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Closed-forms of Kirchhoff elastic rods shape and
sensitivity in the planar case

Olivier Roussel1, Marc Renaud1 and Michel Taı̈x1˚

Abstract
In this report we give closed-forms of Kirchhoff 3-D elastic rods curvature in terms of

elliptic functions and, by treating planar rods as a special case, we show we can also obtain
closed-forms of planar rods shape, sensitivity and total elastic energy.

1 General case of 3-D rods
Consider an inextensible, non-shearable and unit length linearly elastic rod. The shape of the
rod traces a curve that we will describe by the mapping q : r0, 1s Ñ SEp3q. The position along
the rod is parametrized by t P r0, 1s and we will name ”base” and ”tip” of the rod its extremity at
t “ 0 and t “ 1 respectively. Let the mappings u1ptq, u2ptq, u3ptq such that ui : r0, 1s Ñ R be
axial and bending rod strains respectively, and c1, c2, c3 be the constants that reflect its elasticity
properties. As in [3], we say the elastic rod is in static equilibrium in the sense of Kirchhoff if it
locally minimizes the elastic energy defined by

Eel “
1

2

ż 1

0

3
ÿ

i“1

ciu
2
i dt. (1.1)

Without loss of generality, we will also assume that the base of the rod is held fixed at the
origin, i.e. qp0q “ e where e is the identity element of SEp3q. Under these assumptions, we
will denote by B the set of positions that the other extremity of the rod qp1q can reach. As shown
in [2], the problem of static equilibrium of such rods can be formulated as an optimal control
problem by

minimize
q,u

1

2

ż 1

0

3
ÿ

i“1

ciu
2
i dt

subject to 9q “ q

˜

3
ÿ

i“1

uiXi `X4

¸

qp0q “ e, qp1q “ b

(1.2)

for some b P B and where

X1 “

„

0 0 0 0
0 0 ´1 0
0 1 0 0
0 0 0 0



X2 “

„

0 0 1 0
0 0 0 0
´1 0 0 0
0 0 0 0



X3 “

„

0 ´1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



X4 “

„

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



X5 “

„

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0



X6 “

„

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



is a basis for sep3q, the Lie algebra of SEp3q. Note that when solving this optimal control
problem, the rod tip position b is not an input.
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In these conditions, the Maximum Principle states that solutions to this optimal control
problem are the projections of extremal curves defined on the cotangent bundle T˚SEp3q onto
SEp3q. Thanks to the Lie Group structure of SEp3q, the Hamiltonian can be reduced on the
dual of the Lie algebra sep3q˚ and the corresponding (time-varying) Hamiltonian vector fields
µ : r0, 1s Ñ sep3q˚ can be expressed by

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

9µ1 “
µ3µ2

c3
´

µ2µ3

c2
9µ2 “ µ6 `

µ1µ3

c1
´

µ1µ3

c3
9µ3 “ ´µ5 `

µ1µ2

c2
´

µ1µ2

c1
9µ4 “

µ3µ5

c3
´

µ2µ6

c2
9µ5 “

µ1µ6

c1
´

µ3µ4

c3
9µ6 “

µ2µ4

c2
´

µ1µ5

c1

(1.3)

where vector fields µ are related to controls ui by ui “ c´1
i µi for i P t1, 2, 3u.

LetA be the set homeomorphic to R6 and a P A such that ai fi µip0q, i P t1, . . . , 6u. It has
been shown in [2] that coordinates in A offer a global parameterization to the set of static equi-
librium configuration for the rod. In other words, we can describe configurations of quasi-static
3-D elastic rods using the 6-dimensional configuration space A.

Assuming isotropy and normalized elasticity constants such that ci “ 1 for i P t1, 2, 3u, we
have from (1.3) 9µ1 “ 0. Then µ1 is a constant of motion with µ1 “ a1 and

$

’

’

’

’

&

’

’

’

’

%

9µ2 “ µ6

9µ3 “ ´µ5

9µ4 “ µ3µ5 ´ µ2µ6

9µ5 “ a1µ6 ´ µ3µ4

9µ6 “ µ2µ4 ´ a1µ5

(1.4)

The signed curvature κ and the torsion τ of the curve can be expressed in terms of µ by

κ2 “ µ2
2 ` µ

2
3 τ “ µ1 ´

µ2µ5 ` µ3µ6

µ2
2 ` µ

2
3

and, as mentioned in [2], the differential system (1.4) is equivalent to

2:κ` κ3 ´ 2κpτ ´ λ1q
2 “ λ2κ (1.5a)

κ2pτ ´ λ1q “ λ3 (1.5b)

where the constants of integration are given by
$

&

%

λ1 fi a1
2

λ2 fi a22 ` a
2
3 ` 2a4 ´

a21
2

λ3 fi a1
2 pa

2
2 ` a

2
3q ´ pa2a5 ` a3a6q.

Substituting (1.5b) into (1.5a) and integrating, we obtain

9κ2 `
1

4
κ4 ` λ23κ

´2 ´
λ2
2
κ2 “ λ4 (1.6)

where the constant of integration λ4 is given by

λ4 fi a25 ` a
2
6 ´

1

4
pa22 ` a

2
3q

2 `
1

2
pa22 ` a

2
3qpa

2
1 ´ 2a4q ´ a1pa2a5 ` a3a6q

By making the change of variable υ “ κ2, (1.6) transforms to

9υ2 ` υ3 ´ 2λ2υ
2 ´ 4λ4υ ` 4λ23 “ 0 (1.7)



Figure 1: Plot of the cubic polynomial P pυq with respect to the squared curvature υ. Hatched
regions correspond to impossible values illustrating that the only valid range for υ is given by
α2 and α3, the zeros of P pυq.

As already stated in [4], this equation is in the form 9υ2 “ P pυq with P is the cubic polynomial

P pυq fi ´υ3 ` 2λ2υ
2 ` 4λ4υ ´ 4λ23. (1.8)

Let ´α1, α2, α3 be the zeros of the polynomial P pυq such that

´α1 ď 0 ď α2 ď α3. (1.9)

.
As P p˘8q “ ¯8 and P p0q “ ´4λ23 ď 0, P pυq is in the form illustrated in figure 1.
Also, we have υ ě 0 and P pυq ě 0 as they are both squares, so υ P rα2, α3s.
The polynomial P pυq can be rewritten for its zeros by

P pυq “ ´pυ ` α1qpυ ´ α2qpυ ´ α3q.

We can express the polynomial zeros ´α1, α2, α3 from the constants of integrations λi by

α1 ´ α2 ´ α3 “ ´2λ2
α1α2 ` α1α3 ´ α2α3 “ 4λ4

α1α2α3 “ 4λ23.
(1.10)

The squared curvature υ can be expressed in terms of elliptic functions by

υptq “ α3

´

1´ n sn2
`

rt` ϕ|m
˘

¯

(1.11)

the parameter m, the characteristic n and r can be expressed from the polynomial zeros by

m “
α3 ´ α2

α3 ` α1
n “

α3 ´ α2

α3
r “

1

2

?
α3 ` α1 (1.12)



Given

$ fi

d

1

n

ˆ

1´
a22 ` a

2
3

α3

˙

(1.13)

the phase ϕ can be retrieved from a22 ` a
2
3 “ α3

`

1´ n sn2pϕ|mq
˘

, and is given by

ϕ “ sgnpa3a5 ´ a2a6q arcsnp$|mq (1.14)

where arcsn is the inverse of the Jacobi elliptic function sn.
Note that from (1.9), we have 0 ď m ď n ď 1.
As outlined in [3], it has been shown the Hamiltonian vector fields in (1.4) is integrable and

we have proved it can be expressed in the following form
$

’

’

’

’

’

&

’

’

’

’

’

%

µ2 “ κ sinψ
µ3 “ κ cosψ

µ4 “
1
2 pλ2 `

a21
2 ´ υq

µ5 “ ´ 9κ cosψ ` κ 9ψ sinψ

µ6 “ 9κ sinψ ` κ 9ψ cosψ.

(1.15)

where

ψptq “ λ1t´
λ3
α3 r

ˆ

Π
´

n, am
`

rt` ϕ|m
˘

|m
¯

´Π
´

n, am
`

ϕ|m
˘

|m
¯

˙

` ψ p0q

with Πpn, u|mq the elliptic integral of the third kind and ampu|mq is the Jacobi amplitude.

2 Planar case
Although neither the curve qptq nor the rod sensitivity Bqptq

Ba can be explicitly expressed in the
general 3-D case, we will show in this section that closed forms can be obtained in the planar
case which can be treated as a particular case of the previously presented model.

2.1 Curvature and internal wrenches
Considering only planar curves qptq in the xy-plane with q “ p0, 0, θ, x, y, 0qT , Hamiltonian
vector fields defined in (1.3) simplify to

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

9µ1 “ 0
9µ2 “ 0
9µ3 “ ´µ5

9µ4 “ µ3µ5

9µ5 “ ´µ3µ4

9µ6 “ 0

(2.1)

Closed-forms of rod internal wrenches µptq defined in (1.15) reduce to
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

µ1 “ 0
µ2 “ 0
µ3 “ κ
µ4 “ ´

1
2 pκ

2 ` λ2q
µ5 “ ´ 9κ
µ6 “ 0

(2.2)



And constants of integration defined in (1) simplify to
$

’

’

&

’

’

%

λ1 “ 0
λ2 “ a23 ` 2a4
λ3 “ 0
λ4 “ a25 ´ a

2
3p

1
4a

2
3 ` a4q

We retrieve the same results as we would have obtain by applying the same problem formu-
lation on the Lie Group SEp2q rather than SEp3q. Therefore, in the rest of this section we will
restrict to solutions of (1.2) that are similar to trajectories on SEp2q, which are generated by the
subset of initial conditions ta P A : pa1, a2, a6q “ p0, 0, 0qu.

In the following equations, when referring to an elliptic function pq, we will simplify the
notation pqpu|mq to pqu. Also, let us define

Γptq fi rt` ϕ

and the following constants of motion that be needed in the following developments

ε fi sgnpa3q

Γ0 fi Γp0q

δ fi λ22 ` 4λ4

The expression of the phase ϕ given in (1.14) simplifies to

ϕ “ sgnpa3a5q arcsnp$|mq

where $ given in (1.13) reduces to

$ “

d

1

n

ˆ

1´
a23
α3

˙

.

2.1.1 Expression of the curvature

In the planar case, as λ3 “ 0, the polynomial P pυq simplifies to

P pυq “ ´υ3 ` 2λ2υ
2 ` 4λ4υ

so P pυq has one trivial zero at υ “ 0.
From (1.9), we can distinguish three cases as outlined in [4] and [5]:

• Case I: λ4 ą 0

Using (1.10), we have that
λ1pλ2 ` λ3q ą λ2λ3.

This imposes the choice for the zeros to
$

&

%

α1 “ ´λ2 `
?
δ

α2 “ 0

α3 “ λ2 `
?
δ.

From (1.12) we get n “ 1, so the squared curvature formula in (1.11) simplifies to

υptq “ α3

`

1´ sn2 Γptq
˘

“ α3 cn2 Γptq.



Then the signed curvature is given by

κptq “ ε
?
α3 cn Γptq. (2.3)

The curvature κptq oscillates between
?
α3 and ´

?
α3 and the resulting curve qptq is

called a ”wavelike” elastica.

• Case II: λ4 ă 0 Using (1.10), we have

λ1pλ2 ` λ3q ă λ2λ3.

This imposes the choice for the zeros to
$

&

%

α1 “ 0

α2 “ λ2 ´
?
δ

α3 “ λ2 `
?
δ.

From (1.12) we get n “ m, so the squared curvature formula in (1.11) simplifies to

υptq “ α3

`

1´m sn2 Γptq
˘

“ α3 dn2 Γptq.

Then the signed curvature is given by

κptq “ ε
?
α3 dn Γptq (2.4)

The curvature κptq is non-vanishing and the resulting curve qptq is called a ”orbit-like”
elastica.

• Case III: λ4 “ 0 This borderline case implies the polynomial P pυq reduces to

P pυq “ ´υ3 ` 2λ2υ
2

which has a double zero.

Using first equation of (1.10), only one choice is possible for the zeros αi:

"

α1 “ α2 “ 0
α3 “ |2λ2| .

which leads to the signed curvature

κptq “ ε
?
α3 sech Γptq (2.5)

This corresponds to the borderline case where the curvature is non-periodic.

2.1.2 Reduction to a unique formulation of the curvature

These cases can be reduced to a single formulation of the curvature by allowing the parameter
m to be any positive or null real and applying the Jacobi’s real transformation (see [1] §16.11).
By relaxing the constraint on the zeros αi given in (1.9), and keeping only one fixed choice on
the zeros that we will denote by α1 such that



$

&

%

α11 “ 0

α12 “ λ2 ´
?
δ

α13 “ λ2 `
?
δ.

In this form, α13 is positive as
?
δ ą |λ2| but α12 can now be negative. Note that we still have

α13 ě α12.
Using same forms as in (1.12), the elliptic parameter m1 and r1 by

m1 “
α13 ´ α

1
2

α13
r1 “

1

2

a

α13

but as mentioned before, the new elliptic parameter m1 is only constrained to in r0,8q.
Then, the signed curvature can be expressed by a unique expression by

κptq “ ε
a

α13 dn
`

r1 pt` φq
ˇ

ˇm1
˘

(2.6)

When m1 ą 1, the Jacobi’s real transformation can be applied to reduce to a parameter m
such that 0 ď m ď 1 and we retrieve the previously described cases.

2.1.3 Explicit formulation of rod total elastic energy

Recall from (1.1) the total elastic energy of the rod is given by

Eel “
1

2

ż 1

0

u3ptq
2 dt

“
1

2

ż 1

0

κptq2 dt

Using the unique formulation of the curvature κptq given in (2.6) can be integrated to give
an explicit formulation in terms of the elliptic integral of the second kind by

Eel “
α13
2

E
`

r1 pt` φq
ˇ

ˇm1
˘

2.2 Integration of the curve qptq

From the differential system defined in (1.2), it follows that

9θ “ u3 “ κ 9x “ cos θ 9y “ cos θ.

Using (2.2), the integration of the curvature is given by

cos θptq “ β1p0qβ1ptq ` 4β2p0qβ2ptq (2.7a)
sin θptq “ 2 ε pβ1p0qβ2ptq ´ β2p0qβ1ptqq (2.7b)

xptq “ β1p0q

ż

β1ptq ` 4β2p0q

ż

β2ptq (2.7c)

yptq “ 2 ε

ˆ

β1p0q

ż

β2ptq ´ β2p0q

ż

β1ptq

˙

. (2.7d)

The functions β1ptq and β2ptq can be explicitly given using Jacobi elliptic functions and the
elliptic integral of second kind Epu|mq in the three cases previously described as follows



• Case I: λ4 ą 0

Integrating the curvature in (2.3) (see [1] §16.24) leads to

θptq “ 2 ε parccos pdn Γptqq ´ arccos pdn Γ0qq

Let Aptq fi arccos pdn Γptqq and Ap0q fi arccos pdn Γ0q, then

cosAptq “ dn Γptq

sinAptq “ ˘

b

1´ dn2 Γptq

“
?
m sn Γptq

Given that θptq2 “ ε pAptq ´Ap0qq, we have

cos
θptq

2
“ cosAptq cosAp0q ` sinAptq sinAp0q

“ dn Γptqdn Γ0 `m sn Γptq sn Γ0

sin
θptq

2
“ sinAptq cosAp0q ´ cosAptq sinAp0q

“ ε
?
m psn Γptqdn Γ0 ´ sn Γ0 dn Γptqq

Using half-angle formulas, we get

cos θptq “ cos2
θptq

2
´ sin2 θptq

2

“
`

2 dn2 Γ0 ´ 1
˘ `

2 dn2 Γptq ´ 1
˘

` 4mdn Γptq sn Γptqdn Γ0 sn Γ0

sin θptq “ 2 cos
θptq

2
sin

θptq

2

“ 2 ε
?
m
``

2 dn2 Γ0 ´ 1
˘

dn Γptq sn Γptq ´
`

2 dn2 Γptq ´ 1
˘

dn Γ0 sn Γ0

˘

which is in the form (2.7) with β1 and β2 given by

β1ptq fi 2 dn2 Γptq ´ 1 (2.8a)
β2ptq fi

?
m sn Γptqdn Γptq (2.8b)

and can be integrated to
ż

β1ptq “ 2r´1 pEpam Γptqq ´ Epam Γ0qq ´ t (2.9a)
ż

β2ptq “ ´r
´1 pcn Γptq ´ cn Γ0q (2.9b)

(2.9c)

• Case II: λ4 ă 0

Integrating the curvature in (2.4) (see [1] §16.24) leads to

θptq “ 2 ε parcsin psn Γptqq ´ arcsin psn Γ0qq

Let Aptq fi arcsin psn Γptqq and Ap0q fi arcsin psn Γ0q, then

cosAptq “ ˘
a

1´ sn2 Γptq

“ cn Γptq

sinAptq “ sn Γptq



Given that θptq2 “ ε pAptq ´Ap0qq, we have

cos
θptq

2
“ cosAptq cosAp0q ` sinAptq sinAp0q

“ cn Γptq cn Γ0 ` sn Γptq sn Γ0

sin
θptq

2
“ sinAptq cosAp0q ´ cosAptq sinAp0q

“ ε psn Γptq cn Γ0 ´ cn Γ0 sn Γptqq

Using half-angle formulas, we get

cos θptq “ cos2
θptq

2
´ sin2 θptq

2

“
`

1´ 2 dn2 Γptq
˘ `

1´ 2 dn2 Γ0

˘

` 4 cn Γptq sn Γptq cn Γ0 sn Γ0

sin θptq “ 2 cos
θptq

2
sin

θptq

2

“ 2ε
``

1´ 2 sn2 Γ0

˘

cn Γptq sn Γptq ´
`

1´ 2 dn2 Γptq
˘

cn Γ0 sn Γ0

˘

which is in the form (2.7) with β1 and β2 given by

β1ptq fi 1´ 2 sn2 Γptq (2.10a)
β2ptq fi sn Γptq cn Γptq (2.10b)

and can be integrated to
ż

β1ptq “ m´1
`

t pm´ 2q ` 2r´1 pE pam Γ ptqq ´ E pam Γ0qq
˘

(2.11a)
ż

β2ptq “ ´r
´1 pcn Γptq ´ cn Γ0q (2.11b)

(2.11c)

• Case III: λ4 “ 0

Integrating the curvature in (2.5) (see [1] §16.24) leads to

θptq “ 2 ε parctan psinh Γptqq ´ arctan psinh Γ0qq

Let Aptq fi arctan psinh Γptqq and Ap0q fi arctan psinh Γ0q, then

cosAptq “ ˘
`

1` sinh2 Γptq
˘´ 1

2

“ sech Γptq

sinAptq “ tanh Γptq

Given that θptq2 “ ε pAptq ´Ap0qq, we have

cos
θptq

2
“ cosAptq cosAp0q ` sinAptq sinAp0q

“ sech Γptq sech Γ0 ` tanh Γptq tanh Γ0

sin
θptq

2
“ sinAptq cosAp0q ´ cosAptq sinAp0q

“ ε ptanh Γptq sech Γ0 ´ tanh Γ0 sech Γptqq



Using half-angle formulas, we get

cos θptq “ cos2
θptq

2
´ sin2 θptq

2

“
`

2 sech2 Γptq ´ 1
˘ `

2 sech2 Γ0 ´ 1
˘

` 4 sech Γptq tanh Γptq sech Γ0 tanh Γ0

sin θptq “ 2 cos
θptq

2
sin

θptq

2

“ 2 ε
``

2 sech2 Γ0 ´ 1
˘

sech Γptq tanh Γptq ´
`

2 sech2 Γptq ´ 1
˘

sech Γ0 tanh Γ0

˘

which is in the form (2.7) with β1 and β2 given by

β1ptq fi 2 sech2 Γptq ´ 1 (2.12a)
β2ptq fi sech Γptq tanh Γptq (2.12b)

which integrate to
ż

β1ptq “ 2r´1 ptanh Γptq ´ tanh Γ0q ´ t (2.13a)
ż

β2ptq “ ´r
´1 psech Γ ptq ´ sech Γ0q . (2.13b)

2.3 Explicit formulation of elastic rod sensitivity
In the 3-D case, the elastic rod sensitivity is given by the 6-dimensional Jacobian matrix

Jpt, aq “

¨

˚

˝

Bq1
Ba1

¨ ¨ ¨
Bq1
Ba6

...
. . .

...
Bq6
Ba1

¨ ¨ ¨
Bq6
Ba6

˛

‹

‚

(2.14)

In the planar case, this simplifies to

Jpt, aq “

¨

˝

˚2,2 02,3 ˚2,1

03,2 JP3,3pt, aq 03,1
˚1,2 01,3 ˚1,1

˛

‚ (2.15)

where ˚ represents indeterminate values.
As we can only obtain closed-forms of the rod shape and thus of rod sensitivity in this

special, we will focus in this section on the 3-dimensional block JP pt, aq of Jpt, aq for i, j P
t3, 4, 5u. Differentiating the general form of the curve qptq in (2.7)leads to

B cospθptqq

Ba
“ β1p0q

Bβ1ptq

Ba
`
Bβ1p0q

Ba
β1ptq ` 4

ˆ

β2p0q
Bβ2ptq

Ba
`
Bβ2p0q

Ba
β2ptq

˙

(2.16a)

B sinpθptqq

Ba
“ 2 ε

ˆ

β1p0q
Bβ2ptq

Ba
` β2ptq

Bβ1p0q

Ba
´ β2p0q

Bβ1ptq

Ba
´ β1ptq

Bβ2p0q

Ba

˙

(2.16b)

Bxptq

Ba
“ β1p0q

B
ş

β1ptq

Ba
`

ż

β1ptq
Bβ1p0q

Ba
` 4

ˆ

β2p0q
B
ş

β2ptq

Ba
`

ż

β2ptq
B
ş

β2p0q

Ba

˙

(2.16c)

Byptq

Ba
“ 2 ε

ˆ

β1p0q
B
ş

β2ptq

Ba
`

ż

β2ptq
Bβ1p0q

Ba
´ β2p0q

B
ş

β1ptq

Ba
´

ż

β1ptq
B
ş

β2p0q

Ba

˙

(2.16d)

Regardless the three cases of curve elastica, we can derivate with respect to a the following
forms:



• The elliptic parameters m, n and r

Bm

Ba
“

1

pα3 ` α1q
2

ˆˆ

Bα3

Ba
´
Bα2

Ba

˙

pα3 ` α1q ´

ˆ

Bα3

Ba
`
Bα1

Ba

˙

pα3 ´ α2q

˙

(2.17a)

Br

Ba
“

1

4
?
α3 ` α1

ˆ

Bα3

Ba
`
Bα1

Ba

˙

(2.17b)

Bn

Ba
“

1

α2
3

ˆ

Bα3

Ba
α2 ´

Bα2

Ba
α3

˙

(2.17c)

• The phase ϕ

Given

B$

Ba
“

1

2n$

¨

˚

˚

˝

a23
α2
3

¨

˚

˚

˝

Bα3

Ba3
´ 2α3

a3

Bα3

Ba4

Bα3

Ba5

˛

‹

‹

‚

´
1

n

ˆ

1´
a23
α3

˙

Bn

Ba

˛

‹

‹

‚

(2.18)

and the first order derivatives of the function arcsnpz|mq

B arcsnpz|mq

Bz
“

1
?

1´ z2
?

1´mz2

B arcsnpz|mq

Bm
“

1

2 pm´ 1qm

ˆ

m
?

1´ z2z
?

1´mz2
´ Eparcsin z|mq ´ pm´ 1qFparcsin z|mq

˙

with cdpz|mq is the Jacobi elliptic function defined by

cd z “
cn z

dn z
,

we can express the derivative of the function arcsnp$|mq with respect to a using the
chain rule

B arcsn$

Ba
“
B arcsn$

B$

B$

Ba
`
B arcsn$

Bm

Bm

Ba

“
1

?
1´mz2

ˆ

1
?

1´ z2
B$

Ba
`
mz
?

1´ z2 ´ Eparcsin$q ´ pm´ 1qFparcsin$q

2pm´ 1qm

Bm

Ba

˙

Then, the general expression of the derivative of the phase ϕ with respect to a is

Bϕ

Ba
“ sgnpa3a5q

B arcsnp$|mq

Ba

• The function Γptq
BΓptq

Ba
“ t

Br

Ba
`
Bϕ

Ba

• The Jacobi elliptic function sn pΓptq|mq

Given the first order derivatives of the function snpz|mq

B snpz|mq

Bz
“ cnpu|mqdnpu|mq

B snpz|mq

Bm
“

dnpz|mq cnpz|mq pp1´mq z ´ E pampz|mq|mq `m cdpz|mq snpz|mqq

2mp1´mq



we can compute directly

B sn Γptq

Ba
“
B sn Γptq

BΓptq

BΓptq

Ba
`
B sn Γptq

Bm

Bm

Ba

“ cn Γptqdn Γptq

ˆ

BΓptq

Ba
`
pm´ 1qΓptq ` Epam Γptqq ´m cd Γptq sn Γptq

2mpm´ 1q

Bm

Ba

˙

.

• The Jacobi elliptic function cn pΓptq|mq

Given the first order derivatives of the function cnpz|mq

B cnpz|mq

Bz
“ ´ snpu|mqdnpu|mq

B cnpz|mq

Bm
“

dnpz|mq snpz|mq ppm´ 1q z ` E pampz|mq|mq ´m cdpz|mq snpz|mqq

2mp1´mq

we can compute directly

B cn Γptq

Ba
“
B cn Γptq

BΓptq

BΓptq

Ba
`
B cn Γptq

Bm

Bm

Ba

“ ´ sn Γptqdn Γptq

ˆ

BΓptq

Ba
`
pm´ 1qΓptq ` Epam Γptqq ´m cd Γptq sn Γptq

2mpm´ 1q

Bm

Ba

˙

.

• The Jacobi elliptic function dn pΓptq|mq

Given the first order derivatives of the function dnpz|mq

B dnpz|mq

Bz
“ ´m cnpu|mq snpu|mq

B dnpz|mq

Bm
“

snpz|mq cnpz|mq ppm´ 1q z `mE pampz|mq|mq ´m dnpz|mq scpz|mqq

2p1´mq

with scpz|mq is the Jacobi elliptic function defined by

sc z “
sn z

cn z
,

we can compute directly

B dn Γptq

Ba
“
B dn Γptq

BΓptq

BΓptq

Ba
`
B dn Γptq

Bm

Bm

Ba

“ ´m cn Γptq sn Γptq

ˆ

BΓptq

Ba

`
pm´ 1qΓptq `mEpam Γptqq ´m dn Γptq sc Γptq

2mpm´ 1q

Bm

Ba

˙

.

• The elliptic integral of the second kind E pampΓptq|mq|mq

We first need to express the derivative of the amplitude ampΓptq|mq with respect to a.
Given first derivatives of the Jacobi amplitude ampz|mq

B ampz|mq

Bz
“ dnpu|mq

B ampz|mq

Bm
“

dnpz|mq ppm´ 1q z ` E pampz|mq|mqq ´m cnpz|mq snpz|mq

2mp1´mq



we get the derivative of ampΓptq|mq with respect to a by applying the chain rule as usual

B am Γptq

Ba
“
B am Γptq

BΓptq

BΓptq

Ba
`
B am Γptq

Bm

Bm

Ba

“ dn Γptq

ˆ

BΓptq

Ba
`
pm´ 1qΓptq ` Epam Γptqq ´m cd Γptq sn Γptq

2mpm´ 1q

Bm

Ba

˙

.

Then, given first derivatives of the elliptic integral of the second kind Epz|mq

BEpz|mq

Bz
“

a

1´m sin2 z

BEpz|mq

Bm
“

Epz|mq ´ Fpz|mq

2m

Noting the simplification

BE pam Γptqq

B am Γptq
“

b

1´m sin2
pam Γptqq

“
a

1´ sn2 Γptq

“ dn Γptq,

and that
Fpam Γptqq “ Γptq,

we finally have all the expressions to compute the derivative of E pam Γptqq with respect
to a by applying the chain rule

BE pam Γptqq

Ba
“
BE pam Γptqq

B am Γptq

B am Γptq

Ba
`
BE pam Γptqq

Bm

Bm

Ba

“ dn2 Γptq

ˆ

BΓptq

Ba
`

Epam Γptqq ´ cd Γptq sn Γptq

2pm´ 1q

Bm

Ba

˙

Then, most of these forms simplify in the three previously introduced cases and we can give
the explicit forms of the derivatives of functions β1ptq and β2ptq (and their respective integrals)
with respect to a:

• Case I: λ4 ą 0

From (2.8) and (2.9), we get

Bβ1ptq

Ba
“ 4 dn Γptq

B dn Γptq

Ba
Bβ2ptq

Ba
“ dn Γptq

B sn Γptq

Ba
` sn Γptq

B dn Γptq

Ba
B
ş

β1ptq

Ba
“

2

r

ˆˆ

BEpΓptqq

Ba
´
BEpΓ0q

Ba

˙

´
1

r

´

EpΓptqq ´ EpΓ0q

¯

Br

Ba

˙

B
ş

β2ptq

Ba
“

1

r

ˆ

1

r
pcn Γptq ´ cn Γ0q

Br

Ba
´

ˆ

B cn Γptq

Ba
´
B cn Γ0

Ba

˙˙

• Case II: λ4 ă 0



From (2.10) and (2.11), we get

Bβ1ptq

Ba
“ ´4 sn Γptq

B sn Γptq

Ba
Bβ2ptq

Ba
“ cn Γptq

B sn Γptq

Ba
` sn Γptq

B cn Γptq

Ba
B
ş

β1ptq

Ba
“

1

m

ˆ

tp1´mq

m

Bm

Ba
`

2

r
pEpam Γptqq ´ Epam Γ0qq

ˆ

1

r

Br

Ba
´

1

m

Bm

Ba

˙

`
2

r

ˆ

BEpΓptqq

Ba
´
BEpΓ0q

Ba

˙˙

B
ş

β2ptq

Ba
“

1

rm

ˆ

pdn Γptq ´ dn Γ0q

ˆ

1

m

Bm

Ba
`

1

r

Br

Ba

˙

´

ˆ

B dn Γptq

Ba
´
B dn Γ0

Ba

˙˙

• Case III: λ4 “ 0

From (2.12) and (2.13), we get

Bβ1ptq

Ba
“ ´2 sech2 Γptq tanh Γptq

Bβ2ptq

Ba
“ sech Γptq

`

1´ 2 tanh2 Γptq
˘

B
ş

β1ptq

Ba
“

2

r

ˆ

1

r

Br

Ba
ptanh Γptq ´ tanh Γ0q ´

`

tanh2 Γptq ´ tanh2 Γ0

˘

˙

B
ş

β2ptq

Ba
“

1

r

ˆ

tanh Γptq sech Γptq ´ tanh Γ0 sech Γ0 ´
1

r
psech Γptq ´ sech Γ0q

˙
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