Closed-forms of Kirchhoff elastic rods shape and sensitivity in the planar case
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bstract

In this report we give closed-forms of Kirchhoff 3-D elastic rods curvature in terms of elliptic functions and, by treating planar rods as a special case, we show we can also obtain closed-forms of planar rods shape, sensitivity and total elastic energy.

General case of 3-D rods

Consider an inextensible, non-shearable and unit length linearly elastic rod. The shape of the rod traces a curve that we will describe by the mapping q : r0, 1s Ñ SEp3q. The position along the rod is parametrized by t P r0, 1s and we will name "base" and "tip" of the rod its extremity at t " 0 and t " 1 respectively. Let the mappings u 1 ptq, u 2 ptq, u 3 ptq such that u i : r0, 1s Ñ R be axial and bending rod strains respectively, and c 1 , c 2 , c 3 be the constants that reflect its elasticity properties. As in [START_REF] Jurdjevic | Integrable Hamiltonian systems on complex Lie groups[END_REF], we say the elastic rod is in static equilibrium in the sense of Kirchhoff if it locally minimizes the elastic energy defined by

E el " 1 2 
ż 1 0 3 ÿ i"1 c i u 2 i dt. (1.1)
Without loss of generality, we will also assume that the base of the rod is held fixed at the origin, i.e. qp0q " e where e is the identity element of SEp3q. Under these assumptions, we will denote by B the set of positions that the other extremity of the rod qp1q can reach. As shown in [START_REF] Bretl | Quasi-static manipulation of a kirchhoff elastic rod based on a geometric analysis of equilibrium configurations[END_REF], the problem of static equilibrium of such rods can be formulated as an optimal control problem by minimize q,u 1 2

ż 1 0 3 ÿ i"1 c i u 2 i dt subject to 9 q " q ˜3 ÿ i"1 u i X i `X4 qp0q " e, qp1q " b (1.2)
for some b P B and where

X 1 " " 0 0 0 0 0 0 ´1 0 0 1 0 0 0 0 0 0  X 2 " " 0 0 1 0 0 0 0 0 ´1 0 0 0 0 0 0 0  X 3 " " 0 ´1 0 0 1 0 0 0 0 0 0 0 0 0 0 0  X 4 " " 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  X 5 " " 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  X 6 "
" 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  is a basis for sep3q, the Lie algebra of SEp3q. Note that when solving this optimal control problem, the rod tip position b is not an input.

In these conditions, the Maximum Principle states that solutions to this optimal control problem are the projections of extremal curves defined on the cotangent bundle T ˚SEp3q onto SEp3q. Thanks to the Lie Group structure of SEp3q, the Hamiltonian can be reduced on the dual of the Lie algebra sep3q ˚and the corresponding (time-varying) Hamiltonian vector fields µ : r0, 1s Ñ sep3q ˚can be expressed by

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % 9 µ 1 " µ3µ2 c3 ´µ2µ3 c2 9 µ 2 " µ 6 `µ1µ3 c1 ´µ1µ3 c3 9 µ 3 " ´µ5 `µ1µ2 c2 ´µ1µ2 c1 9 µ 4 " µ3µ5 c3 ´µ2µ6 c2 9 µ 5 " µ1µ6 c1 ´µ3µ4 c3 9 µ 6 " µ2µ4 c2 ´µ1µ5 c1 (1.3)
where vector fields µ are related to controls u i by u i " c ´1 i µ i for i P t1, 2, 3u. Let A be the set homeomorphic to R 6 and a P A such that a i fi µ i p0q, i P t1, . . . , 6u. It has been shown in [START_REF] Bretl | Quasi-static manipulation of a kirchhoff elastic rod based on a geometric analysis of equilibrium configurations[END_REF] that coordinates in A offer a global parameterization to the set of static equilibrium configuration for the rod. In other words, we can describe configurations of quasi-static 3-D elastic rods using the 6-dimensional configuration space A.

Assuming isotropy and normalized elasticity constants such that c i " 1 for i P t1, 2, 3u, we have from (1.3) 9 µ 1 " 0. Then µ 1 is a constant of motion with µ 1 " a 1 and

$ ' ' ' ' & ' ' ' ' % 9 µ 2 " µ 6 9 µ 3 " ´µ5 9 µ 4 " µ 3 µ 5 ´µ2 µ 6 9 µ 5 " a 1 µ 6 ´µ3 µ 4 9 µ 6 " µ 2 µ 4 ´a1 µ 5 (1.4) 
The signed curvature κ and the torsion τ of the curve can be expressed in terms of µ by

κ 2 " µ 2 2 `µ2 3 τ " µ 1 ´µ2 µ 5 `µ3 µ 6 µ 2 2 `µ2 3 
and, as mentioned in [START_REF] Bretl | Quasi-static manipulation of a kirchhoff elastic rod based on a geometric analysis of equilibrium configurations[END_REF], the differential system (1.4) is equivalent to 2: κ `κ3 ´2κpτ ´λ1 q 2 " λ 2 κ (1.5a)

κ 2 pτ ´λ1 q " λ 3 (1.5b)
where the constants of integration are given by

$ & % λ 1 fi a1 2 λ 2 fi a 2 2 `a2 3 `2a 4 ´a2 1 2 λ 3 fi a1 2 pa 2 2
`a2 3 q ´pa 2 a 5 `a3 a 6 q.

Substituting (1.5b) into (1.5a) and integrating, we obtain

9 κ 2 `1 4 κ 4 `λ2 3 κ ´2 ´λ2 2 κ 2 " λ 4 (1.6)
where the constant of integration λ 4 is given by

λ 4 fi a 2 5 `a2 6 ´1 4 pa 2 2 `a2 3 q 2 `1 2 pa 2 2 `a2 3 qpa 2 1 ´2a 4 q ´a1 pa 2 a 5 `a3 a 6 q
By making the change of variable υ " κ 2 , (1.6) transforms to

9 υ 2 `υ3 ´2λ 2 υ 2 ´4λ 4 υ `4λ 2 3 " 0 (1.7)
Figure 1: Plot of the cubic polynomial P pυq with respect to the squared curvature υ. Hatched regions correspond to impossible values illustrating that the only valid range for υ is given by α 2 and α 3 , the zeros of P pυq.

As already stated in [START_REF] Langer | The total squared curvature of closed curves[END_REF], this equation is in the form 9 υ 2 " P pυq with P is the cubic polynomial

P pυq fi ´υ3 `2λ 2 υ 2 `4λ 4 υ ´4λ 2 3 . (1.8)
Let ´α1 , α 2 , α 3 be the zeros of the polynomial P pυq such that ´α1 ď 0 ď α 2 ď α 3 .

(1.9)

. As P p˘8q " ¯8 and P p0q " ´4λ 2 3 ď 0, P pυq is in the form illustrated in figure 1. Also, we have υ ě 0 and P pυq ě 0 as they are both squares, so υ P rα 2 , α 3 s. The polynomial P pυq can be rewritten for its zeros by P pυq " ´pυ `α1 qpυ ´α2 qpυ ´α3 q.

We can express the polynomial zeros ´α1 , α 2 , α 3 from the constants of integrations λ i by

α 1 ´α2 ´α3 " ´2λ 2 α 1 α 2 `α1 α 3 ´α2 α 3 " 4λ 4 α 1 α 2 α 3 " 4λ 2 3 .
(1.10)

The squared curvature υ can be expressed in terms of elliptic functions by

υptq " α 3 ´1 ´n sn 2 `rt `ϕ|m ˘¯(1.11)
the parameter m, the characteristic n and r can be expressed from the polynomial zeros by

m " α 3 ´α2 α 3 `α1 n " α 3 ´α2 α 3 r " 1 2 ? α 3 `α1 (1.12) Given fi d 1 n ˆ1 ´a2 2 `a2 3 α 3 ˙(1.13)
the phase ϕ can be retrieved from a 2 2 `a2 3 " α 3 `1 ´n sn 2 pϕ|mq ˘, and is given by ϕ " sgnpa 3 a 5 ´a2 a 6 q arcsnp |mq (1.14

)
where arcsn is the inverse of the Jacobi elliptic function sn.

Note that from (1.9), we have 0 ď m ď n ď 1.

As outlined in [START_REF] Jurdjevic | Integrable Hamiltonian systems on complex Lie groups[END_REF], it has been shown the Hamiltonian vector fields in (1.4) is integrable and we have proved it can be expressed in the following form

$ ' ' ' ' ' & ' ' ' ' ' % µ 2 " κ sin ψ µ 3 " κ cos ψ µ 4 " 1 2 pλ 2 `a2 1 2 ´υq µ 5 " ´9 κ cos ψ `κ 9 ψ sin ψ µ 6 " 9 κ sin ψ `κ 9 ψ cos ψ.
(1.15)

where

ψptq " λ 1 t ´λ3 α 3 r ˆΠ´n , am `rt `ϕ|m ˘|m ¯´Π ´n, am `ϕ|m ˘|m ¯˙`ψ p0q
with Πpn, u|mq the elliptic integral of the third kind and ampu|mq is the Jacobi amplitude.

Planar case

Although neither the curve qptq nor the rod sensitivity Bqptq Ba can be explicitly expressed in the general 3-D case, we will show in this section that closed forms can be obtained in the planar case which can be treated as a particular case of the previously presented model.

Curvature and internal wrenches

Considering only planar curves qptq in the xy-plane with q " p0, 0, θ, x, y, 0q T , Hamiltonian vector fields defined in (1.3) simplify to

$ ' ' ' ' ' ' & ' ' ' ' ' ' % 9 µ 1 " 0 9 µ 2 " 0 9 µ 3 " ´µ5 9 µ 4 " µ 3 µ 5 9 µ 5 " ´µ3 µ 4 9 µ 6 " 0 (2.1)
Closed-forms of rod internal wrenches µptq defined in (1.15) reduce to

$ ' ' ' ' ' ' & ' ' ' ' ' ' % µ 1 " 0 µ 2 " 0 µ 3 " κ µ 4 " ´1 2 pκ 2 `λ2 q µ 5 " ´9 κ µ 6 " 0 (2.2)
And constants of integration defined in (1) simplify to

$ ' ' & ' ' % λ 1 " 0 λ 2 " a 2 3 `2a 4 λ 3 " 0 λ 4 " a 2 5 ´a2 3 p 1 4 a 2 3 `a4 q
We retrieve the same results as we would have obtain by applying the same problem formulation on the Lie Group SEp2q rather than SEp3q. Therefore, in the rest of this section we will restrict to solutions of (1.2) that are similar to trajectories on SEp2q, which are generated by the subset of initial conditions ta P A : pa 1 , a 2 , a 6 q " p0, 0, 0qu.

In the following equations, when referring to an elliptic function pq, we will simplify the notation pqpu|mq to pq u. Also, let us define

Γptq fi rt `ϕ
and the following constants of motion that be needed in the following developments

ε fi sgnpa 3 q Γ 0 fi Γp0q δ fi λ 2 2 `4λ 4
The expression of the phase ϕ given in (1.14) simplifies to ϕ " sgnpa 3 a 5 q arcsnp |mq where given in (1.13) reduces to

" d 1 n ˆ1 ´a2 3 α 3 ˙.

Expression of the curvature

In the planar case, as λ 3 " 0, the polynomial P pυq simplifies to P pυq " ´υ3 `2λ 2 υ 2 `4λ 4 υ so P pυq has one trivial zero at υ " 0.

From (1.9), we can distinguish three cases as outlined in [START_REF] Langer | The total squared curvature of closed curves[END_REF] and [START_REF] Singer | Lectures on elastic curves and rods[END_REF]:

• Case I: λ 4 ą 0
Using (1.10), we have that λ 1 pλ 2 `λ3 q ą λ 2 λ 3 .

This imposes the choice for the zeros to

$ & % α 1 " ´λ2 `?δ α 2 " 0 α 3 " λ 2 `?δ.
From (1.12) we get n " 1, so the squared curvature formula in (1.11) simplifies to υptq " α 3 `1 ´sn 2 Γptq "

α 3 cn 2 Γptq.
Then the signed curvature is given by κptq " ε ? α 3 cn Γptq.

(2.

3)

The curvature κptq oscillates between ? α 3 and ´?α 3 and the resulting curve qptq is called a "wavelike" elastica.

• Case II: λ 4 ă 0 Using (1.10), we have

λ 1 pλ 2 `λ3 q ă λ 2 λ 3 .
This imposes the choice for the zeros to

$ & % α 1 " 0 α 2 " λ 2 ´?δ α 3 " λ 2 `?δ.
From (1.12) we get n " m, so the squared curvature formula in (1.11) simplifies to υptq " α 3 `1 ´m sn 2 Γptq "

α 3 dn 2 Γptq.
Then the signed curvature is given by

κptq " ε ? α 3 dn Γptq (2.4)
The curvature κptq is non-vanishing and the resulting curve qptq is called a "orbit-like" elastica.

• Case III: λ 4 " 0 This borderline case implies the polynomial P pυq reduces to

P pυq " ´υ3 `2λ 2 υ 2
which has a double zero.

Using first equation of (1.10), only one choice is possible for the zeros α i :

" α 1 " α 2 " 0 α 3 " |2λ 2 | .
which leads to the signed curvature

κptq " ε ? α 3 sech Γptq (2.5)
This corresponds to the borderline case where the curvature is non-periodic.

Reduction to a unique formulation of the curvature

These cases can be reduced to a single formulation of the curvature by allowing the parameter m to be any positive or null real and applying the Jacobi's real transformation (see [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] §16.11).

By relaxing the constraint on the zeros α i given in (1.9), and keeping only one fixed choice on the zeros that we will denote by α 1 such that

$ & % α 1 1 " 0 α 1 2 " λ 2 ´?δ α 1 3 " λ 2 `?δ.
In this form, α 1 3 is positive as

? δ ą |λ 2 | but α 1
2 can now be negative. Note that we still have α 1

3 ě α 1 2 . Using same forms as in (1.12), the elliptic parameter m 1 and r 1 by

m 1 " α 1 3 ´α1 2 α 1 3 r 1 " 1 2 a α 1 
3
but as mentioned before, the new elliptic parameter m 1 is only constrained to in r0, 8q. Then, the signed curvature can be expressed by a unique expression by

κptq " ε a α 1 3 dn `r1 pt `φq ˇˇm 1 ˘(2.6)
When m 1 ą 1, the Jacobi's real transformation can be applied to reduce to a parameter m such that 0 ď m ď 1 and we retrieve the previously described cases.

Explicit formulation of rod total elastic energy

Recall from (1.1) the total elastic energy of the rod is given by

E el " 1 2 ż 1 0 u 3 ptq 2 dt " 1 2 
ż 1 0 κptq 2 dt
Using the unique formulation of the curvature κptq given in (2.6) can be integrated to give an explicit formulation in terms of the elliptic integral of the second kind by

E el " α 1 3 2 E `r1 pt `φq ˇˇm 1 2.2

Integration of the curve qptq

From the differential system defined in (1.2), it follows that 9 θ " u 3 " κ 9

x " cos θ 9 y " cos θ.

Using (2.2), the integration of the curvature is given by

cos θptq " β 1 p0qβ 1 ptq `4β 2 p0qβ 2 ptq (2.7a) sin θptq " 2 ε pβ 1 p0qβ 2 ptq ´β2 p0qβ 1 ptqq (2.7b) xptq " β 1 p0q ż β 1 ptq `4β 2 p0q ż β 2 ptq (2.7c) yptq " 2 ε ˆβ1 p0q ż β 2 ptq ´β2 p0q ż β 1 ptq ˙. (2.7d) 
The functions β 1 ptq and β 2 ptq can be explicitly given using Jacobi elliptic functions and the elliptic integral of second kind Epu|mq in the three cases previously described as follows

• Case I: λ 4 ą 0
Integrating the curvature in (2.3) (see [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] §16.24) leads to θptq " 2 ε parccos pdn Γptqq ´arccos pdn Γ 0 qq Let Aptq fi arccos pdn Γptqq and Ap0q fi arccos pdn Γ 0 q, then cos Aptq " dn Γptq sin Aptq " ˘b1 ´dn 

Explicit formulation of elastic rod sensitivity

In the 3-D case, the elastic rod sensitivity is given by the 6-dimensional Jacobian matrix where ˚represents indeterminate values.

As we can only obtain closed-forms of the rod shape and thus of rod sensitivity in this special, we will focus in this section on the 3-dimensional block J P pt, aq of Jpt, aq for i, j P t3, 4, 5u. Differentiating the general form of the curve qptq in (2.7) Regardless the three cases of curve elastica, we can derivate with respect to a the following forms:

  Γptqq ´arcsin psn Γ 0 qq Let Aptq fi arcsin psn Γptqq and Ap0q fi arcsin psn Γ 0 q, then ´2 dn 2 Γptq ˘`1 ´2 dn 2 Γ 0 ˘`4 cn Γptq sn Γptq cn Γ 0 sn Γ 0 ´2 sn 2 Γ 0 ˘cn Γptq sn Γptq ´`1 ´2 dn 2 Γptq ˘cn Γ 0 sn Γ 0 which is in the form (2.7) with β 1 and β 2 given byβ 1 ptq fi 1 ´2 sn 2 Γptq

	Given that θptq 2 " ε pAptq ´Ap0qq, we have Using half-angle formulas, we get	
	cos cos θptq " cos 2 θptq 2 ´sin 2 θptq θptq " cos Aptq cos Ap0q `sin Aptq sin Ap0q 2 2 " cn Γptq cn Γ 0 `sn Γptq sn Γ 0 " `2 sech 2 Γptq ´1˘`2 sech 2 Γ 0 ´1˘`4 sech Γptq tanh Γptq sech Γ 0 tanh Γ 0
	sin θptq " 2 cos	sin θptq 2 sin θptq 2 θptq " sin Aptq cos Ap0q ´cos Aptq sin Ap0q 2
	" 2 ε ``2 sech 2 Γ 0	2 Γptq " ε psn Γptq cn Γ 0 ´cn Γ 0 sn Γptqq ´1˘s ech Γptq tanh Γptq ´`2 sech 2 Γptq	´1˘s ech Γ 0 tanh Γ 0	which
	" is in the form (2.7) with β 1 and β 2 given by ? m sn Γptq Using half-angle formulas, we get	
	Given that θptq 2 " ε pAptq ´Ap0qq, we have cos θptq " cos 2 θptq 2 β 1 ptq fi 2 sech 2 Γptq ´1 ´sin 2 θptq 2 β 2 ptq fi sech Γptq tanh Γptq		(2.12a) (2.12b)
	cos sin Using half-angle formulas, we get θptq 2 " cos Aptq cos Ap0q `sin Aptq sin Ap0q " dn Γptq dn Γ 0 `m sn Γptq sn Γ 0 θptq 2 " sin Aptq cos Ap0q ´cos Aptq sin Ap0q " ε ? m psn Γptq dn Γ 0 ´sn Γ 0 dn Γptqq " `1 sin θptq " 2 cos θptq 2 which integrate to θptq ż sin 2 β 1 ptq " 2r ´1 ptanh Γptq ´tanh Γ 0 q ´t ż " 2ε ``1 (2.10a) (2.13a) β 2 ptq " ´r´1 psech Γ ptq ´sech Γ 0 q . (2.13b)
	cos θptq " cos 2 θptq 2 " `2 dn 2 Γ 0 and can be integrated to ´sin 2 θptq β 2 ptq fi sn Γptq cn Γptq 2 ´1˘`2 dn 2 Γptq ´1˘`4 m dn Γptq sn Γptq dn Γ 0 sn Γ 0 ż	(2.10b)
	sin θptq " 2 cos β 1 ptq " m θptq 2 " 2 ε ż ? m ``2 dn 2 Γ 0 θptq sin 2 β 2 ptq " ´r´1 pcn Γptq ´cn Γ 0 q ´1˘d n Γptq sn Γptq ´`2 dn 2 Γptq	´1˘d n Γ 0 sn Γ 0 (2.11b) which
	is in the form (2.7) with β 1 and β 2 given by		(2.11c)
			β 1 ptq fi 2 dn 2 Γptq ´1 β 2 ptq fi ? m sn Γptq dn Γptq		(2.8a) (2.8b)
	and can be integrated to		
		ż		
		β 1 ptq " 2r ´1 pEpam Γptqq ´Epam Γ 0 qq ´t		(2.9a)
		ż		
		β 2 ptq " ´r´1 pcn Γptq ´cn Γ 0 q cos Aptq " ˘`1 `sinh 2 Γptq ˘´1 2		(2.9b)
			" sech Γptq		(2.9c)
	• Case II: λ 4 ă 0		sin Aptq " tanh Γptq	
	Integrating the curvature in (2.4) (see [1] §16.24) leads to	
	Given that θptq 2 " ε pAptq ´Ap0qq, we have cos θptq 2 " cos Aptq cos Ap0q `sin Aptq sin Ap0q θptq " 2 ε parcsin psn cos Aptq " ˘a1 ´sn 2 Γptq " sech Γptq sech Γ 0 `tanh Γptq tanh Γ 0	
			" cn Γptq	
			sin Aptq " sn Γptq	

´1 

`t pm ´2q `2r ´1 pE pam Γ ptqq ´E pam Γ 0 qq ˘(2.11a)

• Case III: λ 4 " 0 Integrating the curvature in (2.5) (see

[START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] 

§16.24) leads to θptq " 2 ε parctan psinh Γptqq ´arctan psinh Γ 0 qq Let Aptq fi arctan psinh Γptqq and Ap0q fi arctan psinh Γ 0 q, then sin θptq 2 " sin Aptq cos Ap0q ´cos Aptq sin Ap0q

" ε ptanh Γptq sech Γ 0 ´tanh Γ 0 sech Γptqq

Ṫhen, most of these forms simplify in the three previously introduced cases and we can give the explicit forms of the derivatives of functions β 1 ptq and β 2 ptq (and their respective integrals) with respect to a: