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Abstract

In order to address the imprecision often introduced by widening operators in static analy-
sis, policy iteration based on min-computations amounts to considering the characterization of
reachable value set of a program as an iterative computation of policies, starting from a post-
fixpoint. Computing each policy and the associated invariant relies on a sequence of numerical
optimizations. While the early research efforts relied on linear programming (LP) to address
linear properties of linear programs, the current state of the art is still limited to the analysis of
linear programs with at most quadratic invariants, relying on semidefinite programming (SDP)
solvers to compute policies, and LP solvers to refine invariants.

We propose here to extend the class of programs considered through the use of Sums-of-
Squares (SOS) based optimization. Our approach enables the precise analysis of switched sys-
tems with polynomial updates and guards. The analysis presented has been implemented in
Matlab and applied on existing programs coming from the system control literature, improving
both the range of analyzable systems and the precision of previously handled ones.

1 Introduction
A wide set of critical systems software including controller systems, rely on numerical computations.
Those systems range from aircraft controllers, car engine control, anti-collision systems for aircrafts
or UAVs, to nuclear powerplant monitors and medical devices such a pacemakers or insulin pumps.

In all cases, the software part implements the execution of an endless loop that reads the sensor
inputs, updates its internal states and controls actuators. However the analysis of such software is
hardly feasible with classical static analysis tools based on linear abstractions. In fact, according
to early results in control theory from Lyapunov in the 19th century, a linear system is defined
∗The work was done when the author was at IRIT, Université Paul Sabatier at Toulouse and was supported by
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as asymptotically stable iff it satisfies the Lyapunov criterion, i.e. the existence of a quadratic
invariant. In this view, it is important to develop new analysis tools able to support quadratic or
richer polynomial invariants.

x ∈ X in ;
wh i l e (r0

1 ( x )10 and . . . and r0
n0 ( x )10){

case (r1
1 ( x )10 and . . . and r1

n1 ( x )1 0 ) : x = T 1 ( x ) ;
case . . .
case (ri1 ( x )10 and . . . and rini ( x )1 0 ) : x = T i ( x ) ;

}

(a) A one-loop program with a switch-case loop body.

Let X0 = {y | r0
1(y) 1 0 and . . . and r0

n0(y) 1 0}
and for all cases i, Xi = {y | ri1(y) 1 0 and . . . and rini(y) 1 0}.

We can define the discrete-time switched system:

x0 ∈ X in, ∀ k ∈ N, xk+1 = T (xk), where T (x) = T i(x) if x ∈ Xi ∩X0

(b) The discrete-time switched system correspondence of the program.

Figure 1: One-loop programs with switch-case loop body and its representation as a switched
system.

While most controllers are linear, their actual implementation is always more complex. e.g. in
order to cope with safety, additional constructs such as antiwindups or saturations are introduced.
Another classical approach is the use of linear parameter varying controllers (LPV) were the gains
of the linear controller vary depending on conditions: this becomes piecewise polynomial controllers
at the implementation level.

We are interested here in bounding the set of reachable values of such controllers using sound
analyses, that is computing a sound over approximation of reachable states. We specifically focus
on a class of programs larger than linear systems: constrained piecewise polynomial systems.

A loop is performed while a conjunction of polynomial inequalities1 is satisfied. Within this loop,
different polynomial updates are performed depending on conjunctions of polynomial constraints.
This class of programs is represented in Fig. 1a. The program can be analyzed through its switched
system representation (see Fig. 1b). In the obtained system, the conditions to switch are only
governed by the state variable: at each time k, we consider the dynamics T i such that xk ∈ Xi.
So, the switch conditions do not depend on the time (we do not consider the time when we reach
Xi) and are not defined from random variables.

From the point-of-view of the dynamical systems or control theory, to find an over-approximation
of reachable values set of a program of the class described in Fig. 1a can be reduced to find a positive
invariant of its switched system representation (see Fig. 1b).

Moreover, the class of switched systems where the switch conditions only depend on the state
variable is classical in control theory and includes the nonlinear systems with dead-zone, saturation,

11 is either the strict < or the weak (≤) comparison operator over reals.
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resets or hysteresis.

Related Works

Reachability analysis is a long-standing problem in dynamical systems theory, especially when the
system dynamics is nonlinear. In the particular case of polynomial systems, this problem has
recently attracted several research efforts.

In [WLW13], the authors use a method based on sublevel sets of polynomials to analyze the
reachable set of a continuous time polynomial system with initial/general constraints being en-
coded by semialgebraic sets. Their method relies on a so-called iterative advection algorithm
based on Sums-of-Squares (SOS) and semidefinite programming (SDP) to compute either inner
of outer approximation of the backward reachable set, also named domain of attraction (DoA).
The stability analysis of continuous-time hybrid systems with SOS certificates was investigated
in [PP09]. [PTT16] have recently applied analogous techniques to perform stability analysis and
controller synthesis in the context of robotics. Other studies rely on SOS reinforcement and moment
relaxations to obtain hierarchies of approximations converging to sets of interest such as the DoA
in continuous-time, either from outside in [HK14] or from inside in [KHJ12]. This approach relies
on a linearization of the ordinary differential equation involved in the polynomial system, based
on Liouville’s Equation satisfied by adequate occupation measures. This framework has been ex-
tended to hybrid systems in [SVBT14], as well as to synthesis of feedback controllers in [MVTT13].
Liouville’s Equation can also be used to approximate other sets of interest, such as the maximal
controlled invariant for either discrete- or continuous-time systems (see [KHJ14]).

By contrast with these prior works, our approach focuses on computing over approximation of
the forward reachable set of a discrete-time polynomial system with finitely many guards, thanks
to an algorithm relying on SOS and template policy iterations.

Template abstractions were introduced in [SSM04] as a way to define an abstraction based
on an a-priori known vector of templates, i.e. numerical expressions over the program variables.
An abstract element is then defined as a vector of reals defining bounds bi over the templates pi:
pi(x1, . . . , xd) ≤ bi.

Initially templates were used in the classical abstract interpretation setting to compute Kleene
fixpoints with linear functions pi. Typically, the values of the bound bi increases during the fixpoint
computation until convergence to a post-fixpoint.

Later in [AGG10] the authors proposed to consider generalized templates including quadratic
forms and compute directly the fixpoint of these template-based abstractions using numerical opti-
mization. When considering the sub-class of linear programs, fixpoints can be computed by using
a finite sequence of linear (LP) and semidefinite (SDP) optimization problems.

Two dual approaches, respectively called Max-policies and Min-policies, can be applied. Max-
policies [GS07] iterate from initial states and compute policies as relaxations through rewriting of
an optimization problem (forgetting about rank conditions). Min-policies [GGTZ07, AGG10] rely
on duality principle and determine a policy through the computation of a Lagrange multiplier.

Contributions

The present paper is a followup of [AGM15], in which Sums-of-Squares (SOS) programming is
used to analyze properties (such as boundedness or safety) of piecewise discrete polynomial sys-
tems. The main contribution is the extension of the Min-policy iteration algorithm to improve the
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precision of the analysis of boundedness for such systems. Here, we develop a policy iteration on
template domains based on polynomials. The current approach improves the previous frameworks
developed in [GGTZ07, AGG12] to handle affine (or very specific) piecewise affine systems with
quadratic templates and semidefinite programming. This improvement comes from the use of SOS
programming to develop an SOS extension of a relaxed functional, sharing the same properties as
the one defined in [AGG12]. In particular, we show, as in [Adj14], that this policy iteration has
the desired convergence guarantees.

Organization of the paper

The paper is structured as follows: we characterize the class of programs considered – constrained
piecewise discrete-time polynomial systems – together with their collecting semantics as a least
fixpoint. Then, in Section 3, we recall definitions of generalized templates, their expression as
an abstract domain and the definition of the abstract transfer function. Section 4 proposes an
abstraction of the transfer function using an SOS reinforcement, while Section 5 relies on this
abstraction to perform policy iteration. Finally Section 6 presents experiments.

2 Constrained Piecewise Discrete-Time Polynomial Systems: Def-
inition and Collecting Semantics

In this paper, we are interested in proving automatically that the set of values taken by the vari-
ables of the analyzed program is bounded. In the rest of the paper, we analyze the program by
decomposing it using its dynamic system representation. The boundedness problem is thus reduced
to prove that the set of all the possible trajectories of a dynamical system is bounded. Since the
analyzed program has the form depicted by Figure 1a, we consider the special class of discrete-time
dynamical systems introduced in Figure 1b that is:

(i) their dynamic law T is a piecewise polynomial function, and

(ii) the state variable x is constrained to live in some given basic semi-algebraic set2.

We recall that a set is a basic semi-algebraic set if and only if it can be represented as a
conjunction of strict or weak polynomial inequalities (“basic” means that no disjunction occurs).
Note that T is a piecewise polynomial function with respect to a given partition, meaning that if
we restrict T to be an element of the partition then T is a polynomial function.

We now give a formal definition of constrained piecewise discrete-time polynomial system (PPS
for short).

First to define a PPS, we need a partition. Let I be a finite set of partition labels and X =
{Xi ⊆ Rd | i ∈ I} be a partitioning, that is a given family of basic semi-algebraic sets satisfying
the following: ⋃

i∈I
Xi = Rd, ∀ i, j ∈ I, i 6= j ⇒ Xi ∩Xj = ∅ . (1)

Each setXi of the partition corresponds to a case in the loop body of the program given in Figure 1a
as the cases are assumed to be disjoint. By definition of basic semi-algebraic sets, it follows that

2For instance membership of the sub-level set {x ∈ Rd | 1 − ‖x‖2
2 ≤ 0}, thus this does not entail boundedness of

variable values.

4



for all i ∈ I, there exists a family of ni polynomials {rij , j ∈ [ni]} such that:

Xi =
{
x ∈ Rd | rij(x) 1 0 ∀ j ∈ [ni]

}
. (2)

where 1 is either < or ≤ and [ni] denotes the set {1, . . . , ni}. Eq. (2) matches with the program
given in Figure 1a. Guards are defined as conjunctions of polynomial inequalities and thus are
basic semi-algebraic sets.

The second tool needed to define a PPS is the piecewise polynomial dynamic relative to the
partition. Let T : Rd 7→ Rd be a piecewise polynomial function w.r.t. to the partitioning X . By
definition, there exists a family of polynomials {T i : Rd 7→ Rd, i ∈ I} such that for all i ∈ I:

T (x) = T i(x), ∀x ∈ Xi . (3)
Eq. (3) matches with the polynomial updates in Figure 1a.

Finally, it remains to define the initialization and the set where the state variable lies. Let
X in and X0 be two basic semi-algebraic sets of Rd, X in supposed to be compact, i.e. closed and
bounded. The two sets can be represented as in Eq. (2) using their respective family of nin and n0
polynomials:

X in =
{
x ∈ Rd | rin

j (x) 1 0 ∀ j ∈ [nin]
}

and X0 =
{
x ∈ Rd | r0

j (x) 1 0 ∀ j ∈ [n0]
}
,

where for all j ∈ [nin], rin
j : Rd 7→ R and for all k ∈ [n0], r0

k : Rd 7→ R is a polynomial.
The set X in and X0 respectively denote the set of initial states of the program and the set

which defines the loop condition in Figure 1a.
Let X be the family of sets {Xi, i ∈ I} satisfying Eq. (1) and T be the family of functions

{T i, i ∈ I} satisfying Eq. (3). We define the PPS associated to the quadruple (X in, X0,X , T ) as
the system satisfying the following dynamic:

x0 ∈ X in, and ∀ k ∈ N, if xk ∈ X0, xk+1 = T (xk) . (4)

In the rest of the paper, a PPS dynamical system is identified by a quadruple (X in, X0,X , T ).

Example 2.1 (Running example). We consider the following running example corresponding to a
slightly modified version of [AJ13, Example 3]. By comparison with [AJ13, Example 3], the semi-
algebraic set X1 (resp. X2) is introduced to represent conditions under which we use the polynomial
update T 1 (resp. T 2). The PPS is the quadruple (X in, X0, {X1, X2}, {T 1, T 2}), where:

X in = [−1, 1]× [−1, 1]
X0 = R2 and

{
X1 = {x ∈ R2 | −x2

1 + 1 ≤ 0}
X2 = {x ∈ R2 | x2

1 − 1 < 0}

and the family of functions {T 1, T 2}, defined as follows:

T 1(x1, x2) =
(

0.687x1 + 0.558x2 − 0.0001x1x2
−0.292x1 + 0.773x2

)
and

T 2(x1, x2) =
(

0.369x1 + 0.532x2 − 0.0001x2
1

−1.27x1 + 0.12x2 − 0.0001x1x2

)

Its (discretized) reachable value set is simulated and depicted at Figure 2.
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Figure 2: Running example simulation

We recall that our objective is to prove automatically that the set of the possible trajectories
of the system is bounded. This set, also called the reachable values set or the collecting semantics
of the system, is defined as follows:

R =
⋃
k∈N

T
(k)
|X0

(X in) (5)

where T|X0 is the restriction of T over X0.The notation T (k)
|X0

stands for composing k-times the map
T|X0 .

To prove this boundedness property, we can compute R and do some analysis to prove that R
is bounded. Nevertheless, the computation of R cannot be done in general and instead, we have to
compute an over-approximation of R and show that this approximation is bounded.

The usual abstract interpretation methodology to characterize and to construct this over-
approximation relies on the representation of R as the smallest fixed point of a monotone map
over a complete lattice. In other words, R satisfies:

R = T (R ∩X0) ∪X in =
⋃
i∈I

T i(R ∩X0 ∩Xi) ∪X in .

Let us define ℘(Rd) the set of subsets of Rd and introduce the function F : ℘(Rd) 7→ ℘(Rd) defined
for all C ∈ ℘(Rd) by:

F (C) = T (C ∩X0) ∪X in =
⋃
i∈I

T i(C ∩X0 ∩Xi) ∪X in . (6)

Thus, R is the smallest fixed point of F and from Tarski’s Theorem, since F is monotone and
℘(Rd) is a complete lattice:

R = min{C ∈ ℘(Rd) | F (C) ⊆ C} . (7)
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Finally to compute an over-approximation of R it suffices to compute a set C such that F (C) ⊆ C.
A set C which satisfies F (C) ⊆ C is called an inductive invariant3.

The rest of the paper addresses the computation of a sound over-approximation of R using its
definition as the smallest fixpoint of F (Eq. (7)).

3 Basic Semi-algebraic Inductive Invariants Set
An easy way to over-approximate the set of reachable values is to restrict the set of inductive
invariants that we consider. We propose to restrict the class of such invariants to basic semi-
algebraic sets using template abstractions. A template abstraction consists of representing a given
set as the intersection of sublevel sets of a-priori fixed functions depending on the state variables.
Such functions are called templates. Then computing an inductive invariant in the templates
domain boils down to providing, for each template p, a bound w(p) such that the intersection over
the templates p of sublevel sets {x ∈ Rd | p(x) ≤ w(p)} is an inductive invariant. In our context, a
template is simply an a-priori fixed multivariate polynomial.

The overall method is not new and corresponds to a specialization of the templates abstraction
(see [AGG10, AGG12]) to polynomial templates. However, in practice, the method developed
in [AGG10, AGG12] is restricted to template polynomials of degree 2 (quadratic forms) and affine
systems or a very restricted class of piecewise affine systems.

Next we give formal details about the polynomial template abstraction and the equations that
must satisfy the template bounds vector w to generate an inductive invariant. From now on, we
denote by P the set of templates and by F

(
P,R

)
the set of functions from P to R = R∪{−∞,+∞}.

We equip F
(
P,R

)
with the functional partial order ≤F i.e. v ≤F w iff v(p) ≤ w(p) for all p ∈ P.

Let w ∈ F
(
P,R

)
. The sets that we consider are of the form:

w? = {x ∈ Rd | p(x) ≤ w(p),∀ p ∈ P} . (8)

Example 3.1. Let us define q1(x) = q1(x1, x2) = x2
1, q2(x) = q2(x1, x2) = x2

2 and let us con-
sider a well-chosen polynomial p of degree 6. We will explain in Subsection 5.3 how to generate
automatically this template p. Let us define Prun := {q1, q2, p}.

Consider the function w0 over Prun, w0(q1) = w0(q2) = 2.1391 and w0(p) = 0, the set w0? =
{(x1, x2) ∈ R2 | x2

1 ≤ w0(q1), x2
2 ≤ w0(q2), p(x) ≤ w0(p)} is presented in Figure 3.

Now let us take the function w1 over Prun defined by w1(q1) = 1.5503, w1(q2) = 1.9501 and
w1(p) = 0, the set w1? = {(x1, x2) ∈ R2 | x2

1 ≤ w1(q1), x2
2 ≤ w1(q2), p(x) ≤ w1(p)} is also

presented in Figure 3.
Since the set of black dots in Figure 3 belongs to w0? and w1?, we guess that w0? and w1?

contain both the reachability set of the system from Example 2.1. To formally prove it, one way is
to show that they are also inductive invariants for this system.

We restrict the class of inductive invariants to those of the form (8) and characterize the
inductiveness for such sets. Since each polynomial template p is fixed, the considered variables
that we handle are the template bounds w ∈ F

(
P,R

)
. Therefore, we need to translate the

3In the dynamical systems theory, the inductive invariant sets are called positive invariant.
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The semialgebraic set of gray denotes the set w0? of Example 3.1 since p(x) ≤ 0 is included in
x2
i ≤ 2.1391, for i ∈ [1, 2]. The dark gray region denotes the semialgebraic set w0?. Black dots are

actual reachable states of R obtained by simulation.

Figure 3: Semialgebraic sets w? for Example 3.1

inductiveness of the sets w? into inequalities on w. By definition the set w? is an inductive invariant
iff F (w?) ⊆ w?, that is: ⋃

i∈I
T i(w? ∩X0 ∩Xi) ∪X in ⊆ w? .

By definition, w? is an inductive invariant iff:

∀ p ∈ P, ∀x ∈
⋃
i∈I

T i(w? ∩X0 ∩Xi) ∪X in, p(x) ≤ w(p) .

Using the definition of the supremum, w? is an inductive invariant iff:

∀ p ∈ P, sup
x ∈

⋃
i∈I

T i(w? ∩X0 ∩Xi) ∪X in
p(x) ≤ w(p) .

Now, let us consider p ∈ P. Using the fact that for all A,B ⊆ Rd and for all functions f ,
sup
A∪B

f = sup{sup
A
f, sup

B
f}:

sup
x∈
⋃
i∈I T

i(w?∩X0∩Xi)∪Xin
p(x) = sup

{
sup
i∈I

sup
x∈T i(w?∩X0∩Xi)

p(x), sup
x∈Xin

p(x)
}

.

By definition of the image:

sup
x∈
⋃
i∈I T

i(w?∩X0∩Xi)∪Xin
p(x) = sup

{
sup
i∈I

sup
y∈w?∩X0∩Xi

p(T i(y)), sup
x∈Xin

p(x)
}

.
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Next, we introduce the following notation, for all p ∈ P:

F ]i (w)(p) := sup
x∈w?∩Xi∩X0

p(T i(x)) and X in†(p) := sup
x∈Xin

p(x) .

Finally, we define the function from F
(
P,R

)
to itself, for all w ∈ F

(
P,R

)
:

F ](w) := sup
{

sup
i∈I

F ]i (w), X in†
}
.

Note that ], † correspond exactly to the notations used in [AGG10]. By construction we obtain the
following proposition:

Proposition 3.1. Let w ∈ F
(
P,R

)
. Then w? is an inductive invariant (i.e. F (w?) ⊆ w?) iff

F ](w) ≤F w.

From Prop. 3.1, inf{w ∈ F
(
P,R

)n
| F ](w) ≤F w} identifies the smallest inductive invariant

w? of the form (8).

Example 3.2. Let us consider the system defined at Example 2.1. Let us consider the same
templates basis Prun from Example 3.1 i.e. Prun = {q1, q2, p} where q1(x) = x2

1, q2(x) = x2
2 and p

is a well-chosen polynomial of degree 6. Let w ∈ F
(
Prun,R

)
. For i = 1 and the templates q1, we

have:
F ]1(w)(q1) = sup

−x2
1+1≤0

x2
1≤w(q1), x2

2≤w(q2), p(x)≤w(p)

(0.687x1 + 0.558x2 − 0.0001x1x2)2 .

Indeed, X1 = {x ∈ R2 | −x2
1 + 1 ≤ 0} and X0 = R2 and the dynamics associated with X1

is the polynomial function T 1 defined for all x ∈ R2 by: T 1(x) =
(

0.687x1+0.558x2−0.0001x1x2
−0.292x1+0.773x2

)
.

Since q1 computes the square of the first coordinates, this yields q1(T 1(x)) = (0.687x1 + 0.558x2 −
0.0001x1x2)2.

With w ∈ F
(
P,R

)
, computing F ](w) boils down to solving a finite number of nonconvex

polynomial optimization problems. General methods do not exist to solve such problems. In
Section 4, we propose a method based on Sums-of-Squares (SOS) to over-approximate F ](w).

4 SOS-based Relaxed Semantics
In this section, we introduce the relaxed functional on which we will compute a fixpoint, yielding
a further over-approximation of the set R of reachable values. This relaxed functional is con-
structed from a Lagrange relaxation of maximization problems involved in the evaluation of F ] and
Sums-of-Squares strengthening of polynomial nonnegativity constraints. First, we recall manda-
tory background related to Sums-of-Squares and their application in polynomial optimization. The
interested reader is referred to [Las09] for more details.
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4.1 Sums-of-Squares Programming

Let R[x]2m stands for the set of polynomials of degree at most 2m and Σ[x] ⊂ R[x] be the cone of
Sums-of-Squares (SOS) polynomials, that is Σ[x] := {∑i q

2
i , with qi ∈ R[x] }.

Our work will use the simple fact that for all q ∈ Σ[x], then q(x) ≥ 0 for all x ∈ Rd as the set
Σ[x] contains only nonnegative polynomials. In other words, for any given polynomial q, we can
strengthen the constraint of q being nonnegative into the existence of an SOS decomposition of q.

For q ∈ R[x]2m, finding an SOS decomposition ∑i q
2
i = q valid over Rd is equivalent to solve

the following matrix linear feasibility problem:

q(x) = bm(x)T Qbm(x) , ∀x ∈ Rd, (9)

where bm(x) := (1, x1, . . . , xd, x
2
1, x1x2, . . . , x

m
d ) (the vector of all monomials in x up to degree m)

and the Gram matrix Q, being a semidefinite positive matrix (i.e. all the eigenvalues of Q are
nonnegative). The size of Q (as well as the length of bm) is

(d+m
d

)
.

Example 4.1. Consider the bi-variate polynomial q(x) := 1 + x2
1 − 2x1x2 + x2

2. With b1(x) =
(1, x1, x2), one looks for a semidefinite positive matrix Q such that the polynomial equality q(x) =
b1(x)T Qb1(x) holds for all x ∈ R2. The matrix

Q =

1 0 0
0 1 −1
0 −1 1


satisfies this equality and has three nonnegative eigenvalues, which are 0, 1, and 2, respectively asso-
ciated to the three eigenvectors e0 := (0, 1/

√
2, 1/
√

2)ᵀ, e1 := (1, 0, 0)ᵀ and e2 := (0, 1/
√

2,−1/
√

2)ᵀ.

Defining the matrices L := (e1 e2 e0) =
( 1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

)
and D =

( 1 0 0
0 2 0
0 0 0

)
, one obtains the decompo-

sition Q = LᵀDL and the equality q(x) = (L b1(x))T D (L b1(x)) = σ(x) = 1 + (x1 − x2)2, for all
x ∈ R2. The polynomial σ is called an SOS certificate and guarantees that q is nonnegative.

In practice, one can solve the general problem (9) by using semidefinite programming (SDP)
solvers (e.g. Mosek [AA00], SDPA [YFN+10], CSDP [Bor99]). For more details about SDP, we
refer the interested reader to [VB94].

The SOS reinforcement of polynomial optimization problems consists of restricting polynomial
nonnegativity to being an element of Σ[x]. In case of polynomial maximization problems, the SOS
reinforcement boils down to computing an upper bound of the real optimal value. For example
let p ∈ R[x] and consider the unconstrained polynomial maximization problem sup{p(x), x ∈ Rd}.
Applying SOS reinforcement, we obtain:

sup{p(x), x ∈ Rd} = inf{η | η − p(x) ≥ 0} ≤ inf{η | η − p(x) ∈ Σ[x]} . (10)

Now, let p, q ∈ R[x] and consider the constrained polynomial maximization problem: sup{p(x)|q(x) ≤
0, x ∈ Rd}. Let λ ∈ Σ[x], then:

sup
q(x)≤0, x∈Rd

p(x) ≤ sup
x∈Rd

p(x)− λ(x) · q(x) .

Indeed, suppose q(x) ≤ 0, then −λ(x)q(x) ≥ 0 and p(x) ≤ p(x) − λ(x)q(x). Finally taking the
supremum over {x ∈ Rd | q(x) ≤ 0} provides the above inequality. Since sup{p(x)−λ(x) ·q(x), x ∈

10



Rd} is an unconstrained polynomial maximization problem then we apply an SOS reinforcement
(as in Eq. (10)) and we obtain:

sup
q(x)≤0, x∈Rd

p(x) ≤ sup
x∈Rd

p(x)− λ(x) · q(x) ≤ inf{η | η − p− λq ∈ Σ[x]} .

Finally, note that this latter inequality is valid whatever λ ∈ Σ[x] and so we can take the infimum
over λ ∈ Σ[x] which leads to:

sup
q(x)≤0, x∈Rd

p(x) ≤ inf
λ∈Σ[x]

sup
x∈Rd

p(x)− λ(x) · q(x) ≤ inf
η−p−λq∈Σ[x]

λ∈Σ[x]

η . (11)

In Eq. (11), λ is an SOS polynomial but to exploit linear programming solvers in policy iterations
(see the fourth assertion of Prop. 5.2) we restrict λ to be a nonnegative scalar and in this case, since
positive scalars are sum-of-squares polynomials of degree 0, we obtain a safe over-approximation of
the right-hand-side of Eq. (11).

In presence of several constraints, we assign to each constraint an element σ ∈ Σ[x], and we
consider the product of σ with its associated constraint and then the sum of all such products.
This sum is finally added to the objective function.

The use of such SOS polynomials for constrained polynomial optimization problem can be seen
as a generalization of the S-procedure from [Yak77]. We refer to [Las01] or [Par03] for applications
in control. Note that the existence of SOS decompositions of positive polynomials over compact
sets is ensured by the Putinar Positivstellensatz from [Put93].

4.2 Relaxed semantics

The computation of F ] as a polynomial maximization problem cannot be directly performed us-
ing numerical solvers. We use the SOS reinforcement mechanisms described above to relax the
computation and characterize an abstraction of F ].

We still assume the knowledge of the template basis P, involving polynomials of degree at most
2m. Let us define F (P,R+) the set of nonnegative functions over P i.e. g ∈ F (P,R+) iff for all
p ∈ P, g(p) ∈ R+. Let p ∈ P and w ∈ F

(
P,R

)
. Starting from the definition of F ]i , one obtains the

11



following:(
F ]i (w)

)
(p) = sup

q(x)≤w(q), ∀q∈P
rij(x)≤0, ∀ j∈[ni]
r0
k(x)≤0, ∀ k∈[n0]

p(T i(x))

≤ inf
λ∈F(P,R+)

σ∈Σ[x],µl∈Σ[x],γl∈Σ[x]
deg(σ)≤2m deg T i

deg(µlril )≤2m deg T i
deg(γlr0

l )≤2m deg T i

sup
x∈Rd

p(T i(x)) +
∑
q∈P

λ(q)(w(q)− q(x))

−
ni∑

l=1
µl(x)ril(x)−

n0∑
l=1

γl(x)r0
l (x)

≤ inf
λ,σ,µl,γl,η

η

s. t.


η − p ◦ T i −

∑
q∈P

λ(q)(w(q)− q) +
ni∑

l=1
µlr

i
l +

n0∑
l=1

γlr
0
l = σ ,

λ ∈ F (P,R+) , σ ∈ Σ[x], µl ∈ Σ[x], γl ∈ Σ[x], η ∈ R ,
deg(σ) ≤ 2mdeg T i ,
deg(µlril) ≤ 2m deg T i, deg(γlr0

l ) ≤ 2mdeg T i .
(using an SOS reinforcement to remove the sup)

We denote by Σ[x]n the set of n-tuples of SOS polynomials. For clarity purpose, the dependency
on i is omitted within the notations of the multipliers µl and γl. Moreover, let us write ∑ni

l=1 µlr
i
l

(resp. ∑n0
l=1 γlr

0
l ) as 〈µ, ri〉 (resp. 〈γ, r0〉). Finally, we write

(
FRi (w)

)
(p) the over-approximation of(

F ]i (w)
)
(p), defined as follows:(
FRi (w)

)
(p) = inf

λ,σ,µ,γ,η
η

s. t.


η − p ◦ T i −

∑
q∈P

λ(q)(w(q)− q) + 〈µ, ri〉+ 〈γ, r0〉 = σ

λ ∈ F (P,R+) , σ ∈ Σ[x], µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 , η ∈ R ,
deg(σ) ≤ 2mdeg T i, deg(〈µ, ri〉+ 〈γ, r0〉) ≤ 2mdeg T i .

(12)

In Equation (12), the notation λ is a vector of Lagrange multipliers. Each multiplier is associated
with a constraint constructed from a template i.e. a constraint q(x)−w(q) ≤ 0. We also introduce
the vector of SOS polynomials µ and γ. Their role is to take into account the presence of the
constraints x ∈ Xi and x ∈ X0 in the computation of

(
FRi (w)

)
(p). Recall that Xi and X0 are

basic semi-algebraic sets, then the size of the vectors µ and γ are equal to the number of polynomials
defining Xi and X0.

We conclude that, for all i ∈ I, the evaluation of FRi can be done using SOS programming,
since it is reduced to solve a minimization problem with a linear objective function and linear
combination of polynomials constrained to be sum-of-squares.

Note that FRi defined at Eq. (12) is the SOS extension of the relaxed function defined in [AGG12].
Indeed, considering the special case where T i is affine, the templates p, q and the test functions ri,
r0 are quadratic, the vectors µi and γi are restricted to be nonnegative scalars, then FRi corresponds
to the relaxed function defined in [AGG12] at Eq. (3.12).

Example 4.2. We still consider the running example defined at Example 2.1 and take again the
same templates basis Prun of Example 3.1 composed of q1 : x 7→ x2

1 and q2 : x 7→ x2
2. and a
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well-chosen polynomial p of degree 6. For the index of the partition i = 1. Recall that T 1(x) =(
0.687x1+0.558x2−0.0001x1x2

−0.292x1+0.773x2

)
and X1 = {x ∈ R2 | −x2

1 + 1 ≤ 0} and thus r1
1(x) = −x2

1 + 1. Let

w ∈ F
(
Prun,R

)
, then:(
FR1 (w)

)
(q1) =

inf
λ,σ,µ,η

η

s. t.


η − (0.687x1 + 0.558x2 − 0.0001x1x2)2 − λ(q1)(w(q1)− x2

1)
−λ(q2)(w(q2)− x2

2)− λ(p)(w(p)− p(x)) + µ(x)(1− x2
1) = σ(x)

λ ∈ F (P,R+) , σ ∈ Σ[x], µ ∈ Σ[x], η ∈ R ,
deg(σ) ≤ 6, deg(µ) ≤ 6 .

In practice, one cannot find any feasible solution of degree less than 6, thus we replace the degree
constraint by the more restrictive one: deg(σ) ≤ 6, deg(µ) ≤ 6.

The computation of F ] requires the approximation of X in† := sup{p(x), x ∈ X in}. Since X in is
a basic semi-algebraic set and each template p is a polynomial, then the evaluation of X in† boils
down to solving a polynomial maximization problem. Next, we use SOS reinforcement described
above to over-approximate X in† with the set X inR, defined as follows:

X inR(p) := inf

η
∣∣∣∣∣∣∣

η − p+ 〈νnin , rnin〉 = σ0,
η ∈ R, σ0 ∈ Σ[x], νin ∈ Σ[x]nin ,

deg(σ0) ≤ 2m,deg(〈νnin , rnin〉) ≤ 2m

 .

Thus, the value of X inR(p) is obtained by solving an SOS optimization problem. Since X in is a
nonempty compact basic semi-algebraic set, this problem has a feasible solution (see the proof of
[Las01, Th. 4.2]), ensuring that X inR(p) is finite valued.

Example 4.3. The initialization set X in of Example 2.1 is [−1, 1]× [−1, 1]. It can be written as:
{(x1, x2) ∈ R2 | x2

1−1 ≤ 0, x2
2−1 ≤ 0}. Then, considering the same template basis of Example 4.2

and the template q1:

X inR(q1) := inf

η
∣∣∣∣∣∣∣
η − x2

1 + νnin
1 (x)(x2

1 − 1) + νnin
2 (x)(x2

2 − 1) = σ0(x),
η ∈ R, σ0 ∈ Σ[x], νin

1 , ν
in
2 ∈ Σ[x],

deg(σ0) ≤ 6,deg(〈νnin
1 ) ≤ 6,deg(〈νnin

2 ) ≤ 6

 .

It is easy to see that taking for all x ∈ R2, νnin
1 (x) = 1 and for all x ∈ R2, νnin

2 (x) = 0 leads
to η − x2

1 + νnin
1 (x)(x2

1 − 1) + νnin
2 (x)(x2

2 − 1) = η − 1 = σ0(x). Thus for η = 1 and for all
x ∈ R2, σ0(x) = 0, we obtain X inR(q1) ≤ 1. We will see at Prop. 4.1, that X in† ≤F X inR. Thus,
since X in†(q1) = sup{x2

1 | (x1, x2) ∈ [−1, 1] × [−1, 1]} = 1, we conclude that 1 ≤ X inR(q1) and
X inR(q1) = 1.

Finally, we define the relaxed functional FR for all w ∈ F
(
P,R

)
for all p ∈ P as follows:

(
FR(w)

)
(p) = sup

{
sup
i∈I

(
FRi (w)

)
(p), X inR(p)

}
. (13)

As we followed the construction proposed in Section 4.1, the relaxed functional FR provides a safe
over-approximation of the abstract semantics F ].
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Proposition 4.1 (Safety). The following statements hold:

1. X in† ≤F X inR;

2. For all i ∈ I, for all w ∈ F
(
P,R

)
, F ]i (w) ≤F FRi (w);

3. For all w ∈ F
(
P,R

)
, F ](w) ≤F FR(w).

An important property that we will use to prove some results on policy iteration algorithm is
the monotonicity of the relaxed functional.

Proposition 4.2 (Monotonicity). 1. For all i ∈ I, w 7→ FRi (w) is monotone on F
(
P,R

)
;

2. The function w 7→ FR(w) is monotone on F
(
P,R

)
.

Proof. Let p ∈ P. For v ∈ F
(
P,R

)
, λ ∈ F (P,R+), µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 and η ∈ R such

that deg(〈µ, ri〉 + 〈γ, r0〉) ≤ 2mdeg T i, we define the polynomial in x, ψλ,µ,γ,η(v) := η − p ◦ T i −∑
q∈P λ(q)(v(q) − q) + 〈µ, ri〉 + 〈γ, r0〉. We define for v ∈ F

(
P,R

)
the set R(v) = {(λ, µ, γ, η) |

ψλ,µ,γ,η(v) ∈ Σ[x], λ ∈ F (P,R+) , µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 , η ∈ R}. Now, let us take w,w′ ∈ F
(
P,R

)
such that w ≤F w′. We have:

ψλ,µ,γ,η(w)
= η − p ◦ T i −

∑
q∈P λ(q)(w(q)− q) + 〈µ, ri〉+ 〈γ, r0〉

= η − p ◦ T i −
∑

q∈P λ(q)(w(q)− w′(q) + w′(q)− q) + 〈µ, ri〉+ 〈γ, r0〉
= η − p ◦ T i −

∑
q∈P λ(q)(w′(q)− q) + 〈µ, ri〉+ 〈γ, r0〉 −

∑
q∈P λ(q)(w(q)− w′(q))

= ψλ,µ,γ,η(w′) +∑
q∈P λ(q)(w′(q)− w(q)) .

Then, from w ≤F w′ and the fact that λ(q) are nonnegative scalars, if ψλ,µ,γ,η(w′) is an SOS
polynomial, so is ψλ,µ,γ,η(w) as a sum of a SOS polynomial and a nonnegative scalar. Hence,
we have R(w′) ⊆ R(w). Finally, we recall that if A ⊆ B, then infB ≤ infA. We conclude that(
FRi (w)

)
(p) ≤

(
FRi (w′)

)
(p).

2. The mapping FR is monotone as supremum of monotone maps.

From the third assertion of Prop. 4.1, if w satisfies FR(w) ≤F w then F ](w) ≤F w and from
Prop. 3.1, w? is an inductive invariant and thus R ⊆ w?. This result is formulated as the following
corollary.

Corollary 4.1 (Over-approximation). For all w ∈ F
(
P,R

)
such that FR(w) ≤F w then R ⊆ w?.

5 Policy Iteration in Polynomial Templates Abstract Domains
We are interested in computing the least fixpoint RR of FR, RR being an over-approximation of
R (least fixpoint of F ). As for the definition of R, it can be reformulated using Tarski’s theorem
as the minimal post-fixpoint:

RR = min{w ∈ F
(
P,R

)
|FR(w) ≤F w} .

The idea behind policy iteration is to over-approximate RR using successive iterations which are
composed of
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• the computation of polynomial template bounds using linear programming,

• the determination of new policies using SOS programming,

until a fixpoint is reached. Policy iteration navigates in the set of post-fixpoints of FR and needs
to start from a post-fixpoint w0 known a-priori. It acts like a narrowing operator and can be
interrupted at any time. For further information on policy iteration, the interested reader can
consult [CGG+05, GGTZ07].

5.1 Policies

Policy iteration can be used to compute a fixpoint of a monotone self-map defined as an infimum
of a family of affine monotone self-maps. In this paper, we propose to design a policy iteration
algorithm to compute a fixpoint of FR. In this subsection, we give the formal definition of policies
in the context of polynomial templates and define the family of affine monotone self-maps. We do
not apply the concept of policies on FR but on the functions FRi exploiting the fact that for all
i ∈ I, FRi is the optimal value of a minimization problem.

Policy iteration needs a selection property, that is, when an element w ∈ F
(
P,R

)
is given,

there exists a policy which achieves the infimum. In our context, since we apply the concept of
policies to FRi , it means that the minimization problem involved in the computation of FRi has
an optimal solution. In our case, for w ∈ F

(
P,R

)
and p ∈ P, an optimal solution is a vector

(λ, σ, µ, γ) ∈ F (P,R+)× Σ[x]× Σ[x]ni × Σ[x]n0 such that, using (12), we obtain:(
FRi (w)

)
(p) = p ◦ T i +

∑
q∈P

λ(q)(w(q)− q)− 〈µ, ri〉 − 〈γ, r0〉+ σ

and deg(σ) ≤ 2m deg T i, deg(〈µ, ri〉+ 〈γ, r0〉) ≤ 2mdeg T i
. (14)

Observe that in Eq. (14),
(
FRi (w)

)
(p) is a scalar whereas the right-hand-side is a polynomial. The

equality in this equation means that this polynomial is a constant polynomial. Then we introduce
the set of feasible solutions for the SOS problem

(
FRi (w)

)
(p):

Sol(w, i, p) = {(λ, σ, µ, γ) ∈ F (P,R+)× Σ[x]× Σ[x]ni × Σ[x]n0 | Eq. (14) holds} . (15)

Since policy iteration algorithm can be stopped at any step and still provides a sound over-
approximation, we stop the iteration when Sol(w, i, p) = ∅. Now, we are interested in the elements
w ∈ F (P,R) such that Sol(w, i, p) is non-empty:

FS
(
P,R

)
= {w ∈ F

(
P,R

)
| ∀ i ∈ I, ∀ p ∈ P, Sol(w, i, p) 6= ∅} . (16)

The notation FS
(
P,R

)
was introduced in [AGG12] to define the elements w ∈ F

(
P,R

)
satisfying

Sol(w, i, p) 6= ∅. In [AGG12, Section 4.3], we could ensure that Sol(w, i, p) 6= ∅ using Slater’s con-
straint qualification condition. In the current nonlinear setting, we cannot use the same condition,
which yields a more complicated definition for FS

(
P,R

)
.

Finally, we can define a policy as a map which selects, for all w ∈ FS
(
P,R

)
, for all i ∈ I and

for all p ∈ P a vector of Sol(w, i, p). More formally, we have the following definition:
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Definition 5.1 (Policies in the policy iteration SOS based setting). A policy is a map π : FS
(
P,R

)
7→

((I × P) 7→ F (P,R+) × Σ[x] × Σ[x]ni × Σ[x]n0) such that: ∀w ∈ FS
(
P,R

)
, ∀ i ∈ I, ∀ p ∈ P,

π(w)(i, p) ∈ Sol(w, i, p).

We denote by Π the set of policies. For π ∈ Π, let us define πλ as the map from FS
(
P,R

)
to

(I × P) 7→ F (P,R+) which associates with w ∈ FS
(
P,R

)
and (i, p) ∈ I × P the first element of

π(w)(i, p) i.e. if π(w)(i, p) = (λ, σ, µ, γ) then πλ(w)(i, p) = λ. The equality πλ(w)(i, p) = λ means
that when we perform the policy iterations algorithm, we select the vector of Lagrange multipliers
λ associated with the constraints of the form q(x) ≤ w(q). The purpose of this selection is to
update the value of w using the direction λ. The other coordinates composing π(w)(i, p) that is
σ, µ, γ do not serve the policy iterations algorithm but are only used to take in consideration the
sets Xi and X0 in the computation of FRi (w)(p).

As said before, policy iteration exploits the linearity of maps when a policy is fixed. We have
to define the affine maps we will use in a policy iteration step. With π ∈ Π, w ∈ FS

(
P,R

)
, i ∈ I

and p ∈ P and λ = πλ(w)(i, p), let us define the map ϕλw,i,p : F
(
P,R

)
7→ R as follows:

v 7→ ϕλw,i,p(v) =
∑
q∈P

λ(q)v(q) +
(
FRi (w)

)
(p)−

∑
q∈P

λ(q)w(q) . (17)

Then, for π ∈ Π, we define for all w ∈ FS
(
P,R

)
, the map Φπ(w)

w from F
(
P,R

)
7→ F

(
P,R

)
. Let

v ∈ F
(
P,R

)
and p ∈ P:

Φπ(w)
w (v)(p) = sup

{
sup
i∈I

ϕλw,i,p(v), X inR(p)
}
. (18)

Example 5.1. Let us consider Example 4.2 and the function w0(q1) = w0(q2) = 2.1391 and
w0(p) = 0. Then there exists two SOS polynomials µ and σ such that, for all x ∈ Rd:(

FR1 (w)
)
(q1) = (0.687x1 + 0.558x2 − 0.0001x1x2)2 + λ(q1)(2.1391− x2

1)
+λ(q2)(2.1391− x2

2)− λ(p)p(x)− µ(x)(1− x2
1) + σ(x)

= 1.5503 ,

with λ(q1) = λ(q2) = 0 and λ(p) = 2.0331. It means that λ, µ and σ are computed such that
(0.687x1 + 0.558x2− 0.0001x1x2)2 + λ(q1)(2.1391− x2

1) + λ(q2)(2.1391− x2
2)− λ(p)p(x)− µ(x)(1−

x2
1) + σ(x) is actually a constant polynomial.
Then (λ, µ, σ) ∈ Sol(w0, 1, q1) and we can define a policy π(w0) such that π(w0)(1, q1) = (λ, µ, σ)

and thus πλ(w0)(1, q1) = (0, 0, 2.0331). We can thus define for v ∈ F (Prun,R), the affine mapping:
ϕλw0,1,q1

(v) = λ(q1)v(q1)+λ(q2)v(q2)+λ(p)v(p)+
(
FR1 (w)

)
(q1)−λ(q1)w(q1)−λ(q2)w(q2)−λ(p)w(p) =

2.1391v(p) + 1.5503.

Let us denote by F (P,R) the set of finite valued function on P i.e g ∈ F (P,R) iff g(p) ∈ R for
all p ∈ P.

Proposition 5.1 (Properties of ϕλi,w,p). Let π ∈ Π, w ∈ FS
(
P,R

)
and (i, p) ∈ I ×P. Let us write

λ = πλ(w)(i, p). The following properties are true:
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1. ϕλw,i,p is affine on F (P,R) ;

2. ϕλw,i,p is monotone on F
(
P,R

)
;

3. ∀ v ∈ F
(
P,R

)
, FRi (v)(p) ≤ ϕλw,i,p(v) ;

4. ϕλw,i,p(w) = FRi (w)(p) .

Proof. Let w ∈ FS
(
P,R

)
, i ∈ I, p ∈ P and π ∈ Π.

1. The fact that ϕπλ(w)(i,p)
w,i,p is affine follows readily from the definition (Eq. (17)).

2. The monotonicity of ϕπλ(w)(i,p)
w,i,p follows from the nonnegativity of πλ(w)(i, p).

3. Let v ∈ F
(
P,R

)
. Since w ∈ FS

(
P,R

)
, there exists (λ, σ, µ, γ) ∈ F (P,R+)×Σ[x]×Σ[x]ni×

Σ[x]n0 such that deg(σ) ≤ 2mdeg T i, deg(〈µ, ri〉+ 〈γ, r0〉) ≤ 2mdeg T i:(
FRi (w)

)
(p) = p ◦ T i +

∑
q∈P

λ(q)(w(q)− q)− 〈µ, ri〉 − 〈γ, r0〉+ σ .

Writing λ = πλ(w)(i, p), we get:

ϕλw,i,p(v) =
∑
q∈P

λ(q)v(q)−
∑
q∈P

λ(q)w(q) + p ◦ T i +
∑
q∈P

λ(q)(w(q)− q)

−〈µ, ri〉 − 〈γ, r0〉+ σ

= p ◦ T i +
∑
q∈P

λ(q)(v(q)− q)− 〈µ, ri〉 − 〈γ, r0〉+ σ .

Finally,
ϕλw,i,p(v)− p ◦ T i −

∑
q∈P

λ(q)(v(q)− q) + 〈µ, ri〉+ 〈γ, r0〉 = σ , (19)

and recall that (Eq. (14))(
FRi (w)

)
(p) = inf

λ,σ,µ,γ,η
η

s. t.


η − p ◦ T i −

∑
q∈P

λ(q)(w(q)− q) + 〈µ, ri〉+ 〈γ, r0〉 = σ

λ ∈ F (P,R+) , σ ∈ Σ[x], µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 , η ∈ R ,
deg(σ) ≤ 2mdeg T i, deg(〈µ, ri〉+ 〈γ, r0〉) ≤ 2m deg T i .

From Eq. (19), (λ, σ, µ, γ, ϕλw,i,p(v)) is a feasible solution of the latter minimization problem and we
conclude that

(
FRi (v)

)
(p) ≤ ϕπλ(w)(i,p)

w,i,p (v).
4.

ϕ
πλ(w)(i,p)
w,i,p (w) =

∑
q∈P

λ(q)w(q) +
(
FRi (w)

)
(p)−

∑
q∈P

λ(q)w(q) =
(
FRi (w)

)
(p) .

The properties presented in Prop. 5.1 imply some useful properties for the maps Φπ(w)
w .

Proposition 5.2 (Properties of Φπ(w)
w ). Let π ∈ Π and w ∈ FS

(
P,R

)
. The following properties

are true:
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1. Φπ(w)
w is monotone on F

(
P,R

)
;

2. FR ≤F Φπ(w)
w ;

3. Φπ(w)
w (w) = FR(w) ;

4. Suppose that the least fixpoint of Φπ(w)
w is L ∈ F (P,R). Then L can be computed as the

unique optimal solution of the linear program:

inf

∑
p′∈P

v(p′) | ∀ (i, p) ∈ I × P, ϕπλ(w)(i,p)
i,w,p (v) ≤ v(p), ∀q ∈ P, X inR(q) ≤ v(q)

 . (20)

LP problem (20) corresponds exactly to the linear program presented in the case of quadratic
templates [AGG12, Eq. 4.4].

Proof. Let π ∈ Π and w ∈ FS
(
P,R

)
.

1. The map Φπ(w)
w is monotone as the map ϕπλ(w)(i,p)

w,i,p is monotone for all i ∈ I and for all p ∈ P,
and the the fact that the point-wise supremum of monotone maps is also monotone.

2. Let v ∈ F
(
P,R

)
and let p ∈ P. Recall that:

(
FR(v)

)
(p) = sup

{
sup
i∈I

(
FRi (v)

)
(p), X inR(p)

}
,

and from the third assertion of Prop. 5.1, we have for all i ∈ I, FRi (v)(p) ≤ ϕπλ(w)(i,p)
w,i,p , by taking the

supremum over I and then the supremum with X inR(p), we obtain that FR(v)(p) ≤ Φπ(w)
w (v)(p),

yielding the desired result.
3. This result follows readily from the fourth assertion of Prop. 5.1 and the definition of Φπ(w)

w

(Eq. (18)).
4. By Tarski’s theorem and as Φπ(w)

w is monotone, Φπ(w)
w has a least fixpoint in F

(
P,R

)
. Let L

be this least fixpoint supposed to be finite valued. Now, from Tarski’s theorem and the definition
of Φπ(w)

w , we have:

L = inf{v | Φπ(w)
w (v) ≤F v}

= inf
{
v | ∀ (i, p) ∈ I × P, ϕπλ(w)(i,p)

i,w,p (v) ≤ v(p), ∀q ∈ P, X inR(q) ≤ v(q)
}
.

Let us suppose that there exists a feasible solution v̄ such that ∑q∈P v̄(q) <∑q∈P L(q). Note that
since X inR ≤F v̄, ∑q∈P v̄ is finite. Then we have inf{v̄, L} ≤ L and inf{v̄, L} 6= L. As Φπ(w)

w is
monotone and as v̄ and L are feasible, we have Φπ(w)

w (inf{v̄, L}) ≤ inf{v̄, L}. This contradicts the
minimality of L. We conclude that L is the optimal solution of Linear Program (20).

Remark 1. We recall that the linear constraints in Problem (20) come from the use of the function
defined at Equation (17) which is affine on the variable v. The linear forms are defined from
the vector of Lagrange multipliers λ found when we solve the minimization problem involved in
Equation (12). If we had allowed a vector of SOS polynomials λ as vector of Lagrange multipliers,
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we would obtain a set of polynomial inequalities that we would solve using SOS programming. The
resulted problem would not have a feasible solution.

For example, let us consider an SOS polynomial template p, an SOS (non scalar) polynomial λ
and a scalar c. Then, in this case, an analog of Problem (12) would be:

min{v(p) ∈ R | λ(x)v(p) + c ≤ v(p), ∀x ∈ R, v(p) ≥ X in†(p)}

We assumed that p is a SOS polynomial template, implying that X in†(p) is strictly positive. Since
λ(x) is a non scalar SOS polynomial and v(p) > 0, then v(p)(1 − λ(x)) − c is negative for some
sufficiently large x. This proves the infeasibility of the problem.

Recall that a function g : Rd 7→ R is upper-semicontinuous at x iff for all (xn)n∈N converging to
x, then lim supn→+∞ g(xn) ≤ g(x).

Proposition 5.3. Let p ∈ P. Then w 7→ FR(w)(p) is upper-semicontinuous on FS
(
P,R

)
∩

F (P,R).

Proof. Let π ∈ Π, w ∈ FS
(
P,R

)
∩ F (P,R) and p ∈ P. Let i ∈ I. Let (wn)n∈N be a sequence of

elements of F (P,R) converging to w. Let λ = πλ(w)(i, p). Since ϕλi,w,p is affine on F (P,R), then
ϕλi,w,p is continuous on F (P,R) and finally v 7→ Φπ(w)

w (v)(p) is continuous on F (P,R) as a finite
supremum of continuous functions on F (P,R). Then from the second point of Prop. 5.2, for all
n ∈ N, FR(wn)(p) ≤ Φπ(w)

w (wn)(p). By taking the lim sup, we obtain: lim supn→+∞ F
R(wn)(p) ≤

lim supn→+∞Φπ(w)
w (wn)(p) = Φπ(w)

w (w)(p) = FR(v)(p).

5.2 Policy Iteration

Next, we describe the policy iteration algorithm. We suppose that we have a post-fixpoint w0 of
FR in F (P,R).

We detail step by step the algorithm presented in Figure 4. At Line 1, the algorithm is initialized
and thus k = 0. At Line 4, we compute FR(wk) using Eq. (13) and solve the SOS problem involved
in Eq. (12). At Line 6, if for all i ∈ I and for p ∈ P, the SOS problem involved in Eq. (12) has
an optimal solution, then a policy π is available and we can choose any optimal solution of SOS
problem involved in Eq. (12) as policy. If an optimal solution does not exist then the algorithm
stops and return wk. Now, if a policy π has been defined, the algorithm goes to Line 12 and we
can define Φπ(wk)

wk
following Eq. (18). Then, we solve LP problem (20) and define the new bound

on templates wk+1 as the smallest fixpoint of Φπ(wk)
wk

. Finally, at Line 13, k is incremented.
If for some k ∈ N, wk /∈ FS

(
P,R

)
and wk−1 ∈ FS

(
P,R

)
then the algorithm stops and returns

wk. Hence, we set for all l ≥ k, wl = wk.

Theorem 5.1 (Convergence result of the algorithm presented in Figure 4). The following state-
ments hold:

1. For all k ∈ N, wk ∈ F (P,R) and FR(wk) ≤ wk;

2. The sequence (wk)k≥0 generated by Algorithm 4 is decreasing and converges;
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input : w0 ∈ F (P,R), a post-fixpoint of FR

output: a fixpoint w = FR(w) if ∀ k ∈ N, wk ∈ FS
(
P,R

)
or a post-fixpoint otherwise

1 k=0;
2 while fixpoint not reached do
3 begin compute the next policy π for the current iterate wk
4 Compute FR(wk) using Eq. (13) and Eq. (12);
5 if wk ∈ FS

(
P,R

)
then

6 Define π(wk) ;
7 else
8 return wk;
9 end

10 end
11 begin compute the next iterate wk+1

12 Define Φπ(wk)
wk and compute the least fixpoint wk+1 of Φπ(wk)

wk from Problem (20);
13 k=k+1;
14 end
15 end

Figure 4: SOS-based policy iteration algorithm for PPS programs.

3. Let w∞ = limk→+∞w
k, then FR(w∞) ≤ w∞. Furthermore, if for all k ∈ N, wk ∈ FS

(
P,R

)
and if w∞ ∈ FS

(
P,R

)
then FR(w∞) = w∞.

Proof. 1. We reason by induction. We have FR(w0) ≤ w0 and w0 ∈ F (P,R) by assumption. Now
suppose that for some k ∈ N, FR(wk) ≤ wk and wk ∈ F (P,R). If wk /∈ FS

(
P,R

)
then wl = wk

for all l ≥ k and then we have proved the result. Now suppose that wk ∈ FS
(
P,R

)
and let us

take π ∈ Π such that Φπ(wk)
wk

(wk) = FR(wk). From induction property Φπ(wk)
wk

(wk) ≤ wk and thus
wk is a post-fixpoint of Φπ(wk)

wk
belonging to F (P,R). Since every post-fixpoint of Φπ(wk)

wk
is greater

than X inR then least fixpoint of Φπ(wk)
wk

is finite valued and thus it is the optimal solution wk+1 of
Problem (20). Moreover from the second point of Prop. 5.2, FR(wk+1) ≤F Φπ(wk)

wk
(wk+1) and since

wk+1 is the least fixpoint of Φπ(wk)
wk

(wk+1) then FR(wk+1) ≤ wk+1. This completes the proof and
for all k ∈ N, wk ∈ F (P,R) and FR(wk) ≤ wk.

2. Let k ∈ N. If wk /∈ FS
(
P,R

)
then wk+1 = wk ≤ wk. Now suppose that wk ∈ FS

(
P,R

)
and

let π ∈ Π such that Φπ(wk)
wk

(wk) = FR(wk), then from the third point of Prop. 5.2, Φπ(wk)
wk

(wk) =
FR(wk) ≤ wk; the inequality results from the first assertion. Then wk is a post-fixpoint of Φπ(wk)

wk
.

Since wk+1 is the least fixpoint of Φπ(wk)
wk

and Φπ(wk)
wk

is monotone then from Tarski’s theorem
wk+1 ≤ wk. From the first point, for all k ∈ N, wk ∈ F (P,R). Moreover by definition of FR,
X inR ≤ FR(wk) for all k ∈ N, then from the first point (wk)k≥0 is lower bounded then it converges
to some w∞.

3. If for some k, wk /∈ FS
(
P,R

)
and wk−1 ∈ FS

(
P,R

)
, then w∞ = wk and we have

FR(w∞) ≤ w∞ from the first point. Now suppose that for all k ∈ N, wk ∈ FS
(
P,R

)
. Since
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FR is monotone then for all k ∈ N, FR(w∞) ≤ FR(wk) ≤ wk from the first point. Now taking
the limit of the right-hand side, we get F (w∞) ≤ w∞. Now, let k ∈ N and let π ∈ Π such
that Φπ(wk)

wk
(wk) = FR(wk). From the second point, wk+1 ≤ wk and from the monotonicity of

Φπ(wk)
wk

, we have wk+1 = Φπ(wk)
wk

(wk+1) ≤ Φπ(wk)
wk

(wk) = FR(wk). By taking the lim sup on k, we
get w∞ ≤ lim supk→+∞ F

R(wk). As FR is upper-semicontinuous on FS
(
P,R

)
∩ F (P,R) then, if

w∞ ∈ FS
(
P,R

)
, w∞ ≤ lim supk→+∞ F

R(wk) ≤ FR(w∞) and so w∞ = FR(w∞).

5.3 Initialization and templates choice

In Section 3, we have made the assumption that the template basis was given by an oracle. More-
over, in Algorithm 4, we suppose that we have a post-fixpoint w0 ∈ F (P,R) of FR. Now, we give
details about the templates basis choice and the computation of a post-fixpoint w0 ≥ w∞. The
templates basis choice relies on the computation of a template basis composed of one element. This
single template is constructed by the method developed in [AGM15] and is then completed using
the strategy proposed in [AGM15, Ex. 9]. The single template computation also permits us to
compute w0. Actually, the method developed in [AGM15] is constructed by using the definition
of being a post-fixpoint of FR. Indeed, suppose that the templates basis is constituted of one
template p then w0 is a post-fixpoint FR if and only if FR(w0)(p) ≤ w0(p). This is equivalent to:

X inR = inf{η | η − p+
nin∑
j=1

νin
j r

in
j ∈ Σ[x], νin ∈ Σ[x]nin} ≤ w0 ,

and for all i ∈ I:(
FRi (w0)

)
(p) = inf

λ,µ,γ,η
η ≤ w0 .

s. t.
{
η − p ◦ T i − λi(w0 − p) + 〈µ, ri〉+ 〈γ, r0〉 ∈ Σ[x]
λi ≥ 0, µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 , η ∈ R

By definition of the infimum, it is equivalent to the existence of νin ∈ Σ[x] and for all i ∈ I of
λi ≥ 0, µi ∈ Σ[x]ni , γi ∈ Σ[x]n0 such that:

w0 − p+∑nin
j=1 ν

in
j r

in
j ∈ Σ[x]

w0 − p ◦ T i − λi(w0 − p) + 〈µ, ri〉+ 〈γ, r0〉 ∈ Σ[x] . (21)

Now to find a template, it suffices to find p such that Eq. (21) holds. However, the following two
issues remain.

First, without an objective function, p = 0 is a solution of Eq. (21). A workaround to avoid
this trivial solution consists of optimizing a certain objective function under the constraints given
in Eq. (21). In [AGM15], a similar optimization procedure (Problem (13) of [AGM15]) is used to
prove a property of the form R ⊆ {x ∈ Rd | κ(x) ≤ α}, for a given real-valued function κ. Here, we
are interested in proving the boundedness of the reachable value set, which corresponds to minimize
α with κ = ‖ · ‖22.

Second, finding λi and p satisfying Eq. (21) boils down to solving a bilinear SOS problem, which
is not easy to handle in practice. Thus, we fix λi = 1 as in Lyapunov equations. We also take
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w0 = 0 since p has a constant part. Finally, to obtain a template p, we solve the following SOS
problem:

inf
p∈R[x]2m,w∈R

w ,

s.t. − p = σ0 −
nin∑
j=1

σjr
in
j ,

∀ i ∈ I, p− p ◦ T i = σi −
ni∑
j=1

µijr
i
j −

n0∑
j=1

γijr
0
j ,

w + p− ‖ · ‖22 = ψ ,

∀ j = 1, . . . , nin , σj ∈ Σ[x] , deg(σjrin
j ) ≤ 2m ,

σ0 ∈ Σ[x] , deg(σ0) ≤ 2m ,

∀ i ∈ I , σi ∈ Σ[x] , deg(σi) ≤ 2m deg T i ,
∀ i ∈ I , ∀ j = 1, . . . , ni , µij ∈ Σ[x] , deg(µijrij) ≤ 2m deg T i ,
∀ i ∈ I , ∀ j = 1, . . . , n0 , γi ∈ Σ[x] , deg(γijr0

j ) ≤ 2m deg T i ,
ψ ∈ Σ[x] , deg(ψ) ≤ 2m .

(22)

Let (p, w) be a solution of Problem (22). In [AGM15, Prop. 1], we proved that the set {x ∈
Rd | p(x) ≤ 0} defines an inductive invariant. To complete the template basis, we use the strategy
proposed in [AGM15, Ex. 9], that is, we work with the templates basis {x 7→ x2

i , i ∈ [d]} ∪ {p}.
We thus use the inductive invariant set {p(x) ≤ 0, x2

i ≤ w} as initialization i.e. the initial bound
is w0(q) = w if q 6= p and w(0)(q) = 0 if q = p. As opposed to the approach of [AGM15], we avoid
increasing the degree of polynomial p to obtain better bounds on the reachable values set.

Computational considerations The number of (a-priori unknown) coefficients of the polyno-
mial p (of degree 2m and d variables) appearing in Problem 22 is

(2m+d
d

)
. Similarly, the number

of coefficients of each σi (resp. µij and γij) is
(2m deg T i+d

d

)
. Thus, Problem 22 can be reformulated

as an SDP program involving
(2m+d

d

)
+ ∑

i∈I [1 + ni + n0]
(2m deg T i+d

d

)
SDP variables. Therefore,

our framework is expected to be tractable when either d or m is small. As mentioned in [AGM15,
Section 4], one could address bigger instances while exploiting sparsity properties of the initial
system, as in [WKKM06].

6 Experiments

6.1 Details of the running Example.

Recall that our running example is given by the following PPS: (X in, X0, {X1, X2}, {T 1, T 2}),
where:

X in = [−1, 1]× [−1, 1]
X0 = R2 and

{
X1 = {x ∈ R2 | −x2

1 + 1 ≤ 0}
X2 = {x ∈ R2 | x2

1 − 1 < 0}
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and the functions relative to the partition {X1, X2} are:

T 1(x1, x2) =
(

0.687x1 + 0.558x2 − 0.0001x1x2
−0.292x1 + 0.773x2

)
and

T 2(x1, x2) =
(

0.369x1 + 0.532x2 − 0.0001x2
1

−1.27x1 + 0.12x2 − 0.0001x1x2

)
.

The first step consists in constructing the template basis and compute the template p and bound
w on the reachable values as a solution of Problem (22). We fix the degree of p to 6. The template
p generated from Matlab is of degree 6 and is equal to

−1.931348006 + 3.5771x2
1 + 2.0669x2

2 + 0.7702x1x2 − (2.6284e–4)x3
1

−(5.5572e–4)x2
1x2 + (3.1872e–4)x1x

2
2 + 0.0010x3

2 − 2.4650x4
1 − 0.5073x3

1x2
−2.8032x2

1x
2
2 − 0.5894x1x

3
2 − 1.4968x4

2 + (2.7178e–4)x5
1 + (1.2726e–4)x4

1x2
−(3.8372e–4)x3

1x
2
2 + (6.5349e–5)x2

1x
3
2 + (5.7948e–6)x1x

4
2 − (6.2558e–4)x5

2
+0.5987x6

1 − 0.0168x5
1x2 + 1.1066x4

1x
2
2 + 0.3172x3

1x
3
2 + 0.8380x2

1x
4
2 + 0.0635x1x

5
2

+0.4719x6
2 .

The upper bound w is equal to 2.1343. As suggested in Section 5.3, we can take the template
basis Prun = {p, x 7→ x2

1, x 7→ x2
2}. We write q1 for x 7→ x2

1 and q2 for x 7→ x2
2. The basic semi-

algebraic {x ∈ R2 | p(x) ≤ 0, q1(x) ≤ 2.1343, q2(x) ≤ 2.1343} is an inductive invariant and the
corresponding bounds function is w0 = (w0(q1), w0(q2), w0(p)) = (2.1343, 2.1343, 0).

As in Line 4 of Algorithm 4, we compute the image of w0 by FR using SOS (Eq. (12)). We
found that

FR(w0)(q1) = 1.5503, FR(w0)(q2) = 1.9501 and FR(w0)(p) = 0 .

Since w0 ∈ FS
(
Prun,R

)
, Algorithm 4 goes to Line 6 and the computation of FR(w0) permits to

determine a new policy π(w0). The important data is the vector λ. For example, for i = 1 and the
template q1, the vector λ is (0, 0, 2.0331). It means that we associate for each template q a weight
λ(q). In the case of λ = (0, 0, 2.0331), λ(q1) = 0, λ(q2) = 0 and λ(p) = 2.0332. For i = 1, the
template q1 and the bound vector w0, the function ϕλw0,1,q1

(v) = 2.0331v(p) + 1.5503.
To get the new invariant, Algorithm 4 goes to Line 12 and we compute a bound vector w1

solution of Linear Program (20). In this case, it corresponds to the following LP problem:
min v(q1) + v(q2) + v(p)

2.0331v(p)+1.5503≤v(q1), 1.0429v(p)+1.2235≤v(q2), 0.9535v(p)−0.0248≤v(p), (i=2)
0.4578v(p)+0.8843≤v(q1), 0.2048v(p)+1.9501≤v(q2), 0.9985v(p)−3.4691e–7≤v(p), (i=1)

1≤v(q1), 1≤v(q2), 0≤v(p), (init)

We obtain:
w1(q1) = 1.5503, w1(q2) = 1.9501 and w1(p) = 0 .

Then, we come back to Line 4 of Algorithm 4 and we compute FR(w1) using the SOS program
Eq. (12). The implemented stopping rule is ‖FR(wk)− wk‖∞ ≤ 1e–6 and since ‖FR(w1)− w1‖∞ ≤
1e–6, Algorithm 4 terminates. The computed sets are presented in Figure 3, page 8. Figure 5
presents the semialgebraic sets obtained with higher dimensional templates, up to degree 10. Results
are similar but could lead to different numbers of iterations depending on the degree. In case of
multiple iterations, the final value is also reached at iterate 1 and is slightly modified by following
iterations.
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The semialgebraic sets denotes templates of degree 7 (blue), 8 (red), 9 (green) and 10 (black). The
first box denotes the initial bounds as obtained in figure 3. The second one is the one obtained
after 1 iterations. Except degree 7 that converged in 4 iterations, all others converged in 1. Degree
10 faced numerical issues and did not allow to refine the bounds without errors.

Figure 5: Different templates and associated bounds computed with Policy Iterations

6.2 Benchmarks.

The presented analysis has been applied to available examples of the control community literature:
piecewise linear systems, polynomial systems, etc. We gathered the examples matching our criteria:
discrete systems, possibly piecewise, at most polynomial. In all the considered cases, no common
quadratic Lyapunov existed. In other words, not only the existing linear abstractions such as
intervals or polyhedra would fail in computing a non trivial post-fixpoint, but also the existing
analyses dedicated to digital filters such as [Fer04, GS07, AGG12, RJGF12].

The analysis has been implemented in Matlab and relies on the Mosek SDP solver [AA00],
through the Yalmip [L0̈4] SOS front-end. Without outstanding performances, all experiments
are performed within a few seconds per iteration, which makes us believe that a more serious
implementation would perform better. We recall that the analysis could be interrupted at any
point, still providing a safe upper bound.

We next present the examples handled by our SOS policy iteration algorithm:

Example 6.1. The following example corresponds to [Fen02, Ex. 2.1] and represents a piecewise
linear system with 2 cases handling 3 variables. The initial set is:

X in = [−1, 1]3 .

The set where the state-variable lies is:
X0 = R3 .
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The sets defining the partition of the state-space are:

X1 = {(x, y, z) ∈ R3|x ≤ 0}, X2 = {(x, y, z) ∈ R3|x > 0} .

Finally the dynamics associated to the partition are:

T 1(x, y, z) =

 x+ 0.5y
−0.3x+ 0.8y

0.4z

 , T 2(x, y, z) =

x+ .4y + 0.01z
−0.1x+ 0.8y

0.5z

 .

Example 6.2. We consider the example [Fen02, Ex. 3.3] which describes a piecewise linear system
with 4 cases handling 2 variables. The initial set is:

X in = [−1, 1]2 .

The set where the state-variable lies is:
X0 = R2 .

The sets defining the partition of the state-space are:

X1 = {(x, y) ∈ R2|x ≤ −1}, X2 = {(x, y) ∈ R2|x ∈]− 1, 1] ∧ y > 0},
X3 = {(x, y) ∈ R2|x ∈]− 1, 1] ∧ y ≤ 0}, X4 = {(x, y) ∈ R2|x > 1} .

Finally the dynamics associated to the partition are:

T 1(x, y) =
(

0.9x− 0.01y
0.1x+ y − 0.02

)
, T 4(x, y) =

(
0.9x− 0.01y

0.1x+ y + 0.02

)
,

T 2(x, y) = T 3(x, y) =
(

x− 0.02y
0.02x+ 0.9y

)
.

Example 6.3. The following example is the piecewise quadratic system with 2 cases handling 2
variables [AJ13, Ex. 3]. The initial set is:

X in = [−1, 1]2 .

The set where the state-variable lies is:
X0 = R2 .

The sets defining the partition of the state-space are:

X1 = {(x, y) ∈ R2| − x4 + x2 − 1 ≤ 0}, X2 = {(x, y) ∈ R2|x4 − x2 + 1 < 0} .

Finally the dynamics associated to the partition are:

T 1(x, y) =
(

0.687x+ 0.558y − 0.0001xy
−0.292x+ 0.773y

)
, T 2(x, y) =

(
0.369x+ 0.532y − 0.0001x2

−1.27x+ 0.12y − 0.0001xy

)
.
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Example 6.4. The following example is the hand-crafted piecewise polynomial of degree 3 with 2
cases developed in [AGM15]. The initial set is:

X in = [0.9, 1.1]× [0, 0.2] .

The set where the state-variable lies is:
X0 = R2 .

The sets defining the partition of the state-space are:

X1 = {(x, y) ∈ R2|x2 + y2 ≤ 1}, X2 = {(x, y) ∈ R2|x2 + y2 > 1} .

Finally the dynamics associated to the partition are:

T 1(x, y) =
(
x2 + y3

x3 + y2

)
, T 2(x, y) =

(
0.5x3 + 0.4y2

−0.6x2 + 0.3y2

)
.

The table 1 summarizes the examples considered, the bounds obtained, the degree of the poly-
nomial templates and the number of iterations performed before reaching the fixpoint.

Examples Bounds (ie. x2
i ) Degree # it.

Running example 2.1

No good invariant 4 −
[1.5503, 1.9501] 6 1
[1.5503, 1.9502] 8 7
[1.5500, 1.9436] 10 1
[1.5503, 1.9383] 12 2

Example 6.1

[3.8260, 2.1632, 1.0000] 4 1
[3.7482, 1.8503, 1.0000] 6 1
No good invariant 8,10,12 −

Example 6.2

[1.8359, 1.3341] 4 2
[1.5854, 1.2574] 6 5
[1.5106, 1.2569] 8 4
[1.4813, 1.2544] 10 6

Example 6.3

[1.5624, 1.2396] 4 3
[1.5581, 1.1764] 6 1
[1.5531, 1.1511] 8 1

No good invariant 10,12 −

Example 6.4 No good invariant 4,6,8,10 −
[1.2100, 0.9989] 12 max (10)

“No good invariant” occurs when the template synthesis fails, i.e. does not provide a sound post-
fixpoint or some numerical issues occurs during the policy iterations phase. It seems to be due
to the large size of the SOS problems together with numerical issues related to the interior point
methods implemented in the relying solvers.

Table 1: Experiments
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7 Conclusion
We proposed an extension of policy iteration algorithms, using Sum-of-Squares programming. This
extension allows to consider the wider class of disjunctive polynomial programs. In this new setting,
we showed that we keep the advantage of policy iteration algorithms, while producing a sequence
of increasingly safe over-approximations of the reachability set.

As future work, we plan to generalize this algorithm to programs involving non-polynomial
updates, including square roots, divisions as well as transcendental functions. The computational
method developed in the paper could be also generalized to other classes of nonlinear switched
systems involving either random or temporal switching.
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