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Fault estimation filter design for discrete-time descriptor systems

Introduction

The model-based fault diagnosis techniques have received considerable attention during the past decades. Various methods have been proposed in the literature, e.g. observer-based fault detection method [START_REF] Seliger | Fault diagnosis by disturbance decoupled nonlinear observers[END_REF][START_REF] Hou | Fault detection and isolation observers[END_REF], parity space approach [START_REF] Gertler | Fault detection and isolation using parity relations[END_REF], H ∞ fault detection filter [START_REF] Zhong | An LMI approach to design robust fault detection filter for uncertain LTI systems[END_REF][START_REF] Zhao | H∞ fault detection for linear discrete time-varying systems with delayed state[END_REF], and the recently presented finite frequency fault detection method [START_REF] Wang | A finite frequency domain approach to fault detection for linear discrete-time systems[END_REF][START_REF] Yang | Fault Detection for T-S Fuzzy Discrete Systems in Finite-Frequency Domain[END_REF][START_REF] Long | Fault detection for a class of networked control systems with finite-frequency servo inputs and random packet dropouts[END_REF]. For more comprehensive knowledge on model-based fault diagnosis techniques, see the monographs [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF][START_REF] Ding | Model-based fault diagnosis techniques: Design schemes, algorithms, and tools[END_REF][START_REF] Isermann | Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance[END_REF], survey papers [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge based redundancyA survey and some new results[END_REF][START_REF] Hwang | A survey of fault detection, isolation, and reconfiguration methods[END_REF][START_REF] Dai | From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis[END_REF] and references therein.

On another research front, descriptor systems appear in many fields such as power systems, electrical networks, and mechanical systems [START_REF] Dai | Singular Control Systems[END_REF][START_REF] Duan | Analysis and design of descriptor linear systems[END_REF]. In the last few decades, many approaches have been proposed to design observers for descriptor systems [START_REF] Dai | Observers for discrete singular systems[END_REF][START_REF] Darouach | Design of observers for descriptor systems[END_REF][START_REF] Hou | Observer design for descriptor systems[END_REF][START_REF] Lu | Full-order and reduced-order observers for Lipschitz descriptor systems: The unified LMI approach[END_REF][START_REF] Wang | Observer design for discrete-time descriptor systems: An LMI approach[END_REF][START_REF] Hammouri | An observer design for a class of implicit systems[END_REF]. References [START_REF] Dai | Observers for discrete singular systems[END_REF][START_REF] Darouach | Design of observers for descriptor systems[END_REF][START_REF] Hou | Observer design for descriptor systems[END_REF] have studied the observer design problem in linear descriptor systems. Observer design methods for nonlinear descriptor systems have been reported in [START_REF] Lu | Full-order and reduced-order observers for Lipschitz descriptor systems: The unified LMI approach[END_REF][START_REF] Wang | Observer design for discrete-time descriptor systems: An LMI approach[END_REF][START_REF] Hammouri | An observer design for a class of implicit systems[END_REF].

Compared with the results on observer design for the fault-free descriptor systems, there are limited papers on fault diagnosis methods for descriptor systems [START_REF] Vemuri | Fault diagnosis of differential-algebraic systems[END_REF][START_REF] Duan | Robust fault detection in descriptor linear systems via generalized unknown input observers[END_REF][START_REF] Gao | Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral and derivative observer design[END_REF][START_REF] Wang | Actuator fault estimation for a class of nonlinear descriptor systems[END_REF][START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF][START_REF] Chadli | H-/H∞ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system[END_REF][START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF]. [START_REF] Vemuri | Fault diagnosis of differential-algebraic systems[END_REF] has proposed a fault estimation method for linear descriptor systems by using on-line learning methodology. In [START_REF] Vemuri | Fault diagnosis of differential-algebraic systems[END_REF], the state variables are required to be fully measurable. However, in many situations, it is too expensive or even impossible to measure all the states. [START_REF] Duan | Robust fault detection in descriptor linear systems via generalized unknown input observers[END_REF] has considered the robust fault detection problem for linear descriptor systems via generalized unknown input observers. Nevertheless, as pointed out in [START_REF] Duan | Robust fault detection in descriptor linear systems via generalized unknown input observers[END_REF], these generalized observers are difficult to implement due to the fact that the derivatives of known signals may be involved in realizing the generalized observers. More recently, [START_REF] Gao | Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral and derivative observer design[END_REF] has studied fault estimation and fault-tolerant control for descriptor systems by using proportional, multipleintegral and derivative observer. [START_REF] Wang | Actuator fault estimation for a class of nonlinear descriptor systems[END_REF] has proposed an actuator fault estimation method for a class of nonlinear descriptor systems via neural adaptive observer design. It should be noticed that most of the aforementioned results focus on fault diagnosis in continuous-time descriptor systems, only [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF][START_REF] Chadli | H-/H∞ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system[END_REF][START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF] have considered fault diagnosis methods for discrete-time descriptor systems. In [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF],

an LMI-based unknown input observer design method is proposed and applied to fault detection and isolation for Takagi-Sugeno descriptor systems. [START_REF] Chadli | H-/H∞ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system[END_REF] has proposed an H -/H ∞ fault detection filter for a class of discrete-time descriptor systems described by Linear Parameter-Varying (LPV) form with a globally Lipschitz term. However, the methods in [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF] and [START_REF] Chadli | H-/H∞ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system[END_REF] only address the fault detection problem but the fault magnitudes cannot be estimated. As pointed out in [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF], accurate and timely fault estimation is an important basis for active control reconfiguration. For regular systems, several model-based techniques such as parity space approach, adaptive observer and sliding mode observer have been proposed to achieve fault estimation [START_REF] Zhong | Parity space-based fault estimation for linear discrete time-varying systems[END_REF][START_REF] Xu | Nonlinear system fault diagnosis based on adaptive estimation[END_REF][START_REF] Zhang | Fast fault estimation and accommodation for dynamical systems[END_REF][START_REF] Shen | Actuator fault-tolerant robust control for a linear system with adaptive fault identification[END_REF][START_REF] Alwi | Sliding mode estimation schemes for incipient sensor faults[END_REF][START_REF] Jiang | Fault estimation and accommodation for linear MIMO discrete-time systems[END_REF]. However, little work has been done to fault estimation for descriptor systems [START_REF] Gao | Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral and derivative observer design[END_REF][START_REF] Wang | Actuator fault estimation for a class of nonlinear descriptor systems[END_REF][START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF], especially for the discrete descriptor systems. In [START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF], a fault estimation method based on Proportional-Integral (PI) observer is proposed to deal with fault estimation for discrete-time LPV descriptor systems. However, the method in [START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF] requires the faults to be constant or slow varying, which is a restrictive condition.

In this paper, a novel fault estimation filter design method without the constant fault assumption is proposed for discrete-time linear descriptor systems. A restricted system equivalent model of the considered descriptor system is firstly established. We firstly construct a restricted system equivalent model of the considered descriptor system, and then design a fault estimation filter based on the restricted system equivalent representation. The filter design method is inspired by [START_REF] Keller | Fault isolation filter design for linear stochastic systems[END_REF] such that the ith component of the fault estimation vector asymptotically converges to the ith fault with a time delay equals to its fault detectability index. Moreover, this paper proposes a robust filter design method to deal with the effect of the unknown disturbance, which is not considered in [START_REF] Keller | Fault isolation filter design for linear stochastic systems[END_REF]. In this paper, design conditions for the proposed filter are formulated as a linear matrix inequality (LMI) feasibility problem, which can be easily solved by using standard LMI toolboxes. The main novelty of this paper lies on the following aspects. First, the proposed approach does not assume the faults to be constant. Therefore, it has a larger application scope than the method based on PI observers. Secondly, the form of the proposed filter is similar with the normal state observer, which is easy to implement. Moreover, this paper proposes a robust filter which is able to attenuate the effect of unknown disturbance and to provide a robust fault estimation. In addition, the proposed filter design method provides a dynamic detection threshold for the residuals in the fault-free situation. This can be used to achieve robust fault detection.

The rest of this paper is organized as follows. The problem formulation is presented in Section 2. The fault estimation filter is designed in Section 3. In Section 4, a numerical example is given to illustrate the effectiveness of the proposed approach. Conclusions are given in Section 5.

Problem statement and preliminaries

Consider the following discrete-time descriptor system with actuator faults

       Ex(k + 1) = Ax(k) + Bu(k) + F n(k) + Dw(k) y(k) = Cx(k) (1) 
where x(k) ∈ R n is the state vector, u(k) ∈ R p is the input vector, w(k) ∈ R d denotes the unknown disturbance and y(k) ∈ R m is the output vector. E ∈ R n×n may be rank deficient, i.e. rank(E) = r ≤ n, A, B, C and D are known matrices with appropriate dimensions.

n(k) = [n 1 (k) n 2 (k) • • • n q (k)] T ∈ R q is the vector of fault magnitudes and F = [f 1 f 2 • • • f q ] ∈ R n×q
is the fault distribution matrix. In the following of the paper, we assume that rank(C) = m, rank(F ) = q, q ≤ m, and rank

    E C     = n (2)
In this paper, a filter is designed to detect and estimate the faults in descriptor system [START_REF] Seliger | Fault diagnosis by disturbance decoupled nonlinear observers[END_REF].

To this end, some usefull preliminaries are presented in this section. First, recall the definition of restricted system equivalent.

Definition 1 [START_REF] Dai | Singular Control Systems[END_REF]. The following descriptor systems

       Ex(k + 1) = Ax(k) + Bu(k) y(k) = Cx(k) (3) and        Ẽ x(k + 1) = Ãx(k) + Bu(k) y(k) = C x(k) (4) 
are called Restricted System Equivalent (RSE) if there exist two nonsingular matrices Q and P such that

x(k) = P x(k) (5) 
and

QEP = Ẽ, QAP = Ã, QB = B, CP = C (6) 
In this paper, it is required that T ∈ R n×n is a nonsingular matrix satisfing the following equiation

T E + N C = I n ( 7 
)
where N ∈ R n×m is an arbitrary matrix.

In order to ensure the existence of such a matrix T , the following Lemma is introduced.

Lemma 1. Under the assumption (2), there exist a nonsingular matrix T ∈ R n×n and a matrix

N ∈ R n×m satisfying T E + N C = I n (8)
Proof. Since rank(E) = r, there exist two nonsingular matrices Q 0 and P 0 such that

    x 1 (k) x 2 (k)     = P -1 0 x(k), Q 0 EP 0 =     I r 0 0 0     , Q 0 AP 0 =     A 11 A 12 A 21 A 22     , Q 0 B =     B 1 B 2     , Q 0 F =     F 1 F 2     , Q 0 D =     D 1 D 2     , CP 0 = [ C 1 C 2 ] (9) 
then the system (1) is restricted system equivalent to

                       Q 0 EP 0     x 1 (k + 1) x 2 (k + 1)     = Q 0 AP 0     x 1 (k) x 2 (k)     + Q 0 Bu(k) + Q 0 F n(k) + Q 0 Dw(k) y(k) = CP 0     x 1 (k) x 2 (k)     (10) 
Under the assumption (2), it is easy to shown that rank

    Q 0 EP 0 CP 0     = rank         I r 0 0 0 C 1 C 2         = rank     I r 0 C 1 C 2     = n (11) Let H = [0 I m ] T , we have Q 0 EP 0 + HCP 0 =     I r 0 C 1 C 2     (12) 
Since P 0 is nonsingular, the following matrix

G Q 0 E + HC =     I r 0 C 1 C 2     P -1 0 ( 13 
)
is also a nonsingular matrix.

Let

T = G -1 Q 0 , N = G -1 H (14)
we get a nonsingular matrix T and a matrix N such that (8) holds.

Remark 1. Lemma 1 guarantees the existence of a nonsingular matrix T which also satisfies the constraint [START_REF] Long | Fault detection for a class of networked control systems with finite-frequency servo inputs and random packet dropouts[END_REF]. However, it is not very computationally efficient. Therefore, the following Lemma is introduced to provide a convenient alternative to find such a matrix T .

Lemma 2 [START_REF] Ben-Israel | Generalized inverses: Theory and applications[END_REF]. Given matrices

X ∈ R a×b , Y ∈ R b×c , and Z ∈ R a×c . If Y = c, the general solution of X Y = Z is given by X = ZY † + S[I b -YY † ] ( 15 
)
where S ∈ R a×b is an arbitrary matrix. Herein and throughout this paper, the symbol † is use to denote the pseudo-inverse of a matrix.

Since rank

    E C     = n,
there exist matrices T and N satisfying [START_REF] Yang | Fault Detection for T-S Fuzzy Discrete Systems in Finite-Frequency Domain[END_REF]. Using Lemma 2, the general solution for T and N is given by

T = MR T , N = MR N ( 16 
)
where

M =     E C     † + S      I n+m -     E C         E C     †      , R T =     I n 0     , R N =     0 I m     (17) 
and SR n×(n+m) is an arbitrary matrix, which provides us the degrees of design freedom. By choosing matrix S, we can determine a nonsingular matrix T which satisfies equation ( 7).

Since T is a nonsingular matrix, descriptor system (1) is RSE to the following representation

       T Ex(k + 1) = T Ax(k) + T Bu(k) + T F n(k) + T Dw(k) y(k) = Cx(k) (18) 
Motivated by [START_REF] Keller | Fault isolation filter design for linear stochastic systems[END_REF], this paper introduces the following definitions of fault detectability indexes and fault detectability matrix, which will be used in the sequel.

Definition 2. The fault detectability indexes of system [START_REF] Darouach | Design of observers for descriptor systems[END_REF] are defined as

ρ = {ρ 1 , ρ 2 , • • • , ρ q }
where

ρ i = min{v : C(T A) v-1 T f i ̸ = 0, v = 1, 2, • • •} (19)
Without loss of generality, it is assumed that the system (18) has finite fault detectability indexes and s min{ρ 1 , ρ 2 , • • • , ρ q } is used to represent the maximum value of fault detectability indexes.

Definition 3.

With the assumption that the system (18) has finite fault detectability indexes, the fault detectability matrix is defined as

Ψ = [(T A) ρ 1 -1 T f 1 (T A) ρ 2 -1 T f 2 • • • (T A) ρq-1 T f q } (20)
Besides, the discrete-time Bounded Real Lemma will be used in this paper.

Lemma 3 [START_REF] Hsiung | Lyapunov inequality and bounded real lemma for discrete-time descriptor systems[END_REF]. Consider the state-space system

       x(k + 1) = Ax(k) + Bw(k) y(k) = Cx(k) + Dw(k) (21)
For a given scalar γ > 0, the following statements are equivalent:

(i) A is a stable matrix and ∥C(zI -A) -1 B + D∥ < γ.

(ii) There exists a symmetric P satisfying P > 0 and the following matrix inequality    

A T P A -P + C T C A T P B + C T D B T P A + D T C -γ 2 I + B T P B + D T D     < 0 (22) 

Fault estimation filter design

Based on the RSE representation [START_REF] Darouach | Design of observers for descriptor systems[END_REF], the following filter is constructed for descriptor system

(1)                z(k + 1) = T Ax(k) + T Bu(k) + L(y(k) -C x(k)) x(k) = z(k) + N y(k) r(k) = W (y(k) -C x(k)) (23) 
where z(k) ∈ R n is an intermediate state vector, x(k) ∈ R n is the state estimation vector and r(k) ∈ R q denotes the residual vector. In [START_REF] Vemuri | Fault diagnosis of differential-algebraic systems[END_REF], matrices T and N can be determined by using [START_REF] Duan | Analysis and design of descriptor linear systems[END_REF], L ∈ R n×m and W ∈ R q×m are matrices to be designed.

Define the state estimation error and output estimation error as

e(k) = x(k) -x(k) (24) 
and

ϵ(k) = y(k) -C x(k) (25) 
respectively. Then, by using ( 7), ( 18) and ( 23), the error dynamic system is obtained as

       e(k + 1) = (T A -LC)e(k) + T F n(k) + T Dw(k) ϵ(k) = Ce(k) (26) 
In order to analyse the estimation error, the error system ( 26) is split into two parts, i.e.

       e f (k + 1) = (T A -LC)e f (k) + T F n(k) ϵ f (k) = Ce f (k) (27) 
and

       e w (k + 1) = (T A -LC)e w (k) + T Dw(k) ϵ w (k) = Ce w (k) (28) 
where

e(k) = e f (k) + e w (k) ( 29 
)
ϵ(k) = ϵ f (k) + ϵ w (k) ( 30 
)
ϵ f (k) = Ce f (k), ϵ w (k) = Ce w (k) (31) 
Remark 2. The idea of separating ( 26) as ( 27) and ( 28) is inspired by [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time varying systems[END_REF], where a very similar methodology was used to analyze and design an adaptive observer. With this treatment, the output estimation error ϵ(k) is split into two components, ϵ f (k) and ϵ w (k). The first component ϵ f (k) reflects the impact of fault on the output estimation error, while the other part ϵ w (k) contains the influence of the disturbance. Note that this separation is only used to facilitate the analysis of error dynamic [START_REF] Wang | Actuator fault estimation for a class of nonlinear descriptor systems[END_REF] and the design of filter [START_REF] Vemuri | Fault diagnosis of differential-algebraic systems[END_REF]. It should be noticed that only the out estimation error ϵ(k), which is available in practice, will be used in the proposed fault estimation method.

Therefore, this separation does not involve any practical realization problem.

Then, the following Theorem is proposed to constrain the structure of matrix L in the filter [START_REF] Vemuri | Fault diagnosis of differential-algebraic systems[END_REF]. This Theorem is of essential importance in filter design.

Theorem 1. If there exists a matrix L satisfying

(T A -LC)Ψ = 0 ( 32 
)
then ϵ f (k) can be expressed as

ϵ f (k) = C(T A -LC) k e(0) + Υ [n 1 (k -ρ 1 ) n 2 (k -ρ 2 ) • • • n q (k -ρ q )] T , k > k f + s ( 33 
)
where Υ = CΨ, e(0) is the initial estimation error and k f denotes the time instant when faults occur.

Proof. From ( 27), it is easy to derive that

ϵ f (k) = C(T A -LC)e f (k -1) + CT F n(k -1) = C(T A -LC) 2 e f (k -2) + C(T A -LC)T F n(k -2) + CT F n(k -1) . . . = C(T A -LC) k e f (0) + CG k-k f T F n(k f ) + • • • + CG s T F n(k -s) + • • • + CG 1 T F n(k -1) (34) 
where k > s + k f , matrix G j is given by

G j = (T A -LC) j-1 , j = 1, • • • , k -k f (35)
From the definitions of T and n(k), we have

CG j T F n(k -j) = CG j T f 1 n 1 (k -j) + • • • + CG j T f i n i (k -j) + • • • + CG j T f q n q (k -j) (36)
Now, we should discuss about CG j T f i . By using the definition of fault detectability indexes, we have

CG j T f i = C(T A) j-1 T f i = 0, j < ρ i ( 37 
)
CG j T f i = C(T A) ρ i -1 T f i , j = ρ i ( 38 
)
CG j T f i = C(T A -LC) j-ρ i (T A) ρ i -1 T f i = 0, j > ρ i (39)
Using [START_REF] Xu | Nonlinear system fault diagnosis based on adaptive estimation[END_REF], we obtain

(T A -LC)(T A) ρ i -1 T f i = 0 (40) 
Substituting ( 40) into (39) yields

CG j T f i = 0, j > ρ i ( 41 
)
To sum up, we have

CG j T f i =        C(T A) ρ i -1 T f i j = ρ i 0 j ̸ = ρ i j = 1, • • • , k -k f (42)
It follows that

CG j T f i =        C(T A) ρ i -1 T f i j = ρ i 0 j ̸ = ρ i j = 1, • • • , k -k f (43)
Substituting ( 43) into [START_REF] Shen | Actuator fault-tolerant robust control for a linear system with adaptive fault identification[END_REF] gives

ϵ f (k) = C(T A -LC) k e(0) + C(T A) ρq-1 T f q n q (k -ρ q ) + • • • + C(T A) ρ 1 -1 T f 1 n 1 (k -ρ 1 ) = C(T A -LC) k e(0) + Υ [n 1 (k -ρ 1 ) n 2 (k -ρ 2 ) • • • n q (k -ρ q )] T ( 44 
)
where k > s + k f . This completes the proof.

Theorem 1 implies that the vector ϵ f (k) will exhibit the form of (33) if the matrix L satisfies the equation [START_REF] Xu | Nonlinear system fault diagnosis based on adaptive estimation[END_REF]. Since the output estimation error ϵ(k) is composed of ϵ f (k) and ϵ w (k), the effect of w(k) should be considered in the design of matrix L.

Based on Theorem 1, the following Theorem is proposed to design the fault estimation filter [START_REF] Vemuri | Fault diagnosis of differential-algebraic systems[END_REF]. First, the gain matrix L in ( 23) is required to have a special structure which makes the equation (32) satisfied. Moreover, the matrix L is designed so that the residual r(k) is robust against the disturbance w(k).

Theorem 2. For a given scalar γ > 0, if the following conditions are satisfied:

(i) rank(Υ) = q (ii) there exist a symmetric positive definite matrix P > 0, P ∈ R n×n and a matrix

Y ∈ R n×m such that         -P + (Υ † C) T (Υ † C) 0 A T 1 P -C T 1 Y T * -γ 2 I d (T D) T P * * -P         < 0 ( 45 
)
where

A 1 = T A -T AΨΥ † C, C 1 = (I m -ΥΥ † )C (46)
Then, by choosing

W = Υ † ( 47 
)
and

L = T AΨΥ † -P -1 Y (I m -ΥΥ † ) (48) 
the residual r(k) in the filter ( 23) satisfies the following robust performance

∥ξ∥ ≤ √ γ 2 ∥w∥ 2 + N (e(0), k) ( 49 
)
where

ξ(k) = r(k) -n d (k) (50) n d (k) [n 1 (k -ρ 1 ) n 2 (k -ρ 2 ) • • • n q (k -ρ q )] T (51)
and N (e(0), k) is a function satisfying lim k→∞ N (e(0), k) = 0.

Proof. If rank(Υ) = q, then we have

Υ † Υ = I q (52)
By letting W = Ψ † and considering [START_REF] Zhang | Fast fault estimation and accommodation for dynamical systems[END_REF], the residual r(k) is given by

r(k) = W ϵ(k) = Υ † ϵ f (k) + Υ † ϵ w (k) = Υ † C(T A -LC) k e(0) + [n 1 (k -ρ 1 ) n 2 (k -ρ 2 ) • • • n q (k -ρ q )] T + Υ † ϵ w (k) = Υ † C(T A -LC) k e(0) + n d (k) + Υ † ϵ w (k) (53) 
It follows that

ξ(k) = ξ 0 (k) -ξ w (k) ( 54 
)
where

ξ 0 (k) = Υ † C(T A -LC) k e(0), ξ w (k) = Υ † ϵ w (k) ( 55 
)
Using triangle inequality gives

∥ξ∥ = √ ∥ξ 0 ∥ 2 + ∥ξ w ∥ 2 ≤ √ (∥Υ † C∥∥(T A -LC)∥ k ∥e(0)∥) 2 + ∥ξ w ∥ 2 (56) 
Let

N (e(0), k) = ( ∥Υ † C∥∥(T A -LC)∥ k ∥e(0)∥ ) 2 (57) 
It is obvious that N (e(0), k) satisfies lim k→∞ N (e(0), k) = 0 if matrix T A -LC is stable, i.e. ∥(T A -LC)∥ < 1 Moreover, the inequality (49) is fulfilled if ∥ξ w ∥ < ∥w∥ holds. Now, it is ready to show that T A -LC is stable and ∥ξ w ∥ < ∥w∥ holds if (45) is satisfied.

Applying Lemma 3 to system [START_REF] Chadli | H-/H∞ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system[END_REF], it is obtained that matrix T A-LC is stable and ∥ξ w ∥ < ∥w∥ holds if the following matrix inequality is satisfied

    (T A -LC) T P (T A -LC) -P + (Υ † C) T (Υ † C) (T A -LC) T P D * -γ 2 I + (T D) T P T D     < 0 ( 58 
)
Using the Schur complement Lemma [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], the inequality (58) is equivalent to

        -P + (Υ † C) T (Υ † C) 0 (T A -LC) T P * -γ 2 I d (T D) T P * * -P         < 0 (59)
Since rank(Υ) = q, we can apply Lemma 2 to (32), then the general solution for L is obtained as

L = T AΨΥ † + R(I m -ΥΥ † ) (60) 
where R ∈ R n×m is an arbitrary matrix.

Substituting (60) into T A -LC gives

T A -LC = T A -T AΨΥ † -R(I m -ΥΥ † ) = A 1 -RC 1 (61) 
It follows that inequality (59) is equivalent to

        -P + (Υ † C) T (Υ † C) 0 (A 1 -RC 1 ) T P * -γ 2 I d (T D) T P * * -P         < 0 (62) 
It is obvious that inequality (62) becomes (45) by letting Y = P R. Now, it has been shown that T A -LC is stable and ∥ξ w ∥ < ∥w∥ holds if (45) is satisfied.

If there exist a symmetric positive definite matrix P and a matrix Y such that (45) holds. Then R is given by

R = P -1 Y (63)
Substituting (63) into (60) yields (48). This completes the proof.

Remark 3. It is known that fault detection is an essential task in fault diagnosis. To achieve the fault detection goal, a residual evaluation procedure is necessary. A commonly used strategy is the so-called norm based residual evaluation [START_REF] Ding | Model-based fault diagnosis techniques: Design schemes, algorithms, and tools[END_REF], i.e. the norm of the residual r(k) is compared with a threshold to detect the occurrence of a fault. In this paper, the robust performance criterion (49) can be used to compute the detection threshold. Considering the fault-free situation (n(k) = 0) and using (49), it comes

∥r∥ = ∥ξ∥ ≤ √ γ 2 ∥w∥ 2 + N (e(0), k) (64) 
Without loss of generality, it is assumed that the bounds of ∥w∥ and ∥e(0)∥ are w and ē0 , respectively. Then, we can obtain the following fault detection scheme

       Fault -free if ∥r∥ ̸ = θ(k) Fauly if ∥r∥ > θ(k) (65) 
where

θ(k) = √ γ 2 w2 + N (ē 0 , k) (66)
is a dynamic detection threshold.

Remark 4. After the fault is detected, fault isolation and estimation should be implemented in order to obtain further information about the fault. It is noted that the proposed method is able to achieve fault isolation and estimation simultaneously. Note that the performance criterion in (49) implies that the residual r(k) robustly tends to the delayed fault magnitudes vector n d (k).

First of all, the residual r(k) can be viewed as an estimate of fault n(k). Therefore, the fault estimation goal is achieved. From the point of view of fault isolation, the ith component r i (k) of the residual can be used as a fault indicator for the ith actuator because r i (k) robustly tends to the ith fault n i (k -ρ i ) without affecting by other faults. In other words, the ith residual component r i (k) can be used to determine whether the ith actuator is fault.

Finally, for the sake of readability, the overall procedure for the proposed fault estimation filter design method is summarized in Algorithm 1.

Simulations

A simulation example is given in this section to demonstrate the design procedure and the effectiveness of the proposed fault estimation filter. 

ρ i ← min { v : C(T A) v-1 T f i ̸ = 0, v = 1, 2, • • • } Calculate the fault detectability matrix: Ψ ← [ (T A) ρ 1 -1 T f 1 • • • (T A) ρq-1 T f q ] Υ ← CΨ γ ← γ 0 repeat
Solve the LMI problem (45) ◃ To design the gain matrix L if the LMI (45) has a solution

R ← P -1 Y else γ ← γ 0 + ∆γ end if until the LMI (45) is solved L ← T AΨΥ † -R(I m -ΥΥ † ) W ← Υ † ◃ To obtain the matrix W
Suppose that the matrices of system (1) are given by

E =             1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0             , A =            
0.9 0.005 -0.095 0 0.005 0.995 0.0997 0 0.095 -0.0997 0.99 0

1 0 1 1             B = F =             0.1 0 1 1 -0.1 1 -1 0             , D =             1 1 1 0             , C =         0 1 0 0 0 0 1 0 0 0 0 1        
By choosing S in [START_REF] Duan | Analysis and design of descriptor linear systems[END_REF] as

S =            
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1

           
It comes the following matrices

T =             1 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 1             , N =             0 0 0 0.5 0 0 0 0.5 0 0 0 1            
Note that CT f 1 ̸ = 0 and CT f 2 ̸ = 0, the fault detectability indexes are ρ 1 = 1 and ρ 2 = 1.

Then Ψ = [T f 1 T f 2 ] =            
0.9 0 0.0025 0.5 0.0475 0.5

1 0             , Υ = CΨ =         0.0025 0.5 0.0475 0.5 1 0        
It is obvious that rank(Υ) = 2, i.e. the condition (i) in Theorem 2 is satisfied.

By the definitions of matrices A 1 and C 1 given in Theorem 2, it follows 

A 1 =             0 
            , C 1 =         0 
L =             2 
           
In the following simulation, the input signal is u(k) = [2sin(k) 2sin(k)] T , the initial value of state vector is x(0) = [0.5 1 0 -0.5] T , while the initial state estimation is x(0) = [0 1 0 -0.5] T . The disturbance w(k) in the simulation is set as a random noise drawn from the uniform distribution on the interval (0, 0.1). The reason to choose a random noise with uniform distribution is that this kind of noise exhibits both bias and stochastic properties. Herein, it is assumed that we can obtain the following priopri: w = 0.11, x0 = 0.55.

Consider the following actuator faults

n 1 (k) =        0 k < 80 1 k ≥ 80 , n 2 (k) =        0 k < 100 1.2sin(0.1k) k ≥ 100
In this situation, the fault detection result is shown in For comparative purpose, a PI observer proposed in [START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF] has been designed and simulated.

Fig. 3 shows the actuator fault estimation results of the PI observer. As shown in Fig. 3, periodic vibration appears in the fault estimation of n 1 (k). This phenomenon illustrates that the fault estimation of n 1 (k) is disturbed by the dynamic of n 2 (k). In fact, the dynamics of fault estimations and state estimations vectors are coupled in the PI observer. Therefore, the fault estimation errors and state estimation errors are affected by each other and deteriorate the fault estimation performance. Moreover, it can be seen from Fig. 2 and Fig. 3 that our presented filter has faster convergence speed and better estimation accuracy than the PI observer from [START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF]. 

Conclusion

This paper proposes an actuator fault estimation filter design method for the discrete-time linear descriptor systems. The proposed fault estimation filter is able to detect and estimate actuator faults. Moreover, the filter is designed such that the residual is robust against the unknown disturbance. The filter design conditions have been derived as an LMI feasibility problem, which can be solved efficiently.

Algorithm 1

 1 Fault estimation filter design for discrete-time descriptor systems Given the parameters of the descriptor system (1): E, A, B, F , D, C Choose a matrix S Solve the equation (7) and obtain a matrix M ◃ To design matrices T and N T ← MR T , N ← MR N Calculate the fault detectability indexes:

  By repeated applications of Theorem 2, we obtain a minimal γ = 1.5 and the corresponding L is

Fig. 1 .Figure 1 :

 11 Figure 1: The fault detection result of the proposed filter

Figure 2 :Figure 3 :

 23 Figure 2: The fault estimation result of the proposed filter
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