
HAL Id: hal-01133405
https://hal.science/hal-01133405v1

Preprint submitted on 20 Mar 2015 (v1), last revised 27 Jan 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Sums-of-Squares Extension of Policy Iterations
Assalé Adjé, Pierre-Loïc Garoche, Victor Magron

To cite this version:
Assalé Adjé, Pierre-Loïc Garoche, Victor Magron. A Sums-of-Squares Extension of Policy Iterations.
2015. �hal-01133405v1�

https://hal.science/hal-01133405v1
https://hal.archives-ouvertes.fr

A Sums-of-Squares Extension of Policy
Iterations

Assalé Adjé1,a and Pierre-Loïc Garoche1,a and Victor Magron2,b

1 Onera, the French Aerospace Lab, France.
Université de Toulouse, F-31400 Toulouse, France.

assale.adje@onera.fr
2 Circuits and Systems Group, Department of Electrical and Electronic Engineering,

Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
v.magron@imperial.ac.uk

Abstract. In order to address the imprecision often introduced by widen-
ing operators, policy iteration based on min-computations amounts to
consider the characterization of reachable states of a program as an iter-
ative computation of policies, starting from a post-fixpoint. Computing
each policy and the associated invariant relies on a sequence of numerical
optimizations. While the early papers rely on LP to address linear prop-
erties of linear programs, the current state of the art is still limited to the
analysis of linear programs with at most quadratic invariant, relying on
Semi-Definite Programming (SDP) solvers to compute the next policy,
and LP solvers to solve the selected policy.
We propose here to extend the class of programs considered through the
use of Sums-of-Squares (SOS) optimizations. Our approach enables the
precise analysis of switched systems with polynomial assigns and guards.
The analysis presented has been implemented in Matlab and applied on
existing programs, improving both the set of systems analyzable and the
precision of analyzed ones.

1 Introduction

A wide set of critical systems software rely on numerical computations: con-
troller systems. Those systems range from aircraft controllers, car engine control,
anti-collision systems for aircrafts or UAVs, to nuclear powerplant monitors and
medical devices such a pacemakers or insulin pumps.

In all those cases, the software part implements the execution of an endless
loop that reads the sensor inputs, updates its internal states and controls actua-
tors. However the analysis of such software is hardly feasible with classical static
analysis tools based on linear abstractions. In fact, according to early results in
control theory from Lyapunov in the 19th century, a linear system is defined
as asymptotically stable iff it satisfies the Lyapunov criteria, the existence of a
a The author is supported by the RTRA /STAE Project BRIEFCASE and the ANR
ASTRID VORACE Project.

b The author is supported by EPSRC (EP/I020457/1) Challenging Engineering Grant.

quadratic invariant. In this view, it is important, in order to support the analy-
sis of these systems, to develop new analysis tools able to support quadratic or
richer polynomial invariant.

We are interested here in bounding the set of reachable values of such

i n i t
whi l e (cond0) {

i f (cond1)
x = poly1 (x)

e l s e i f (cond2)
x = poly2 (x)

e l s e i f (cond3)
x = poly3 (x) ;

}

Fig. 1. Programs considered.

controllers using sound analysis, that is computing
a sound over approximation of reachable states.
We are specifically focused on a larger class of pro-
grams than linear systems: constrained piecewise
polynomial systems. This class of program is rep-
resented in Fig. 1: while a condition cond0 is met,
depending on another condition condi a polyno-
mial update is performed. It is assumed without
loss of generality that the n cases of the switch
form a partition i.e. ∨1≤i≤ncondi = true and
∀i 6= j ∈ [1, n], condi ∧ condj = false.

To analyze those programs we will rely on pol-
icy iterations performed on polynomial templates.

Related Works

Template abstractions were introduced in [SSM04] as a way to define an abstrac-
tion based on an a-priori know vector of templates, i.e. numerical expressions
over the program variables. An abstract element is then defined as a vector of
reals defining bounds bi over the templates pi: pi(x1, . . . , xd) ≤ bi.

Initially templates were used in the classical abstract interpretation setting,
computing Kleene fixpoints and the functions pi were linear. Typically, the value
of bounds bi will be increased during the fixpoint computation until it stabilizes
on a postfixpoint.

Later in [GSA+12] the authors proposed to consider richer templates – gen-
eralized templates – such as quadratic forms and compute directly the fixpoint of
these template-based functions using numerical optimization. When considering
specific classes of programs such linear programs, the fixpoint can be computed
using a bounded sequence of numerical optimizations. However these methods
were bound to linear (LP) or semi-definite (SDP) solvers.

Two dual approaches could be applied. Max-policies [GS07] iterate from ini-
tial states and compute policies as relaxations through rewriting of an optimiza-
tion problem (forgetting about rank conditions). Min-policies [GGTZ07,AGG10]
rely on duality principle and determine a policy through the computation of a
Lagrange multiplier.

The current paper is rooted in this second approach and proposes to enlarge
the set of solvers used as well as the class of programs considered:

– address the analysis of constrained piecewise polynomial systems;
– using Sum-of-Square (SOS) based policy iteration, i.e. substituting Lagrange

multipliers by SOS multipliers.

The paper is structured as follows: we first characterize the class of programs
considered – Constrained Piecewise Discrete-Time Polynomial Systems – and
characterize their collecting semantics as a least fixpoint. Then, in Section 3,
we recall definitions of generalized templates, their expression as an abstract
domain and the definition of the abstract transfer function. Section 4 proposes
an abstraction of the transfer function using a SOS relaxation, while Section 5
relies on this abstraction to perform policy iteration. Finally Section 6 presents
experiments.

2 Constrained Piecewise Discrete-Time Polynomial
Systems: Definition and Collecting Semantics

In this paper, we are interested in proving automatically that the set of all the
possible trajectories of a dynamical system is bounded. We consider the special
class of discrete-time dynamical systems: (i) their dynamic law is a piecewise
polynomial function, and (ii) the state variable is constrained to live in some
given basic semi-algebraic setc. Note that f is a piecewise polynomial function
with respect to a given partition, meaning that if we restrict f to be an element
of the partition then f is a polynomial function. We recall that a set is a basic
semi-algebraic set if and only if it can be represented as a conjunction of strict
or weak polynomial inequalities.

Let I be a finite set of partition labels. Let X = {Xi, i ∈ I} ⊆ Rd be a par-
tition, that is a given family of basic semi-algebraic sets satisfying Equation (1):⋃

i∈I
Xi = Rd, ∀ i, j ∈ I, i 6= j,Xi ∩Xj 6= ∅ . (1)

By definition of basic semi-algebraic sets, for all i ∈ I, there exists a family of
ni polynomials {rij , j ∈ [ni]} such that:

Xi =
{
x ∈ Rd | rij(x) 1 0 ∀ j ∈ [ni]

}
. (2)

where 1 is either < or ≤ and [ni] denotes the set {1, . . . , ni}.
Now let T : Rd 7→ Rd be a piecewise polynomial function w.r.t. to the

partition X . By definition, there exists a family of polynomials {Ti : Rd 7→
Rd, i ∈ I} such that for all i ∈ I:

T (x) = T i(x), ∀x ∈ Xi . (3)

Finally, let X in and X0 be two basic semi-algebraic sets of Rd, X in supposed
to be compact, i.e. closed and bounded. The two sets can be represented as in
Equation (2) using their respective family of nin and n0 polynomials:

X in =
{
x ∈ Rd | rin

j (x) 1 0 ∀ j ∈ [nin]
}

and X0 =
{
x ∈ Rd | r0

j (x) 1 0 ∀ j ∈ [n0]
}

where for all j ∈ [nin], rin
j : Rd 7→ R and for all k ∈ [n0], r0

k : Rd 7→ R are
polynomials.
c This does not entail boundedness of variable values such as membership of the sub-
level set {x ∈ Rd | 1− ‖x‖2

2 ≤ 0}.

To sum up, we define a constrained piecewise discrete-time dynamical system
(PPS for short) as a system verifying the following dynamic:

x0 ∈ X in, and ∀ k ∈ N, if xk ∈ X0, xk+1 = T (xk) . (4)

We are only interested in the iterates of the PPS that live in X0: either the
infinite traces x0 · xi · · · where x0 ∈ X in and ∀ i ∈ N∗, xi ∈ X0 or the finite
traces x0 · · ·xn where x0 ∈ X in and ∀ i ∈ [n], xi ∈ X0, xn /∈ X0. Intuitively, this
system encodes the example program of Figure 1.

From Equation (1), for all k ∈ N∗ there exists a unique i ∈ I such that
xk ∈ Xi. Let us now give a formal definition of PPS.

Definition 1 (PPS). A constrained piecewise discrete-time dynamical system
(PPS) is the quadruple (X in, X0,X ,L) with:

– X in ⊆ Rd is the compact basic semialgebraic set of the possible initial con-
ditions;

– X0 ⊆ Rd is the set of global constraints to be satisfied;
– X := {Xi, i ∈ I} is a partition as defined in Equation (1);
– L := {T i, i ∈ I} is the family of the functions from Rd to Rd, w.r.t. the

partition X satisfying Equation (4).

Example 1 (Running example). We consider the following running example. It
corresponds to a slightly modified version of [AJ13, Example 3]. We have added
semi-algebraic sets to represent conditions under which we can activate a poly-
nomial update. (X in, X0, {X1, X2}, {T 1, T 2}), where:

X in = [−1, 1]× [−1, 1]
X0 = Rd and

{
X1 = {x ∈ R2 | −x2

1 + 0.5x2 + 0.5 ≤ 0}
X2 = {x ∈ R2 | x2

1 − 0.5x2 − 0.5 < 0}

and the functions relative to the partition {X1, X2} are:

T 1 =
(

0.687x1 + 0.558x2 − 0.0001x1x2
−0.292x1 + 0.773x2

)
and

T 2 =
(

0.369x1 + 0.532x2 − 0.0001x2
1

−1.27x1 + 0.12x2 − 0.0001x1x2

)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 2. Running example simulation

We recall that our objective is to
prove automatically that the set of the
possible trajectories of the system is
bounded. Let us define the set of pos-
sible trajectories also known as the
reachable values set or the collecting
semantics of the system:

R =
⋃
k∈N

T k|X0
(X in) (5)

where T|X0 is the restriction of T on X0 and T|X0 is not defined outside X0. To
prove this boundedness property, we can compute R and do some analysis to
prove that R is bounded. Nevertheless, the computation of R cannot be done
in general and we have to compute instead an over-approximation of it. Then
we show that the over-approximation is bounded and we exhibit the smallest
computable bound.

The usual abstract interpretation methodology to characterize and construct
this over-approximation relies on the representation of R as the smallest fixed
point of a monotone map over a complete lattice. Indeed, we can remark that we
can reformulate R as follows: R = T (R∩X0)∪X in =

⋃
i∈I T

i(R∩X0∩Xi)∪X in

and thus introducing the function F : ℘(Rd) 7→ ℘(Rd) defined for all C ∈ ℘(Rd)
by: F (C) = T (C ∩ X0) ∪ X in =

⋃
i∈I T

i(C ∩ X0 ∩ Xi) ∪ X in then, R is the
smallest fixed point of F and from Tarski’s theorem, since F is monotonic and
℘(Rd) a complete lattice, R = min{C ∈ ℘(Rd) | F (C) ⊆ C}. Finally to compute
an over-approximation of R it suffices to compute a set C such that F (C) ⊆ C.
A set C which satisfies F (C) ⊆ C is called an inductive invariant.

The rest of the paper addresses the computation of a sound over-approximation
of R using its definition as the least fixpoint of F .

3 Templates Abstract Domains

Working directly with sets is difficult. We propose to restrict the class of in-
ductive invariant considered to some basic semi-algebraic sets using template
abstractions. Recall that a multivariate polynomial Rd 7→ R of degree k can
be expressed as

∑
|α|≤k,|α|>0 cαx

α + c0 where α is vector of integers of size d,
xα = (xαii)i∈[d] and |α| denotes the sum of the coordinates of α. We can inter-
pret

∑
|α|≤k,|α|>0 cαx

α as the homogeneous part of the polynomial and c0 the
constant part. The class of basic semi-algebraic which we will consider is the
class of sets sharing the same fixed a priori homogeneous part but differ from
the constant part. Since we want to prove that R is bounded, the basic semi-
algebraic inductive invariant has to be bounded. Furthermore, since we restrict
the class of inductive invariant to the basic semi-algebraic sets sharing a same
fixed a priori homogeneous part, the image by F of these basic semi-algebraic
sets has to be in the same representation.

This method is called the templates abstraction [AGG10] and we specialize
the method here to the semi-algebraic set case.

3.1 Generalized Templates Abstract Domains

The concept of generalized templates was introduced in [AGG10,AGG11]. Let
F
(
Rd,R

)
stands for the set of functions from Rd to R.

Definition 2 (Generalized templates). A generalized template p is a func-
tion from Rd to R over the vector of variables (x1, . . . , xd).

Templates can be viewed as implicit functional relations on variables to prove
certain properties on the analyzed program. We denote by P the set of templates.

First, we suppose that P is given by some oracle and say that P forms a tem-
plate basis. Here, we recall the required background about generalized templates
(see [AGG10,AGG11] for more details).

Basic notions. We replace the classical concrete semantics using sub-level sets
i.e. we have a functional representation of numerical invariant through the func-
tions of P. An invariant is determined as the intersection of sub-level sets. The
problem is thus reduced to find optimal level sets on each template p. Let F

(
P,R

)
stands for the set of functions from P to R = R ∪ {−∞} ∪ {+∞}, that is asso-
ciating bounds to templates.

Definition 3 (P-sublevel sets). For each w ∈ F
(
P,R

)
, we associate the P-

sublevel set w? ⊆ Rd given by:

w? = {x ∈ Rd | p(x) ≤ w(p), ∀p ∈ P} =
⋂
p∈P
{x ∈ Rd | p(x) ≤ w(p)} .

In convex analysis, a closed convex set can be represented by its support function
i.e. the supremum of linear forms on the set (e.g. [Roc96, § 13]). Here, we use
the generalization by Moreau [Mor70] (see also [Rub00,Sin97]) which consists in
replacing the linear forms by the functions p ∈ P.

Definition 4 (P-support functions). For each X ⊆ Rd, we associate the
abstract support function denoted by X† : P 7→ R and defined by:

X†(p) = sup
x∈X

p(x) .

Let C and D be two ordered sets equipped respectively by the order ≤C and
≤D. Let ψ be a map from C to D and ϕ be a map from D to C. We say that
the pair (ψ,ϕ) defines a Galois connection between C and D if and only if ψ
and ϕ are monotonic and the equivalence ψ(c) ≤D d ⇐⇒ ϕ(d) ≤C c holds for
all c ∈ C and all d ∈ D.

We equip F
(
P,R

)
with the partial order ≤F of real-valued functions i.e.

w ≤F v ⇐⇒ w(p) ≤ v(p) ∀p ∈ P. The set ℘(Rd) is equipped with the inclusion
order v.

Proposition 1. The pair of maps w 7→ w? and X 7→ X† defines a Galois
connection between F

(
P,R

)
and the set of subsets of Rd.

In the terminology of abstract interpretation, (·)† is the abstraction function,
and (·)? is the concretization function. The Galois connection result provides
the correctness of the semantics. We also remind the following property:

(((w?)†)? = w? , ((X†)?)† = X† . (6)

The lattices of P-convex sets and P-convex functions. When fixing the set
of templates, we can characterize such lattice structure. We are now interested
in the Moore family of F

(
P,R

)
generated by the closure of Rd through †, and

in its image by ?. We denote these sets as P-convex.

Definition 5 (P-convexity). Let w ∈ F
(
P,R

)
, we say that w is a P-convex

function if w = (w?)†. A set X ⊆ Rd is a P-convex set if X = (X†)?. We
respectively denote by VexP(P 7→ R) and VexP(Rd) the set of P-convex functions
of F

(
P,R

)
and the set of P-convex sets of Rd.

The family of functions VexP(P 7→ R) is ordered by the partial order of real-
valued functions. The family of sets VexP(Rd) is ordered by the inclusion order.
Galois connection allows to construct lattice operations on P-convex elements.
Definition 6 (The meet and join). Let v and w be in F

(
P,R

)
. We denote by

inf(v, w) and sup(v, w) the functions defined respectively by, p 7→ inf(v(p), w(p))
and p 7→ sup(v(p), w(p)). We equip VexP(P 7→ R) with the join operator v ∨
w = sup(v, w) and the meet operator v ∧ w = (inf(v, w)?)†. Similarly, we equip
VexP(Rd) with the join operator X t Y = ((X ∪ Y)†)? and the meet operator
X u Y = X ∩ Y .
The next theorem follows readily from the fact that the pair of v 7→ v? and
C 7→ C† defines a Galois connection (see e.g. [DP02, § 7.27]).
Theorem 1. The complete lattices (VexP(P 7→ R),∧,∨) and (VexP(Rd),u,t)
are isomorphic.

3.2 Abstract Transfer Function using Polynomial Templates and
Inductive Sublevel Sets Invariant

Let us assume now that P is a given family of polynomials. This family deter-
mines the family of basic semi-algebraic sets which share the same homogeneous
part. We consider P-sublevel sets w?, for w ∈ VexP(P 7→ R) and we construct
the mapping which associates to w? an element of VexP(P 7→ R). We are looking
for a function F] such that the image of its inductive invariant by ? are also
inductive invariant for F .

In abstract interpretation [CC77], to ensure the latter property we use a
Galois connection between ℘(Rd) and the abstract domain. Here the abstract
domain is the templates abstract domain w.r.t. P and we use the pair of maps
(w 7→ w?, X 7→ X†) as Galois connection see Proposition 6.

It is now possible to define the abstract transformer F], endomorphism of
VexP(P 7→ R). We recall that, in presence of a Galois connection (α, γ), the best
abstraction [CC77] of a function f is defined as α ◦ f ◦ γ.

Here, F](w) = (F (w?))† and using the definition of F and the semi-algebraic
characterizations of X0 and Xi, we have for all w ∈ VexP(P 7→ R) and for all
p ∈ P:(
F](w)

)
(p)

= sup
y∈
⋃
i
T i(w?∩X0∩Xi)∪Xin

p(y) (by definition of † and F)

= sup

 sup
y∈
⋃
i
T i(w?∩X0∩Xi)

p(y), X in†(p)

 (by definition of ∪)

= sup
{

sup
i∈I

sup
y∈T i(w?∩X0∩Xi)

p(y), X in†(p)
}

(by definition of ∪)

= sup
{

sup
i∈I

sup
x∈w?

rij(x)≤0, ∀ j∈[ni]
r0
k(x)≤0, ∀ k∈[n0]

p(T i(x)), X in†(p)
}

(by definition (2))

= sup
{

sup
i∈I

sup
q(x)≤w(q), ∀q∈P
rij(x)≤0, ∀ j∈[ni]
r0
k(x)≤0, ∀ k∈[n0]

p(T i(x)), X in†(p)
}

(by definition of ?)

Let us introduce for each i ∈ I the map F]i defined for all w ∈ VexP(P 7→ R)
and p ∈ P by:

(
F]i (w)

)
(p) = sup q(x)≤w(q), ∀q∈P

rij(x)≤0, ∀ j∈[ni]
r0
k(x)≤0, ∀ k∈[n0]

p(T i(x))

Recall that p and T i are polynomials. Evaluating
(
F]i (w)

)
(p) amounts then

to solve a polynomial maximization problem.

4 Relaxed semantics SOS based
In this section, we introduce the relaxed functional on which we will compute
a fixpoint in order to define an over-approximation of the reachable values set
R. The relaxed functional is constructed from a Lagrange relaxation type of
maximization problems involved in the evaluation of F] and sums-of-squares
reinforcement of polynomial non-negativity constraints. First, we give the useful
notions of sums-of-squares and their use in a polynomial optimization context.
The interested reader is referred to [Las09] for further information.

4.1 Sum-of-Square (SOS) Programming

Let R[x]k be the set of real polynomials of degree at most k defined over variables
x. We denote by R[x] the set of all polynomials over the variable x. A polynomial
p is said to be positive if and only if p(x) ≥ 0 for all x ∈ Rd. Then to check
whether a polynomial is positive is reduced to test the positivity of an infinite
number of reals.

We say that p ∈ R[x]k admits a sum-of-squares decomposition if and only
if there exists g1, . . . , gl polynomials such that p =

∑l
i=1 g

2
i . Note that if p

admits a sum-of-squares decomposition then the degree of p is even. We de-
note by Σ[x]2m the set of a sum-of-squares decomposable polynomials of degree
2m and by Σ[x] the set of all sum-of-squares decomposable polynomials. A
polynomial p ∈ R[x]2m belongs to Σ[x]2m if and only if there exists a semi-
definite positive matrix Q such that for all x ∈ Rd: p(x) = vm(x)Qvm(x)ᵀ where
vm(x) is the vector of all monomials of degree at most m that is vm(x) =
(1, x1, x2, . . . , xd, . . . , x

m
1 , . . . , x

m
d). The size of the vector vm(x) is

(
d+m
d

)
and

thus Q is of size
(
d+m
d

)
×
(
d+m
d

)
.

It is obvious that all p ∈ Σ[x] are positive polynomials. To check whether
a given polynomial p ∈ R[x]2m belongs to Σ[x] can be done by solving a semi-
definite feasibility program.

The SOS reinforcement of polynomial optimization problems consists in re-
stricting polynomial positivity by being an element of Σ[x]. In case of polyno-
mial maximization problems, the SOS reinforcement induces a computation of
an upper bound on the real optimal value. For example let us consider an uncon-
strained maximization problem and let p ∈ R[x]. Applying SOS reinforcement,
we obtain:

sup{p(x), x ∈ Rd} = inf{η | η − p(x) ≥ 0} ≤ inf{η | η − p(x) ∈ Σ[x]} . (7)

Now, let p, q ∈ R[x] and consider the constrained optimization problem:
sup{p(x)|q(x) ≤ 0}. Let λ ∈ Σ[x], then: supq(x)≤0 p(x) ≤ sup

x∈Rd p(x) −
λ(x) · q(x). Indeed, suppose q(x) ≤ 0, then −λ(x)q(x) ≥ 0 and p(x) ≤ p(x) −
λ(x)q(x) ≥ 0. Finally taking the supremum over {x ∈ Rd | q(x) ≤ 0} provides the
inequality. Since sup{p(x)−λ(x) · q(x), x ∈ Rd} is an unconstrained polynomial
maximization problem then we can apply a SOS reinforcement and we obtain:

sup
q(x)≤0

p(x) ≤ sup
x∈Rd

p(x)− λ(x) · q(x) ≤ inf{η | η − p− λq ∈ Σ[x]}

Finally, note that this latter inequality is valid whatever λ ∈ Σ[x] and so we can
take the infimum over λ ∈ Σ[x] which leads to

sup
q(x)≤0

p(x) ≤ inf
λ∈Σ[x]

sup
x∈Rd

p(x)− λ(x) · q(x) ≤ inf
η−p−λq∈Σ[x]

λ∈Σ[x]

η (8)

Note that since positive scalars can be viewed as sum-of-squares polynomials,
we can restrict λ to be a positive scalar. In presence of several constraints, we
assign to each constraint an element σ ∈ Σ[x], and we consider the product of
σ with the associated constraint and then the sum of all products. This sum is
finally added to the objective function.
4.2 Relaxed semantics
The computation of F] as a polynomial maximization problem cannot be directly
performed using numerical solvers. We use the SOS reinforcement mechanisms
described above to relax the computation and characterize an abstraction of F].
Let us recall the definition of F]i and let w ∈ VexP(P 7→ R):(
F]i (w)

)
(p) = sup

q(x)≤w(q), ∀q∈P
rij(x)≤0, ∀ j∈[ni]
r0
k(x)≤0, ∀ k∈[n0]

p(T i(x))

≤ inf
λ∈F(P,R+)

µ∈Σ[x]ni ,γ∈Σ[x]n0

sup
x∈Rd

p(T i(x)) +
∑

q∈P λ(q)(w(q)− q(x))

−
∑ni

l=1 µl(x)ril(x)−
∑n0

l=1 γl(x)r0
l (x)

≤ inf
λ,µ,γ,η

η

s. t.

η − p ◦ T i −
∑
q∈P

λ(q)(w(q)− q) +
ni∑

l=1
µlr

i
l +

n0∑
l=1

γlr
0
l ∈ Σ[x]

where λ ∈ F (P,R+) , µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 , η ∈ R
(using a SOS reinforcement to remove the sup)

In order to simplify the notations, let us write
∑ni

l=1 µlr
i
l (resp.

∑n0

l=1 γlr
0
l)

as 〈µ, ri〉 (〈γ, r0〉). Finally, we introduce
(
FRi (w)

)
(p), the over-approximation of(

F]i (w)
)
(p):(

FRi (w)
)
(p) = inf

λ,µ,γ,η
η

s. t.

η − p ◦ T i −
∑
q∈P

λ(q)(w(q)− q) + 〈µ, ri〉+ 〈γ, r0〉 ∈ Σ[x]

where λ ∈ F (P,R+) , µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 , η ∈ R

Next, we will need to extend F]i to the whole space F (P,R) and we will restrict
the templates bound to finite valued functions on templates.

The computation of F] needs the computation of X in† that is, by defini-
tion, equal to sup{p(x), x ∈ X in}. Since X in is a basic semi-algebraic and the
templates p are polynomials then the evaluation of X in† is reduced to solve
a polynomial maximization problem. We can use SOS reinforcement described
above to over-approximate and thus we define X inR the relaxed version of X in†:

X inR(p) := inf{η | η − p+
nin∑
j=1

νin
j r

in
j ∈ Σ[x], νin ∈ Σ[x]nin}

Note that since X in is a nonempty compact basic semi-algebraic, then X inR(p)
is finite valued i.e. cannot take the value +∞ neither −∞ [Las09, Th. 2.15].

Finally, we define the relaxed functional FR for all w ∈ F (P,R) for all p ∈ P
as follows: (

FR(w)
)
(p) = sup

{
sup
i∈I

(
FRi (w)

)
(p), X inR(p)

}
(9)

By construction, the relaxed function FR provides a safe over-approximation
of the abstract semantics F]. Furthermore, for all i ∈ I, the evaluation of FRi
can be done using semi-definite programming, since it is reduced to solve a
minimization problem with a linear objective function and linear combination
of polynomials constrained to be sum-of-squares.

By construction, we have readily the following proposition:

Proposition 2 (Safety). The following statements hold: (I) For all p ∈ P,
X in†(p) ≤ X inR(p); (II) For all i ∈ I, for all w ∈ F (P,R) and for all p ∈
P:
(
F]i (w)

)
(p) ≤

(
FRi (w)

)
(p); (III) For all w ∈ F (P,R) and for all p ∈ P,(

F](w)
)
(p) ≤

(
FR(w)

)
(p).

An important property that we will use to prove some results on policy
iteration algorithm is the monotonicity of the relaxed functional.

Proposition 3 (Monotonicity). The following statements hold: (I) For all
i ∈ I, w 7→

(
FRi (w)

)
is monotonic on F (P,R); (II) The map w 7→ FR(w) is

monotonic on F (P,R).

5 Policy Iteration in Polynomial Templates Abstract
Domains

We are interested in computing the least fixpoint RR of FR, over-approximation
of R, least fixpoint of F . As for the definition of R, it can be reformulated using
Tarski theorem as the minimal post-fixpoint:RR = min{w ∈ F

(
P,R

)
|FR(w) ≤F

w}. The idea behind policy iteration is to computeRR using successive iterations
which are composed of a vector bound computation using linear programming
and the determination of a new policy when a fixpoint is not reached. Policy
iteration navigates in the set of postfixpoints of FR and needs to start from a
postfixpoint w0 supposed given. It acts like a narrowing operator and can be in-
terrupted as any time. For further information on policy iteration, the interested
reader can consult [CGG+05,GGTZ07].

5.1 Policies

Policy iteration can be used to compute a fixpoint of a monotone self-map defined
as an infimum of a family of affine monotone self-maps. In this paper, we propose
to design a policy iteration algorithm to compute a fixpoint of FR. First, we
remark that FR is not directly written as an infimum but for all i ∈ I, FRi is
and so for all i ∈ I, we apply the concept of policies to FRi .

Policy iteration needs a selection property, that is when a vector is given,
there exists a policy which achieves the infimum. In our context since we apply
the concept of policies to FRi , it means that the minimization problem involved
in the computation of FRi has an optimal solution. For w ∈ F (P,R) and p ∈ P,
an optimal solution, in this case, is a vector (λ, µ, γ, g) ∈ F (P,R+) × Σ[x]ni ×
Σ[x]n0 × R[x]l such that:(

FRi (w)
)
(p) = p ◦ T i +

∑
q∈P

λ(q)(w(q)− q)− 〈µ, ri〉 − 〈γ, r0〉+
l∑

j=1
g2
j . (10)

We warn the reader that in Equation (10),
(
FRi (w)

)
(p) is a scalar whereas

p◦T i+
∑
q∈P λ(q)(w(q)−q)−〈µ, ri〉−〈γ, r0〉+

∑l
j=1 g

2
j is a priori a polynomial.

The equality in Equation (10) means that actually p◦T i+
∑
q∈P λ(q)(w(q)−q)−

〈µ, ri〉− 〈γ, r0〉+
∑l
j=1 g

2
j is a constant polynomial i.e. all coefficients associated

to a monomial of degree greater than 1 are zero.
We denote by Sol(w, i, p) the set of (λ, µ, γ, g) ∈ F (P,R+)×Σ[x]ni×Σ[x]n0×

R[x]l such that Equation (10) holds. If Sol(w, i, p) = ∅, since policy iteration algo-
rithm can be stopped at any step and still provides a sound over-approximation,
we stop the iteration. Then, we define FS as the set ofw ∈ F (P,R) such that for
all i ∈ I, for all p ∈ P, Sol(w, i, p) 6= ∅. Finally, we can define a policy as a map
which selects for all w ∈ FS, for all i ∈ I and for all p ∈ P a vector of Sol(w, i, p).
More formally, we have the following definition:

Definition 7 (Policies in the policy iteration SOS based setting). A
policy is a map π : FS 7→ ((I × P) 7→ F (P,R+)×Σ[x]ni ×Σ[x]n0 × R[x]l) such
that: ∀w ∈ FS, ∀ i ∈ I, ∀ p ∈ P, π(w)(i, p) ∈ Sol(w, i, p).

We denote by Π the set of policies and for π ∈ Π, we write πλ the map from
FS to (I ×P) 7→ F (P,R+)which associates to w ∈ FS and (i, p) ∈ I ×P the first
coordinate of π(w)(i, p) i.e. if π(w)(i, p) = (λ, µ, γ, g) then πλ(w)(i, p) = λ.

As said before, policy iteration exploits the linearity of maps when a policy
is fixed. We have to explicit the affine maps we will use in a policy iteration step.
Let π ∈ Π, w ∈ FS, i ∈ I and p ∈ P and let λ = πλ(w)(i, p), we define the map
ϕλw,i,p : F (P,R) 7→ R as follows:

v 7→ ϕλw,i,p(v) =
∑
q∈P

λ(q)v(q) +
(
FRi (w)

)
(p)−

∑
q∈P

λ(q)w(q) (11)

Then, for π ∈ Π, we define for all w ∈ FS, Φπ(w)
w the map from F (P,R) 7→

F (P,R) for all v ∈ F (P,R), for all p ∈ P as follows:

Φπ(w)
w (v)(p) = sup

{
sup
i∈I

ϕ
πλ(w)(i,p)
w,i,p (v), X inR(p)

}
(12)

Lemma 1 (Property of ϕλi,w,p). Let π ∈ Π, w ∈ FS and (i, p) ∈ I×P. The fol-
lowing properties are true: (I) ϕπλ(w)(i,p)

w,i,p is affine on F (P,R) ; (II) ϕπλ(w)(i,p)
w,i,p is

monotonic ; (III) ∀ v ∈ F (P,R), FRi (v)(p) ≤ ϕπλ(w)(i,p)
w,i,p (v) ; (IV) ϕπλ(w)(i,p)

w,i,p (w) =
FRi (w) .

The properties presented in Lemma 1 implies some useful properties for the
maps Φπ(w)

w .

Corollary 1 (Property of Φπ(w)
w). Let π ∈ Π and w ∈ FS. The following

properties are true: (I) Φπ(w)
w is monotonic ; (II) FR ≤ Φπ(w)

w ; (III) Φπ(w)
w (w) =

FR(w) ; (IV) Assume that there exists w0 ∈ FS such that FR(w0) ≤ w0. Then
the least fixpoint of Φπ(w)

w can be computed as the unique optimal solution of the
linear program:

inf

∑
p′∈P

v(p′) | ∀ (i, p) ∈ I × P, ϕπλ(w)(i,p)
i,w,p (v) ≤ v(p), ∀q ∈ P, X inR(q) ≤ v(q)

 .

(13)

5.2 Policy Iteration

Now, we describe the policy iteration algorithm.
If for some k, wk /∈ FS then we define wl = wk for all k ≥ l.

Theorem 2 (Convergence result of Algorithm 1). The following state-
ments hold:

1. For all k ≥ 0, FR(wk) ≤ wk;
2. The sequence (wk)k≥0 generated by Algorithm 1 is decreasing and converges;
3. Let w∞ = limk 7→+∞ wk, then FR(w∞) ≤ w∞. Furthermore, if FR is upper

semi-continuous and for all k ≥ N, wk ∈ FS, then FR(w∞) = w∞.

input : w0, a postfixpoint of FR

output: a fixpoint w = FR(w) if ∀ k ∈ N, wk ∈ FS or a postfixpoint otherwise
k=0;
while fixpoint not reached do

begin compute the next policy π for the current iterate wk
if wk ∈ FS then

Compute FR(wk) and define π(wk) ;
else

return wk;
end

end
begin compute the next iterate wk+1

Define Φπ(wk)
wk

and compute the least fixpoint wk+1 of Φπ(wk)
wk

from
Problem (13);
k=k+1;

end
end
Algorithm 1: SOS-based policy iteration algorithm for PPS programs.

5.3 Initialisation and templates choice

We have supposed that we have a postfixpoint w0 of FR. Actually this post-
fixpoint is computed at the same moment of the templates computation. The
templates computation method can be found in [AGM15]. The method is con-
structed by using the definition of begin a postfixpoint of FR. Suppose that the
templates basis is constituted of one template p then w0 is a postfixpoint FR
if and only if FR(w0) ≤ w0. This is equivalent to inf{η | η − p+

∑nin
j=1 ν

in
j r

in
j ∈

Σ[x], νin ∈ Σ[x]nin} ≤ w0 and for all i ∈ I:(
FRi (w0)

)
(p) = inf

λ,µ,γ,η
η ≤ w0

s. t.
{
η − p ◦ T i − λi(w0 − p) + 〈µ, ri〉+ 〈γ, r0〉 ∈ Σ[x]
where λi ≥ 0, µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 , η ∈ R

By definition of the infimum, it is equivalent to the existence of νin ∈ Σ[x] and
for all i ∈ I of λi ≥ 0, µi ∈ Σ[x]ni , γi ∈ Σ[x]n0 such that:

w0 − p+
∑nin
j=1 ν

in
j r

in
j ∈ Σ[x]

w0 − p ◦ T i − λi(w0 − p) + 〈µ, ri〉+ 〈γ, r0〉 ∈ Σ[x] (14)

Now to find a template, it suffices to solve Problem (14) where p is now a decision
variable. However, two main issues appear.

First, with any objective functions, p = 0 is a solution of Problem (14) To
avoid this very unuseful solution, we add an objective function. In [AGM15], the
objective function is given by considering a proof goal i.e. we assumed that a
property of the form R ⊆ {x ∈ Rd | κ(x) ≤ α} where κ is given has to be proved.
Here, we are interested in proving the boundedness of the reachable value set

and we chose κ = ‖ · ‖2
2 and we minimize α. Second, if λi and p are decision

variables, then Problem (14) is a bilinear SOS problem which is difficult to solve
and we fix λi = 1 as in Lyapunov equations. Note also that we can take w0 = 0
since p has a constant part. In conclusion, to define a template p, we solve the
following SOS program:

inf
p∈R[x]2m,w∈R

w ,

s.t. − p = σ0 −
nin∑
j=1

σjr
in
j ,

∀ i ∈ I, p− p ◦ T i = σi −
ni∑
j=1

µijr
i
j −

n0∑
j=1

γijr
0
j ,

w + p− ‖ · ‖2
2 = ψ ,

∀ j = 1, . . . , nin , σj ∈ Σ[x] , deg(σjrin
j) ≤ 2m ,

σ0 ∈ Σ[x] , deg(σ0) ≤ 2m ,

∀ i ∈ I , σi ∈ Σ[x] , deg(σi) ≤ 2m deg T i ,
∀ i ∈ I , ∀ j = 1, . . . , ni , µij ∈ Σ[x] , deg(µijrij) ≤ 2m deg T i ,
∀ i ∈ I , ∀ j = 1, . . . , n0 , γi ∈ Σ[x] , deg(γijr0

j) ≤ 2m deg T i ,
ψ ∈ Σ[x] , deg(ψ) ≤ 2m .

(15)

Let (p, w) be a solution of Problem (15). In [AGM15, Prop. 1], we proved that the
set {x ∈ Rd | p(x) ≤ 0} defines an inductive invariant. To complete the template
basis, we use the strategy proposed in [AGM15, Ex. 9], that is we work with the
templates basis {x 7→ x2

i , i ∈ [d]} ∪ {p}. We thus use the inductive invariant set
{p(x) ≤ 0, x2

i ≤ w} as initialisation i.e. the initial bound is w0(q) = w if q 6= p
and w(0)(q) = 0 if q = p. As opposed to the approach of [AGM15], we avoid
increasing the degree of polynomial p to obtain better bounds on the reachable
values.

6 Experiments

Details of the running Example. Recall that our running example is given
by the following PPS: (X in, X0, {X1, X2}, {T 1, T 2}), where:

X in = [−1, 1]× [−1, 1]
X0 = Rd and

{
X1 = {x ∈ R2 | −x2

1 + 0.5 ∗ x2 + 0.5 ≤ 0}
X2 = {x ∈ R2 | x2

1 − 0.5 ∗ x2 − 0.5 < 0}

and the functions relative to the partition {X1, X2} are:

T 1 =
(

0.687x1 + 0.558x2 − 0.0001x1x2
−0.292x1 + 0.773x2

)
T 2 =

(
0.369x1 + 0.532x2 − 0.0001x2

1
−1.27x1 + 0.12x2 − 0.0001x1x2

)
The first step consists in constructing the template basis and compute the tem-
plate p and bound w on the reachable values as a solution of Problem (15).
We do not give expression p for the sake of conciseness. The upper bound w

is equal to 2.1343. As suggested in Subsection 5.3, we can take the template
basis P = {p, x 7→ x2

1, x 7→ x2
2}. From now, we simply write x2

1 for x 7→ x2
1

and x2
2 for x 7→ x2

2. The basic semi-algebraic {x ∈ R2 | p(x) ≤ 0, x2
1 ≤

2.1343, x2
2 ≤ 2.1343} is an inductive invariant and the corresponding bounds

function is w0 = (w0(x2
1), w0(x2

2), w0(p)) = (0, 2.1343, 2.1343).
As in first step of Algorithm 1, we compute the image of w0 by FR. We found

that FR(w0)(x 7→ x2
1) = 1.5503, FR(w0)(x 7→ x2

2) = 1.9501 and FR(w0)(p) =
0. The computation of FR permits to determine a new policy. The important
data is the vector λ. For example, for i = 1 and the template x2

1, the vector λ
is (0, 0, 2.0332). It means that we associate for each template q a weight λ(q).
In the case of λ = (0, 0, 2.0332), λ(x2

1) = 0, λ(x2
2) = 0 and λ(p) = 2.0332. For

i = 1, the template x2
1 and the bound vector w0, the function ϕλ

w0,1,x2
1
(v) =

2.0332v(p) + 1.5503.
To get the new invariant, we compute a bound vector w1 solution of Linear

Program (13). We obtain: w1(x2
1) = 1.5503, w1(x2

2) = 1.9501 and w1(p) = 0.
Since we have ‖FR(w1)− w1‖∞ ≤ 1e− 6, Policy iteration terminates with this
fixpoint.
Benchmarks. The presented analysis has been applied to available examples
of the control community literature: piecewise linear systems, polynomial sys-
tems, etc. We gathered the examples matching our criteria: discrete systems,
possibly piecewise, at most polynomial. In all the considered cases, no com-
mon quadratic Lyapunov existed. In other words, not only the existing linear
abstractions such as intervals or polyhedra would fail in computing a non triv-
ial postfixpoint, but also the existing analyses dedicated to digital filters such
as [Fer04,GS07,AGG11,RJGF12].

The analysis has been implemented in Matlab and relies on the Mosek SDP
solver [AA00], through the Yalmip [L0̈4] SOS front-end. Without outstanding
performances, all experiments are performed within a few seconds per iteration,
which makes us believe that a more serious implementation would perform bet-
ter. We recall that the analysis could be interrupted at any point, still providing
a safe upper bound.

The table 1 in appendix summarizes the examples considered, the bounds ob-
tained, the degree of the polynomial templates used and the number of iterations
performed before reaching the fixpoint.

7 Conclusion

In this paper, we extend the previous policy iteration algorithm semidefinite
programming based to a sum-of-squares programming setting. This extention
allows to consider the wider class of programs written in polynomial arithmetics
and composed of a single loop with a nested conditional branchments loop body.
We have proved that, in this new setting, we keep the advantages of policy
iteration algorithms, that is, they produce a sequence of more and more precise
safe overapproximations of the reachable values set.

As future works, we could generalize our technique to programs manipulating
semialgebraic or transendantal arithmetics.

References

[AA00] Erling D. Andersen and Knud D. Andersen. The mosek interior point op-
timizer for linear programming: An implementation of the homogeneous
algorithm. In High Performance Optimization, volume 33 of Applied Opti-
mization, pages 197–232. Springer, 2000.

[AGG10] A. Adjé, S. Gaubert, and E. Goubault. Coupling policy iteration with semi-
definite relaxation to compute accurate numerical invariants in static anal-
ysis. In ESOP, volume 6012 of LNCS, pages 23–42. Springer, 2010.

[AGG11] A. Adjé, S. Gaubert, and E. Goubault. Coupling policy iteration with semi-
definite relaxation to compute accurate numerical invariants in static anal-
ysis. Logical Methods in Computer Science, 8(1), 2011.

[AGM15] A. Adjé, P.-L. Garoche, and V. Magron. Property-based Polynomial Invari-
ant Generation using Sums-of-Squares Optimization, 2015. submitted.

[AJ13] Amir Ali Ahmadi and Raphael M. Jungers. Switched stability of nonlinear
systems via sos-convex lyapunov functions and semidefinite programming.
In CDC 2013, pages 727–732, 2013.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In POPL, pages 238–252. ACM Press, New York, NY, 1977.

[CGG+05] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy
iteration algorithm for computing fixed points in static analysis of programs.
In Computer aided verification, pages 462–475. Springer, 2005.

[DP02] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cam-
bridge University Press, New York, second edition, 2002.

[Fen02] Gang Feng. Stability analysis of piecewise discrete-time linear systems.
IEEE Trans. Automat. Contr., 47(7):1108–1112, 2002.

[Fer04] Jérôme Feret. Static analysis of digital filters. In ESOP 2004, volume 2986
of LNCS, pages 33–48. Springer, 2004.

[GGTZ07] Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. Static
analysis by policy iteration on relational domains. In ESOP 2007, volume
4421 of LNCS, pages 237–252. Springer, 2007.

[GS07] Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through
strategy iteration. In ESOP 2007, volume 4421 of LNCS, pages 300–315.
Springer, 2007.

[GSA+12] Thomas Martin Gawlitza, Helmut Seidl, Assalé Adjé, Stéphane Gaubert,
and Eric Goubault. Abstract interpretation meets convex optimization. J.
Symb. Comput., 47(12):1416–1446, 2012.

[L0̈4] J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[Las09] Jean-Bernard Lasserre. Moments, positive polynomials and their applica-
tions, volume 1. World Scientific, 2009.

[Mor70] J. J. Moreau. Inf-convolution, sous-additivité, convexité des fonctions
numériques. Journal de Mathématiques Pures et Appliquées, 49:109–154,
1970.

[RJGF12] P. Roux, R. Jobredeaux, P-L. Garoche, and E. Feron. A generic ellipsoid
abstract domain for linear time invariant systems. In T. Dang and I. M.
Mitchell, editors, HSCC, pages 105–114. ACM, 2012.

[Roc96] R.T. Rockafellar. Convex Analysis. Princeston University Press, 1996.

[Rub00] A. M. Rubinov. Abstract Convexity and Global optimization. Kluwer Aca-
demic Publishers, 2000.

[Sin97] I. Singer. Abstract Convex Analysis. Wiley-Interscience Publication, 1997.
[SSM04] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Constraint-

based linear-relations analysis. In SAS 2004, volume 3148 of LNCS, pages
53–68. Springer, 2004.

A Appendix

A.1 Benchmarks

Reference Bounds (ie. x2
i) Degree # it.

[Fen02, Ex. 2.1] piecewise linear with 2
zones

[3.8260, 2.1632, 1.0000] 4 1
[3.7482, 1.8503, 1.0000] 6 1
[1.0000, 1.8709, 1.0000] 8 max (10)
No good invariant 10,12 −

[Fen02, Ex. 3.3] piecewise linear with 4
zones

[1.8359, 1.3341] 4 2
[1.5854, 1.2574] 6 5
[1.5106, 1.2569] 8 4
[1.4813, 1.2544] 10 6

[AJ13, Ex. 3] piecewise quadratic with 2
zones

No good invariant 4 −
[1.5503, 1.9501] 6 1
[1.5503, 1.9502] 8 7
[1.5500, 1.9436] 10 1
[1.5503, 1.9383] 12 2

Hand-crafted piecewise polynomial (deg
3) with 2 zones

No good invariant 4,6,8,10 −
[1.2100, 0.9989] 12 max (10)

“No good invariant” occurs when the template synthesis fails, ie. does not provide a
sound postfixpoint. It seems to be caused both by the large size of the SDP problems
generated and by numerical inconsistencies of the interior point method used in the
solvers. Table 1. Experiments

[Fen02, Ex. 2.1] piecewise linear with 2 zones

X in = [−1, 1]3
X0 = R3

X1 = {(x, y, z) ∈ R3|x ≤ 0} X2 = {(x, y, z) ∈ R3|x > 0}

T 1 =

 x+ 0.5y
−0.3x+ 0.8y

0.4z

 T 2 =

x+ .4y + 0.01z
−0.1x+ 0.8y

0.5z

[Fen02, Ex. 3.3] piecewise linear with 4 zones

X in = [−1, 1]2
X0 = R2

X1 = {(x, y) ∈ R2|x ≤ −1} X2 = {(x, y) ∈ R2|x ∈]− 1, 1] ∧ y > 0}
X3 = {(x, y) ∈ R2|x ∈]− 1, 1] ∧ y ≤ 0} X4 = {(x, y) ∈ R2|x > 1}

T 1 =
(

0.9x− 0.01y
0.1x+ y − 0.02

)
T 4 =

(
0.9x− 0.01y

0.1x+ y + 0.02

)
T 2 = T 3 =

(
x− 0.02y

0.02x+ 0.9y

)

[AJ13, Ex. 3] piecewise quadratic with 2 zones

X in = [−1, 1]2
X0 = R2

X1 = {(x, y) ∈ R2|1 ≤ x2} X2 = {(x, y) ∈ R2|x2 < 1}

T 1 =
(

0.687x+ 0.558y − 0.0001xy
−0.292x+ 0.773y

)
T 2 =

(
0.369x+ 0.532y − 0.0001x2

−1.27x+ 0.12y − 0.0001xy

)

Hand-crafted piecewise polynomial (deg 3) with 2 zones

X in = [0.9, 1.1]× [0, 0.2]
X0 = R2

X1 = {(x, y) ∈ R2|x2 + y2 ≤ 1} X2 = {(x, y) ∈ R2|x2 + y2 > 1}

T 1 =
(
x2 + y3

x3 + y2

)
T 2 =

(
0.5x3 + 0.4y2

−0.6x2 + 0.3y2

)

A.2 Proofs

Proof (Proof of Lemma 1). Let w ∈ FS, i ∈ I, p ∈ P and π ∈ Π.
(I) The fact that ϕπλ(w)(i,p)

w,i,p is affine follows readily from the definition.
(II) The monotonicity of ϕπλ(w)(i,p)

w,i,p follows from the positivity of πλ(w)(i, p).
(III) Let v ∈ F

(
P,R

)
. Since w ∈ FS, there exists (λ, µ, γ, g) ∈ F (P,R+) ×

Σ[x]ni ×Σ[x]n0 × R[x]l such that

(
FRi (w)

)
(p) = p ◦ T i +

∑
q∈P

λ(q)(w(q)− q)− 〈µ, ri〉 − 〈γ, r0〉+
l∑

j=1
g2
j

Thus:

ϕ
πλ(w)(i,p)
w,i,p (v) =

∑
q∈P λ(q)v(q)−

∑
q∈P λ(q)w(q) + p ◦ T i +

∑
q∈P λ(q)(w(q)− q)

−〈µ, ri〉 − 〈γ, r0〉+
∑l
j=1 g

2
j

= p ◦ T i +
∑
q∈P λ(q)(v(q)− q)− 〈µ, ri〉 − 〈γ, r0〉+

∑l
j=1 g

2
j

And finally,

ϕ
πλ(w)(i,p)
w,i,p (v)− p ◦ T i −

∑
q∈P

λ(q)(v(q)− q) + 〈µ, ri〉+ 〈γ, r0〉 ∈ Σ[x] (16)

and recall that :(
FRi (v)

)
(p) = inf

λ,µ,γ,η
η

s. t.

η − p ◦ T i −
∑
q∈P

λ(q)(v(q)− q) + 〈µ, ri〉+ 〈γ, r0〉 ∈ Σ[x]

where λ ∈ F (P,R+) , µ ∈ Σ[x]ni , γ ∈ Σ[x]n0 , η ∈ R

And from Equation (16), (λ, µ, γ, ϕπλ(w)(i,p)
w,i,p (v)) is a feasible solution of the latter

minimization problem and we conclude that
(
FRi (v)

)
(p) ≤ ϕπλ(w)(i,p)

w,i,p (v).
(IV)

ϕ
πλ(w)(i,p)
w,i,p (w) =

∑
q∈P

λ(q)w(q) +
(
FRi (w)

)
(p)−

∑
q∈P

λ(q)w(q) =
(
FRi (w)

)
(p) .

Proof (Proof of Corollary 1). Let π ∈ Π and w ∈ FS.
(I) Φπ(w)

w is monotonic from the monotonicity of the map ϕπλ(w)(i,p)
w,i,p for all

i ∈ I and for all p ∈ P, and the the fact that the pointwise supremum of
monotonic maps is also monotonic.

(II) Let v ∈ F
(
P,R

)
and let p ∈ P. Recall that:(

FR(v)
)
(p) = sup

{
sup
i∈I

(
FRi (v)

)
(p), X inR(p)

}
and from the second assertion of Lemma 1, we have for all i ∈ I, FRi (v)(p) ≤
ϕ
πλ(w)(i,p)
w,i,p , by taking the supremum over I and then the supremum withX inR(p),

we obtain that FR(v)(p) ≤ Φπ(w)
w (v)(p) that is the desired result.

(III) This result follows readily from the third assertion of Lemma 1.
(IV) By Tarski’s theorem and from the monotonicity of Φπ(w)

w , Φπ(w)
w has a

least fixpoint in F
(
P,R

)
. Let L be this least fixpoint. Let w0 ∈ FS such that

FR(w0) ≤ w0. This implies that Φπ(w)
w (w0) = FR(w0) ≤ w0 and thus L cannot

take the value +∞. Moreover from the definition of Φπ(w)
w , L ≥ X inR which is

finite and thus L ∈ F (P,R). Now, from Tarski’s theorem and the definition of
Φ
π(w)
w , we have:

L = min{v | Φπ(w)
w (v) ≤ v}

= inf
{
v | ∀ (i, p) ∈ I × P, ϕπλ(w)(i,p)

i,w,p (v) ≤ v(p), ∀q ∈ P, X inR(q) ≤ v(q)
}

.

Let us suppose that there exists a feasible solution v̄ such that
∑
q′∈P v̄(q′) <∑

q′∈P L(q′). Then we have inf{v̄, L} ≤ L and inf{v̄, L} 6= L. From the mono-
tonicity of Φπ(w)

w and the feasibility of v̄ and L, we have Φπ(w)
w (inf{v̄, L}) ≤

inf{v̄, L}. This contradicts the minimality of L. We conclude that L is the opti-
mal solution of Linear Program (13).

Proof (Proof of Proposition 3). Assuming p, λ, µ, γ, η fixed, we denote by ψ(w)
the polynomial in x, η−p(T i(x))−

∑
q∈P λ(q)(w(q)−q(x))+〈µ, ri〉(x)+〈γ, r0〉(x).

Assume that w ≤F w′. We have ∀q ∈ P, w(q) = w(q) − w′(q) + w′(q) and
thus −

∑
q∈P λ(q)w(q) = −

∑
q∈P λ(q)w′(q)−

∑
q∈P λ(q)(w(q)−w′(q)). Now we

remark that ψ(w′) = ψ(w) +
∑

q∈P λ(q)(w(q) − w′(q)). Then if ψ(w) is a SOS,
so does ψ(w′). Finally, we recall that if A ⊆ B, then infB ≤ infA. We conclude
that

(
FRi (w)

)
(p) ≤

(
FRi (w′)

)
(p).

Proof (Proof of Theorem 2). We prove the first point by induction. We have
FR(w0) ≤ w0 by assumption. Now suppose that for some k ∈ N, FR(wk) ≤ wk.
If wk /∈ FS then wl = wk for all l ≥ k and then we have proved the result.
Now suppose that wk ∈ FS and let us take π ∈ Π. From the second point of
Corollary 1, FR(wk+1) ≤ Φ

π(wk)
wk

(wk+1) and since wk+1 is the least fixpoint of
Φ
π(wk)
wk

(wk+1) then FR(wk+1) ≤ wk+1.
Let us prove the second assertion. Let k ≥ 0. If wk /∈ FS then wk+1 =

wk ≤ wk. Now suppose that wk ∈ FS and let π ∈ Π, then from the last point
of Corollary 1, Φπ(wk)

wk
(wk) = FR(wk) ≤ wk from the first point. Then wk is

a feasible solution of Problem (13) and since wk+1 is the optimal solution of
Problem (13) then wk+1 ≤ wk. We have X inR ≤ FR(wk) for all k ∈ N, then
(wk)k≥0 is decreasing and lower bounded then it converges to some w∞.

Let us prove the last assertion. If for some k, wk /∈ FS, then w∞ = wk and we
have FR(w∞) ≤ w∞ from the first point. Now suppose that for all k ∈ N, wk ∈
FS. Since FR is monotonic then for all k ∈ N, FR(w∞) ≤ FR(wk) ≤ wk from
the first point. Now taking the limit of the right-hand side, we get F (w∞) ≤ w∞.
Now, let k ∈ N and let π ∈ Π. From the second point, wk+1 ≤ wk and from
the monotonicity of Φπ(wk)

wk
, we have wk+1 = Φ

π(wk)
wk

(wk+1) ≤ Φ
π(wk)
wk

(wk) =
FR(wk). By taking the lim sup on k, we get w∞ ≤ lim supk→+∞ FR(wk). If
FR is upper semicontinuous then w∞ ≤ lim supk→+∞ FR(wk) ≤ FR(w∞) and
w∞ = FR(w∞).

