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ON THE COMPUTATION OF SET-INDUCED CONTROL LYAPUNOV
FUNCTIONSFOR CONTINUOUS-TIME SYSTEMS

MIRKO FIACCHINI*, CHRISTOPHE PRIEUR, AND SOPHIE TARBOURIECH

Abstract. The paper presents a computation-oriented method for ciesizang and obtaining local control
Lyapunov functions induced by particular star-shaped aovex sets for continuous-time nonlinear systems with
bounded inputs. For a given set, the necessary and suffimenitions for the induced function to be a nonconvex
local control Lyapunov function are provided. The relatahvex problems for computing the exact region in
which the function is decreasing and the optimal controlitrave presented. The results are applied to the Brockett
integrator.

Key words. Invariant sets, viability theory, convex analysis, noaén systems.

1. Introduction. Although the first, pioneering contributions on invariareoed set-
theory in control appear in the seventies, see [5], thedenigaes gain and increase their
popularity since the nineties, after the publication of 8§J, The importance of invariant
and contractive sets resides on their connection with I&iabind convergence of dynami-
cal systems, see the recent monograph for an overview [h@topic. It is proved in [7],
for instance, that in the context of linear parametric utairrsystems, polyhedral Lyapunov
functions, i.e. positive definite homogeneous functiorthuged by polytopes, represent a
universal class of Lyapunov functions. In the context oftoarous-time nonlinear systems,
the characterization of the convex polyhedral Lyapunowcfioms has been considered in
[29]. More recently, the analogous results for linear digeitime switched systems has been
proved to hold for a particular class of nonconvex sets-tedufunctions, see [20]. The fact
that stabilizability does not imply the existence of a conlgapunov function had been
proved for both continuous and discrete-time switchedglirsystems in [10]. A peculiarity
that makes particularly interesting set-theoretic meshisdheir relation with computation-
oriented techniques, as convex analysis and optimizatian permit their practical applica-
tion. In the last two decades, many research efforts have theected to analyze and apply
set-theoretic and invariance methods in control, in thedirtontext, see [23, 28], as well asin
the nonlinear one, see [17, 14, 1, 18, 19] for discrete-tiysgesns and [13, 27, 25, 39, 22, 24]
for particular classes of continuous-time and hybrid noedir systems.

The objective of this paper is to exploit the properties @ity theory to propose a
computation-oriented method to characterize and obtaiicomovex set-induced control Lya-
punov functions for a class of nonlinear continuous-timgeams. Viability theory provides
a complete theoretical characterization of invariancesatdnduced Lyapunov functions in
the differential inclusion framework. Viability is tightlrelated to the work of Aubin and
co-authors, see [4, 3, 2]. The results provided by viabiligory together with the methods
and techniques proper of convex analysis and optimizasea,[6, 11, 35, 37], are the basis
of the approach.

In this paper, whose preliminary version is [21], we propaseomputation-oriented
method to characterize and compute nonconvex set-indwgdot Lyapunov functions for
continuous-time nonlinear systems affine in the input wihrded input. Nonconvex homo-
geneous Lyapunov functions, in particular piecewise qaidciones, have been employed to
prove stability for continuous-time affine systems, sed.[34he nonconvex sets considered
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2 SET-INDUCED CONTROL LYAPUNOV FUNCTIONS FOR CONTINUOUS-ME SYSTEMS

here are a subclass of the star-shaped sets that have besy stidlied by Rubinov and co-
authors, see for instance [36], and employed in [33, 31, 0. consider in particular the
computationally suitable star-shaped sets determinedéjintersection and union operators
and a finite number of half-spaces containining the origith@ir interior. Given one of these
nonconvex sets, and the induced polyhedral function ag@dntapunov candidate for the
nonlinear system, a necessary and sufficient conditiorh®function to be decreasing at a
point along a trajectory of the system is provided. Such d@robhyapunov function yields
local exponential stabilizability for the nonlinear casted system. The exact region of the
state space in which the decreasing of the polyhedral Lyapéumction, and hence expo-
nential stability, is ensured by admissible inputs, is ebtarized. The optimal control input
guaranteeing maximal decreasing is obtained. Particttkmtéon is devoted to the computa-
tional issues of such functions and control laws. Finalg proposed method is applied to
the problem of characterizing the region of local exporastiabilizability for the Brockett
integrator, to show that nonconvexity might be necessahat@ exponential stabilizability
of nonlinear systems.

The paper is organized as follows: Section Il presents tbklpm statement, Section IlI
recalls some definitions and results on viability theorycti®a IV presents the nonconvex
sets employed and the induced homogeneous functions. hoSatthe main results on
polyhedral control Lyapunov functions are stated. Sectbis devoted to the computational
issues. In Section VII the method is applied to the Brocke#grator. The paper ends with a
section of conclusions.

Notation. Givenn € N, defineNp = {x e N:1<x < n}. GivenA € R™™ A with
i € N, denotes its-th row. Given a seD and a scalaor > 0, denote the scalar multiple bf
asaD = {ax: xe D}. Theinterior oD is denoted as ifiD), with .’ (D) the set of subsets of
D. The unitball inR" isB" = {x € R": ||x||2 < 1}. Given a set-valued mdp: R" — ./ (R™M),
its domain is dorfF) = {x € R": F(x) # 0}.

2. Problem statement. Consider the continuous-time system given by
(2.1) X(t) = f(x(t),u(t)), for aimost allt > 0,

wherex(t) € R" is the state at time, and with input boundsi(t) € U(x(t)). This class
of systems can be represented by using the modeling frarkewtarred to as differential
inclusion, characterized by the system

(2.2) X(t) € F(x(t)), for almost allt > 0,

with set-valued map : R" — .(R"). Indeed, the constrained control systems (2.1) can be
expressed as a differental inclusion with

(2.3) F(X)=f(x,UXX))={yeR": y=f(x,u), ucU(x)},

see [3]. Differential inclusions can be also used to appnaté nonlinear systemst) =
f(x(t)), provided thatf(x) € F(x) for all x € R", see [4, 3]. This characterization of the
system (2.1) is taken into account in this paper to applyltefom viability theory, see [3].
The modeling framework considered in this paper is sumradiiiz the following assumption.

ASSUMPTION2.1. Assume that the system dynamics is given by (2.1) whgra)f=
g(x) + h(x)u with ue U (x) where

(2.4) U(x) ={ueR™: Mju<N;j(x), Vj € Np},
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and gNj, with j € Ny, are continuous with linear growth and h is continuous andrded.

REMARK 2.2. The satisfaction of Assumption 2.1 is sufficient for theesysb be an
affine control system and then also a Marchaud system, seeA3gt-valued map is Mar-
chaud if its graph and domain are closed, the valu¢s)Fare convex and the growth of F is
linear. Although many results based on viability theory lggp more general systems, the
case considered is relatively general and rather suitabtecbmputational purposes.

The objective is to design a computation-oriented methodltaining set-induced local
control Lyapunov functions, estimations of the basin ofaattion and control inputs such
that the nonlinear continuous-time system (2.1) with stegeendent polytopic bounds on the
input is exponentially stable. As already pointed out, thisquivalent to consider the system
(2.2) with set-valued map defined in (2.3). Moreover, thdieitgormulation of the optimal
control law, maximizing the decreasing of the induced Lyapufunction, is provided.

REMARK 2.3. Assumption 2.1 is equivalent to consider a sysfgh= f(x(t),u(t))
with bounds in the input such that(¥) is polytopic and U is a Marchaud map, see [3], with
F asin (2.3).

3. Viability theory and Lyapunov functions. We recall some definitions and results
on viability theory, which is strongly associated to thest@sh of Aubin and co-authors, see
[4, 3, 2]. Many of those results are developed in the citedkgiaand references therein, under
assumptions which are more general than those requiredsipdbper.

DEFINITION 3.1. LetV: R" — RU{=+o} be a nontrivial extended function and x belong
to its domain. For all y= R", define the extended function

(3.1) DV(X)(y) = limint y\w,

and refer to function BV (x) as thecontingent epiderivativef V at x and say that the function
V iscontingently epidifferentiablat x if for any ye R", D4V (x)(y) > —o (or, equivalently,
if D4+V (x)(0) = 0).

GeometricallyD+V (x)(y) is the extended function whose epigraph is the contingerd co
(and also the tangent oneufis convex and closed) of the epigraphoét (x,V (x)), see [3].

REMARK 3.2. The contingent epiderivative is equal to the (lower) Diniidative if V
is Lipschitz around a point x of its domain (Proposition 8.1n [3]) and it is the support
function of the generalized gradient (and also of the sdbwdintial if V is convex), see [15],
under certain regularity assumptions. We use the contingpiderivative to maintain the
coherence with viability theory and to deal also with nonemnhomogeneous functions.

In this paper, the properties and theorems concerning thputyov functions for dif-
ferential inclusions (2.2), provided in [3, 2], are applied/e recall the characterization of
Lyapunov functions in the context of viability theory. Giva differential equation

(3.2) wW(t) = —¢(w(t)),

where¢ : R. — R is continuous with linear growth and a nonnegative exterfdadtion
V:R"— R, U{+w}, the objective is to provide a condition for the existenca eblutionx
to the differential inclusion (2.2) ensuring

(3.3) M0, V(X)) <wt), w(0)=V(x0)),

with w solution to (3.2). Clearly, ifp is selected such that converges to zero, then also
converges to zero andconverges tx € domV) such thaV (x) = 0. The general definition
of Lyapunov function in the context of differential inclosi follows.
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DEFINITION 3.3. A nonnegative contingently epidifferentiable extendedtion V is a
Lyapunov functiorof F associated with a functiop : Ry — R if and only if V is a solution
to thecontingent Hamilton-Jacobi inequalities

(3.4) 0t DVOIW) +9(V(9) <O, ¥xe domV).

We recall that contingently epidifferentiable means toa#ll x e dom(V), forally € R",
D4V (x)(y) > —o0 and thatD;V (x)(y) < +oo for at least & € R".

THEOREM 3.4. Consider the nonnegative contingently epidifferentiddaesr semicon-
tinuous extended functionV and the Marchaud mafRP — .(R"). ThenV is a Lyapunov
function of F associated witlh if and only if for any ¥ € dom(V), there exist solutions x to
(2.2) and w to (3.2) satisfying property (3.3).

Theorem 3.4, proved in [3], is instrumental to compute adrityapunov functions as
done in this paper.

4. Nonconvex polyhedral sets and functions. Consider first a polytope in the state
space containing the origin in its interid® = {x € R": Hx < 1}, with H € R™*" and
the system (2.1) such that Assumption 2.1 holds. The gaugsifun is introduced here, see
[35, 37] for instance.

DEFINITION 4.1. Given a compact, convex €te R" with 0 € int(Q), the gauge func-
tion of Q at x C R" is defined byq (x) = Ln>ir3{a eR: xeaQ}.

For polytopicQ containing the origin in its interior, the gauge function is

(4.2) Wo(X) gnzlrg{a eR: Hjx<a,vj €Ny} j@ﬁ:{Hjx}

Consider the se® C R" defined as
0= {xeR": Jj e Np-, s.t. I—zjg 1},

see an example in Figure 1 The closed, possibly nonconves sentains the origin in its
interior and is given by the union of the half-spaces definethb inequalitieddjx < 1 with
j € N

FiG. 1. Nonconvex sed with m=2

FIG. 2. Nonconvex set AB as in Example 4.4.

Given®, we define oveR" the following homogeneous function

(4.2) ®5(x) =min{a €R: Jj € N, s.t. Hix<a},
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which is the analogous of the gauge function for a nonconee®swith 0 € int(é). Notice
that®g is greater than 1 if and only ¥¢ © and the following equality holds

(4.3) Dg(x) = ig\;n {Hix}.

h

The analogy with the gauge function as in Definition 4.1 andagion (4.1) is evident.
For polytopic set€Q with 0 € int(Q) we posedq(x) = Wqo(x) for all x e R". Then the
function ®g can be seen as an extension of the gauge function relatedticupsr setso,
possibly nonconvex. In the following, the formal definitiand properties ofbg are given.

DEFINITION 4.2. Denote with#' (R") the subsets dk" that can be expressed by using
the intersection and the union operators and a finite numbeslased half-spaces iiR"
containing the origin in their interior.

Clearly any closed half-space containing the origin in iteefior belongs tog' (R").
Moreover, for anyB,C € ¢ (R"), we have thaBUC € ¢ (R") andBNC € ¢ (R"). The
following definition permits to construct functiod related to any séb € ¢ (R").

DEFINITION 4.3. Given the half-space A {x € R": Hx < 1}, with H € R™", de-
fine ®a(x) = Hx. Given two sets € € ¢'(R") define®g c(x) = min{®g(x), Pc(x)} and
Pgrc(X) = max{ Pg(x), Dc(X)}.

Then, the functiorbg can be defined for every sé € ¥’ (R") and its domain iR",
being it finite at everyk € R".

EXAMPLE 4.4. Given a polytope A= {x € R": HAx < 1,Vi € N,} and a set B= {x €

R":3j € Np, s.t. H’x < 1}, we have thatbp-g(x) = max{ max{ HAx}, min{HjBx}}, and
i€eNg jeNp

®ap(X) = min { @gx{H{*x}, jrg&r;{HjBx}}. The set A1 B is represented in Figure 2,

REMARK 4.5. The sets irg’(R") form a particular subfamily of the called star-shaped
sets, introduced and characterized in the work by Rubinal/@rauthors, see for instance
[36]. Also the functiordg is analogous to the gauge function of a star-shape set asatkfin
and employed by Rubinov. Notice, nevertheless, that ouritiefi is slightly different from
the gauge one, since it may take negative values. Despituttetantial analogy, we avoid
imposing its nonnegativity for simplicity as well as for maining the consistency in its
relation with the contingent epiderivative from viabilityeory.

The intuitive definition provided above for the $@tand for the polytope® are recov-
ered by using Definition 4.3. In fact, for & € ¥ (R"), ®g is given by nested minima and
maxima of linear functions of the state.

We provide below some properties of the functidg(x) for seek of completeness. We
refer the reader to the work by Rubinov and co-authors fologioaus considerations concern-
ing the gauge functions of star-shaped sets, see [36].

PROPOSITION4.6. Given® € %' (R"), the function®g : R" — R is continuous, posi-
tively homogeneous of degree 1 and such that

(4.4) XeEO & do(x) <1

Moreover,®g is positive definite if and only ® is bounded.

Proof. Homogeneity is due to the fact that functions min and maxpasitively homo-
geneous of degree 1, i.e. mifliax} = a mini{Hix} and max{H;ax} = a max{Hx} for
all a > 0. From Definition 4.3 can be expressed as nested maxima and minima of linear
functions of the state. Continuity follows from the factti@ax and min preserve continuity
and linear functions are evidently continuous. Equivadeidc4) is proved by induction. First
notice that, if@ is given by one half-space, then the condition is satisfie®&fnition 4.3.
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Assume now that (4.4) holds for two s&gC € ¢’ (R"), we prove that this implies € BUC
if and only if Pg c(x) < 1. Indeed, we have

XxeBUC & xeBorxeC & Pg(x)<1lordc(x)<1l <
< min{®P(X),Pc(X)} <1 < dpc(x) <1

Analogous considerations yield to prove tkaBNC if and only if ®g~c(x) < 1. Then using
the rule described in Definition 4.3 for constructing the®@gthe equivalence (4.4) is proved.
Finally we prove thatbg is positive definite if and only if9 is bounded. By construction
®o(0) = 0. To prove sufficiency, assume thbg is positive definite and consider aryZ 0.
Then®g(x) > 0 and, from positive homogeneity, there exigts- a(x) such thatbg(ax) >
1, which means thatx ¢ ©. Thus, giverB a ball around the origin, there is a finitesuch
that® C aB and ther® is bounded. Necessity is proved by contradiction. Suppuettis
bounded and there is#Z 0 such thatbg(X) < 0. Then, from positive homogeneity one has
thatdg(aX) = ade(X) < 0 for all a > 0. Then the whole ray passing througis contained
in ©, from (4.4), and henc® in unbounded, which contradicts the assumption.

COROLLARY 4.7. For every bounded B € ¥ (R") we have that B_ A if and only if
Pa(x) < Pg(x), for all x e R".

Proof. To prove necessity assume thbi(x) < ®g(x), for all x € R", and consider
X € B. From (4.4),®g(x) < 1 which implies®,(x) < 1 that is equivalent t& € A. Thus
B C A. Sufficiency is proved by contradiction. Suppose tBat A and that there is 2 0
such thatb(x) > ®g(x). From Proposition 4.6pg(X) > 0 and then there i@ = a(X) such
that dg(ax) = 1, for homogeneity, which is equivalent tox € B. From the assumptions,
®a(ax) > 1 that meansix ¢ A and therB ¢ A, which contradicts the hypothesis.

We define the set of the indices of the active constrair®af ' (R") for determining
a function related t@® which is connected, as shown in the following, to the corgimg
epiderivative of®g. This is a computation-oriented tool for determining cantiveness
conditions and induced polyhedral Lyapunov functions sgag nonconvex.

DEFINITION 4.8.GivenO € % (R") denote with I € R"e*" the matrix whose & rows
are given by the normals to the half-spaces determi@rand

lo(x) = {i € Ng : Hx = ®o(x)}

andlg(X) = Ny /lo(x). Given xe R", define®, (x) € ¢ (R") the set obtained by keeping
from the definition o® the constraints related to 4 lo(x).

That is, lo(x) denotes the indices of the active constraints of the levebs&g at x.
As proved below, the s@, (x) is related to a computationally suitable representatiohef
contingent epiderivative abg atx.

ExAaMPLE 4.9. Consider AB € ¥(R") as in Example 4.4. Then ® = ANB and
Q =AUB we have

Do, 0 (Y) = max{ max{Hy: i € NaNlo(x)}, min{HPy: j € me@(x)}},

4.5
(:5) Do, () = min{ max{Hy: i € Nanlo(x)}, min{HPy: j € Nbﬂlg(x)}}.
Since®g for boundedd € ¢’ (R") is continuous, which implies contingent epidifferen-
tiability and lower semicontinuity, see [3], the resultabpplies to the case under analysis.
The subsequent result, valid for aByc ¢’ (R"), is employed afterwards.
PROPOSITION4.10. Consider® € % (R") with H® € R"e*", For every xc R" there
exists a nonempty neighborhoo@) such that

(4.6) Do(2) = Pg, (% (2),
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for every ze N(x).

Proof. First notice that condition (4.6) is equivalent to say ffiait everyz € N(x), there
is no j(2) € lo(x) such thatH;,z= ®e(2). To prove the result it is sufficient to define
N(x) = x4+ B"(g(x)) with

4.7) £(x) = gﬂig{llz—xllzi 3j €lo(x), s.t.|Hjz—Po(2) =0},

and prove that(x) > 0. In fact, suppose by contradiction thelix) = 0. Then the point
z closest tox and such that there ifz) € lg(x) for which H;;z= ®g(2), is z= x and
thenHj;z = Hj;x = ®e(x). However, this would meaf(z) € lo(x), which contradicts
i(2) € 1o(x), then itis absurd, which allows concluding the prdaf.

The corollary below follows from Proposition 4.10 and thetfthat®g (x) = Pg, (5 (X).-

COROLLARY 4.11.Given® € ¢ (R"), for every xc R" there exists a nonempty neigh-
borhood of the origin R(x) such that®e (X + V) = Pe (X) + Pg, () (v), for every ve NO(x).

The following proposition is employed in the main result@io

PROPOSITION4.12.Given® € €' (R"), Pg, () (X+V) = Pg, (x) (X) + Pg, () (v) holds for
every xv e R".

Proof. The result is based on the fact that- max{B'} = max{a + '} anda +
min{B'} = mini{a + B'} and the fact tha®q, x (x) = HPx for alli € lo(x). O

Thus, the contingent epiderivative @ atx depends oi®g, () as proved below.

ProPOSITION4.13. Consider the bounded sBte ¢ (R"). The contingent epiderivative
of ®g at x is given by DPg (x)(y) = Pg, () (¥), for ally € R".

Proof. Ash — 0%, we can assume thav € N°(x) as in Corollary 4.11. From Corollary
4.11 and homogeneity @bo and®g, (5 , We have that

DiPo(X)(y) = liminf 2t @k _ jiminf Pt Pe 0 Pk
(4 8) h—0tv—y h—0t v—y
| — Jiminf 229 _ jiminf dg, (V)
h—0t v—y h V—y O (x) .

Since®g, () is continuous, the result follows.

LEMMA 4.14.For every xc R" and© € Z'(R"), the sef” = {ve R": &g, (v) <0}
is a closed cone.

Proof. From [3], the epigraph of the contingent epiderivative &t a closed cone. Then
from Proposition 4.13, the epigraph @, (V) is a closed cone and so 5 since it is
the intersection of two cones iR"*1, i.e. the epigraph ofbg, () (v) and the closed cone
{yeR™!:yn1=0}.0

LEMMA 4.15.Giveny € Rwithi€ Ny, ze R anda € R, thenmax{irQRiIn{y‘}, Zt<aif

y

and only if there exists ¢ Ny such thatmax{y’, z} < a. .
Proof. To prove necessity, suppose ther¢ isNy such that magy!, z} < a. From this
and ma>{mRiIn{y'}, z} <max{y!, z} then ma>{mRiIn{y'}, z} < a. For sufficiency, suppose that
1€Ny 1€y

max{mIiNn{y‘}, z} < a holds. The resultis proved by posing- arglml\iln{y‘} and noticing that
ieNy - icNy
min{y'} =y}. 0
ieNy

The lemma allows to formulate convex problems whose salytimvides a characteri-
zation of the region in whickbg decreases along the trajectory for an adequate

ExAMPLE 4.16.Consider the bounde® € %' (R") as in Example 4.9. If the cardinality
of Ny Nlg(x) is greater thari, and since the minimum of linear functions may be nonconvex,
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then the functior®g, (), defined in (4.5), might be nonconvex. From Lemma 4.15 we have
that g, () (y) < 0if and only if there exists ¢ Ny Nlg(X) such thatd)ei x (¥) < 0where

Diry (¥) = max{max{Hfy: i € Nanle()},HPy} = max{{Hy: i € Nanle(x)},HPy}.

el ()

The resultin Lemma 4.15 and its application in Example 4r&gased on the fact that,

given A" C R", with i € Ny andBC R", ( U A)nB= |J (A'NB) holds. The relation
ieN| ieN

with Lemma 4.15 stems from Definition 4.3, see also [36]. Tlvery® € ¢ (R") can be
expressed as the finite union of convex sets, each obtainbe astersection of half-spaces
A= {xeR": Hx< 1}, see Definition 4.3.

DEFINITION 4.17.Given x€ R" and® € ' (R"), define7j(x) C lo(x), with j € Ny
and Jx) € N, such that

(4.9) O =JOrx. with 0, =) {yeR": Hy<1l.
jed(x) ke (x)

Therefore, one has

4.10 Do, (x (V) = min 1 D, V)¢ = min ¢ max {Hv} }.
(4.10) 1% (V) J.EJ(X){ 0.6, 00/ )} jeJ(x){keme){ K }}

REMARK 4.18. Notice that, from Lemma 4.14, the s¢tsc R": dg () (v) < 0} are
convex cones. :

5. Nonconvex polyhedral control Lyapunov functionsand exponential stability. The
results presented in this section provide a computatitented characterization of exponen-
tial stabilizability through Lyapunov functions for sysis (2.1) such that Assumption 2.1
holds. The objective is to determine a condition for the fiorc®g with © € ¥ (R") to
be a local control Lyapunov function. For this, we providenputation-oriented necessary
and sufficient conditions for the existenceugk) € U (x) such that the contingent Hamilton-
Jacobi equation (3.4) is satisfied in a region. This wouldlyntpat ®¢ is a local control
Lyapunov function and the system is locally asymptoticatigbilizable where such condi-
tions hold. Moreover, Theorem 3.4, applied wilfix) = Ax andA > 0, leads to conditions
on the existence of a trajectory of system (2.1) that exptisénconverges to the origin. For
every® € ¢ (R"), the function®g is contingently epidifferentiable and then Theorem 3.4
can be applied with (x) = ®g(x).

THEOREM 5.1. Let Assumption 2.1 hold and consider the nonempty bou@led
% (R"). Then for every x R" there exist (x) € U(x) and.#" = J#j(x), as in Definition 4.17,
such that

(5.1) H? (9(x) + h(x)u(x) +Ax) <0, Vke %7,

with A > 0, if and only if there exists () € U (x(t)) for t > 0, such that a solution to (2.1)
satisfies

(5.2) Po(X(t)) < Po(xo)e ™,

for every x € R".
Proof. The first step is to prove that the existenceiof) € U (x) such that

(5.3) Do, (x (9(X) +h(x)u(x) +Ax) <0,
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holds, is a necessary and sufficent condition for (5.2). Téma@8.4, withvV = ®g ande (w) =
Aw, and Proposition 4.13 imply that

(5.4) f g, (x) (9(X) +h(x)u(x)) + A Pe(x) <O, vx € dom(®g) = R",

in
ueU(x)
holds if and only if there exists(t) € U (x(t)), fort > 0, such that the solution to (2.1) fulfills
(5.2), which corresponds to condition (3.3) for the curreage. From Proposition 4.12 and
homogeneity ofbg, () we have

Po, (x (9(¥) +h(x)u(x)) +APe(x) = A (‘D@. (0 (A71g(x) + A h(x)u(x)) + Do, (X)) =
=A (cl)@I x (A1) + A " th(x)u(x) +x)) = g, () (9(X) + h(X)u(x) +AX).

Noticing that condition (5.4) is equivalent to claim the gience ofu(x) € U(x) such that
(5.3) is satisfied for alk € R", the first part of the result is proved.

From Definition 4.17, condition (5.3) is equivalent to thestence of 7" = _#(x) such
that

Po,,. (x (9(¥) +h(x)u(x) +Ax) <0,

which is also equivalent to (5.1), and then the result fodiv

One implication of Theorem 5.1 and Remark 4.18 is #ha{x) decreases atif and
only if the vectorxis contained, for appropriatéx), in one of the convex cones whose union
determine the sefv € R" : ®g, () (v) < 0}. Notice that this would imply that the contingent
epiderivative is negative along the trajectory.

REMARK 5.2. Theorem 5.1 yields a condition @by to be a global control Lyapunov
function for the system (2.1) under Assumption 2.1. Thetfadtthe effective domain of
dg is R" for every® € ¢’ (R") is implicitly used. Local Lyapunov functions can be defined
modifying adequately the function by defining-it outside of the domain of attraction.

Then, we have proved that (5.1) with” = %} (x), satisfied byu(x) € U(x), is a nec-
essary and sufficient condition faPg(x) with bounded® € ¥ (R"), to be a local control
Lyapunov function for system (2.1). Furthermore, the valti®g(x(t)) is bounded above by
an exponentially decreasing function whose time consgant i

REMARK 5.3. The results presented above concernibg with boundedd € 4’ (R")
as potential control Lyapunov function, as well as the cleéggzation of its contingent epi-
derivative at x througi®g, ), are valid for more general functions, see [3, 15]. Nonegiss|
the functiondg for © € ' (R") is particularly suitable for computational purposes, agaim
below.

6. Computational issues. From Theorem 5.1, the satisfaction of condition (5.1), veher
= Jj(x) identifies a convex cone determining the contingent epidgve of ®g(X), is
necessary and sufficient for the function induced@yo be decreasing at Then, from
the computational point of view, the first problem is to cltéesaize the region where, given
a convex cone, the condition (5.1) can be satisfied. Thigigsdealt with in Section 6.1.
After that, some aspects on the computation of the extrenmesgpaf the feasible region of the
dual problem are considered in Section 6.2. The interegtagsdn the fact that these points
completely characterize the region in which condition (3slsatisfied, and then where the
candidate function has a decreasing rate greaterttianan appropriate(x). In Section 6.3,
it will be shown that these extremes determine also such aalanput. Finally, the direct
implications for the original problem with potentially noonvex contingent epiderivative are
presented in Section 6.4.
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6.1. Exact region of viability for convex cones. As illustrated in Section 4, the con-
tingent epiderivative ofbg(x) is determined for every € R" by the union of convex cones
defined by the active constraints, see Definition 4.17.

DEFINITION 6.1. Given the set?” C Ny, define

(6.1) Ry ={XxeR": ke . # = Hx=do(x)},

and® = {xeR": H2x< 1, Vke #}.

That is,R  is the region in which the constraints indexed.lsy are active, possibly not
exclusively.

REMARK 6.2. Notice that B, might be empty and that the union gf,Ror all 2#" C Ny,
isR". Moreover®  is a convex cone containing the origin in its interior anfi¥= ®g , (x)
forallk € 22 and every xc R .

We consider hereafter the region determined by a geoéric Np,. Given.z” C Ny,
andx € Ry, as in (6.1), we define the following optimization probleniage solution char-
acterizes the statesc R, at which condition (5.1) holds.

DEFINITION 6.3 (Primal problem).Let Assumption 2.1 hold. Give#” C Ny, and
x € Ry, define the following optimization problem:

Ak - .
a’y (X)) = min a,

st. Hox<a, Viex,
(6.2) HE (9(3) +h(Xu+Ax) +Hx—a <0, vke 7,
Mju < N;(x), V] € Np,,
a > 0.

A computation-oriented necessary and sufficient condiiwor(5.1) to hold atx € R
stems from the following proposition.

PROPOSITIONG.4. Given.# C Ny, and xe Ry, the optimal solutiomﬁé*(x) to the
primal problem (6.2) is such thabe , (x) = a}* (x) if and only if there exists & U (x) such
that condition (5.1) holds at x. Furthermo@g ,, (x) < a}’*(x) if and only if condition (5.1)
is not satisfied at x for any @ U (x).

Proof. Suppose that condition (5.1) holdsat R~ for au(x) € U (x) and consider such
au(x) that satisfies the third constraint of (6.2). Then the sesmt@f constraints in (6.2) is
satisfied by everyr > 0 such thatbg , (X) = HEX < a, as well as the first set of constraints.
Since the optimization problem minimizes its optimal value isPg , (x), that proves the
necessity of the first part of the proposition. Concernirg $hfficiency, suppose that the
optimal value of problem (6.2) is given e , (X), i.e. suppose tharﬁg’*(x) = g, (X).

Then the first set of constraints is satisfied by definitiorfart HOx = ®g , (x) = a}*(x),

for all i € . Moreover, it follows thaH2x = aﬁg’*(x) for all k € " and then the second

set of constraints in (6.2) becomes the condition (5.1). ddethe solutiomﬁg’* (x) is equal
to the®e , (x) if and only if the condition (5.1) is satisfied at

Furthermore we have théltg , (x) < aﬁg’*(x). Indeed, the value obg , (x) would be
obtained as the optimum by removing the second set of canistieand solving the optimiza-
tion problem. However, since this problem has a larger Bdasegion, its optimum is smaller
than or equal tmx;\,; (X). Thenajg’* (x) cannot be smaller thadg , (x). This and the fact that
®o, (X) = a;\,{’*(x) if and only if condition (5.1) is satisfied & imply that the optimal value
is greater tha®g , (x) if and only if (5.1) is not fulfilled ai. O
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Conditions for characterizing the regions of the state spaevhich (5.1) is satisfied are
provided below. Notice that (6.2) is a linear optimizatiawlgem ina andu with feasible
solutions. Then, strong duality holds in our case, see [[L1ABplying classical results from
duality for convex optimization problems we obtain the daling problem, dual of (6.2).

DEFINITION 6.5 (Dual problem).Let Assumption 2.1 hold. Give#” C Ny, and xe
R,~, the dual of the linear optimization problem (6.2) is

LA = max L, LA, (B,8,0;x),

s.t. z Bi + z d( < 17
(6.3) et ket

Nu
> aHZh(X)+ 3 ajM; =0,
ke =1
B>0, 6>0, 0>0,

with

Ny
(6.4) L%, (B,5,0;x) BHPx+ S dH2g)+ § &(A +DHEx—S gjN;(x)
|€zf I kez.)f kezjﬁ JZI
The optimal value of the dual problem is such tlhé,t,(ﬁ,é,a;x) < Lﬁg*(x) for all
feasible(B,0,0). We used the notatiof}3,0,0) in spite of (3(x),d(x),o(x)) for sim-
plicity. HenceLﬁ’;(x) is the maximal lower bound odxﬁg’*(x) and, from strong duality,
Lﬁ’;( X) = af{*( x). ThenL, (B,8,0;x) < a}* (x) for any feasible solution to (6.3).
PROPOSITIONG.6. A necessary and sufficient condition for (5.1) to hold atR  is

(6.5) L) <HOx,  vke.x,

with Lﬁg*(x) asin (6.3), or, equivalently,j,/,(ﬁ,c?,a; X) < HEx for every(B, 0, 0) feasible
solution to (6.3).

Proof. From strong dualityL’\’*( X) = a}’*( X). This impliesHex =dg, (X) < Lﬁj;(x)
forall k € 7, as proved for Proposition 6.4, and théa , (x) = LW (x) if and only if (5.1)
holds atx € R~. Then (5.1) holds at € R if and only if (6.5) is satisfied

Posing the condition for (5.1) to hold in the inequality fof@5), rather than as equality
constrainu__’;’; (x) = HOx for all k € %, leads to convex optimization problems under ade-
quate assumptions dn(x). Consider the dual problem (6.3). Giveff C Ny, andx € R,
the problem of checking if (5.1) holds reduces to the maxatidan of a linear function over
a polyhedral set in the space of variabfzsd ando. Then, the maximum is attained at an
extreme point or the problem is unbounded. Since the pripEum exists and is bounded,
the analysis can be reduced to the extreme points of the doialigon feasibility region.

PROPERTY6.7. The optimal value of the dual problem (6.3) is attained at ainezne
point of the feasibility region.

Proof. Since the origin is an extreme point of the feasibility cegof the dual prob-
lem (6.3), which is bounded above by the primal optimal vatbe result is implied by the
Fundamental Theorem of Linear Programming, se€eJ6].

Based on Proposition 6.6 and Property 6.7, a computatimm&d necessary and suffi-
cient condition for (5.1) to hold al € R, is presented below.

THEOREM6.8. Given.#” C Ny, denote with(3P, 6P, gP) the p-th extreme point of the
feasibility region of the dual problem (6.3), withgiN,,,. The subset of & R » at which (5.1)
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holds is given by

(6.6) Vi = () {xeR": L% (BP,8°,0%x) < HPx, ke '},
pENR,

with Lﬁg asin (6.4). The subset ofR » at which (5.1) does not hold is

(6.7) 7 = |J {xeR": LY (BP.8P,07%) > HOx, Vke 7).
pENnV

Proof. Property 6.7 implies that for all € R there existg* = p*(X) € Ny, such that
L (B.8,0:%) < LA (B, 8% ,0P"5x) = L (x),

for feasible(p3,d,0). This and Proposition 6.6 prove the first claim. Similar ¢dasations
and the fact tha®g , (x) = H2x for all k € ¢ for everyx € R, prove the second clairfl

The set?” j’\{ given by the intersection of subsets of the state spadeeisxact region of
all x e R, where condition (5.1) is satisfied by an adequ#te € U (x). The only optimiza-
tion problem to solve for characterizir‘l@} concerns the computation of the extremes of the
dual problem, the computation afx) being not required.

6.2. Computation of the extremes of the dual feasible set. As shown above, to test if
(5.1) holds in the regioR -, with J#" C Ny, , requires to compute the extreme points of the
dual problem feasibility region. The formal definition oftexme point follows, see [6].

DEFINITION 6.9. Given a convex set C,&C is an extreme point of C if there are not
two points ye C and ze C and a scalan\ € (0,1) such thatx=Ay+ (1—A)z.

Obtaining the extreme points of a polyhedron is rather cdatmnally demanding in
general. We prove below that in this case the computati@ssdemanding.

THEOREM 6.10. Given.#” C Ny, , with n cardinality of J¢', any extreméf3,5,0)
RN+ of the feasible region of (6.3) is either such tidat 0, 0 = 0 and all the entries of
B are 0 except one equal tb, or such tha{3 = 0and(9J, 0) is an extreme point of

Ny
> &HPh(x)+ 5 gjM; =0,
ket j=1

ket
0>0, 0>0,

or it is the origin of RM i+,

Proof. First denote the feasible set of (6.3)fag and defing/ = 5. » &. The proof of
the theorem is substantially based on demonstrating thavfry extreme point83, d, o) of
F.,», eithery=0 ory= 1. Indeed, if this is true, the values Bfat the extremes df - can
be decoupled by the other dual variables. Notice that fra3) (e have that, depending on
whethery =0 ory =1, B at the extremes df - are the extremes of

i <1, i <0,
(6.9) { ie.z%’B = or { ie%’(ﬁ =
B>0, y=0, B>0, y=1

Then, for every extreme such that= 0, B is an extreme of the unit simplex iR", that
is either the origin or a vector whose entries are all 0 exoeptequal to 1. Ify= 1 at an
extreme offF ,, thenf3 = 0. We prove that ifF , has an extreme point such that> 0,
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then it must be such that= 1. We prove it by contradiction. Suppose that there exists
an extreme point oF - such thaty > 0 andy # 1. Clearly, we must havg < 1 (besides

& > 0 for everyi € #") otherwise the first constraint in (6.3) would not be satikfig any

B > 0. Then denote = (3,9,0) the extreme point oF » with S » & =y=ye€ (0,1)

and consider = (0,y 15,y 10) andv'= ((1 - y)"1B,0,0). First notice that/is strictly
included in the segment whose endpointswaaadVv. In facty € (0,1) andyv+ (1 — y)v =
(0,0,0)+(B,0,0) = v. Moreover, bottv andv'are feasible points of the dual problem (6.3).
Indeed, from the fact thatsatisfies the constraints in (6.3), we havevor ~

S 0+ylty §=1,

et _ ket n
V13 GHPh(X)+y *3 ajM; =0,
ket =1

and considering We have

3 £40<1 & 3 B+ Y <1,

e N et et

0+ 3y 0=0.
Thus,vis strictly contained in the segment belonging to the fdasiggion, then it is not an
extreme, see Definition 6.9, and this contradicts the assampHence for every extreme
point of F -, eithery = 0 (which is equivalent té = O for everyk € .#") ory = 1.

Consider the case of extreme poiffs 8, 0) such thaty = 0. Then, for what claimed
above B is an extreme of the unit simplex&". We prove that, in this case, the only possible
value ofg is 0. Suppose by contradiction th#, 0, o) is an extreme and # 0. Theno > 0
and there i$ € Ny, such thaig; > 0 for whichy ', ojM; = 0. Clearlyy ™, aojM; = 0 for
everya > 0, which means thai3,0,a0) € F for all o > 0. Hence for everyy,a >0
with 0 < a1 < 1 < a», we have tha{3,0,0) is strictly contained in the segment whose
endpoints aréf3,0,a,0) and(S,0, a20), which are inF,,. Then(3,0,0) is not an extreme
point of F , which contradicts the assumption. Hence, every extrentd pbF - with y=0
is such tha3 is an extreme of the unit simplex R" ando = 0.

Finally, notice that ify = 1 then, necessarily3 = 0, see (6.9), and constraints in (6.3)
reduce to (6.8). The(®, o) must be an extreme point of (6.8).

From Theorem 6.10, the computation of the extreme pointh®feaasible set of (6.3),
polyhedron inR" ™"+ is reduced to the obtainment of the extreme points of thghaol
dron inR"*" given by (6.8), with, we recally; cardinality of #" andn, number of linear
inequalities defining the set-valued map

6.3. Optimal control input computation for convex cones. We have shown how to
determine whether and where condition (5.1) holds. Rebatlthe satisfaction of (5.1) im-
plies the existence of a local control law such that the valuthe set-induced Lyapunov
function decreases along one trajectory of the closed-$ysfem. We consider the problem
of the computation of such a control action, possibly optimwi¢h respect to a performance
measure. One possibility is to look at the control law sucdt the decreasing rate of the
function®g ,, is maximized.

Every regionR -, as defined in (6.1), is taken into account independentlis [Blads to
a discontinuous optimal control law. Giverx& 7/}, that is arx at which the condition (5.1)
is satisfied by some admissible inputs, we provide a methocharacterizing such inputs.

PROPOSITIONG.11. Given the® € ¥ (R") and " C Ny, the condition (5.1) holds at
x € 7} for an adequate u if and only if there exist & u*(.#',x) € R, (5*,0%) € RN+
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andu* = p*(#,x) € R satisfying

MjU*—Nj(X)SO, Vj € Np,,
H2g(X) + H2h(x)u* < p*, vke
0*>0, 0*>0,
6.10 oj (Mju* —N;j(x)) =0, Vj € Np,,
(6.10) &' (HOg(x) + Heh(XU* — ) =0,  vke
2 %=1
ket Ny
> & HSh(X)+ 3 oiM;=0.
ket j=1

Proof. Condition (5.1) holds if and only if there exisis= U (x) such that

— > i [C] ]
AP, (X) > mulng?}({Hk g(x) +HZh(x)u}

(6.11) )
sit. Mju<Nj(x), V] €Ny,

as shown in the proof of Theorem 5.1. Frone ¥, condition (5.1) is satisfied for the
optimizeru of (6.11). Notice that the optimization problem in (6.11tpuivalent to

il
(6.12) st HOg) +Hh(u <y,  Vke .7,
MJUSNJ(X)a vJ eNnua

which is a linear programming problem inand u, parameterized in. Since the Karush-
Kuhn-Tacker (KKT) conditions, given by (6.10), are necegsand sufficient for the primal-
dual optimality in this case, see [11], theh solution to (6.10), leads to satisfaction of (5.1).
d

From the practical point of view, the control inpuit(.#",x) within the generic region
“I/j‘g caé)n be obtained by finding the extremes of (6.8). Indeed, tia¢ problem of (6.12) is
given by

max > H L9x) — jglaj N; (x),

0,0 ke ¥
Ny
s.t. KHEh(x giM; =0,
(613 & HTNC0T 3, oM =
> &=1,
ket
0>0, 0>0,

and then(d*,0") is a feasible solution to the dual problem (6.13), an optiora, in fact.
Since the optimum of a linear optimization problem is atdiat an extreme point, then the
extremes computed to determine the dom@q provide also the contral* = u*(.#",x). In
practice, for every extreme of (6.8), one can check whetherther constraints in (6.10)
admit a solution with respect i = u*(#",x) andu* = u* (¢ ',x). This happens if and only
if u* andu* are optimal for the primal (6.12). Moreover; are such that the optimal control
satisfies

(6.14) Mju* =N;(x), Vo >0.

Furthermore, iy > 0 thenthe constraintumltn?{Hf’g(x)+Hfh(x)u} > HPg(x) +HCh(x)u*,
(S 4

is active sinceH2g(x) + HEh(x)u* = p*.
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Besides being a condition for (5.1) to hold, and thendbgy,, (x) to be decreasing, (6.10)
provides the potential control inputs which ensure the maximal decreasing rate along a
trajectory.

COROLLARY 6.12.Given@ € ¢ (R") and.#” C Ny, any u = u* (") solution to (6.10)
is optimal with respect to

(6.15) uel&f) Do, (9(X) +h(x)u),

and satisfies (5.1) if & 77
Proof. The results following directly from Proposition 6.11 ahé tonsiderations given
in its proof.O

6.4. Exact region and optimal control for nonconvex epiderivative. Finally, the char-
acterization of the exact regions wheabg (x), with © € ¥ (R"), decreases and the computa-
tion of the control input that maximizes the decreasing catebe given.

PROPOSITIONG.13. Let Assumption 2.1 hold and the nonempty bour@eds (R"),
consider u (% (x),x) and u*(#j(x),x) solutions to (6.10) withz” = #j(x), for all j € J(x)
as in Definition 4.17. The input'(x) = u*(#j: (x),X) such that

(6.16) i = arngJnn {u*(A5(%),%)},

is the optimizer of

(6.17) uell?f) D;®o (g(x) +h(x)u),

and satisfies (5.1) if and only ifx 7/.%-*(@

Proof. From Proposition 6.11 and Corollary 6.12,(.%;(x),x) and p*(.#j(x),X) are
optimizer and optimum of (6.15), with¢” = J#j(x). From Definition 4.17 and Theorem 5.1
we have that (6.17) is equivalent to

f 0] h = mi f & h =
Lnf min 4% (9(3) +h(x)u) min ot 40 (9(X) +h(x)u) = min {W (A(),%)},

and thus (5.1) holds if and only e “I/)‘ a , see Proposition 6.1

From the computational point of V|ew Proposition 6.13 netrmatdg(x) can be de-
creasing faster thah®g(x) atx if and only if x € "//)‘ for at least one value of € J(x).

Moreover, the optimal control is determined by the KKT cdimiis. Thus, computmq/%
for all possiblez” C Ny, would provide the exact characterization of the region wkigs(x)
decreases and also the optimal control.

7. Brockett’sexample. Consider the nonlinear system, called nonholonomic (ocBro
ett's) integrator [12], whose dynamics is

X1 = Uy,
X2 = U,
).(3 = XqU2 — XaU1.
This system is interesting for applications, since it medke motion of vehicles in suitable

coordinates (see e.g. [38, 30]). Itis also a well known eXamopa controllable system for
which the necessary Brockett’s condition for the existasfa@continuous stabilizing control
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law does not hold. The application of discontinuous staipitj controller is then unavoidable.
Our method provides a new discontinuous stabilizing cotamg alternative to other control
strategies (see e.g. [26, 32] and references therein). dSephat the input constraint is
U(x) =U = {ueR?: |jull» < 1}. The Brockett integrator satisfies Assumption 2.1 with

1 0 v_[10-107
gx) =0, hx)=| 0 1 |, “lo 10 1]
X X N=[1 1 1 1]

7.1. Convex level set Q. Consider first the convex s& = {x € R3: Hx < 1}, with

1 1 -1 -1 0 01"

H=(1 -1 1 -1 0 0 | ,
0O 0 0 0 1 -1

which is a cube ifR® and consider the upper horizontal facet relate#iie= Hs = [0 0 1,
thatis.#” = {5}, and the regioR » = {x € R3: x3 > max{|x|, [xz|} }. From Theorem 6.10,
the nontrivial vertices of the dual problem feasibility imgyare

Nu
5H5h(X)+_z ojM; =0 —Xo+ 01— 03 =0,
51 1=t = X +02—04=0
7 g >0,
o >0,

with B = 0. The extremes depend an andx,. By symmetry, we restrict the analysis to
x> 0. The extremes are given ls® = [x, 0 0x1]T and, from (6.14), the optimal control is

u; =1, u; =—1, if X1 >0, x>0,

(7.1) u;e[-11, u;=-1, if Xx1>0,x%x=0,
' ui =1, uy; e [-11], if x1=0,x% >0,
ue[-11, u;e[-11], if x1=0, x2=0.

This means that ifx x2]T is in the interior of the first orthant, the maximal decregsiate
is given byu = [1 — 1]T, if x; (resp.xp) is zero then any admissible input such tbzt= —1
(resp.uj = 1) is optimal. Finally ifx; = xo = 0 every admissible input is optimal, indeed
leading to an horizontal direction, hence tangent to théasar Any selection of such a
control law ensures that the decreasing ratef ®q (x) is attained for alk € R such that:

6 4

- LA, (BP,6P,0P;x) = éﬁpHi” SPHsg(X) + 6P(A + 1)Hsx — ,-Zlaijj (X) < Hsx,

: 4

& (A+1Hsx— 3 Gijj (X) <Hsx, <  Axg<Xp+X,
ic1

from Theorem 6.8 and since the other extremes lead to camtsttd, (89, 89, 09;x) < Hsx
satisfied inR . The geometrical meaning of (7.2) is that there is no dioectif the differen-
tial inclusion heading sufficiently downward for ensuringecreasing raté of the function
Pq(x) if x€ Ry is too close to axisz. The smaller isA, the bigger is the region in which
such a contraction can be assured, as expected, and thateyile.A = 0, is guaranteed in
the wholeR 5. This is reasonable: in factz can be done negative by appropriately selecting
the signs ofu; andu, and its maximal modulus i | + |xz|. That is, the maximal modulus
of the vertical component of is proportional to the distance (induced by the 1-normy of
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from thexs axis. This implies also that the system moves horizontilty i x, = 0 and then
stability can be assured, by posihg= 0, but not the decreasing of the functidg,.

Consider#” = {1}, that is related to facet determined by the normal veldioe [1 1 0,
and then such tha , = {x € R%: x; > 0, % > 0, [x3| < X1 +X2}. The nontrivial extreme
of the dual feasible region is given I8P = 0, 5 = 1 andoP = [0 0 1 1T, which implies,
from (6.14), that the optimal control i = [-1 — 1]T. Moreover, by computing the region
in which the contraction rat@ is attainable fordg along one solution to the differential
inclusion, i.e. wheref}g (BP,0P,0P;x) < Hix, we obtain the constraift(x; + x2) < 2.

Finally consider the intersection between the upper hataldacet and the vertical one
in the first orthant, i.e. the point at whidhyx = Hsx = ®q(x) and thenz” = {1, 5} and
Ry = {x€R3: x>0, x3 = X1 + X2}. From Theorem 6.10, the nontrivial extremes are given
by BP = 0 and the extremes of (6.8) which result in this case

Nu _ L 0:=0
»H1h(X) + &Hsh(X) + S ojM; =0 01— OsXp+ 01— 03 =0,
- 1h(x) sh(x) jzl iMj R Bi 1 Xyt Oy 0g— O
' o+&=1, &+ %=1,
0201 O'ZO7

that is the feasibility region of dual problem (6.13). To ahtthe optimal input we con-
sider the extremes of the region (7.3) and check if the KKTditions (6.10) can be satis-
fied. Among the extremes of (7.3) there éd¢ & 01 02 03 d4]' =[0 1 x 0 0x]" and
(0105 01 02 03 04)T =[10 00 1x4]7, which lead to the optimal control iR;;;, andRys,
analyzed above. Consider the first case, i®&. )" = [0 1]T anda = [x 0 0 x3]" which
impliesu* = [1 —1]T. Then the second and fourth constraints in (6.10) result in

up+uy < i, N o<uyr,
XqU5 — XpUy = H*, —X1— X = W7,

which has no solution since; > 0 andx, > 0. Analogously, for[d; &|" = [1 0T and
0=[0011" we haveu* = [-1 —1]T and then from (6.10)

X1U5 — XoUy < ¥, X <X+ 7,
(7.4) { U U5 — i, = w——2.
which means that* = [-1 — 1]T is optimal forx > 0 andx, < x; — 2, and the decreasing

rateA is ensured fol (x; +X2) < 2. Another potential extreme point of (6.10) is given by
(61 05)" = [X2(1+x2) "L (14x2)7 1T, ando =[000 1T, extreme of (7.3), which constraints
the optimal input to hava; = —1. In this case the other constraints in (6.10) give

- 1—xq
4%

*

= uy

{ XQUj — XoUj = [,
up+ U = 7,

Then, the optimal control iR(; 53 = Ry = {X€ R3: x> 0, x3 = X1 + X2} generates a sliding
motion on the surfack 5, in fact such thats = x; + X». Moreover, considering the bounds on
u (the first constraints in (6.10)), the state-dependenttiigmptimal in theR ;- if xo > x; — 2,
which is (the closure of) the complement (with respect toréggon in whichx > 0) of the
region in whichu* = [—1 —1]T is optimal, see (7.4). The rakeis ensured foA (x; +xp) < 1.
Summarizing, if the active constraint is the upper horiabfacet, the optimal control in
the first orthant oR" is (7.1), which makegs decrease. The functiohg decreases with a
rate greater than if the state is distant enough (in terms of 1-norm) from thexis. For
X1 = X2 = 0, no decreasing is possible since all the inputs generegetitins tangent to the



18 SET-INDUCED CONTROL LYAPUNOV FUNCTIONS FOR CONTINUOUS-ME SYSTEMS

FiG. 3. Nonconvex level s&. FIG. 4. Intersections 0® with the first orthant.

level set of the functionbq. If the active constraint ig; + xp = Pq(x) then the optimal
control isu* = [~1 —1]T and the rate is ensured if the state is not too far from theaxis,
i.e.if A(xa+x2) < 2. Finally, if both constraints are active (i>e = X; + x2) then the optimal

control isu* = [};—2 — 1], which makes the system slide on such a surface, if adméssibl

Otherwise, that is ifﬁ—g < —1, the optimal control is* = [-1 —1]T.
REMARK 7.1. For everyA > 0, there is a region around the axig 11 which no admis-
sible control generates one solution to the differentialision along which the functiotrg

decreases and only stability can be guaranteed.

7.2. Nonconvex level set ©. To guarantee exponential stability, the convex leve{sist
replaced byd € € (R") nonconvex. The resulting nonconvex set induces a contiaghliyov
function which ensures exponential stability. Define theaumvex function

(7.5) o(x) =max{max{Hix}, min{Hpx}, min{—Hcx}},

which is the function induced by the nonconvex set

(7.6)
O=(({xeR¥*:HXx<1)n( | {xeR¥:HPx<1)n( | {xeR3®: —HPx<1}).
ieNg JENy keNg
with
1 1 -1 -1 0 01" 2 2 -2 277
HA=]1 -1 1 -1 0 0 |, HB=| -2 -2 2 2
O 0 0 0 1 -1 2 2 2 2

To have a geometric perception of the set, define {x € R3: HAx < 1}, the unit box, and
B={xcR3: 3j €Ny, st HJ-Bx < 1}, which is the closure of the complement of the cone
B={xeR3: HBx>1}. Then® = ANBN (—B), which is represented in Figure 3. By
symmetry, we restrict the analysis to the first orthant, sgarg 4, in which the constraint
HBx=[-2 —2 2x<1,is active forx > 0 such thafl 1 —0.5)x < 0. Consider such a
constraint and such a region denoted with a slight abusetafiooR ,, = Ry18 (the matrix
H® should be defined by concatenatid§, H® and—H® and the indexes dfl® should be
used to adequately defig’). The nontrivial extreme is given by fér= 1 andB = 0 and

—2—2x+01—03=0,
—24+2X1+ 02— 04 =0,
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FiG. 8. Optimal control for|xz| < |x1|+ |2

FiG. 7. Optimal control for|xz| = |x1 |+ |X2| .
with x3 > 0.

with x3 > 0.

and three cases must be discriminated. The first concermsgien in whichx; > 1 where
the extreme is given by = [(2+2x2) 00(—2+2x;)]", the optimal control is* = [1, —1]7
and it ensures the contraction ratefor all x > 0 such thatA (—x; — X2 +X3) < X3+ Xo. In
the region in whichq < 1, the extreme i&@ = [(2+ 2x2) (2—2%1) 0 0T, the optimal control
isu* = [1 1T and it the contraction rate of is attained af\ (—xg — Xp +X3) < 2 — X + Xo.
Finally, if x; = 1, theno = [(2+2x2) 00 0" and every admissible* with uj = 1 is optimal
and guarantees decreasing ratéor A (—x; — X2 +x3) < 1+ Xo. We skip the analysis of
the region in which the two constraints are both active, Hgx = HEx, to concentrate our
attention to the points at which the contingent cone is nonex.

Consider thexsuch thak; > 0,x, = 0 andx; < 0.5x3. In this region the active constraints
are the first two defining the sBtand ther®, (x) = {x e R®: HBx< 1} u{xe R3: H8x < 1}
and the contingent epiderivativedg, () (y) = min{Hgy, H8y}. Thus anyu € U (x) for which
eitherHP (g(x) + h(x)u+Ax) < 0 orHE(g(x) + h(x)u+ Ax) < 0 is satisfied, is such that one
solution to the differential inclusion exists along whitie functiondg(x) is decreasing with
rateA. This means that, both= [1 1]7, optimal forx > 0 (for x; < 1), andu=[1 —1]T
optimal forx; > 0, X2 < 0 andx; > 3, imply a decreasing rat®. One should choose the
u* that minimizes®g, () (9(X) + h(x)u). Summarizing, the resulting optimal control in the
different regionsR(;ey, Rysay, Rp1asa) andRea, (and their analogous for all the orthants
with x3 > 0) are depicted in while Figures 5, 6, 7 and 8, respectively.

REMARK 7.2. The Lyapunov conditions related to viability imply the txiee of one
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FiG. 10. Evolution of x and %.
FI1G. 9. Trajectory and se®.

FiG. 11. State: % (dotted), ¥ (dashed) and FiG. 12. Lyapunov (dashed) and exponen-
x3 (solid). tial (solid) functions.

solution to the differential inclusion, that means the #ise of a Caratheodory solution
along which the induced functiohg (x) decreases. The problem of determining whether all
the trajectories (as discontinuous systems have not nadkysa unique solution, see [16])
are stable and converging to the origin, i.e. asymptotibsiiy in the sense of Filippoy, is a
possible extension of this work.

7.3. Simulation results. Finally, the simulation results are depicted in Figure294h
Figure 9 the level sé® and the trajectory of the controlled system witld) = [0.1, 0.01, 2]"
are illustrated. The projection of the state on the plane 0 is provided in Figure 10 and
the evolution of the state in time in Figure 11. Notice th&h@ugh the value ok3 increases
at the beginning, the functioe(X) decreases, as shown in Figure 12 that reports also the
exponential function with decreasing rate= 0.25 for comparison.

8. Conclusions. This paper presented an approach to charaterize homogeoeouol
Lyapunov functions induced by certain nonconvex sets fatinear continuous-time systems
with constrained input. A necessary and sufficient conditiw local exponential stabilizabil-
ity has been posed in form of convex constraints. Parti@attention has been devoted to the
numerical issues concerning the computation of the domiaattiaction estimation and of
the optimal control input. The example showed that noncrityvenight be an unavoidable
feature to prove exponential stabilizability for nonlinegistems.

Other directions of research are possible: considering@méthsses of nonconvex sets,
leading to nonconvex optimization problems; tackling thebjem of exponential stabiliz-
ability in the sense of Filippov; particularizing and apply the results to specific nonlinear
systems; designing computational methods to generatedlyéopes and the level sets for
enlarging the domain of attraction.



(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
&l
[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]

(18]
[19]
[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]

(33]

M. FIACCHINI, C. PRIEUR, S. TARBOURIECH 21

REFERENCES

T. ALAMO, A. CEPEDA, M. FIACCHINI, AND E. F. CAMACHO, Convex invariant sets for discrete—time
Lur'e systemsAutomatica, 45 (2009), pp. 1066-1071.

J.-P. AUBIN, A survey of viability theorySIAM Journal of Control and Optimization, 28 (1990), pp97488.

———, Viability theory, Birkhauser, 1991.

J.-P. AUBIN AND H. FRANKOWSKA, Set-valued analysiSBirkhauser, 1990.

D. P. BERTSEKAS Infinite-time reachability of state-space regions by udeegback controllEEE Transac-
tions on Automatic Control, 17 (1972), pp. 604-613.

D. P. BERTSEKAS A. NEDIC, AND A. E. OZDAGLAR, Convex analysis and optimizatiothena Scientific,
2003.

F. BLANCHINI, Ultimate boundedness control for discrete-time uncertjistems via set-induced Lyapunov
functions IEEE Transactions on Automatic Control, 39 (1994), pp.-4233.

, Nonquadratic Lyapunov functions for robust contridlitomatica, 31 (1995), pp. 451-461.

BLANCHINIAND S. MIANI, Set-Theoretic Methods in Contrdirkhauser, 2008.

. BLANCHINI AND C. SAVORGNAN, Stabilizability of switched linear systems does not impé/éxistence

of convex Lyapunov functionAutomatica, 44 (2008), pp. 1166 — 1170.

S. BoYD AND L. VANDENBERGHE, Convex OptimizationCambridge University Press, 2004.

R. W. BROCKETT, Asymptotic stability and feedback stabilizatiom Differential geometric control theory,
Birkhauser, ed., 1983, pp. 181-191.

E. B. CASTELAN AND J. C. HENNET, On invariant polyhedra of continuous-time linear systemiEE
Transactions on Automatic Control, 38 (1993), pp. 16805168

G. CHEsI, Estimating the domain of attraction for non-polynomialtsyss via LMI optimizationsAutomat-
ica, 45 (2009), pp. 1536-1541.

F. CLARKE, Discontinuous feedback and nonlinear system&roc. of the 8th IFAC Symposium on Nonlin-

ear Control Systems, 2010, pp. 1-29.
CoRTES, Discontinuous dynamical systemiEEE Control Systems Magazine, 28 (2008), pp. 36—73.
. FARINAAND L. BENVENUTI, Invariant polytopes of linear systemiA Journal of Mathematical Control
and Information, 15 (1998), pp. 233—-240.

M. FIACCHINI, T. ALAMO, AND E.F. CAMACHO, On the computation of convex robust control invariant
sets for nonlinear system&utomatica, 46 (2010), pp. 1334-1338.

, Invariant sets computation for convex difference inclosisystemsSystems and Control Letters, 61
(2012), pp. 819-826.

M. FIACCHINIAND M. JUNGERS Necessary and sufficient condition for stabilizability isiodete-time linear
switched systems: A set-theory approaghtomatica, 50 (2014), pp. 75 — 83.

M. FIACCHINI, S. TARBOURIECH, AND C. PRIEUR, Polytopic control invariant sets for differential inclusi
systems: a viability theory approacim Proc. of the American Control Conference, 2011, Sandisan,
CA, USA, June 2011, pp. 1218-1223.

, Quadratic stability for hybrid systems with nested satiorag IEEE Transactions on Automatic
Control, 57 (2012), pp. 1832-1838.

E. G. GLBERT AND K. TAN, Linear systems with state and control constraints: Thehaad application
of maximal output admissible setEEE Transactions on Automatic Control, 36 (1991), pp.8:a®20.

R. GOEBEL, Lyapunov functions and duality for convex proces&AM Journal on Control and Optimiza-
tion, 51 (2013), pp. 3332-3350.

J. M. GOMES DA SILVA JR. AND S. TARBOURIECH, Antiwindup design with guaranteed regions of stability:
an LMI-based approacHEEE Transactions on Automatic Control, 50 (2005), pp.-104.

J. P. HESPANHA, D. LIBERZON, AND A. S. MORSE Logic-based switching control of a nonholonomic
system with parametric modeling uncertainBystems & Control Letters, 38 (1999), pp. 167-177.

T. Hu AND Z. LIN, Exact characterization of invariant ellipsoids for singhgut linear systems subject to
actuator saturationlEEE Transactions on Automatic Control, 47 (2002), pp. 2689.

|I. KOLMANOVSKY AND E. G. GLBERT, Theory and computation of disturbance invariant sets fecudite-
time linear systemdvathematical Problems in Engineering, 4 (1998), pp. 367-3

M. W. McCoNLEY, M. A. DAHLEH, AND E. FERON, Polytopic control Lyapunov functions for robust
stabilization of a class of nonlinear systersystems & Control Letters, 34 (1998), pp. 77-83.

R. M. MURRAY AND S. S. \STRY, Nonholonomic motion planning: steering using sinuspi&E Trans-
actions on Automatic Control, 38 (1993), pp. 700-716.

S. OLARU, J. A. DE DONA, M. M. SERON, AND F. STOICAN, Positive invariant sets for fault tolerant
multisensor control schemdsternational Journal of Control, 83 (2010), pp. 2622-264

C. PRIEUR AND E. TRELAT, Robust optimal stabilization of the Brockett integratoa i hybrid feedbagk
Mathematical Control Signals Systems, 64 (2005), pp. 487-5

S. V. RakovI ¢, K. |. KOURAMAS, E. C. KERRIGAN, J. C. ALLWRIGHT, AND D. Q. MAYNE, The min-
imal robust positively invariant set for linear differena@eclusions and its robust positively invariant

mm

- o




22

[34]
[35]
[36]
[37]
(38]

[39]

SET-INDUCED CONTROL LYAPUNOV FUNCTIONS FOR CONTINUOUS-ME SYSTEMS

approximationstech. report, Imperial College London, 2005.

A. RANTZER AND M. JOHANSSON Piecewise linear quadratic optimal contrdEEE Transactions on Au-
tomatic Control, 45 (2000), pp. 629-637.

R. T. ROCKAFELLAR, Convex AnalysisPrinceton University Press, USA, 1970.

A. M. RuBINOV AND A. A. YAGUBOV, The space of star-shaped sets and its applications in nooismo
optimization in Quasidifferential Calculus, V.F. Demyanov and L.C.Wxd@, eds., Springer Berlin
Heidelberg, 1986, pp. 176—202.

R. SCHNEIDER, Convex bodies: The Brunn-Minkowski theovgl. 44, Cambridge University Press, Cam-
bridge, England, 1993.

E. D. SONTAG, Stability and stabilization: discontinuities and the effef disturbancesin Nonlinear Anal-
ysis, Differential Equations and Control, Kluwer, ed., 29pp. 551-598.

S. TARBOURIECH, G. GARCIA, J. M. GOMES DA SILVA JR., AND |. QUEINNEC, Stability and stabilization
of linear systems with saturating actuatp&pringer-Verlag, London, 2011.



