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PACS 45.50.-j – Dynamics and kinematics of a particle and a system of particles
PACS 45.20.Jj – Lagrangian and Hamiltonian mechanics
PACS 41.20.Gz – Magnetostatics; magnetic shielding, magnetic induction, boundary-value prob-

lems

Abstract – The dynamics of a straight chain of cylindrical neodymium magnets is considered. We
showed this system exhibits a behavior which is similar to that of a beam where the elastic rigidity
acts like a restoring force. By using a Lagrangian approach, a linear model, accounting for different
sets of boundary conditions, is derived. Specifying to the clamped-free case eigenfrequencies and
eigenmodes are determined. These theoretical results are compared to experiments. A good
agreement is found, the discrepancies being attributed to the accumulation of defaults in the
contact surface between the magnets. In the last part of the article, the equivalent beam behavior
is sought for by defining an equivalent flexural rigidity induced by magnetic dipoles interactions.

Introduction. – In the middle of the 1980’s a new
type of high energetic permanent magnet was developed
[1,2], based on neodymium alloys (Nd2Fe14B) designed by
metallurgists [3]. Because of their strength and their small
weight they enhanced the performances of many applica-
tions needing a magnetic field, like Magnetic Resonance
Imagery [4], but also opened the possibility of a set of new
applications in unexpected domain like medicine [5]. Be-
cause of their properties, the neodymium magnets can be
used to build model experiments, where the magnets’ col-
lective behavior mimics those of microscopic systems (i.e.
atoms interaction) at larger scale [6, 7].

The understanding of the collective behavior of mag-
netic particles has been the focus of a subsequent number
of recent articles, with numerous applications such as col-
loidal particles chain behavior [8, 9], wave propagation in
granular chains [10], magnetorheological fluid’s behavior
[11], propulsion of microorganisms [12], fluid transport
and mixing [13], phase transition [14] or solitary wave
propagation [15] in nonlinear lattices. The interactions
of such particles embedded in a flexible material and their
effect on the materials’ behavior has also been the focus
of researches [16].

Bonded magnets are manufactured from mixture of
magnetic powders and binding resins [17]. These are struc-
tures with two distinct sources of stiffness: the resin elas-
ticity and the magnetic interaction between magnetic par-
ticles.

In the literature one may distinguish between two kinds
of dynamical models of magnetic dipole systems: a dis-
crete description taking into account each dipole-dipole
interaction [6,7], or a continuous approach using a magne-
tization density [18]. In reference [19], the link between a
continuous and a discrete description has been addressed.
In these articles, the authors defined the equivalent bend-
ing rigidity of a chain of magnetic spheres by calculating
the magnetic energy needed for bending a straight chain
of magnet to form a ring. Such ring’s dynamics was also
studied in these papers. In the present article we focus on
straight chains constituted by an assembly of cylindrical
magnets. Although the statics of such systems was already
studied [11, 18], to the authors knowledge, no results on
the dynamics has been reported. Here, a horizontal chain
of diametrically magnetized cylinders is considered. In its
equilibrium state, the system forms a straight beam. The
main objective of this paper is the study of eigenmodes
and eigenfrequencies of this simple system.

The letter is organized as follows. First, the equations
of motion of a chain of cylindrical dipoles are derived using
Lagrange’s formalism. Keeping only the first order terms,
a set of linear dynamical equations are obtained. Next,
a series of experiments is reported. Eigenfrequencies and
eigenmodes are obtained for various numbers of elements
in the chain, of various sizes, mass and magnetic param-
eters. Experimental results are then compared with the
model. Finally, this model is used to define an equivalent
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Fig. 1: Top: Sketch of a chain of magnetic dipoles at equi-
librium and deformed configurations (here, n = 8). Bottom:
Photography of the experimental setup. The clamped is real-
ized using aluminium triangles.

bending rigidity and the assumptions made in the model
are discussed.

Equations of motion. – We consider the system
sketched in Fig. 1, consisting of a chain of n circular cylin-
drical magnets of diameter d and mass m.
In the equilibrium configuration, the chain is straight

and all dipoles are aligned along the ex direction. In a
deformed configuration, each dipole moves from its posi-
tion in this reference configuration: the displacement of
the center of the ith dipole is denoted by ξi, and its mo-
ment, whose amplitude µ is unchanged but orientation
may vary, by µi. The system is then described by 3n
generalized coordinates: the longitudinal and transverse
displacements ui and vi and the orientation ϕi. These
coordinates are not, however, independent variables. In-
deed, each magnet is in contact with its neighbors and
it is assumed that during the motion, the cylinders roll
without slipping. This leads to the following holonomic
constraints between the coordinates:

gi = ui+1 − ui + d− d cos

(

ϕi + ϕi+1

2

)

= 0 , (1a)

hi = vi+1 − vi − d sin

(

ϕi + ϕi+1

2

)

= 0 , (1b)

for i = 1, . . . , n − 1. This assumption will be justified in
the discussion at the end of the letter by estimating the
friction forces.
Finally, some displacements are imposed by the support

conditions. Here, the clamped-free case is considered, thus
the only boundary conditions are

u1 = 0 , v1 = 0 , ϕ1 = 0 . (2)

The parametrization of the system being performed, one
shall write its Lagrangian L as a function of both the gen-
eralized coordinates ui, vi and ϕi and their velocities u̇i, v̇i

and ϕ̇i. This function is defined as the difference between
kinetic and magnetic energies of the system:

L =
n
∑

i=1

Ki −
1

2

n
∑

i=1

n
∑

j=1
j 6=i

Uij . (3)

In this expression, Ki represents the kinetic energy of the
ith dipole,

Ki =
1

2
m
(

u̇2
i + v̇2i

)

+
1

16
md2ϕ̇2

i , (4)

and Uij the energy of magnetic interaction between the
ith and jth dipoles [20],

Uij = −
µ0

4π‖rij‖3

(

3

‖rij‖2
(µi · rij)

(

µj · rij
)

− µi · µj

)

, (5)

where µ0 is the permeability of free space and rij is the
vector joining the two dipoles, given by

rij = (j − i)d ex + ξj − ξi . (6)

Note that the cylindrical geometry of the magnets has
been taken into account by writing the moment of inertia
as md2/8.
The Lagrange’s equations of motion write [21]:

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
=

n−1
∑

i=1

αi

∂gi
∂q

+

n−1
∑

i=1

βi

∂hi

∂q
, (7)

for q = uk, vk, ϕk with k = 2, . . . , n. The evolution
equations of the system are composed of the constraint
equations (1) and the Lagrange’s equations (7), with the
boundary conditions (2). These represent a system of
5(n−1) differential equations, in which 3(n−1) generalized
coordinates ui(t), vi(t) and ϕi(t), and 2(n− 1) Lagrange’s
multipliers αi(t) and βi(t), acting as reaction forces due
to the constraint, are unknowns.
Nondimensional variables, denoted with overbars,

are defined using the quantities d,
√

πmd5/µ0µ2 and
µ0µ

2/πd4 as characteristic length, time and force, respec-
tively. Assuming small displacements and rotations, equa-
tions (1) and (7) are linearized. Within this approxi-
mation, longitudinal displacements ui are zero. The La-
grange’s equations (7) corresponding to q = uk become:

−
3

2

n
∑

i=1
i6=k

i− k

|i− k|5
= ᾱk−1 − ᾱk , (8)

for k = 2, . . . , n. The multipliers ᾱi are determined by
inverting this linear system.
After linearization, the constraint equations (1b) be-

come

v̄k+1 − v̄k =
1

2
(ϕk + ϕk+1) , (9)
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Table 1: Experimental configurations and corresponding mag-
nets characteristics. Magnetic poles are in gray and white.

Config. Sketch d (mm) m (g) µ (Am2)

a 4 0.930 0.068

b 5 1.5 0.11

for k = 1, . . . , n−1. From these equations and the bound-
ary conditions (2), the 2n generalized coordinates v̄i and
ϕi are reduced to n − 1 independent variables ηi. The
general coordinates are then functions of these indepen-
dent variables: v̄i(η) and ϕi(η) where η is the vector of
size n − 1 gathering the values of ηi. In the clamped-
free case exhibited here, these variables can be defined as
ηi = v̄i+1. This definition must be adapted when other
boundary conditions are considered. The number of inde-
pendent variables, corresponding to the system’s degrees
of freedom, may also be modified.
Lagrange’s equations (7) corresponding to q = vk and

q = ϕk lead to a linear system of 2(n − 1) equations in
2(n− 1) unknowns ηi and β̄i, which reads:

see eq. (10)

for k = 2, . . . , n. Performing linear combinations of these
equations in order to eliminate β̄i leads to a linear system
of the form

Mη̈ +Kη = 0 , (11)

Eigenmodes and eigenfrequencies of the system are then
obtained by diagonalization. It must be noted that in its
dimensionless form, these equations of motion depend only
on one parameter: the number of dipoles n.

Experiments. – Experiments are performed with
two configurations of magnet chain. In configuration (a),
each cylinder of the chain is composed by a single mag-
net, while in configuration (b), a pair of magnets arranged
along the cylinder axis and with inverted magnetic poles
constitutes the basic element of the chain, as sketched in
Tab. 1. A magnet consists of neodymium, iron and boron
alloy and are plated by nickel-copper. t is known that
cylinders, contrary to spheres, do not have a perfect dipo-
lar behavior [22]. This has been confirmed by our mea-
surements of the attractive force between two magnets at
different distances and orientations. However, we observed
that the short scale interactions can be very well approx-
imated by a dipolar approximation of the magnets, if we
tolerate an small error in the far field. Since the force is
rapidly decaying as 1/r4, the error is negligible. Hence, the
short range interactions forces measured experimentally
are used to model the magnets as dipoles with magnetic
moment µ = 0.068 ± 0.003 Am2 in the configuration (a)
and µ = 0.12± 0.01 Am2 in the configuration (b).
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Fig. 2: Top: Displacement of the fourth cylinder within a n = 6
chain in configuration (a) of Tab. 1. The three different curves
correspond to three typical experiments. Bottom: Oscillation
frequency of each cycle obtained by tracking zero-crossings of
experimental data reported above,where (×, �, ◦) correspond
respectively to (—, - - -, · · ·) of the top figure. Horizontal
dashed line: frequency predicted by the linear model. Left and
right vertical dashed lines correspond to the left and right plots
of Fig. 3 respectively.

Dynamics of structures from 2 to 21 cylinders is con-
sidered, the first cylinder being clamped, as modeled in
the previous section. Experimentally, the clamping is per-
formed using two triangles holding the first cylinder along
its axis. These configurations restrict the motion in the
horizontal plane to avoid the influence of gravity on the
dynamics (see Fig. 1).

Free oscillations of the chain is now considered. The
system is excited by moving the nth cylinder away from
its equilibrium position and releasing it with no initial ve-
locity. With such type of initial condition, we expect the
oscillation to be dominated by the first linear mode. More-
over, at moderate amplitudes, it is expected that nonlin-
earities do not affect the dynamics. We recorded the free
oscillations decays for chain lengths from 2 to 21 elements
using a high speed camera. The chosen sampling rate was
of at least 20 points per period. Using an image processing
involving opening and closing filters, positions of the cen-
ters of the cylinders top surfaces were tracked, allowing us
to reconstruct the trajectory of each cylinder during a de-
cay. The oscillating frequency is then obtained by tracking
zero-crossings in the time series.

Fig. 2 displays the results of three typical experimental
runs for a chain of configuration (a) with 6 elements. For
two of these runs, the initial conditions are the same, while
the initial displacement is divided by two in the third run.
In all reported measurements, oscillation frequencies for
t < 0.75 s are around 10 Hz, which is the value predicted
by the model. However, at longer times, all measurements
depart from each other and a gradual increase of the os-
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¨̄vk − 3
n
∑

i=1
i6=k

1

|i− k|5
(v̄i − v̄k) +

3

4

n
∑

i=1
i6=k

i− k

|i− k|5
(ϕi + ϕk) = β̄k−1 − β̄k ,

ϕ̈k − 6

n
∑

i=1
i6=k

i− k

|i− k|
5
(v̄i − v̄k) + 2

n
∑

i=1
i6=k

1

|i− k|
3
(ϕi + 2ϕk) = 2ᾱk−1 (ϕk−1 + ϕk) + 2ᾱk (ϕk + ϕk+1)− 4β̄k−1 − 4β̄k ,

(10)
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Fig. 3: (—), first theoretical eigenmode for n = 6, normalized
by the displacement of the nth dipole; (×, �, ◦), displacement
of each individual cylinder measured when the chain reaches
a maximum of displacement. Left: t ∼ 0.1 s, i.e. second
maximum of Fig. 2(top). Right: maximum of displacement
around t ∼ 1.4 s, after 17 oscillations. Both times are marked
by vertical lines in the top of Fig. 2.

cillation frequencies is observed. This behavior, exhibited
here for the particular case of 6 cylinders, is recurrent for
all values of n.
At least two nonlinear phenomena may explain this fre-

quency increase. A first assumption would be to con-
sider geometrical nonlinearities. However this shall be
discarded because the evolution of the frequency with the
amplitude is not reproducible, like that observed in Fig. 2.
Another nonlinear phenomenon may then be responsi-

ble of the discrepancy with the linear model: the accumu-
lation of impurities on the cylinders and surface defects on
the contact line. The size of these contact defaults are of
the order of 0.1 mm. Thus they should influence the mo-
tion when the amplitude of the contact line displacement
is of the same order, i.e. for the small amplitudes. This is
confirmed by the smaller increase of the frequency when
brand new sets of cylinders are used (symbols ◦ of Fig. 2).
As an illustration, the position of the chain is represented
in Fig. 3 for the three runs at two different instants. These
are marked by vertical dashed line in Fig. 2: at t ∼ 0.1 s
and at t ∼ 1.4 s. The displacements of the dipoles are
compared to the first linear eigenmode predicted by the
model. A good agreement exists for the three runs at
t ∼ 0.1 s. Conversely, at t ∼ 1.4 s, the experimental

mode departs from the theoretical one. We assume that
impurities seize up the junction between cylinders, and
induce an additional stiffness which is responsible of this
discrepancy. Due to this frequency shift behavior, and the
discrepancy of eigenmodes, we estimate frequencies mea-
sured on the first oscillations. Full comparison with the
linear model is done at the end of this section.
The configuration (a) of Tab. 1 is now clamped on a

rigid aluminium rod of 30 cm length. The rod is fixed on a
electrodynamic shaker, so that the first dipole of the chain
has displacement of the form v1(t) = A sin(ωf t), where ωf

is the prescribed oscillations frequency. The presence of
the aluminium bar prevents electromagnetic interactions
between the magnets and the shaker. As for free vibrations
experiments, the chain oscillations plane is horizontal to
avoid influence of gravity on the dynamics.

5

10

15

0 10 20 30 40

5

10

15

H
H

Frequency (Hz)

n = 6

n = 10

Fig. 4: Modulus of the transfer function between displacement
of the clamped cylinder and the cylinder at 3/4 of the length
of the chain. Each mark corresponds to an average over 20
seconds. The (×, ·) symbols represent the up and down sweep
direction respectively. The vertical lines are the linear eigen-
frequencies predicted by the model.

The chain of cylindrical magnets is forced using a linear
up and down frequency sweep in the range [1−40] Hz. Si-
multaneously, the displacement of the chain at 3/4 of its
length is tracked with a displacement sensor. Fig. 4 dis-
plays transfer functions between displacement of the first
dipole and the one measured by the sensor for n = 6 and
n = 10. On the same figure, eigenfrequencies predicted
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by the model are represented. An overall agreement is
found between peaks of the transfer functions and theo-
retical eigenfrequencies with a relative error in the range
[4− 15] %. For the data plotted on Fig. 4, the amplitude
of the response is of the order of 1 cm, which corresponds
to the first oscillations of Fig. 3. Smaller excitation am-
plitudes have also been tested and similarly to the case of
free oscillations, an increase of the frequencies is observed.
Again, we attribute this effect to contact defaults, that we
have not modeled. Moreover we observe almost no jump
phenomena or hysteresis between the up and down sweep
direction.
The first two experimental eigenfrequencies are com-

pared to the model on Fig. 5. Results for the two differ-
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Fig. 5: Comparison of experimental and theoretical eigenfre-
quencies. Symbols represent experimental results for different
cases, plain lines show the two first theoretical eigenfrequen-
cies, dashed and dash-dotted lines are the asymptotic behavior
of theoretical eigenfrequencies for large n.

ent cylinders arrangements and two different measurement
methods are exhibited. One can observe a good agree-
ment between experiments and theory. On this figure, the
asymptotic behavior for large n is also represented: the
eigenfrequencies vary as n−2. The length used to obtain
the dimensionless equation is the diameter d, hence the
eigenfrequencies vary as the inverse of the total length
squared. The implications of this observation will be dis-
cussed in the next section.

Discussion. – In Fig. 5, both numerical and experi-
mental data allow us to conclude that when the number of
dipoles n is large, eigenfrequencies are proportional to the
inverse of the chain length square. This is a typical behav-
ior for beams. Elasticity of beams is characterized by the
flexural rigidity K (in beams, the flexural rigidity is clas-
sically denoted EI, where E is the Young’s modulus and
I the moment of inertia of the cross sections). Due to long
distance interactions, magnetic forces between each dipole
induce restoring forces which are more complex than a

0 5 10 15 20
0,14

0,15

0,16

0,17

0,18

1 100
0

0,2

K̄
∞

Mode

K̄
e
q

n− 1

Fig. 6: Normalized equivalent bending rigidity for n → ∞

as function of the mode number; (◦), clamped-free bound-
ary conditions; (×), pinned-pinned boundary conditions; (+),
clamped-clamped boundary conditions; (− − −), value pre-
dicted in reference [6] for a ring. Inset : Equivalent bending
rigidity normalized by µ0m

2/πD2 as function of n − 1; (o),
mode 1; (�), mode 2; (∆); mode 3.

purely elastic bending restoring force. However, we seek
here to approach the macroscopic chain behavior through
a unique flexural rigidity coefficient Keq. The latter is es-
timated calculating the flexural rigidity which gives the
same eigenfrequency for a given mode. The ith circular
eigenfrequency of a clamped-free beam reads [23]

ω2
i =

λ4
i

l4
K

ρ
, (12)

where ρ is the mass per unit length of the beam, l its length
and λi is the ith solution of the characteristic equation
cosλ coshλ + 1 = 0. Using parameters of the present
problem, the equivalent flexural rigidity can be written in
the following form:

K̄eq = Keq

πd2

µ0µ2
=

(

n− 1

λi

)4

ω̄2
i . (13)

The quantity K̄eq is plotted in the inset of Fig. 6 as
function of n−1 for the three first modes. Although slight
differences exist, the same trend can be observed for the
three curves: a monotonic increase of K̄eq and a conver-
gence to a limit value around 0.16. Let us define the limit
value K̄∞ = limn→∞ K̄eq. This quantity is then plotted
as function of the mode number on Fig. 6. For complete-
ness, the same quantity is plotted in the pinned-pinned
and clamped-clamped cases.
For large values of the mode number, K̄∞ converges

to ∼ 0.171. In reference [6], the energy of a circular
ring of magnetic spheres was calculated and its asymp-
totic value when the number of spheres reaches infinity
was utilized to calculate an equivalent bending rigidity as
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Keq ∼ 0.239B2d4/16µ0, where B is the magnetic strength
of the magnet. Expressed in the parameters’ set of the
present article, this gives Keq ∼ 0.171µ0µ/πd

2 and is rep-
resented as a dashed line in Fig. 6. It can then be ob-
served that the same value is obtained here, but only for
higher modes. The fact that a smaller equivalent bend-
ing rigidity is found for lower modes can be explained by
side effects. Indeed, as the mode number increases all
modes approach a sinusoidal shape except at boundaries.
Hence the number of sinusoidal oscillations contained in
the mode increases and boundary effects see their influ-
ence decreasing. Note that an equivalent bending rigidity
has also been found in the case of a continuous filament
in an applied magnetic field [24].

Lagrange’s multipliers, which can be calculated for a
given system evolution, represent reaction forces due to
the constraints. Thus, the contact force exerted by the
ith dipole on the (i + 1)th dipole is αi ex + βi ey [21]. At
each contact point, the normal force Ni and the friction
force Ti are the components of this contact force which
are parallel and perpendicular to the line joining the two
dipoles. According to Coulomb’s law, there is no slipping
between the two dipoles while the ratio

Ti

Ni

≃
βi

αi

−

(

1 +

(

βi

αi

)2
)

(v̄i+1 − v̄i) (14)

is lower than the coefficient of friction. For nickel-nickel
contacts, this coefficient is ∼ 0.3.

The ratio in equation (14) depends only on non dimen-
sional parameters of the problem. Let us consider the
displacement of the chain along a single eigenmode at a
maximum amplitude of displacement of half the length.
Under these circumstances, for modes 1 and 2 and for any
number of dipoles in the chain, it has been verified with
the model that the ratio Ti/Ni never reaches the friction
coefficient, thus validating the rolling assumption.

Conclusion. – In this article, the linear dynamics of
a chain of magnetic dipoles has been characterized theo-
retically and experimentally. First, the linear dynamics
has been described in the form of an eigenvalue problem.
Next, experiments in the clamped-free setup have been
performed and experimental eigenfrequencies have been
successfully compared to the theoretical ones. Finally, the
chain has been described in terms of an equivalent beam.
An equivalent bending rigidity has been computed for each
mode and it is found that when the number of dipoles be-
comes large, it scales as K̄µ0µ

2/πd2, where K̄ is comprised
between 0.145 and 0.171. For higher order eigenmodes,
whatever the boundary conditions we applied, K̄ tends
to the value found in reference [6] where the energy of a
circular ring was calculated. The difficulty introduced by
using magnets has been demonstrated. Indeed, impurities
that accumulate on the contact lines between two consec-
utive cylinders introduced discrepancies between theory
and experiments that are difficult to get rid of. Once this

experimental difficulties have been treated, future work on
such systems may include non linear effects, other configu-
rations, or other boundary conditions pointing to mechan-
ical behavior which cannot be described by classic elastic
theory. The study of similarities between this discrete sys-
tem and continuous structures permanently magnetized
[18] is also of great interest.
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