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Closed-forms of Kirchhoff elastic rods shape and
sensitivity in the planar case

Olivier Roussel!, Marc Renaud' and Michel Taix'*

Abstract
In this report we give closed-forms of Kirchhoff 3-D elastic rods curvature in terms of

elliptic functions and, by treating planar rods as a special case, we show we can also obtain
closed-forms of planar rods shape, sensitivity and total elastic energy.

1 General case of 3-D rods

Consider an inextensible, non-shearable and unit length linearly elastic rod. The shape of the
rod traces a curve that we will describe by the mapping ¢ : [0,1] — SE(3). The position along
the rod is parametrized by ¢ € [0, 1] and we will name “base” and “'tip” of the rod its extremity at
t = 0 and ¢t = 1 respectively. Let the mappings u1 (t), ua(t), us(t) such that u; : [0,1] — R be
axial and bending rod strains respectively, and c1, cs, c3 be the constants that reflect its elasticity
properties. As in [3], we say the elastic rod is in static equilibrium in the sense of Kirchhoff if it
locally minimizes the elastic energy defined by

1 1 3
E, = 5] Zciuf dt. (1.1)
0 =1

Without loss of generality, we will also assume that the base of the rod is held fixed at the
origin, i.e. ¢(0) = e where e is the identity element of SE(3). Under these assumptions, we
will denote by B the set of positions that the other extremity of the rod ¢(1) can reach. As shown
in [2], the problem of static equilibrium of such rods can be formulated as an optimal control
problem by

13
minimize §J Zciu? dt

L 0 =1
5 (12)
subjectto ¢ = q Z u; X + Xy
i=1

for some b € BB and where

3.8 839
_ - _ —_|1000
Xy = 01 00 Xo=1"1000 X3 = 0000
0000 0000 0000
3083 3080 3080
Xy = 0000 X5 = 0000 Xe = 0001
0000 0000 0000

is a basis for se(3), the Lie algebra of SE(3). Note that when solving this optimal control
problem, the rod tip position b is not an input.
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In these conditions, the Maximum Principle states that solutions to this optimal control
problem are the projections of extremal curves defined on the cotangent bundle 7*S E(3) onto
SE(3). Thanks to the Lie Group structure of SF/(3), the Hamiltonian can be reduced on the
dual of the Lie algebra se(3)* and the corresponding (time-varying) Hamiltonian vector fields
w2 [0,1] — se(3)* can be expressed by

H3p2 _ p2p3

B = = o
Ho = g + Hillts _ Hzgts
,li3 = — U5 + Bip2  pip2
Cc2 C1
;o— H3Ms5 _ M2l (1'3)
Ha s "
_o— MiMe _ H3M4
s = = s
P M2pa  p1ps
He = =, o1

where vector fields y are related to controls u; by u; = ci_lui forie {1,2,3}.

Let A be the set homeomorphic to RS and a € A such that a; = 11;(0),i € {1,...,6}. It has
been shown in [2] that coordinates in A offer a global parameterization to the set of static equi-
librium configuration for the rod. In other words, we can describe configurations of quasi-static
3-D elastic rods using the 6-dimensional configuration space .A.

Assuming isotropy and normalized elasticity constants such that ¢; = 1 for i € {1, 2, 3}, we
have from (1.3) tiy = 0. Then p; is a constant of motion with ¢; = a; and

Ho = W6
M3 = —Hs
Ha = p3fhs — f2fle (1.4)

Hs = a1fe — H3ka
He = pafta — a1fis

The signed curvature ~ and the torsion 7 of the curve can be expressed in terms of u by

Hafts + 13 lte

2 2 2

R™ =y + p T =1 —
SR p3 + 13

and, as mentioned in [2], the differential system (1.4) is equivalent to

2% 4+ k% — 26(T — A1) = Aok (1.5a)
K21 = A1) = A (1.5b)

where the constants of integration are given by

[

A1
2

A2 = a3 + a3 +2a4 — %

Ay = 4 (a3 + a3) — (azas + azag).

a
2

Substituting (1.5b) into (1.5a) and integrating, we obtain

1 A
R Rt AR - 7%2 =\ (1.6)

where the constant of integration \4 is given by

1 1
M = af +ak - Z(a% +a3)? + 5(&% +a3)(a? — 2a4) — a1(asas + azag)

By making the change of variable v = 2, (1.6) transforms to

0% 4 0% — 2000 — 4Mgv + 402 = 0 (1.7)
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Figure 1: Plot of the cubic polynomial P(v) with respect to the squared curvature v. Hatched

regions correspond to impossible values illustrating that the only valid range for v is given by

ag and oz, the zeros of P(v).

As already stated in [4], this equation is in the form ©? = P(v) with P is the cubic polynomial
P(v) = —v® + 20002 + 40 — 4)2. (1.8)

Let —a, g, ag be the zeros of the polynomial P(v) such that

—ap <0< as < as. (1.9)

As P(+o0) = Foo and P(0) = —4)\% < 0, P(v) is in the form illustrated in figure 1.
Also, we have v = 0 and P(v) > 0 as they are both squares, so v € [az, ag].
The polynomial P(v) can be rewritten for its zeros by

P(v) = —(v+a1)(v—az2)(v—as).

We can express the polynomial zeros —a1, ao, a3 from the constants of integrations \; by

a1 — Qg — Q3 = 72)\2
ar1ag + apag —asay = 40y (1.10)
aiopas = 4)\§.

The squared curvature v can be expressed in terms of elliptic functions by
v(t) :a3<1—nsn2 (rt+<p|m)> (1.11)

the parameter m, the characteristic n and r can be expressed from the polynomial zeros by

_ 0 — 1
m=23"% ,_B"% r=3vas+a (1.12)

a3 + o a3



Given

1 2 2
wi\/ (1_a2+“3) (1.13)
n Q3

the phase ¢ can be retrieved from a3 + a3 = a;3(1 — nsn?(p|m)), and is given by
= sgn(agas — asag) arcsn(w|m) (1.14)

where arcsn is the inverse of the Jacobi elliptic function sn.

Note that from (1.9), we have 0 < m < n < 1.

As outlined in [3], it has been shown the Hamiltonian vector fields in (1.4) is integrable and
we have proved it can be expressed in the following form

Lo = ksinvy
3 = K COS Y
pa = 3N + 5 —v) (1.15)
s = —K oS + {m/)sinzb
e = Ksiny + kY cos .
where
A3
P(t) = Mt — s <H (n, am (rt + <p|m) |m) — H(n7 am (<p|m) |m)) + 1 (0)

with TI(n, u|m) the elliptic integral of the third kind and am(u|m) is the Jacobi amplitude.

2 Planar case

Although neither the curve ¢(t) nor the rod sensitivity % can be explicitly expressed in the
general 3-D case, we will show in this section that closed forms can be obtained in the planar

case which can be treated as a particular case of the previously presented model.

2.1 Curvature and internal wrenches

Considering only planar curves ¢(t) in the xy-plane with ¢ = (0,0, 6, z,y,0)”, Hamiltonian
vector fields defined in (1.3) simplify to

1 =0

e =0

Hs = —Hs @2.1)
Mg = U35

Hs = —[3ft4

tie =0

Closed-forms of rod internal wrenches p(t) defined in (1.15) reduce to

u1 =0

po =0

w3 =k

Mg = —%(52 + )\2) 2.2)
ps = —FK

pe =0



And constants of integration defined in (1) simplify to

A =0
)\2=a§+2a4
As = 0

Ay = a2 — a%(%a% + ayq)

We retrieve the same results as we would have obtain by applying the same problem formu-
lation on the Lie Group S E/(2) rather than SE(3). Therefore, in the rest of this section we will
restrict to solutions of (1.2) that are similar to trajectories on S FE/(2), which are generated by the
subset of initial conditions {a € A : (a1, a2,as) = (0,0,0)}.

In the following equations, when referring to an elliptic function pq, we will simplify the
notation pq(u|m) to pqu. Also, let us define

D(t) = rt + ¢
and the following constants of motion that be needed in the following developments

e = sgu(as)
o = T(0)
§ 2 A5+ 4\

The expression of the phase ¢ given in (1.14) simplifies to
© = sgn(agas) arcsn(ww|m)

where w given in (1.13) reduces to

2.1.1 Expression of the curvature
In the planar case, as A3 = 0, the polynomial P(v) simplifies to
P(v) = —v® + 2X00% + 4\v

so P(v) has one trivial zero at v = 0.
From (1.9), we can distinguish three cases as outlined in [4] and [5]:

e Casel: \y >0

Using (1.10), we have that
)\1()\2 + /\3) > Mg )3.

This imposes the choice for the zeros to

051=—/\2+\/g
04220
043=>\2+\/(§.

From (1.12) we get n = 1, so the squared curvature formula in (1.11) simplifies to

v(t) = az (1 —sn’I(t))

= azcen’ ().



Then the signed curvature is given by
k(t) = en/agen (). (2.3)

The curvature k(t) oscillates between /a3 and —,/a3 and the resulting curve ¢(t) is
called a "wavelike” elastica.

e Case II: A4 < 0 Using (1.10), we have

)\1()\2 + )\3) < )\2)\3.

This imposes the choice for the zeros to

(03] =0
ag =X —V6
Qs =)\2+\/5.

From (1.12) we get n = m, so the squared curvature formula in (1.11) simplifies to

v(t) = az (1 —msn®T(t))
= agdn®T(t).

Then the signed curvature is given by
K(t) = ey/ag dnT(t) 2.4

The curvature k(t) is non-vanishing and the resulting curve ¢(t) is called a "orbit-like”
elastica.

e Case III: A4 = 0 This borderline case implies the polynomial P(v) reduces to
P(v) = —v® 4+ 2\o0?

which has a double zero.

Using first equation of (1.10), only one choice is possible for the zeros o;:
a1 = 0y = 0
g = |2)\2‘ .

which leads to the signed curvature
K(t) = ey/ag sech I'(t) (2.5)

This corresponds to the borderline case where the curvature is non-periodic.

2.1.2 Reduction to a unique formulation of the curvature

These cases can be reduced to a single formulation of the curvature by allowing the parameter
m to be any positive or null real and applying the Jacobi’s real transformation (see [1] §16.11).
By relaxing the constraint on the zeros «; given in (1.9), and keeping only one fixed choice on
the zeros that we will denote by o’ such that



r_
o =0

a’2 = Xy — \/S
Ozg = Aoy + \/S
In this form, 4 is positive as v/ > |\2| but oy can now be negative. Note that we still have

/ /
Q3 =2 Q.
Using same forms as in (1.12), the elliptic parameter m’ and r’ by
) Of— b ;1

m = r =1/ a
af 2 3

but as mentioned before, the new elliptic parameter m’ is only constrained to in [0, o).
Then, the signed curvature can be expressed by a unique expression by

(t) = en/ohdn (1" (t + ¢)|m’) (2.6)
When m’ > 1, the Jacobi’s real transformation can be applied to reduce to a parameter m

such that 0 < m < 1 and we retrieve the previously described cases.

2.1.3 Explicit formulation of rod total elastic energy
Recall from (1.1) the total elastic energy of the rod is given by

1 1
Eel = fJ Ug(t)2 dt
2 0

; fl r(t)? dt

0

Using the unique formulation of the curvature x(t) given in (2.6) can be integrated to give
an explicit formulation in terms of the elliptic integral of the second kind by

Ee = %E(T/ (t + ¢)m’)

2.2 Integration of the curve ¢(t)

From the differential system defined in (1.2), it follows that
0=us=r T = cosf Yy = cos .

Using (2.2), the integration of the curvature is given by

cosB(t) = 5 ( )51( ) +452(0 )52( ) (2.7a)
sinf(t) = Ba(t) — B2(0)B1(1)) (2.7b)
z(t) = Jﬂl +4/2(0 Jﬂz (2.7¢)

y(t) = 2¢ (51(0) Jﬁg(t) — 3,(0) J 8 (t)) . 2.7d)

The functions 51 (t) and B2(t) can be explicitly given using Jacobi elliptic functions and the
elliptic integral of second kind E(u|m) in the three cases previously described as follows



Casel: \y >0
Integrating the curvature in (2.3) (see [1] §16.24) leads to

0(t) = 2¢ (arccos (dnT'(t)) — arccos (dnTy))

Let A(t) = arccos (dnT'(¢)) and A(0) = arccos (dnT), then
cos A(t) = dnT'(¢)

sin A(t) = +4/1 — dn®T(2)

= msnT(t)
Given that @ = e (A(t) — A(0)), we have
(

0
cos Tt) = cos A(t) cos A(0) + sin A(¢) sin A(0)

=dnT(t)dnTy + msnT'(t)snTy
sin @ = sin A(t) cos A(0) — cos A(t) sin A(0)
=ey/m (sul(t)dnTy —snTodnT(t))

Using half-angle formulas, we get

cos O(t) = cos® @ — sin? ?

= (2dn®Ty — 1) (2dn®T(t) — 1) + 4mdnT(t)snT(¢)dn T sn Ty
o) . 6(t)
5 sin =~
=2eyv/m ((2 dn®Ty — 1)dnD(t)snD(t) — (2 dn®I'(t) — 1)dnTosnTy)

sin@(t) = 2 cos

which is in the form (2.7) with 8; and 5 given by

Bi(t) = 2dn’T'(t) — 1 (2.8a)
Ba(t) = v/msnT(t)dnT(t) (2.8b)
and can be integrated to
f& (t) = 2r ' (E(amT'(¢)) — E(amTy)) — ¢ (2.9a)
Jﬁg(t) = —r~(enT(t) —cnTy) (2.9b)
(2.9¢)

Casell: \y <O
Integrating the curvature in (2.4) (see [1] §16.24) leads to

0(t) = 2¢ (arcsin (snI'(t)) — arcsin (snT))
Let A(t) = arcsin (snT'(¢)) and A(0) = arcsin (snT'y), then

cos A(t) = £+4/1 —sn2T'(t)
= cnT'(t)
sin A(t) = snT'(¢)



Given that i;) = ¢ (A(t) — A(0)), we have

oS ? = cos A(t) cos A(0) + sin A(t) sin A(0)

=cnl'(t)enTo +snT'(¢)snly
sin ? = sin A(t) cos A(0) — cos A(t) sin A(0)
=e(snl'(t)enTy —cnTosnT'(t))

Using half-angle formulas, we get

cosO(t) = cos

sin 6(t)

= 2cos —= sin —=
2

— sin? @

2 0(t)
2 2

= (1—2dn*I'(#)) (1 —2dn’Tp) + 4enl(t)snl(t) cn o sn Ty

)
o) . o)

2

r

which is in the form (2.7) with 3; and 35 given by

Bi(t) = 1—2sn°T(¢)
Ba2(t) = snT'(t) enT'(¥)

and can be integrated to

fﬁﬁ(t) =m~ " (t(m—2)+2r ' (E(amT (¢)) — E (amTY)))

Jﬂz(t

e Caselll: Ay =0

) = —r~ ! (enT(t) — cnTy)

Integrating the curvature in (2.5) (see [1] §16.24) leads to

0(t) = 2¢ (arctan (sinh I'(¢)) — arctan (sinh T'))

Let A(t) = arctan (sinhI'(¢)) and A(0) £ arctan (sinhT'y), then

[N

cosA(t) =+ (1 + sinh? I(t)
= sech I'(t)
sin A(t) = tanh I'(¢)

Given that &;) = ¢ (A(t) — A(0)), we have

cos @ = cos A(t) cos A(0) + sin A(t) sin A(0)

= sechT'(t)sechTg + tanh I'(¢) tanh Ty
sin @ = sin A(t) cos A(0) — cos A(t) sin A(0)

= ¢ (tanhT'(t) sechT'y — tanh T'g sech T'(¢))

=2 ((1—2sn?Ig) enl'(¢)snl(t) — (1 — 2dn® I'(t)) enTosnTp)

(2.10a)
(2.10b)

(2.11a)

(2.11b)

(2.11¢)



Using half-angle formulas, we get

cos (1) = cos? 0 g2 ?1)

coS
2

= (2sech®T(¢) — 1) (2sech®T'g — 1) + 4sechT'(t) tanh I'() sech T'g tanh I'g
0(t)
2
=2¢e((2 sech® g — 1) sechI'(t) tanh I'(¢) — (2 sech® I'(t) — 1) sechI'g tanh T'y)

sin 0(t) = 2 cos @ sin

which is in the form (2.7) with 3; and 5 given by

Bi(t) = 2 sech? T(t) — 1 (2.12a)
Ba2(t) = sech T'(¢) tanh T'(¢) (2.12b)
which integrate to
fﬁl(t) =2r~! (tanhT'(t) — tanh Ty) — ¢ (2.13a)
Jﬂg(t) = —r ! (sechT (t) —sechTy). (2.13b)

2.3 Explicit formulation of elastic rod sensitivity

In the 3-D case, the elastic rod sensitivity is given by the 6-dimensional Jacobian matrix

90 ... I
aal (7115
J(t,a) = : : (2.14)
d¢6 ... O4ge
(90.1 6a6
In the planar case, this simplifies to
%29 02,3 *2,1
J(t,a) = 03,2 Jgg(t,a) 0311 (215)
*1 2 01,3 *11

where sk represents indeterminate values.

As we can only obtain closed-forms of the rod shape and thus of rod sensitivity in this
special, we will focus in this section on the 3-dimensional block J* (¢, a) of J(¢,a) for i, €
{3,4, 5}. Differentiating the general form of the curve ¢(t) in (2.7)leads to

w = 51(0) a%;t) + (;U(LO) Bi(t) + 4 (Bz(o) aifa(t) + 2 ;C(LO) 2(t)> (2.162)
ERlO) —2e (072 1 5o 2 - 0 D - 510 P2t

20 _ g0 D00, J51(t)a%§0)+4(52(0 LU AL )

oa 0
(2.16¢)
6 5
(73725) (51 Sﬁ2 Jﬂ 051 *52 Sﬁl fﬂ1 OS& >
(2.16d)

Regardless the three cases of curve elastica, we can derivate with respect to a the following
forms:



e The elliptic parameters m, n and r

om_ 1 dag _ Jaz IR
da (az+o)? <<é’a 0a>(a3+al) <6a+é’a)(a3 QZ))

(2.17a)
or 1 Oasz  Oay
@ -~ (=, 2.17b
Oa  4y/os+ o ( %a oa > ( )
on 1 [das Oy
e =2, = 22 2.17
da a3 ( 90 * " “da a3> (-17¢)
e The phase ¢
Given
0y _ 9o
oas as
w1 @ T |1, _d\n 2.18)
da  2nw | a2 2“4 n as ) da ‘
das
das

and the first order derivatives of the function arcsn(z|m)

darcsn(zlm) 1
0z V1= 221 — m2?
darcsn(zlm) 1 myv1 — 222 . .
o TS Om \ ieme E(arcsin z|m) — (m — 1) F(arcsin z|m)

with cd(z|m) is the Jacobi elliptic function defined by

dy = 22
= Tnz

we can express the derivative of the function arcsn(wo|m) with respect to a using the
chain rule

Jarcsntw Jdarcsnw 0w  Oarcsntw Om

da 0w da ' om da
_ 1 1 ow N mzv/1 — 22 — E(arcsinw) — (m — 1) F(arcsin @) dm
VT —m22 \WV1-22 da 2(m—1)m oa

Then, the general expression of the derivative of the phase ¢ with respect to a is

0 0 arcsn(w|m
('}7(5 = Sgn(%%)%

e The function I'(¢)
or) or oy
o 'ea 7

e The Jacobi elliptic function sn (T'(¢t)|m)

Given the first order derivatives of the function sn(z|m)

dsn(z|m)
0z

dsn(z[m) _ dn(z|m)cn(z|m) (1 —m) 2z — E (am(z|m)|m) + mcd(z|m) sn(z|m))
om 2m(1 —m)

= cn(u|m) dn(u|m)




we can compute directly

dsnT'(t) dsnl'(t)ol'(t) = 0Osnl(t) om

2a o) da | om oa
— enT(t)dn (1) (@Eit) N (m—1I'(¢) + E(amI'(¢)) —mcd(¢)snT'(¢) 6m> .

2m(m — 1) da
e The Jacobi elliptic function cn (T'(¢)|m)

Given the first order derivatives of the function cn(z|m)

% = —sn(ulm) dn(u|m)
dcn(z|m) _ dn(z|m) sn(zlm) ((m — 1) z + E (am(z|m)|m) — mcd(z|m) sn(z|m))
om

2m(1 —m)

we can compute directly

denT'(t)  denT(t) OT(t)  denT(t) om

o @M da T om da
— —snT(t)dnT(t) (325) L (m =) + E(;E(l;?itz)l—) med D(t)snl(t) ZZ) |

e The Jacobi elliptic function dn (T'(¢)|m)

Given the first order derivatives of the function dn(z|m)

w = —mcn(u|m) sn(u|m)
ddn(z|m) _ sn(zlm) cn(zlm) ((m — 1) z + m E (am(z|m)|m) — mdn(z|m) sc(z|m))
om

2(1 —m)

with sc(z|m) is the Jacobi elliptic function defined by

snz
sCZ = —

we can compute directly

odnT'(t) odnT(t) oT'(t) odnT(t) om

7a a0 da | om oa
= —menD(t)snT(¢) (62((:)
(m—1DI(t) + mE(amI'(t)) — mdnT'(¢) scI'(t) om
N 2m(m — 1) aa> '

The elliptic integral of the second kind E (am(T'(¢)|m)|m)

We first need to express the derivative of the amplitude am(T'(¢)|m) with respect to a.
Given first derivatives of the Jacobi amplitude am(z|m)

dam(z|m)
0z

0am(z|m) _ dn(z|m) ((m — 1) z + E (am(z|m)|m)) — mcn(z|m) sn(z|m)
om 2m(1 —m)

= dn(u|m)




we get the derivative of am(T'(¢)|m) with respect to a by applying the chain rule as usual

damI'(t) Jdam['(¢t)dl'(t)  damT(t) om

2a @) ea ' om da
ort) (m—1T(t) +E(amI(t)) —mcdT(t)snl(t) om
= dnT(t) ( oa * 2m(m — 1) aa> ’

Then, given first derivatives of the elliptic integral of the second kind E(z|m)

M=\/l—msingz

0z
JE(z|m)  E(z|m) —F(z|m)
om 2m
Noting the simplification
OB (amI'(t)) o
amT() \/1 —msin® (amI'(¢))
=4/1—sn2T(¥)
= dnD(¢),

and that
F(amT (1)) = D(t),

we finally have all the expressions to compute the derivative of E (am I'(¢)) with respect
to a by applying the chain rule

OE(amT'(t)) 0E(amT(t)) 0amI'(t) 0E(amT'(t)) om
oa ~ OamTI'(t) da * om da

_ an’ () (agit) N E(amF(t)Q)(T—nC_df)(t) snl(t) (ZZL)

Then, most of these forms simplify in the three previously introduced cases and we can give
the explicit forms of the derivatives of functions /31 (¢) and 32(t) (and their respective integrals)
with respect to a:

e Casel: \y >0
From (2.8) and (2.9), we get

a%f) _ 4dnr() IO dgg(t)
a%f) — dnT(t) asgz(” +snr(p 29mt®) dg(f(t)
a§6i(t) _ 2 <<6E(F(t)) _ aE(Fo)) 1 (BCe) - E(FO))GT)
oa T oa oa r oa
ofBt) 1/1 or denT'(t)  denT
20 2 (G -y - (S5 - T5R))

e Casell: \4, <O



From (2.10) and (2.11), we get

aﬁala(t) = —4snT'(t) sul(t) sr;Z(t)
aﬁ;f) =cn 1"(t)7(3 SI;F(t) +sn F(t)ia Cr;z(t)
0 t 1 1-— 0 2 10 10
Sg;( ) _ —~ (t( - m) (;: + — (E(amI'(¢)) — E(amTy)) <Ta:l - m(.:;)
L2 (9EX®) _ aE(Fo)
r da da
8Sﬂg ! 1om 1or ddnI'(t) ddnTly
rm(dnr —dnTo) (m(?cL+T8a>_( da  da ))
e CaseIll: \y =0
From (2.12) and (2.13), we get
aﬁalcft) = —2sech®T'(t) tanh T'(2)
65@2@@) =sechT'(¢) (1 — 2tanh? I'(t))
935’;@) = % <ig; (tanhT'(¢) — tanh T'y) — (tanh2 ['(t) — tanh? F0)>
(9S§62L(t) = % <tanh I'(t) sech I'(t) — tanh Ty sech Ty — % (sechT'(t) — sech 1"0)>
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