2 = ΦΩ(x) then the optimal
control isu∗ = [−1 −1]T and the rateλ is ensured if the state is not too far from thex3 axis,
i.e. if λ (x1+x2)≤ 2. Finally, if both constraints are active (i.e.x3 = x1+x2) then the optimal
control isu∗ = [1−x1

1+x2
−1]T , which makes the system slide on such a surface, if admissible.

Otherwise, that is if1−x1
1+x2

<−1, the optimal control isu∗ = [−1 −1]T .
REMARK 7.1. For everyλ > 0, there is a region around the axis x3 in which no admis-

sible control generates one solution to the differential inclusion along which the functionΦΩ
decreases and only stability can be guaranteed.

7.2. Nonconvex level set Θ. To guarantee exponential stability, the convex level setΩ is
replaced byΘ ∈ C (Rn) nonconvex. The resulting nonconvex set induces a control Lyapunov
function which ensures exponential stability. Define the nonconvex function

(7.5) ΦΘ(x) = max{max
i∈N6

{HA
i x}, min

j∈N4
{HB

j x}, min
k∈N4

{−HB
k x}},

which is the function induced by the nonconvex set
(7.6)
Θ =

(
⋂

i∈N6

{x∈R3 : HA
i x≤ 1}

)

∩
(

⋃

j∈N4

{x∈ R3 : HB
j x≤ 1}

)

∩
(

⋃

k∈N4

{x∈ R3 : −HB
k x≤ 1}

)

.

with

HA =





1 1 −1 −1 0 0
1 −1 1 −1 0 0
0 0 0 0 1 −1





T

, HB =





−2 2 −2 2
−2 −2 2 2
2 2 2 2





T

.

To have a geometric perception of the set, defineA= {x∈ R3 : HAx≤ 1}, the unit box, and
B= {x ∈ R3 : ∃ j ∈ N4, s.t. HB

j x ≤ 1}, which is the closure of the complement of the cone
B̄ = {x ∈ R3 : HBx ≥ 1}. ThenΘ = A∩B∩ (−B), which is represented in Figure 3. By
symmetry, we restrict the analysis to the first orthant, see Figure 4, in which the constraint
HB

1 x = [−2 −2 2]x ≤ 1, is active forx ≥ 0 such that[1 1 − 0.5]x ≤ 0. Consider such a
constraint and such a region denoted with a slight abuse of notationRK = R{1B} (the matrix

HΘ should be defined by concatenatingHA, HB and−HB and the indexes ofHΘ should be
used to adequately defineK ). The nontrivial extreme is given by forδ = 1 andβ = 0 and

{

−2−2x2+σ1−σ3 = 0,
−2+2x1+σ2−σ4 = 0,
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FIG. 5. Optimal control for0.5|x3| > |x1|+
|x2| with x3 ≥ 0.

FIG. 6. Optimal control for |x1|+ |x2| <
|x3|< 2|x1|+2|x2| with x3 ≥ 0.

FIG. 7. Optimal control for|x3|= |x1|+ |x2|
with x3 ≥ 0.

FIG. 8. Optimal control for|x3|< |x1|+ |x2|
with x3 ≥ 0.

and three cases must be discriminated. The first concerns theregion in whichx1 > 1 where
the extreme is given byσ = [(2+2x2) 0 0(−2+2x1)]

T , the optimal control isu∗ = [1,−1]T

and it ensures the contraction rateλ for all x > 0 such thatλ (−x1− x2+ x3) ≤ x1+ x2. In
the region in whichx1 < 1, the extreme isσ = [(2+2x2) (2−2x1) 0 0]T , the optimal control
is u∗ = [1 1]T and it the contraction rate ofλ is attained atλ (−x1− x2+ x3) ≤ 2− x1+ x2.
Finally, if x1 = 1, thenσ = [(2+2x2) 0 0 0]T and every admissibleu∗ with u∗1 = 1 is optimal
and guarantees decreasing rateλ for λ (−x1 − x2 + x3) ≤ 1+ x2. We skip the analysis of
the region in which the two constraints are both active, i.e.HA

5 x = HB
1 x, to concentrate our

attention to the points at which the contingent cone is nonconvex.
Consider thexsuch thatx1 >0,x2 = 0 andx1 < 0.5x3. In this region the active constraints

are the first two defining the setB and thenΘI (x) = {x∈R3 : HB
1 x≤ 1}∪{x∈R3 : HB

2 x≤ 1}
and the contingent epiderivative isΦΘI (x)(y) = min{HB

1 y,HB
2 y}. Thus anyu∈U(x) for which

eitherHB
1 (g(x)+h(x)u+λx)≤ 0 orHB

2 (g(x)+h(x)u+λx)≤ 0 is satisfied, is such that one
solution to the differential inclusion exists along which the functionΦΘ(x) is decreasing with
rateλ . This means that, bothu = [1 1]T , optimal forx > 0 (for x1 < 1), andu = [1 − 1]T

optimal for x1 > 0, x2 < 0 andx1 > 3, imply a decreasing rateλ . One should choose the
u∗ that minimizesΦΘI (x)(g(x)+ h(x)u). Summarizing, the resulting optimal control in the
different regionsR{1B}, R{5A}, R{1A,5A} andR{1A} (and their analogous for all the orthants
with x3 ≥ 0) are depicted in while Figures 5, 6, 7 and 8, respectively.

REMARK 7.2. The Lyapunov conditions related to viability imply the existence of one
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FIG. 9. Trajectory and setΘ.
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FIG. 10. Evolution of x1 and x2.
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FIG. 11. State: x1 (dotted), x2 (dashed) and
x3 (solid).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

FIG. 12. Lyapunov (dashed) and exponen-
tial (solid) functions.

solution to the differential inclusion, that means the existence of a Caratheodory solution
along which the induced functionΦΘ(x) decreases. The problem of determining whether all
the trajectories (as discontinuous systems have not necessarily a unique solution, see [16])
are stable and converging to the origin, i.e. asymptotic stability in the sense of Filippov, is a
possible extension of this work.

7.3. Simulation results. Finally, the simulation results are depicted in Figures 9-12. In
Figure 9 the level setΘ and the trajectory of the controlled system withx(0) = [0.1, 0.01, 2]T

are illustrated. The projection of the state on the planex3 = 0 is provided in Figure 10 and
the evolution of the state in time in Figure 11. Notice that, although the value ofx3 increases
at the beginning, the functionΦΘ(x) decreases, as shown in Figure 12 that reports also the
exponential function with decreasing rateλ = 0.25 for comparison.

8. Conclusions. This paper presented an approach to charaterize homogeneous control
Lyapunov functions induced by certain nonconvex sets for nonlinear continuous-time systems
with constrained input. A necessary and sufficient condition for local exponential stabilizabil-
ity has been posed in form of convex constraints. Particularattention has been devoted to the
numerical issues concerning the computation of the domain of attraction estimation and of
the optimal control input. The example showed that nonconvexity might be an unavoidable
feature to prove exponential stabilizability for nonlinear systems.

Other directions of research are possible: considering wider classes of nonconvex sets,
leading to nonconvex optimization problems; tackling the problem of exponential stabiliz-
ability in the sense of Filippov; particularizing and applying the results to specific nonlinear
systems; designing computational methods to generate the polytopes and the level sets for
enlarging the domain of attraction.
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