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Abstract

This paper deals with actuator fault estimation for discrete-time linear descriptor systems. The

main contribution lies in the synthesis of a novel filter to estimate and isolate actuator faults for

discrete linear descriptor systems. In this paper, a restricted system equivalent model is firstly

obtained for the considered descriptor system, and then a fault estimation filter is designed based

on the restricted system equivalent representation. The gain matrix of the proposed filter has a

special structure such that the residual vector will tend to the actuator fault with certain time

delays which equal to the fault detectability indexes. Morever, this paper proposes a robust filter

design method to deal with the effect of the unknown disturbance. The proposed filter is able to

detect and estimate the faults despite in the presence of disturbance. The design conditions for

the proposed filter are formulated as a Linear Matrix Inequality (LMI) feasibility problem, which

can be solved efficiently. Simulation results are given to illustrate the effectiveness of the proposed

method.
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1. Introduction

The model-based fault diagnosis techniques have received considerable attention during the past

decades. Various methods have been proposed in the literature, e.g. observer-based fault detection

method [1, 2], parity space approach [3], H∞ fault detection filter [4, 5], and the recently presented

finite frequency fault detection method [6-8]. For more comprehensive knowledge on model-based

fault diagnosis techniques, see the monographs [9-11], survey papers [12-14] and references therein.

On another research front, descriptor systems appear in many fields such as power systems,

electrical networks, and mechanical systems [15, 16]. In the last few decades, many approaches

have been proposed to design observers for descriptor systems [17-22]. References [17-19] have

studied the observer design problem in linear descriptor systems. Observer design methods for

nonlinear descriptor systems have been reported in [20-22].

Compared with the results on observer design for the fault-free descriptor systems, there are

limited papers on fault diagnosis methods for descriptor systems [23-29]. [23] has proposed a fault

estimation method for linear descriptor systems by using on-line learning methodology. In [23], the

state variables are required to be fully measurable. However, in many situations, it is too expensive

or even impossible to measure all the states. [24] has considered the robust fault detection problem

for linear descriptor systems via generalized unknown input observers. Nevertheless, as pointed out

in [24], these generalized observers are difficult to implement due to the fact that the derivatives of

known signals may be involved in realizing the generalized observers. More recently, [25] has studied

fault estimation and fault-tolerant control for descriptor systems by using proportional, multiple-

integral and derivative observer. [26] has proposed an actuator fault estimation method for a class

of nonlinear descriptor systems via neural adaptive observer design. It should be noticed that

most of the aforementioned results focus on fault diagnosis in continuous-time descriptor systems,

only [27-29] have considered fault diagnosis methods for discrete-time descriptor systems. In [27],
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an LMI-based unknown input observer design method is proposed and applied to fault detection

and isolation for Takagi-Sugeno descriptor systems. [28] has proposed an H−/H∞ fault detection

filter for a class of discrete-time descriptor systems described by Linear Parameter-Varying (LPV)

form with a globally Lipschitz term. However, the methods in [27] and [28] only address the

fault detection problem but the fault magnitudes cannot be estimated. As pointed out in [30],

accurate and timely fault estimation is an important basis for active control reconfiguration. For

regular systems, several model-based techniques such as parity space approach, adaptive observer

and sliding mode observer have been proposed to achieve fault estimation [31-36]. However, little

work has been done to fault estimation for descriptor systems [25, 26, 29], especially for the discrete

descriptor systems. In [29], a fault estimation method based on Proportional-Integral (PI) observer

is proposed to deal with fault estimation for discrete-time LPV descriptor systems. However, the

method in [29] requires the faults to be constant or slow varying, which is a restrictive condition.

In this paper, a novel fault estimation filter design method without the constant fault assump-

tion is proposed for discrete-time linear descriptor systems. A restricted system equivalent model

of the considered descriptor system is firstly established. We firstly construct a restricted system

equivalent model of the considered descriptor system, and then design a fault estimation filter

based on the restricted system equivalent representation. The filter design method is inspired by

[37] such that the ith component of the fault estimation vector asymptotically converges to the

ith fault with a time delay equals to its fault detectability index. Moreover, this paper proposes

a robust filter design method to deal with the effect of the unknown disturbance, which is not

considered in [37]. In this paper, design conditions for the proposed filter are formulated as a

linear matrix inequality (LMI) feasibility problem, which can be easily solved by using standard

LMI toolboxes. The main novelty of this paper lies on the following aspects. First, the proposed

approach does not assume the faults to be constant. Therefore, it has a larger application scope
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than the method based on PI observers. Secondly, the form of the proposed filter is similar with

the normal state observer, which is easy to implement. Moreover, this paper proposes a robust

filter which is able to attenuate the effect of unknown disturbance and to provide a robust fault

estimation. In addition, the proposed filter design method provides a dynamic detection threshold

for the residuals in the fault-free situation. This can be used to achieve robust fault detection.

The rest of this paper is organized as follows. The problem formulation is presented in Section

2. The fault estimation filter is designed in Section 3. In Section 4, a numerical example is given

to illustrate the effectiveness of the proposed approach. Conclusions are given in Section 5.

2. Problem statement and preliminaries

Consider the following discrete-time descriptor system with actuator faults
Ex(k + 1) = Ax(k) +Bu(k) + Fn(k) +Dw(k)

y(k) = Cx(k)

(1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rp is the input vector, w(k) ∈ Rd denotes the

unknown disturbance and y(k) ∈ Rm is the output vector. E ∈ Rn×n may be rank deficient,

i.e. rank(E) = r ≤ n, A, B, C and D are known matrices with appropriate dimensions. n(k) =

[n1(k) n2(k) · · · nq(k)]
T ∈ Rq is the vector of fault magnitudes and F = [f1 f2 · · · fq] ∈ Rn×q

is the fault distribution matrix. In the following of the paper, we assume that rank(C) = m,

rank(F ) = q, q ≤ m, and

rank

 E

C

 = n (2)

In this paper, a filter is designed to detect and estimate the faults in descriptor system (1).

To this end, some usefull preliminaries are presented in this section. First, recall the definition of

restricted system equivalent.
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Definition 1 [15]. The following descriptor systems
Ex(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

(3)

and 
Ẽx̃(k + 1) = Ãx̃(k) + B̃u(k)

y(k) = C̃x̃(k)

(4)

are called Restricted System Equivalent (RSE) if there exist two nonsingular matrices Q and P

such that

x(k) = Px̃(k) (5)

and

QEP = Ẽ,QAP = Ã,QB = B̃, CP = C̃ (6)

In this paper, it is required that T ∈ Rn×n is a nonsingular matrix satisfing the following

equiation

TE +NC = In (7)

where N ∈ Rn×m is an arbitrary matrix.

In order to ensure the existence of such a matrix T , the following Lemma is introduced.

Lemma 1. Under the assumption (2), there exist a nonsingular matrix T ∈ Rn×n and a matrix

N ∈ Rn×m satisfying

TE +NC = In (8)

Proof. Since rank(E) = r, there exist two nonsingular matrices Q0 and P0 such that x1(k)

x2(k)

 = P−1
0 x(k), Q0EP0 =

 Ir 0

0 0

 , Q0AP0 =

 A11 A12

A21 A22

 ,

Q0B =

 B1

B2

 , Q0F =

 F1

F2

 , Q0D =

 D1

D2

 , CP0 =

[
C1 C2

] (9)
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then the system (1) is restricted system equivalent to

Q0EP0

 x1(k + 1)

x2(k + 1)

 = Q0AP0

 x1(k)

x2(k)

+Q0Bu(k) +Q0Fn(k) +Q0Dw(k)

y(k) = CP0

 x1(k)

x2(k)


(10)

Under the assumption (2), it is easy to shown that

rank

 Q0EP0

CP0

 = rank


Ir 0

0 0

C1 C2

 = rank

 Ir 0

C1 C2

 = n (11)

Let H = [0 Im]T , we have

Q0EP0 +HCP0 =

 Ir 0

C1 C2

 (12)

Since P0 is nonsingular, the following matrix

G , Q0E +HC =

 Ir 0

C1 C2

P−1
0 (13)

is also a nonsingular matrix.

Let

T = G−1Q0, N = G−1H (14)

we get a nonsingular matrix T and a matrix N such that (8) holds.

Remark 1. Lemma 1 guarantees the existence of a nonsingular matrix T which also satisfies

the constraint (8). However, it is not very computationally efficient. Therefore, the following

Lemma is introduced to provide a convenient alternative to find such a matrix T .

Lemma 2 [38]. Given matrices X ∈ Ra×b, Y ∈ Rb×c, and Z ∈ Ra×c. If Y = c, the general

solution of XY = Z is given by

X = ZY† + S[Ib − YY†] (15)
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where S ∈ Ra×b is an arbitrary matrix. Herein and throughout this paper, the symbol † is use to

denote the pseudo-inverse of a matrix.

Since rank

 E

C

 = n, there exist matrices T and N satisfying (7). Using Lemma 2, the

general solution for T and N is given by

T =MRT , N =MRN (16)

where

M =

 E

C


†

+ S

In+m −

 E

C


 E

C


† , RT =

 In

0

 , RN =

 0

Im

 (17)

and SRn×(n+m) is an arbitrary matrix, which provides us the degrees of design freedom. By

choosing matrix S, we can determine a nonsingular matrix T which satisfies equation (7).

Since T is a nonsingular matrix, descriptor system (1) is RSE to the following representation
TEx(k + 1) = TAx(k) + TBu(k) + TFn(k) + TDw(k)

y(k) = Cx(k)

(18)

Motivated by [37], this paper introduces the following definitions of fault detectability indexes

and fault detectability matrix, which will be used in the sequel.

Definition 2. The fault detectability indexes of system (18) are defined as ρ = {ρ1, ρ2, · · · , ρq}

where

ρi = min{v : C(TA)v−1Tfi ̸= 0, v = 1, 2, · · ·} (19)

Without loss of generality, it is assumed that the system (18) has finite fault detectability

indexes and s , min{ρ1, ρ2, · · · , ρq} is used to represent the maximum value of fault detectability

indexes.

Definition 3. With the assumption that the system (18) has finite fault detectability indexes,
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the fault detectability matrix is defined as

Ψ = [(TA)ρ1−1Tf1 (TA)ρ2−1Tf2 · · · (TA)ρq−1Tfq} (20)

Besides, the discrete-time Bounded Real Lemma will be used in this paper.

Lemma 3 [40]. Consider the state-space system
x(k + 1) = Ax(k) +Bw(k)

y(k) = Cx(k) +Dw(k)

(21)

For a given scalar γ > 0, the following statements are equivalent:

(i) A is a stable matrix and ∥C(zI −A)−1B +D∥ < γ.

(ii) There exists a symmetric P satisfying P > 0 and the following matrix inequality ATPA− P + CTC ATPB + CTD

BTPA+DTC −γ2I +BTPB +DTD

 < 0 (22)

3. Fault estimation filter design

Based on the RSE representation (18), the following filter is constructed for descriptor system

(1) 

z(k + 1) = TAx̂(k) + TBu(k) + L(y(k)− Cx̂(k))

x̂(k) = z(k) +Ny(k)

r(k) = W (y(k)− Cx̂(k))

(23)

where z(k) ∈ Rn is an intermediate state vector, x̂(k) ∈ Rn is the state estimation vector and

r(k) ∈ Rq denotes the residual vector. In (23), matrices T and N can be determined by using (16),

L ∈ Rn×m and W ∈ Rq×m are matrices to be designed.

Define the state estimation error and output estimation error as

e(k) = x(k)− x̂(k) (24)
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and

ϵ(k) = y(k)− Cx̂(k) (25)

respectively. Then, by using (7), (18) and (23), the error dynamic system is obtained as
e(k + 1) = (TA− LC)e(k) + TFn(k) + TDw(k)

ϵ(k) = Ce(k)

(26)

In order to analyse the estimation error, the error system (26) is split into two parts, i.e.
ef (k + 1) = (TA− LC)ef (k) + TFn(k)

ϵf (k) = Cef (k)

(27)

and 
ew(k + 1) = (TA− LC)ew(k) + TDw(k)

ϵw(k) = Cew(k)

(28)

where

e(k) = ef (k) + ew(k) (29)

ϵ(k) = ϵf (k) + ϵw(k) (30)

ϵf (k) = Cef (k), ϵw(k) = Cew(k) (31)

Remark 2. The idea of separating (26) as (27) and (28) is inspired by [39], where a very

similar methodology was used to analyze and design an adaptive observer. With this treatment,

the output estimation error ϵ(k) is split into two components, ϵf (k) and ϵw(k). The first component

ϵf (k) reflects the impact of fault on the output estimation error, while the other part ϵw(k) contains

the influence of the disturbance. Note that this separation is only used to facilitate the analysis of

error dynamic (26) and the design of filter (23). It should be noticed that only the out estimation

error ϵ(k), which is available in practice, will be used in the proposed fault estimation method.

Therefore, this separation does not involve any practical realization problem.
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Then, the following Theorem is proposed to constrain the structure of matrix L in the filter

(23). This Theorem is of essential importance in filter design.

Theorem 1. If there exists a matrix L satisfying

(TA− LC)Ψ = 0 (32)

then ϵf (k) can be expressed as

ϵf (k) = C(TA− LC)ke(0) + Υ [n1(k − ρ1) n2(k − ρ2) · · · nq(k − ρq)]
T , k > kf + s (33)

where Υ = CΨ, e(0) is the initial estimation error and kf denotes the time instant when faults

occur.

Proof. From (27), it is easy to derive that

ϵf (k) = C(TA− LC)ef (k − 1) + CTFn(k − 1)

= C(TA− LC)2ef (k − 2) + C(TA− LC)TFn(k − 2) + CTFn(k − 1)

...

= C(TA− LC)kef (0) + CGk−kfTFn(kf ) + · · ·+ CGsTFn(k − s) + · · ·+ CG1TFn(k − 1)

(34)

where k > s+ kf , matrix Gj is given by

Gj = (TA− LC)j−1, j = 1, · · · , k − kf (35)

From the definitions of T and n(k), we have

CGjTFn(k − j) = CGjTf1n1(k − j) + · · ·+ CGjTfini(k − j) + · · ·+ CGjTfqnq(k − j) (36)

Now, we should discuss about CGjTfi. By using the definition of fault detectability indexes,

we have

CGjTfi = C(TA)j−1Tfi = 0, j < ρi (37)

CGjTfi = C(TA)ρi−1Tfi, j = ρi (38)
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CGjTfi = C(TA− LC)j−ρi(TA)ρi−1Tfi = 0, j > ρi (39)

Using (32), we obtain

(TA− LC)(TA)ρi−1Tfi = 0 (40)

Substituting (40) into (39) yields

CGjTfi = 0, j > ρi (41)

To sum up, we have

CGjTfi =


C(TA)ρi−1Tfi j = ρi

0 j ̸= ρi

j = 1, · · · , k − kf (42)

It follows that

CGjTfi =


C(TA)ρi−1Tfi j = ρi

0 j ̸= ρi

j = 1, · · · , k − kf (43)

Substituting (43) into (34) gives

ϵf (k) = C(TA− LC)ke(0) + C(TA)ρq−1Tfqnq(k − ρq) + · · ·+ C(TA)ρ1−1Tf1n1(k − ρ1)

= C(TA− LC)ke(0) + Υ [n1(k − ρ1) n2(k − ρ2) · · · nq(k − ρq)]
T

(44)

where k > s+ kf . This completes the proof.

Theorem 1 implies that the vector ϵf (k) will exhibit the form of (33) if the matrix L satisfies

the equation (32). Since the output estimation error ϵ(k) is composed of ϵf (k) and ϵw(k), the effect

of w(k) should be considered in the design of matrix L.

Based on Theorem 1, the following Theorem is proposed to design the fault estimation filter

(23). First, the gain matrix L in (23) is required to have a special structure which makes the

equation (32) satisfied. Moreover, the matrix L is designed so that the residual r(k) is robust

against the disturbance w(k).

Theorem 2. For a given scalar γ > 0, if the following conditions are satisfied:

(i) rank(Υ) = q
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(ii) there exist a symmetric positive definite matrix P > 0, P ∈ Rn×n and a matrix Y ∈ Rn×m

such that 
−P + (Υ†C)T (Υ†C) 0 AT

1 P − CT
1 Y

T

∗ −γ2Id (TD)TP

∗ ∗ −P

 < 0 (45)

where

A1 = TA− TAΨΥ†C, C1 = (Im −ΥΥ†)C (46)

Then, by choosing

W = Υ† (47)

and

L = TAΨΥ† − P−1Y (Im −ΥΥ†) (48)

the residual r(k) in the filter (23) satisfies the following robust performance

∥ξ∥ ≤
√

γ2∥w∥2 +N (e(0), k) (49)

where

ξ(k) = r(k)− nd(k) (50)

nd(k) , [n1(k − ρ1) n2(k − ρ2) · · · nq(k − ρq)]
T (51)

and N (e(0), k) is a function satisfying lim
k→∞

N (e(0), k) = 0.

Proof. If rank(Υ) = q, then we have

Υ†Υ = Iq (52)
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By letting W = Ψ† and considering (33), the residual r(k) is given by

r(k) =Wϵ(k)

= Υ†ϵf (k) + Υ†ϵw(k)

= Υ†C(TA− LC)ke(0) + [n1(k − ρ1) n2(k − ρ2) · · · nq(k − ρq)]
T +Υ†ϵw(k)

= Υ†C(TA− LC)ke(0) + nd(k) + Υ†ϵw(k)

(53)

It follows that

ξ(k) = ξ0(k)− ξw(k) (54)

where

ξ0(k) = Υ†C(TA− LC)ke(0), ξw(k) = Υ†ϵw(k) (55)

Using triangle inequality gives

∥ξ∥ =
√
∥ξ0∥2 + ∥ξw∥2 ≤

√
(∥Υ†C∥∥(TA− LC)∥k∥e(0)∥)2 + ∥ξw∥2 (56)

Let

N (e(0), k) =
(
∥Υ†C∥∥(TA− LC)∥k∥e(0)∥

)2
(57)

It is obvious that N (e(0), k) satisfies lim
k→∞

N (e(0), k) = 0 if matrix TA−LC is stable, i.e. ∥(TA−

LC)∥ < 1 Moreover, the inequality (49) is fulfilled if ∥ξw∥ < ∥w∥ holds.

Now, it is ready to show that TA− LC is stable and ∥ξw∥ < ∥w∥ holds if (45) is satisfied.

Applying Lemma 3 to system (28), it is obtained that matrix TA−LC is stable and ∥ξw∥ < ∥w∥

holds if the following matrix inequality is satisfied (TA− LC)TP (TA− LC)− P + (Υ†C)T (Υ†C) (TA− LC)TPD

∗ −γ2I + (TD)TPTD

 < 0 (58)

Using the Schur complement Lemma [41], the inequality (58) is equivalent to
−P + (Υ†C)T (Υ†C) 0 (TA− LC)TP

∗ −γ2Id (TD)TP

∗ ∗ −P

 < 0 (59)
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Since rank(Υ) = q, we can apply Lemma 2 to (32), then the general solution for L is obtained

as

L = TAΨΥ† +R(Im −ΥΥ†) (60)

where R ∈ Rn×m is an arbitrary matrix.

Substituting (60) into TA− LC gives

TA− LC = TA− TAΨΥ† −R(Im −ΥΥ†) = A1 −RC1 (61)

It follows that inequality (59) is equivalent to
−P + (Υ†C)T (Υ†C) 0 (A1 −RC1)

TP

∗ −γ2Id (TD)TP

∗ ∗ −P

 < 0 (62)

It is obvious that inequality (62) becomes (45) by letting Y = PR. Now, it has been shown that

TA− LC is stable and ∥ξw∥ < ∥w∥ holds if (45) is satisfied.

If there exist a symmetric positive definite matrix P and a matrix Y such that (45) holds. Then

R is given by

R = P−1Y (63)

Substituting (63) into (60) yields (48). This completes the proof.

Remark 3. It is known that fault detection is an essential task in fault diagnosis. To achieve

the fault detection goal, a residual evaluation procedure is necessary. A commonly used strategy is

the so-called norm based residual evaluation [10], i.e. the norm of the residual r(k) is compared with

a threshold to detect the occurrence of a fault. In this paper, the robust performance criterion (49)

can be used to compute the detection threshold. Considering the fault-free situation (n(k) = 0)

and using (49), it comes

∥r∥ = ∥ξ∥ ≤
√

γ2∥w∥2 +N (e(0), k) (64)
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Without loss of generality, it is assumed that the bounds of ∥w∥ and ∥e(0)∥ are w̄ and ē0, respec-

tively. Then, we can obtain the following fault detection scheme
Fault− free if ∥r∥ ̸= θ(k)

Fauly if ∥r∥ > θ(k)

(65)

where

θ(k) =
√

γ2w̄2 +N (ē0, k) (66)

is a dynamic detection threshold.

Remark 4. After the fault is detected, fault isolation and estimation should be implemented

in order to obtain further information about the fault. It is noted that the proposed method is

able to achieve fault isolation and estimation simultaneously. Note that the performance criterion

in (49) implies that the residual r(k) robustly tends to the delayed fault magnitudes vector nd(k).

First of all, the residual r(k) can be viewed as an estimate of fault n(k). Therefore, the fault

estimation goal is achieved. From the point of view of fault isolation, the ith component ri(k) of

the residual can be used as a fault indicator for the ith actuator because ri(k) robustly tends to the

ith fault ni(k − ρi) without affecting by other faults. In other words, the ith residual component

ri(k) can be used to determine whether the ith actuator is fault.

Finally, for the sake of readability, the overall procedure for the proposed fault estimation filter

design method is summarized in Algorithm 1.

4. Simulations

A simulation example is given in this section to demonstrate the design procedure and the

effectiveness of the proposed fault estimation filter.
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Algorithm 1 Fault estimation filter design for discrete-time descriptor systems

Given the parameters of the descriptor system (1): E, A, B, F , D, C

Choose a matrix S

Solve the equation (7) and obtain a matrixM ◃ To design matrices T and N

T ←MRT , N ←MRN

Calculate the fault detectability indexes: ρi ← min
{
v : C(TA)v−1Tfi ̸= 0, v = 1, 2, · · ·

}
Calculate the fault detectability matrix: Ψ←

[
(TA)ρ1−1Tf1 · · · (TA)ρq−1Tfq

]
Υ← CΨ

γ ← γ0

repeat

Solve the LMI problem (45) ◃ To design the gain matrix L

if the LMI (45) has a solution

R← P−1Y

else

γ ← γ0 +∆γ

end if

until the LMI (45) is solved

L← TAΨΥ† −R(Im −ΥΥ†)

W ← Υ† ◃ To obtain the matrix W
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Suppose that the matrices of system (1) are given by

E =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


, A =



0.9 0.005 −0.095 0

0.005 0.995 0.0997 0

0.095 −0.0997 0.99 0

1 0 1 1



B = F =



0.1 0

1 1

−0.1 1

−1 0


, D =



1

1

1

0


, C =


0 1 0 0

0 0 1 0

0 0 0 1


By choosing S in (16) as

S =



1 0 0 0 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1


It comes the following matrices

T =



1 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 1


, N =



0 0 0

0.5 0 0

0 0.5 0

0 0 1


Note that CTf1 ̸= 0 and CTf2 ̸= 0, the fault detectability indexes are ρ1 = 1 and ρ2 = 1.

Then

Ψ = [Tf1 Tf2] =



0.9 0

0.0025 0.5

0.0475 0.5

1 0


, Υ = CΨ =


0.0025 0.5

0.0475 0.5

1 0


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It is obvious that rank(Υ) = 2, i.e. the condition (i) in Theorem 2 is satisfied.

By the definitions of matrices A1 and C1 given in Theorem 2, it follows

A1 =



0.9 0.0682 −0.0682 −0.8069

0.0025 0.2236 −0.2235 0.0078

0.0475 −0.2712 0.2712 −0.055

1 −0.4578 0.4568 −0.9206


, C1 =


0 0.4995 −0.4995 −0.0225

0 −0.4995 0.4995 −0.0225

0 0.0225 −0.0225 0.001



By repeated applications of Theorem 2, we obtain a minimal γ = 1.5 and the corresponding L

is

L =



2.4511 −2.4511 1.2553

0.5068 0.0405 0.0049

0.0814 0.3637 0.0675

2.7122 −1.7122 2.3917


In the following simulation, the input signal is u(k) = [2sin(k) 2sin(k)]T , the initial value of

state vector is x(0) = [0.5 1 0 −0.5]T , while the initial state estimation is x̂(0) = [0 1 0 −0.5]T . The

disturbance w(k) in the simulation is set as a random noise drawn from the uniform distribution

on the interval (0, 0.1). The reason to choose a random noise with uniform distribution is that this

kind of noise exhibits both bias and stochastic properties. Herein, it is assumed that we can obtain

the following priopri: w̄ = 0.11, x̄0 = 0.55.

Consider the following actuator faults

n1(k) =


0 k < 80

1 k ≥ 80

, n2(k) =


0 k < 100

1.2sin(0.1k) k ≥ 100

In this situation, the fault detection result is shown in Fig. 1. The threshold θ(k) is computed by

(66). It can be seen that the obtained dynamic threshold θ(k) is able to quickly and accurately

detect the occurrence of fault despite the presence of disturbance. The actuator faults and their

fault estimations are depicted in Fig. 2. If there was no disturbance, the residual r(k) should
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converge to the actuator n(k) only one sample of delay since the fault detectability indexes are

ρ1 = 1 and ρ2 = 1. In the presence of disturbances, the residual r(k) still closely approximates the

actuator fault n(k), as shown in Fig. 2.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

||r||(k)

θ(k)

Figure 1: The fault detection result of the proposed filter

For comparative purpose, a PI observer proposed in [29] has been designed and simulated.

Fig. 3 shows the actuator fault estimation results of the PI observer. As shown in Fig. 3,

periodic vibration appears in the fault estimation of n1(k). This phenomenon illustrates that the

fault estimation of n1(k) is disturbed by the dynamic of n2(k). In fact, the dynamics of fault

estimations and state estimations vectors are coupled in the PI observer. Therefore, the fault

estimation errors and state estimation errors are affected by each other and deteriorate the fault

estimation performance. Moreover, it can be seen from Fig. 2 and Fig. 3 that our presented filter

has faster convergence speed and better estimation accuracy than the PI observer from [29].
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Figure 2: The fault estimation result of the proposed filter
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Figure 3: The fault estimation result of PI observer in [29]
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5. Conclusion

This paper proposes an actuator fault estimation filter design method for the discrete-time linear

descriptor systems. The proposed fault estimation filter is able to detect and estimate actuator

faults. Moreover, the filter is designed such that the residual is robust against the unknown

disturbance. The filter design conditions have been derived as an LMI feasibility problem, which

can be solved efficiently.
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