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Abstract

This article investigates the theoretical convergence properties of the estimators

produced by a numerical exploration of a monotonic function with multivariate

random inputs in a structural reliability framework. The quantity to be

estimated is a probability typically associated to an undesirable (unsafe)

event and the function is usually implemented as a computer model. The

estimators produced by a Monte Carlo numerical design are two subsets of

inputs leading to safe and unsafe situations, the measures of which can be

traduced as deterministic bounds for the probability. Several situations are

considered, when the design is independent, identically distributed or not, or

sequential. As a major consequence, a consistent estimator of the (limit state)

surface separating the subsets under isotonicity and regularity arguments can

be built, and its convergence speed can be exhibited. This estimator is built by

aggregating semi-supervized binary classifiers chosen as constrained Support

Vector Machines. Numerical experiments conducted on toy examples highlight

that they work faster than recently developed monotonic neural networks with

comparable predictable power. They are therefore more adapted when the

computational time is a key issue.
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1. Introduction

Due to the increasingly powerful computational tools, so-called computer models g

are developed to mimic complex processes (e.g., technical, biological, socio-economical,

etc. [7, 10]). The exploration of multivariate deterministic black-box functions x 7→
g(x) by numerical designs of experiments has become, over the last years, a major

theme of research in the interacting fields of engineering, numerical analysis, probability

and statistics [30]. Numerical investigations based on Monte Carlo variance reduction

techniques [27] are often needed since, on the one hand, the complexity of g restricts

the use of intrusive explorations, and in the other hand each run of the computer

model can be very costly. A number of studies have for common aim to delimit the

set of input situations x dominated by a limit state surface Γ defined by the equation

g(x) = 0, where the dominance rule is defined by a partial order. In multi-objective

optimization frameworks, where g is assimilated to a decision rule, Γ can be viewed

as a Pareto frontier delimiting a performance space [15]. In structural reliability it

is often wanted to assess the measure of the set U− = {x; g(x) ≤ 0}, which can be

interpreted as the probability p of an undesirable event when the input vector x is

randomized [21].

The Pareto dominance between the inputs x is the natural partial order needed to

formalize an assumption of monotonicity placed on g. This hypothesis corresponds to

a technical reality in numerous situations encountered in engineering [25] or decision-

making [4], or a conservative approximation to reality in reliability studies. Therefore

the exploration of monotonic time-consuming computer models by numerical means has

been investigated by a growing number of researchers [6, 9, 17]. The most immediate

benefit of monotonicity is surrounding the isotonic limit state surface Γ by two Pareto-

dominated sets delimited by the elements of the numerical design, the measures of

which defining deterministic bounds for the probability p [25]. Recent works focused
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on the estimation of these bounds and the computation of statistical estimators of p

based on Monte Carlo numerical designs [6].

While random designs appear as powerful tools for surrounding Γ and building esti-

mators of p, the stochastic behavior of the associated random sets and their measures

has not been investigated yet. The aim of this paper is to fill in this gap by establishing

first convergence results for these objects from random set theory. A corollary of these

results, under a convexity argument, is the consistency of an estimator of Γ built from

the hull of the numerical design, accompanied with its convergence rate. Such an

estimator is proposed by a combination of Support Vector Machines (SVM), which

appears as a faster alternative in large dimensions to neural networks specifically

developed for isotonic situations [32], while both techniques are usual in structural

reliability frameworks [20].

This article is organized as follows. Section 2 details the main concepts and nota-

tions. The convergence of a dominated set is examined in Section 3. First we study

conditions leading to convergence. Then, under some regularity assumption on the

limit state, a rate of convergence for an estimator of Γ is provided in term of Hausdorff

distance. Lastly, more precise results are given for two particular cases. Taking into

account monotonicity properties, Section 4 focuses on a sequential sampling strategy.

A non naive acceptance-rejection method to simulate in the so-called non-dominated

set is provided . Then the convergence rates of bounds is compared numerically with a

standard Monte Carlo and a sequential sampling. These theoretical results are derived

in Section 5 to build a consistent semi-adaptive SVM-based classifier of the limit

state surface Γ respecting isotonic and convexity constraints. Numerical experiments

conducted in Section 5.2 complete this analysis by comparing the properties of the

classifier with the recently developed monotonic neural networks. The proofs of the

new technical results are postponed to Section 7.

2. Framework

Let consider as in [6] the space U = [0, 1]d. Let X be a random vector uniformly

distributed on U and g be a measurable application from U to IR. The function

g discriminates two sets of input situations, leading to undesirable and safe events,
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respectively. These classes are denoted U− = {x ∈ [0, 1]d : g(x) ≤ 0} and U+ = {x ∈
[0, 1]d : g(x) > 0}, with [0, 1]d = U− ∪U+. Hence the probability p that an undesirable

event may occur is

p = P(g(X) ≤ 0) = P(X ∈ U−).

Estimating p by a minimum number of calls to g is a prominent subject of interest

in engineering. This number can be drastically diminished when g is assumed to

be monotonous. Characterizing the monotonicity of g requires to use the Pareto

dominance between two elements of IRd, recalled in next definition.

Definition 1. Let u = (u1, . . . , ud) and v = (v1, . . . , vd) ∈ IRd. We say that u is (resp.

strictly) dominated by v, denoting u � v (resp. u ≺ v), if for all i = 1, . . . , d, ui ≤
vi (resp. ui < vi).

Assumption 1. Let g : U ⊂ IRd → IR. It is assumed that g is globally increasing, i.e.

for all u,v ∈ U such that u � v, then g(u) ≤ g(v).

Remark 1. Obviously as pointed in [6], any monotonic function can be reparametrized

to be increasing with respect to all its inputs.

This property has for consequence to simplify the exploration of U− and U+ and

provide deterministic bounds on p. Let x ∈ U− (resp. U+) and y ∈ U. Since g is

increasing, if y � x (resp. y � x) then y ∈ U− (resp. U+). More generally, consider a

set A of elements on [0, 1]d (for instance a design of numerical experiments) and define

U−(A) =
⋃

x∈A∩U−

{u ∈ [0, 1]d : u � x},

U+(A) =
⋃

x∈A∩U+

{u ∈ [0, 1]d : u � x}.

Then the monotonicity property implies the following result, since U−(A) ⊂ U− ⊂
[0, 1]d\U+(A).
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Figure 1: Illustration for d = 2 of the designs U−(x1,x2,x5,x6) and U+(x3,x4,x7,x8).

Proposition 1. Denote µ the Lebesgue measure on U. For any countable set A,

µ(U−(A)) ≤ p ≤ 1− µ(U+(A)).

Remark 2. In general, the set A will be {X1, . . . , Xn}, the sets U−(A) and U+(A)

would then be random sets and the inequality becomes an almost sure inequality.

The non-dominated subset U(A) = [0, 1]d\(U−(A)∪U+(A)) contains necessarily Γ and

is the only subset of [0, 1]d for which a deeper numerical exploration is needed in view

of estimating Γ and p. Formally

Γ =
(
U

−\Ů−
)
∩
(
U

+\Ů+
)

where E and E̊ are respectively the closure and the interior of a set E. Next (mild)

assumption is required to view the problem of estimating Γ as a binary classification

problem with perfectly separable classes, and is needed to study the convergence of the

dominated sets to U− and U+ when the number of elements of the design increases. A

two-dimensional illustration is provided on Figure 1.

Assumption 2. Assume that µ(Γ) = 0 and Γ is simply connex.
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In the remainder of the article, a design of numerical experiments {Xi, g(Xi)}i=1,...,n

is considered. To alleviate the notations denote for all n ≥ 1,

U−
n = U− {X1, . . . ,Xn} ,

U+
n = U+ {X1, . . . ,Xn} ,

and the non-dominated set Un = [0, 1]d\(U−
n ∪ U+

n ). The Lebesgue measures (or

hypervolumes) of sets (U−
n ,U

+
n ) are then denoted p−n and 1 − p+n , such that, from

Proposition 1, we have with probability one

p−n ≤ p ≤ p+n . (1)

These two bounds can be computed using a sweepline algorithm described in [6]

at an exponential cost. A faster approximation method is provided in Section 4.

Two situations are further investigated from the point of view of the convergence

of dominated sets and bounds. First, the design is chosen static in [0, 1]d (usual

Monte Carlo sampling). Then a sequential Monte Carlo approach is explored, assuming

U0 = [0, 1]d and Xi being sampled within the current non-dominated set Ui−1 for all

i > 0. The convergence of the sets U−
n and U+

n will be studying via the Hausdorff

distance defined as follows.

Definition 2. Let ‖ · ‖q be the Lq norm on IRd, that is for 0 < q < +∞, ‖x‖q =

(
∑d

i=1 |xi|q)1/q, and for q = +∞, ‖x‖∞ = max
i=1,...,di=1,...,d

xi. Let (A,B) be two non-

empty subsets of the normed vector space ([0, 1]d, ‖ · ‖q). The Hausdorff distance dH,q

is defined by

dH,q(A,B) = max(sup
y∈A

inf
x∈B
‖x− y‖q; sup

x∈B
inf
y∈A
‖x− y‖q).

It is always finite since (A,B) ⊂
(
[0, 1]d

)2
are bounded. The usual form of the Hausdorff

distance is defined for q = 2. To alleviate notations, it is now denoted dH(., .) =

dH,2(., .) and ‖.‖ = ‖.‖2.
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3. Convergence results

3.1. Almost sure convergence for general sample strategy

The sequences (p−n )n and (p+n )n are respectively increasing bounded from above

and decreasing bounded from below. Hence, there exists two random variables p−∞

and p+∞ such that almost surely p−n −→ p−∞, p+n−→p+∞ and p−∞ ≤ p ≤ p+∞. In this

section we provide general conditions on the design of experiments that ensures that

p−∞ = p+∞ = p.

Proposition 2. [Independant Sampling] Let (Xk)k≥1 be a sequence of independent

random vectors on [0, 1]d. If there exists ε1 > 0 such that for all x ∈ Γε1 = {u ∈
[0, 1]d, d(u,Γ) < ε1} there exists ε2 > 0 such that

∑

n≥1

P(Xn ∈ B(x, ε2)) = +∞,

then (p−n , p
+
n )

a.s.→
n→+∞

(p, p).

Corollary 1. Under Assumption 2 and the conditions of Proposition 2, then

(
dH(U−

n ,U
−), dH(U+

n ,U
+)
) a.s.−→

n→+∞
(0, 0).

Example 1. If a sequence (Xn)n∈IN∗ that is i.i.d. and uniformly distributed on [0, 1]d

then it satisfies the assumption of Proposition 2. More generally any sequence of iid

random variables with bounded from below densities on [0, 1]d satisfies the assumption

of Proposition 2.

Since the only useful experiments are those which fall into the non-dominated set Un,

a sequential Monte Carlo strategy can be carried out, as detailed in next proposition.

Proposition 3. [Sequential sampling] Let (Yn)n≥1 be a sequence of iid random vari-

ables uniformly distributed on [0, 1]d. Let (Tn)n≥1 be a sequence of random variables

on N defined by T1 = 1 and for all n ≥ 1

Tn+1 = min{j > Tn, Yj ∈ UTn
}.
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Let (Xn)n≥1 be the sequence of random variables defined for all n ≥ 1 by Xn = YTn
.

Then, conditionally to X1, . . . ,Xn−1, Xn ∼ U(UTn−1
), and (p−n , p

+
n )

a.s.→ (p, p), where

(p−n , p
+
n ) are obtained from the sequence (Xn)n≥1.

It is now natural to quantify the rate of convergence. While it seems difficult to

provide an explicit rate in the general case. We will then provide some explicit rate in

particular cases.

3.2. Rate of convergence under some regularity assumptions

In this section convergence in Haussdorf distance sense of (U−
n )n towards U− is

proven, and under regularity assumption for the set U− a rate of convergence is

provided. The regularity considered here is the (α, γ)-regularity introduced in [1].

Definition 3. A set K is said (α, γ)-regular if there exist α, γ > 0 such that for all

0 < ε ≤ γ and for all x ∈ K one has

µ(B(x, ε) ∩K) ≥ αµ(B(x, ε))

where B(x, r) is the open ball with center x and radius r.

This notion was introduced in [1] to prove minimax rates in classification problems. It

has also been considered in [8, 26] in order to state convergence rate when estimating

sets. In particular Proposition 4 below can be seen as an application of Theorem 2

in [26].

Roughly speaking, this condition excludes pathological sets U−, as those having

infinitely many sharper and sharper peaks or presenting a jagged border Γ. For

instance, it is indirectly proved in [12] that if U− is convex and has non-empty interior

then it is regular. In a structural reliability framework this condition is conservative

since it traduces the hypothesis that any combination of inputs located between two

situations leading to an undesirable event leads also to such an event. Described in [34],

so-called r−convex sets that generalize the notion of convexity are also regular [26].

It is traduced in U− by the assumption (or “rolling condition”, cf. [34]) that for each

boundary point x ∈ Γ, there exists y ∈ U− such that x ∈ B(y, r). In practice the

assumption of r−convexity appears mild, as small values of r can produce a large
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variety of limit state surfaces presenting irregularities [26].

Proposition 4. Let (Xk)k≥1 be a sequence of iid random variables uniformly dis-

tributed on [0, 1]d and (X̃k)k≥1 be a sequence of iid random variables uniformly dis-

tributed on U−. Denote Ũ−
n = U−(X̃1, . . . , X̃n). Let (Fn)n≥1 be a sequence of measur-

able subsets of [0, 1]d such that for all n ≥ 1,U−
n ⊂ Fn ⊂ [0, 1]d\U+

n . Then

(1) dH(Fn,U−)
a.s.−→

n→+∞
0 and µ(Fn)

a.s.−→
n→+∞

p.

(2) If U− is regular, then almost surely

dH(Ũ−
n ,U

−) = O
(
(logn/n)1/d

)
.

(3) Furthermore, if U+ is also regular, and if g is continuous, then almost surely

dH(Fn,U
−) = O

(
(logn/n)1/d

)
. (2)

Remark 3. Note, that if in (2), we replace (Ũ−
n ) by (U−

n ), the a.s. bound becomes

O
(
(logN1/N1)

1/d
)
, where N1 is the number of points Xi such that g (Xi)) < 0 and

follows the binomial distribution with parameter n and p. Moreover the continuity

assumption in (3) can be weakened, it is enough (see the proof) that one can cut

[0, 1]d following g−1({0}) and glue it.

3.3. Convergence results in dimension 1

In dimension 1, we provide a complete description of the rate of convergence, in

particular we prove that n(p − p−n ) and n(p+n − p) are asymptotically exponentially

distributed.

Proposition 5. Let (Xn)n≥1 be an iid sequence of random variables uniformly dis-

tributed on [0, 1] and p ∈ [0, 1]. Define p−n = maxi=1,...,n(Xi · 1{Xi≤p}) and p+n =
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1{maxi=1,...,n(Xi)≤p} +mini=1,...,n(Xi · 1{Xi>p}). Then

n(p− p−n )
L−−−−−→

n→+∞
Exp(1),

n(p+n − p)
L−−−−−→

n→+∞
Exp(1),

E[p+n − p−n ] =
2

n+ 1
− 1

n+ 1

(
pn+1 + (1− p)n+1

)
, (3)

where Exp(λ) is the exponential distribution with density fλ(x) = λ exp(−λx)1{x≥0}.

The cost of adopting a naive sequential strategy to decrease the volume of the non-

dominated set, by sampling a new design element within [0, 1]d, can be appreciated

by coming back to the unidimensional case (d = 1). In this framework, denote Wn =

min{j ≥ 1 : Xn+j ∈]p−n , p+n [} where (Xn+j)j≥1 is an iid sequence of random variables

uniformly sampled on [0, 1]. For all r ≥ 1, one has

P(Wn = r) = P(Xn+1 /∈]p−n , p+n [, . . . , Xn+r−1 /∈]p−n , p+n [, Xn+r ∈]p−n , p+n [),

= E[P(Xn+1 /∈]p−n , p+n [, . . . , Xn+r−1 /∈]p−n , p+n [, Xn+r ∈]p−n , p+n [|X1, . . . , Xn)],

= E[(1 − (p+n − p−n ))
r−1(p+n − p−n )].

From linearity of the expectation and Jensen inequality, it comes

E[Wn] = E[(p+n − p−n )
−1],

≥ E[p+n − p−n ]
−1,

≥ n+ 1

2
from (3) (4)

which is (as expected) a prohibitive cost for large values of n.

More accurate results can be only obtained in some particular case. The following

proposition provides a result of the expected Lebesgue measure of the non-dominated

set for d = 1.

Proposition 6. Let p−0 = 0, p+0 = 1, X1 ∼ U([p−0 , p+0 ]), ξ1 = 1{X1≤p} and F1 =
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σ{X1}. For all n ≥ 1 define conditionally to Fn = σ{Xk, 1 ≤ k ≤ n}:

Xn+1 ∼ U([p−n , p+n ]),

ξn+1 = 1{Xn+1≤p}

p−n+1 = p−n + (Xn+1 − p−n )ξn+1,

p+n+1 = p+n − (p+n −Xn+1)(1 − ξn+1).

Then, for n ≥ 1,

1

2n
≤ E[p+n − p−n ] ≤

(
3

4

)n

.

Corollary 2. If p ∈ {0, 1}, E[p+n − p−n ] = 2−n.

Remark 4. The shrinking convergence rate, which is inversely linear in n in a static

Monte Carlo strategy, is significantly improved by becoming exponential when opting

for a sequential strategy.

3.4. Asymptotic results when Γ = {1}d

Equivalent results are difficult to obtain for greater dimension and for a general limit

state Γ. The followings proposition provides asymptotic results in the particulare case

Γ = {1}d.

Proposition 7. Assume Γ = {1}d. Let (Xk)k≥1 be a sequence of iid random variables

uniformly distributed on [0, 1]d. For 0 < q < +∞ denote A(1, q) = 1 and for d ≥
2, Ad,q = 1

dqd−1

∏d−1
i=1 B(i/q, 1/q) with B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt. For all n ≥ 1, let

U−
n = U−(X1, . . . ,Xn).

(1) If 0 < q < +∞ then

(Ad,qn)
1/ddH,q

(
U−

n , [0, 1]
d
) L−−−−−→

n→+∞
W(1, d).

(2) If q = +∞ then

n1/ddH,∞
(
U−

n , [0, 1]
d
) L−−−−−→

n→+∞
W(1, d),

where W(1, d) is the Weibull distribution with scale parameter 1 and shape parameter
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d having cumulative density function F (t) = 1− e−td for all t ≥ 0.

Proposition 8. Under the assumptions and notations of Proposition 7 we have

E[µ([0, 1]d\U−
n )] ∼

n→+∞
log(n)d−1

n(d− 1)!
.

Remark 5. Denoting C∞(K) the convex hull of a set K, the result of Proposition 8

is tantamount to the following result provided in [3]:

E[µ([0, 1]d\C∞({X1, . . . ,Xn}))] ∼
n→+∞

log(n)d−1

n
.

When d = 1, the convergence order obtained in Proposition 5 is retreived.

4. Sequential sampling

Using a naive methods to simulate in a constrained space can be time consuming.

Indeed, Equation 4 gives the expected number of simulation needed to simulate in

the non-dominated set in dimension 1. A method to simulate in the non-dominated

set is provided in the first part of this section. In a second part, the measure of the

non-dominated set is compared in function of the strategies of simulation adopted:

standard Monte Carlo or sequential sampling.

4.1. Fast uniform sampling within the non-dominated set

Simulating uniformly on [0, 1]d can be time consuming when the aim is to simulate

in the non-dominated set. The strategy provided in this section involves to build a

subset of [0, 1]d containing the non-dominated set then to simulate uniformly within

this subset. After n calls to g let x in U+
n . From construction, the non-dominated

set is in [0, 1]d\U+
n (x), it remains to simulate uniformly on this subset of [0, 1]d. The

choice of x is described further in this section. The proposed method use the following

lemma coming from a simple acceptance-rejection method.

Lemma 1. Let A be a measurable subset of [0, 1]d with µ(A) > 0 and such that A =

A1 ∪ · · · ∪ Am with Ai ∩ Aj = ∅ if i 6= j. Let (Xk)k≥1 be an iid sequence of random

vectors satisfying for all i, P(Xk ∈ Ai) = µ(Ai)\µ(A). Let C be a measurable subset
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of A, and T = inf{k ≥ 1,Xk ∈ C} then XT is uniformly distributed on C.

The construction involves to split up [0, 1]d in hyperrectangles (see Figure 2) which

are defined for all i = 0, . . . , 2d − 1 by

Qi(x) = I1i × I2i × · · · × Idi ,

with

Iji =




[xj , 1] if bij = 0,

[0, xj ] if bij = 1,

where bi = (bi1, . . . , b
i
d) is equal to i coded in base 2. Since 0 is coded as 00 · · ·0 in base

2 with d numbers, one deduce that Q0(x) = [x1, 1]× [x2, 1]×· · ·× [xd, 1] = U+(x). Let

(Xk)k≥1 be an iid sequence of random vectors satisfying for all i = 1, . . . , 2d − 1

P(X ∈ Qi(x)) =
µ(Qi(x))

1− µ(Q0(x))
. (5)

Define T = inf{k ≥ 1,Xk ∈ Un}.Applying Lemma 1 with A = Q1(x) ∪ · · · ∪Q2d−1(x)

and C the non-dominated set Un, one deduce that XT is uniformly distributed on

the non-dominated set. The point x is chosen in order to maximise the quantity in

Equation (5). It must be noticed that more p is close to 0 more the points of Ξ+
n

are close to {0}d then the probability to have a simulation in the non-dominated set

increases.

4.2. Numerical study

To complete the previous theoretical studies, a brief numerical comparison of con-

vergence rates obtained for some static and sequential strategies is conducted in this

paragraph. The impact of design strategies on the mean measure of the non-dominated

set Un is examined through two repeated experiments conducted over the following

model, defined such that U− = [0, 1]d, p = 1 and Γ = {1}d for various dimensions
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{1}d

{0}d

x∗

Q0(x
∗)

Q1(x
∗)

Q3(x
∗)

Q2(x
∗)

Figure 2: Splitting up [0, 1]d from x∗ in dimension 2. The hyperrectangle Q0(x
∗) is in

U+.

d ∈ {1, 2, 3, 4, 5, 10}. That means, after n simulations, the volume of

⋃

x∈{X1,...,Xn}
{u ∈ [0, 1]d : u � x},

is compared, where X1, . . . ,Xn are respectively obtained from a uniform and a se-

quential sampling strategy. The model is run n = 100 times per experiment and

repeated 100 times. The results of these experiments are summarized on Table 1. As

expected, the remaining volume is lower with a sequential Monte Carlo than a standard

Monte Carlo. Nonetheless, this difference decreases when the dimension increases and

the remaining volume is nearly equal to 1 in dimension 10 for the two Monte Carlo

simulations.
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Dimension 1 2 3 4 5 10
Monte Carlo strategy 9.9× 10−3 0.052 0.145 0.28 0.43 0.937
Sequential strategy 7.89× 10−31 4.17× 10−5 0.017 0.14 0.33 0.935

Table 1: Mean measures (volumes) of non-dominated set Un after n = 100 runs.

Remark 6. Table 1 shows that the gain provided by a sequential sampling strategy

decrease as the dimension increase. For d = 10, the remaining volume obtain with the

two strategies of simulations are close.

5. Application : estimating Γ using Support Vector Machines (SVM)

The previous sections provide convergence results for different strategies of simula-

tions without the estimation of the limit state Γ. This section provide an estimator

of the sign of g under some convexity assumption on U−. The proposed estimator is

in fact a classifier based on linear SVMs. It will then be compared on a toy example,

with the monotonic neural networks recently developed in [32].

5.1. Theoretical study

Dominated sets (U−
n ,U

+
n ) surrounding Γ can be improved by sampling within the

non-dominated set Un. In view of improving a naive Monte Carlo approach to estimate

p, as in [6], usual techniques like importance sampling or subset simulation should aim

at targeting input situations close to Γ [5]. Such approaches can be guided by a

consistent estimation of Γ, under the form of a supervised binary classification rule

calibrated from (U−
n ,U

+
n ). This classifier has to agree with the following (isotonic)

ordinal property of the limit state surface Γ.

Proposition 9. Under Assumption 2 For all u,v ∈ Γ such that u 6= v, u is not

strictly dominated by v.

Respecting this constraint a monotonic neural network classifier was recently pro-

posed in [32] and applied in [6] to structural reliability frameworks. While consistent,

its computational cost remains high or even prohibitive when the size of the design

X1, . . . ,Xn defining (U−
n ,U

+
n ) increases. Benefiting from a clear geometric interpreta-

tion, Support Vector Machines (SVM) offer an alternative to neural networks by their
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robustness to the curse of dimensionality [20]. A semi adaptive solution can be build

from a combination of SVM when U− is convex. Conversely, it can be easily adapted

when U+ is a convex set.

Assuming U− is convex, any points x of U+ can be separated from U− by a

hyperplane hx(u) = α + βT
xu (see [24] Theorem 11.5) that maximises the minimal

distance of hx to x and U−. It is also possible to construct h satisfying the ordinal

property on Assumption 1 (see Appendix B for more details).

Given the numerical experiment Dn = (Xi, yi)1≤i≤n ∈ U×{−1, 1}} where yi = 1 if

g(Xi) > 0 and −1 otherwise. Let Ξ+
n = {X1, . . . ,Xn}∩U+ and Ξ−

n = {X1, . . . ,Xn} ∩
U− and for any x ∈ Ξ+

n define hx as the hyperplane separating x from Ξ−
n . The

proposed classifier fn is defined by

fn : [0, 1]d → {−1,+1}

y 7→




−1 if for all X ∈ Ξ+

n , hX(y) ≤ 0

+1 otherwise.

Denote

Fn = {x ∈ [0, 1]d : fn(x) = −1}

the set of all inputs classified as leading to undesirable events by fn.

Theorem 1. Assume U− is convex, then

(1) fn is globally increasing.

(2) For all X ∈ {X1, . . . ,Xn}, sign(g(X)) = fn(X).

(3) The set Fn is a convex polyhedron.

(4) Furthermore if (Xk)k≥1 is a sequence of independent random vectors uniformly

distributed on [0, 1]d, then

dH(Fn,U
−)

a.s.−→
n→+∞

0,
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and almost surely,

dH(Fn,U
−) = O

(
(logn/n)

1/d
)
.

Updating the classifier given a new design element Xn+1 found in U+ can be done

by a partially (semi) adaptive principle, illustrated on Figure 3 in dimension 2. To get

fn+1 it is enough to build the hyperplane hXn+1
which separates Xn+1 from Ξ−

n+1 =

Ξ−
n (unfortunately, if Xn+1 ∈ U− all hyperplanes must be rebuild, but this occurs

rarely with low probability p− p−n when the design is sampled uniformly on [0, 1]d). If

Xn+1 � x for all x ∈ Ξ−
n , the support vectors and the hyperplanes will not be modified.
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Figure 3: Construction of the classifier based on SVM. The plain line represent Γ
and black (resp. white) points are in U− (resp. U+). The dotted lines represents
{x : hX(x) = 0} for some X in U+. Left: there is one point in U+ then the dashed
line is both {x : hX(x) = 0} and the frontier of the classifier. Right: Dotted lines
represent the two sets {x : hX(x) = 0} for X represented by the two white points.
Dashed line represent the frontier of the classifier.

5.2. Numerical experiments

This section examines first the gain of including the constraint of monotonicity in

the calibration of SVM (detailed in Appendix B), with respect to usual SVM and

the constrained neural networks proposed in [32] when the associated code is globally

monotonic.
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First, the case of a linear limit state is studied. Next, the comparison will be made

on a function which verifies the monotonicity and convexity properties. The rate of

good classification obtained with the monotonic classifier and the monotonic neural

networks are compared at each step of the algorithm.

5.2.1. Linear case. Investigating the efficiency of the new classifier, let start the nu-

merical experiments with the linear case. The function g is a hyperplane defined by

h(x) = β0 + βTx,

with positive parameters which are, in dimension d, uniformly distributed on the unit

sphere

S+d = {x ∈ IRd
+ : ‖x‖ = 1}.

Various sample size N are used to examine the rate of good classification when the

monotonicity is taking account or not. For each ordered pair (d,N), a hyperplane is

build with parameters uniformly distributed on S+d . Then, 200 data are simulated on

the unit sphere to be predicted. The rate of good classification is compared for linear

SVM and linear monotonic SVM. That step is repeated 100 times for each hyperplane,

and also repeated with 100 differents hyperplane.

The results are summarised by Table 2 where there is respectively a proportion 0.1,

0.2, 0.3, 0.4 and 0.5 among N which are in {x : g(x) ≤ 0}. In general, taking account

of the monotonicity provides better results. As expected, more N is great and d is

low more the rate of good classification increase for the two methods. Results are

comparable for d = 2 but for a fixed N the difference grows when d increase. Finally,

the constrained SVM provides significantly better results for small N .

5.2.2. Convex case. In this section section, the classifier given in Theorem 1 is tested

on a toy example. Let U = (U1 . . . , Ud) be uniformly distributed on [0, 1]d, and denote

Zd = (U1U2 · · ·Ud)2.
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d = 2 d = 10 d = 20 d = 40 d = 50 d = 100

N = 10 78.24/78.40 58.14/62.72 53.05/57.65 50.80/53.53 50.49/52.32 50.09/50.88

N = 20 84.04/84.19 63.77/68.99 56.66/62.20 52.37/56.83 51.80/55.85 50.40/52.83

N = 40 91.22/91.34 71.65/74.13 62.64/67.38 56.25/61.44 54.59/59.91 51.68/55.75

N = 50 93.04/93.07 73.92/76.41 65.04/70.05 57.43/63.04 56.16/61.65 52.36/56.87

N = 75 92.57/92.74 78.72/80.34 68.95/72.59 60.24/66.02 58.71/63.99 53.73/58.58

N = 100 94.41/94.41 83.36/84.43 73.66/76.95 64.50/69.03 62.11/67.26 55.54/60.96

N = 200 97.09/97.09 88.87/89.30 82.09/83.55 72.83/76.07 69.55/73.22 61.24/66.50

N = 10 84.86/85.73 62.79/68.05 57.78/63.67 53.08/58.46 52.75/57.92 50.95/54.41

N = 20 90.41/90.44 70.27/74.69 61.98/68.49 57.64/63.62 55.88/62.30 52.56/57.87

N = 40 93.65/93.67 78.89/80.90 70.51/74.88 62.48/68.38 60.23/66.30 55.44/61.93

N = 50 95.51/95.51 82.06/83.78 72.30/76.28 64.84/70.50 62.62/68.35 57.01/63.39

N = 75 96.28/96.29 85.36/86.99 77.63/80.25 69.12/73.65 66.41/71.86 59.88/66.15

N = 100 96.87/96.87 88.44/89.18 81.04/82.94 72.39/76.21 69.71/74.30 62.02/67.80

N = 200 98.48/98.49 93.37/93.63 88.37/89.19 81.10/83.18 78.02/80.40 69.65/74.13

N = 10 86.55/87.42 67.76/73.2 60.98/68.26 56.49/63.74 55.67/62.95 52.86/59.30

N = 20 92.39/92.68 74.94/78.36 67.68/73.32 61.13/68.43 58.87/66.38 55.40/62.69

N = 40 95.27/95.40 83.20/85 75.22/78.75 66.73/72.70 65.15/71.56 59.24/66.67

N = 50 95.35/95.37 85.12/86.46 77.81/81.04 69.39/74.81 66.72/72.89 61.00/68.37

N = 75 97.06/97.06 88.88/89.42 82.24/84.51 73.64/78.11 71.40/76.19 63.80/70.19

N = 100 97.90/97.90 91.55/91.79 85.68/86.71 77.47/80.77 74.69/78.78 66.59/72.88

N = 200 98.73/98.73 95.16/95.26 91.53/91.94 85.40/86.99 82.95/85.09 74.62/79.08

N = 10 88.53/89.14 68.99/74.31 64.20/71.35 59.36/67.83 58.06/66.78 55.23/64.17

N = 20 92.10/92.22 77.54/81.02 70.60/75.69 63.92/71.54 62.88/70.56 58.04/66.88

N = 40 95.25/95.26 85.06/86.52 77.75/81.31 70.62/76.28 68.48/74.74 62.33/70.43

N = 50 97.20/97.20 87.02/87.74 80.91/83.52 72.58/77.60 70.60/75.88 63.98/71.50

N = 75 97.51/97.51 90.99/91.54 84.84/86.84 76.90/80.92 74.86/79.32 67.58/74.37

N = 100 97.98/97.99 92.86/93.06 87.65/88.57 80.11/83.03 77.88/81.74 70.57/76.39

N = 200 98.81/98.81 95.95/96.07 93.50/93.83 88.27/89.44 86.55/88.18 78.6/82.36

N = 10 88.91/89.52 70.12/75.03 64.23/71.39 59.93/68.41 59.17/67.97 56.88/66.48

N = 20 93.44/93.59 77.65/80.22 71.63/76.71 65.03/72.34 63.77/71.59 59.74/68.46

N = 40 95.85/95.85 86.33/87.23 78.95/81.88 71.58/77.11 69.16/75.35 64.00/71.87

N = 50 96.28/96.36 88.25/89.00 81.36/84.56 74.22/79.23 71.72/77.56 65.78/73.53

N = 75 97.51/97.51 91.01/91.61 85.96/87.60 78.60/82.51 75.85/80.09 69.66/76.18

N = 100 98.04/98.04 93.18/93.46 89.03/89.81 81.92/84.43 79.55/82.73 72.08/78.06

N = 200 99.07/99.08 96.18/96.27 93.57/94.12 89.05/90.12 87.16/88.70 80.09/83.76

Table 2: Rate of good classification for usual SVM (left) and monotonic SVM (right)
in function of d and N . From up to down, there is respectively a proportion of 0.1,
0.2, 0.3, 0.4, 0.5 in the set {x : g(x) ≤ 0}.
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Let qd,p be the p-quantile of Zd and define the function g(U) = Zd−qd,p. This quantile

can be deduced from Equation (13) in Section 7. Indeed, let t ∈ [0, 1], then

P(Zd ≤ t) = P(U1U2 · · ·Ud ≤
√
t) =

∫ √
t

0

(− log(x))d−1

(d− 1)!
dx.

The function g is globally increasing and the set {u ∈ [0, 1]d, g(u) > 0} is convex.

The SVM-based classifier and the constrained neural networks are built from the points

of a sequential design used to delimit the non-dominated set. At step n, the number

of points which delimits this non-dominated set is denoted Nn.

The comparison is conducted as follows. At each step n ≥ 1, M = 500 random

vectors are uniformly distributed on the non-dominated set Un−1. The rate of good

classification on theseM random vectors and the time needed to build the two classifiers

are stored. Then non-dominated set is updated with a random vector uniformly

distributed on it. The comparison is conducted for different dimensions: 2, 3 , 4

and 5 and for p = 0.01 and have been averaged on 40 independent experiments.

In Figure 4 the rate of good classification is compared in function of Nn. The red

values represent the number of times the situation where the non-dominated set is

delimited by Nn points. For some n ≥ 1, this number is greater than 40. Indeed,

the sequence (Nn)n≥1 is not monotonic: at any step n, a new simulation employed

to update the non-dominated set Un−1 can dominate one of the point of its frontier.

Then the value of Nn can be lower than Nn−1. At step n, having Nn = n means no

points of the sequential design is dominated by one another. The results show that the

mean rate of good classification is equivalent for the two classifier and for the tested

dimension. But, when the dimension increases the SVM-based classifier is more stable

than the constrained neural networks.

Denote (T SVM
n )n≥1 and (TNN

n )n≥1 respectively the cumulative time needed to build

the SVM-based classifier and the constrained neural networks until step n. The ratio

TNN
n /T SVM

n of time needed to construct these estimator are compared on Figure 5.

It is shown in this example that the semi-adaptive SVM-based classifier is less time-

consuming than the non-adaptive constrained neural networks for different dimensions.

Nonetheless, when the dimension increases the gain of time decrease.
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Figure 4: Boxplots of the rate of good classification for d ∈ {3, 4, 5, 6}, in function
of n. In red are the sample size used for each boxplot. Left: Monotonic SVM.
Right: Constrained neural networks. The results have been averaged on 40 independent
experiments.
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Figure 5: Ratio of time construction of the SVM-based classifier and the constrained
neural network in function of n. The results have been averaged on 40 independent
experiments.

6. Discussion

This articles initiates a theoretical counterpart to the increasing developments linked

to the exploration of computer models that make use of their geometrical properties.

The original framework is related to structural reliability problems, but the obtained

results can be adapted to multi-objective optimisation contexts, characterized by strong

constraints of monotonicity. The main results presented here are the consistency and

law convergence of the main ingredients (random sets, deterministic bounds, classi-

fication tools) used to solve such problems in the common case where the numerical

design is generated by a Monte Carlo approach. Therefore such results should be

understood as benchmark objectives for more elaborated approaches. For example,

use the monotonic estimation of the limit state surface proposed in this article which

presents good theoretical and practical properties.

These more elaborated approaches are, obviously, based on sequential sampling

within the current non-dominated set. Importance sampling (or more generally vari-

ance reduction ) techniques could directly benefit from the current estimation of the

limit state surface by the SVM-based tool : the importance distribution must be
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calibrated to optimize the sampling according to some criterion of volumic reduction.

A first step was done in this direction in [22]. Such approaches appear more difficult to

study theoretically, especially in multidimensional settings. However, a straightforward

argument consists in selecting the sequence of importance samplings as a (finite or

infinite) subsequence of an infinite nested uniform sampling, such that the consistency

properties be kept. The extension of the results presented here to sequential impor-

tance sampling, which was already suggested in [6], is the subject of a future work.

Developing specific techniques for fast sampling in a tortured set Un should also be

part of this work.

Numerous other avenues for future research can be highlighted. Especially, mono-

tonicity of computer models can be exploited to get deterministic bounds of output

quantiles, instead of probabilities (associated to undesirable events too). Quantiles

provided for a limit tail value are typical tools in risk analysis. A preliminary result is

given beneath in dimension 1, in corollary of Proposition 5, to introduce this theme of

research, which will be investigated in another future work.

Corollary 3. Assume that g is continuous, strictly increasing and differentiable at

p. Denote qp = infq∈IR (P(g(X) ≤ q) = p) the p-order quantile of g(X) and g′ the

derivative of g. Then

n(qp − g(p−n ))
L−−−−−→

n→+∞
Exp(1/g′(p)),

n(g(p+n )− qp)
L−−−−−→

n→+∞
Exp(1/g′(p)).
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7. Proofs

Proof of Proposition 2. Set U−
∞ =

⋃
k≥1 U

−
k , U+

∞ =
⋃

k≥1 U
+
k and the non-

dominated setU∞ = [0, 1]d\ (U−
∞ ∪U+

∞). We define p−∞ = µ(U−
∞) and p+∞ = µ([0, 1]d\U+

∞).

By inclusion and closure, the bounded sequences (p−n )n≥1 and (p+n )n≥1 are respectively

increasing and decreasing, then p−n
a.s.→ p−∞ and p+n

a.s.→ p+∞. Assume U∞ is a non-empty

open set such that µ(U∞) = p+∞ − p−∞ > 0. There exist ε1 > 0 and x0 ∈ [0, 1]d such

that

B(x0, ε1) ⊂ U∞. (6)

Hence no element of the sequence (Xk)k≥1 belongs to B(x0, ε1). Now, we introduce

the events An = {Xn ∈ B(x0, ε1)}, the are independent by construction and

∑

n≥1

P(AN ) =
∑

n≥1

πd/2εd

Γ(d/2 + 1)
= +∞.

We can then apply to Borel-Cantelli’s lemma that ensures that P(lim supn An) = 1.

Therefore it exists almost surely at least one Xk ∈ B(x0, ε1), which is contradictory

with (6). Hence µ(U∞) = 0 and necessarily p−∞ = p+∞ = p almost surely. �

Proof of Corollary 1. From construction, one has U−
n ⊂ U− then from Proposition

2

dH(U−
n ,U

−) = sup
x∈U−

n

inf
y∈U−

‖x− y‖ ≤ µ(U−)− µ(U−
n ) = p− p−n , −→n→+∞

0.

�

Proof of Proposition 3. It is an alternative proof to the consistency result given

in [6]. For any measurable set A ⊂ [0, 1]d. If (Yn)n is an i.i.d. sequence of variable

uniformly distributed on [0, 1]d and T = inf{n,Xn ∈ A}. Then, it is a well known

fact that YT is uniformly distributed on A. Hence conditionnaly to Conditionally to
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X1, . . . ,Xn−1 one has

Xn ∼ U(UTn−1
).

Denote (q−n )n≥1 and (q+n )n≥1 the sequences of bounds obtained from (Yn)n≥1. By

construction, the sequences (p−n )n≥1 and (p+n )n≥1 are subsequences of (q−n )n≥1 and

(q+n )n≥1. Then

p+n − p−n ≤ q+n − q−n
a.s.→

n→+∞
0.

�

Proof of Proposition 4. Proof of (1). By triangle inequality, one has

dH(Fn,U
−) ≤ dH(Fn,U

−
n ) + dH(U−

n ,U
−),

≤ dH([0, 1]d\U+
n ,U

−
n ) + dH(U−

n ,U
−), since U−

n ⊂ Fn ⊂ [0, 1]d\U+
n

≤ dH([0, 1]d\U+
n ,U

−) + 2dH(U−
n ,U

−), by a second triangle inequality.

We know from Corollary 1, that

dH([0, 1]d\U+
n ,U

−
n )

a.s.−→
n→+∞

0,

dH(U−
n ,U

−)
a.s.−→

n→+∞
0,

hence dH(Fn,U−)
a.s.−→

n→+∞
0. Besides µ(U−

n ) ≤ µ(Fn) ≤ µ([0, 1]d\U+
n ) by construction,

then p−n ≤ µ(Fn) ≤ p+n , and from Corollary 1, it can be deduced that

µ(Fn)
a.s.−→

n→+∞
p,

that concludes the proof of (1). The proof of (2) and (3) are based on the following

Theorem due to [26].

Theorem 2. ( [26], Theorem 2). Let K be a compact set on IRd and standard with

respect to a measure ν. Let (Xk)k≥1 be a sequence of i.i.d. random variables uniformly

distributed on K, and Kn be a set such that for all n large enough one has almost
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surely (X1, . . . ,Xn) ⊂ Kn ⊂ K. Then almost surely

dH(Kn,K) = O

((
logn

n

)1/d
)
.

The notion of standard set generalizes the notion of (α, γ)-regularity that is used here.

Hence any (α, γ)- regular set is also standard in the sense of Theorem 2.

Proof of (2). It is a direct consequence of Theorem 2.

Proof of (3). Application of Theorem 2. In order to do so, we will cut [0, 1]d following

g−1({0}) and glue it on [0, 1]d−1 in the following way. Set

G : [0, 1]d−1 −→ [0, 1]

x 7→




inf{t ∈ [0, 1], g(x, t) = 0} if {t ∈ [0, 1], g(x, t) = 0} 6= ∅,

0 if {t ∈ [0, 1], g(x, t) = 0} = ∅,

and define Γ̃ as the graph of the application x 7→ G(x) − 1. Now let

Ψ : [0, 1]d −→ IRd

(x, y) 7→





(x, y) if g(x, y) ≤ 0,

(x, y − 1) if g(x, y) > 0.
.

We define now Ũ = Ψ([0, 1]d)
⋃
Γ̃ (we have cut the space [0, 1]d following g−1({0}) and

glue together [0, 1]d−1 × {0} and [0, 1]d−1 × {1}, see Figure 6). Now by assumption Ũ

is a compact set and the random variables (Ψ(Xi))i are i.i.d uniformly distributed in

Ũ. The result follows applying Theorem 2. �

Proof of Proposition 5. Let x ∈ [0, p]. Then

P(p−n ≤ x) = P( max
i=1,...,n

(Xi1{Xi≤p}) ≤ x) = P(X11{X1≤p} ≤ x)n

=
(
1− P(X11{X1≤p} > x)

)n
= (1− P(p ≥ X1 > x))

n
= (1− p+ x)n. (7)
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{1}d

{0}d

x6

x1

x5

x2

x8

x4

x7

x3

Γ

{0}d

Γ

Ψ(x8)

Ψ(x4)

Ψ(x7)

Ψ(x3)

Γ̃

Ψ(x2)

Ψ(x5)

Ψ(x1)

Ψ(x6)

Figure 6: Illustration of the cut given in proof of Proposition 4. Left: Illustration
of [0, 1]d after some simulations. Right: Representation of Ũ delimited by the set in
gray, Γ and Γ̃. Ψ(xi) = xi for i ∈ {3, 4, 7, 8}.

Then for all x ∈ [0, 1],

P(p−n ≤ x) =





0 if x < 0,

(1 − p+ x)n if 0 ≤ x ≤ p,

1 if x > p.

(8)

Let x > 0 and n be large enough such that x ∈ [0, np], then

P(n(p− p−n ) < x) = 1− (1− x/n)n −−−−−→
n→+∞

(1− e−x),
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hence n(p− p−n )
L−−−−−→

n→+∞
Exp(1). From (8), it comes:

E[p−n ] =
∫ 1

0

P(p−n ≥ x)dx = p− 1

n+ 1
[1− (1 − p)n+1].

Denote p−n (p) a random variable such that for all x ∈ [0, 1],

P(p−n (p) ≤ x) =





0 if x < 0,

(1− p+ x)n if 0 ≤ x ≤ p,

1 if x > p.

.

Then, p+n have the same distribution as 1− p−n (1− p). For all x ∈ [0, 1], one has

P(p+n > x) = P(p−n (1− p) ≤ 1− x) =





1 if x < p

(1 + p− x)n if p < x ≤ 1

0 if x > 1.

,

and

E[p+n ] = E[1 − p−n (1 − p)] = p+
1

n+ 1
[1− pn+1].

It can be deduced that for all n,

E[p+n − p−n ] =
2

n+ 1
− 1

n+ 1

(
pn+1 + (1− p)n+1

)
.

�

Proof of Proposition 6. Fn will denote the natural filtration o One has p−n+1 +

p+n−1 = (p+n −p−n )ξn+1+Xn+1+p−n . Since for all k ≥ 1, Xk is uniformly distributed on

[p−k−1, p
−
k−1] if Fn denotes the natural filtration associated to this sequence, it comes
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that

E[p−n+1 + p+n+1|Fn] = (p+n − p−n )E[ξn+1|Fn] + E[Xn+1|Fn] + p−n ,

= p+ E[Xn+1|Fn] = p+ (p−n + p+n )/2,

the last equality holds since E[Xn+1|Fn] = (p−n + p+n )/2. By recursion, it can be

deduced that

E[Xn+1] =
1

2
E[p−n + p+n ] =

1

2
(p+ E[Xn]) =

p

2
+

p

22
+

E[Xn−1]

22
,

= p

(
1− 1

2n

)
+

1

2n+1
.

Since Xn+1 ∈ [0, 1], it comes that Var[Xn+1] ≤ E[X2
n+1] ≤ E[Xn+1] = p(1− 1

2n )+
1

2n+1 .

Besides

E[p+n+1 − p−n+1|Fn] = (p+n + p−n )E[ξn+1|Fn]− 2E[Xn+1ξn+1|Fn] + E[Xn+1|Fn]− p−n ,

=
(p+n + p−n )(p− p−n )

p+n − p−n
− p2 − (p−n )

2

p+n − p−n
+

p+n + p−n
2

− p−n ,

=
p+n − p−n

2
+

(p+n − p)(p− p−n )

p+n − p−n
. (9)

Since E[p+n+1 − p−n+1] ≥ 1
2E[p

+
n − p−n ], it comes by recursion that

E[p+n+1 − p−n+1] ≥
1

2n+1
.

Since (p+n − p)(p− p−n ) is lower than (p+n − p−n )
2/4, it can be deduced from (9) that

E[p+n+1 − p−n+1|Fn] ≤
3

4
(p+n − p−n ).

By recursion, it comes that E[p+n − p−n ] ≤
(
3
4

)n
. �

Proof of Corollary 2. Let p = 0, then E[p+n+1|Fn] = E[Xn+1|Fn]. Since Xn+1 ∼
U([0, p+n ]), it comes that

E[p+n+1|Fn] = p+n /2,
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by recursion E[p+n ] = 2−n. For p = 1, using Xn+1 ∼ U([p−n , 1]) proves the result. �

The proof of Proposition 7 relies on the following Lemma that gives the value of the

probability density function of a sum of independent beta distributed random variables.

Lemma 2. Denote fd the probability density function (pdf) of
∑d

i=1 Bi, supported over

[0, d], where the Bi are iid random variables following the Beta(1/q, 1) distribution.

Then for all x ∈ [0, 1]

fd(x) = Cd,qx
d/q−1 (10)

with C1,q = 1 and for d ≥ 2, Cd,q =
1
qd

d−1∏

i=1

B(i/q, 1/q).

Proof of Lemma 2. We proceed by induction. For d = 1, the density given by (10)

is the density of Beta(1/q, 1) distribution, that is

f1(x) =
1

q
x1/q−1

1{0≤x≤1}.

Assume there exists k ∈ IN∗ such that for all 1 ≤ j ≤ k, fj is the density of
∑j

i=1 Bi

(only for x ∈ [0, 1]). Denote f ⋆ g the convolution of functions f and g. Then, for

x ∈ [0, 1],

fk+1(x) = (fk ⋆ f1)(x) =

∫ x

0

fk(t)f1(x− t)dt,

=

∫ x

0

1

qk

[
k−1∏

i=1

B(i/q, 1/q)

]
tk/q−1 1

q
(x − t)1/q−1dt,

=
1

qk+1

k−1∏

i=1

B(i/q, 1/q)

∫ x

0

x1/q−1tk/q−1(1 − t/x)1/q−1dt,

= Ck+1,qx
(k+1)/q−1

which proves the validity of (10). �
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Proof of Proposition 7. Set Xi = (X1
i , . . . , X

j
i ). Since U−

n ⊂ U−, one has

dH,q(U
−
n ,U

−) = max( sup
y∈U−

n

inf
x∈U−

‖x− y‖q; sup
x∈U−

inf
y∈U−

n

‖x− y‖q),

= sup
x∈U−

inf
y∈U−

n

‖x− y‖q = inf
y∈U−

n

‖{1}d − y‖q,

= inf
y∈{X1,...,Xn}

‖{1}d − y‖q.

(1). Assume 0 < q < ∞. For t ∈ [0, d1/q], using the fact that if X is uniformly

distributed on [0, 1] so is 1−X we have

P(dH,q(U
−
n ,U

−) ≤ t) = 1−


1− P




d∑

j=1

(Xj
1)

q ≤ tq






n

.

Let (αn)n≥1 be a sequence of real numbers such that αn → +∞ as n→ +∞. Hence,

P(αndH,q(U
−
n ,U

−) ≤ t) = 1−
(
1− P

(
d∑

i=1

Bi ≤
tq

αq
n

))n

(11)

where each Bi = Xq
i

L∼ Beta(1/q, 1). From Lemma 2, for u ∈ [0, 1],

P

(
d∑

i=1

Bi ≤ u

)
=

∫ u

0

Cd,qx
d/q−1dx =

q

d
Cd,qu

d/q,

where Cd,q =
1
qd

d−1∏

i=1

B(i/q, 1/q). Therefore, for n large enough

P(αndH,q(U
−
n ,U

−) ≤ t) = 1−
(
1− q

d
Cd,q

td

αd
n

)n

.

Denoting A1,q = 1 and for d ≥ 2, Ad,q = 1
dqd−1

d−1∏

i=1

B(i/q, 1/q), and choosing αn =

(nAd,q)
1/d

it comes

P
(
(Ad,qn)

1/ddH,q(U
−
n ,U

−) ≤ t
)
−→

n→+∞
1− e−td .
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(2). Assume now q = ∞. Let (βn)n≥1 be a sequence of real numbers such that

βn → +∞ as n→ +∞. Then for all t ∈]0, 1[

P(βnd
∞
H (U−

n ,U
−) > t) = (1− P(‖X1‖∞ ≤ t/βn))

n =

(
1− P( max

j=1,...,d
Xj

1 ≤ t/βn)

)n

,

=
(
1− td/βd

n

)n
,

choosing βn = n1/d, it comes P(n1/dd∞H (U−
n ,U

−) > t) −→
n→+∞

e−td , and

n1/dd∞H (U−
n ,U

−)
L−−−−−→

n→+∞
W(1, d).

�

Proof of Proposition 8. Let (Xn)n≥1 be a sequence of iid random variables uni-

formly distributed on [0, 1]d. Let U = (U1, . . . , Ud) be uniformly distributed on [0, 1]d

and independent of the sample (Xn)n≥1, then

E[µ([0, 1]d\U−
n )] = E[E[1U∈Un

|U]],

= E[E[1U�X1,...,U�Xn
|U]],= E[E[1U�X1

|U] · · ·E[1U�Xn
|U]],

= E[E[1U�X1
|U]n] = E[

(
1− (1 − U1) · · · (1− Ud)

)n
],

= E[
(
1− U1 · · ·Ud

)n
]. (12)

Using the fact that − log(U i)
L∼ Exp(1), it is easy to see that

∏d
i=1 U

i L
= exp(−Gd),

where Gd ∼ Gamma(d, 1) with density function

f(x) =
xd−1e−x

(d− 1)!
.

We then easily get that the density function of
∏d

i=1 U
i is given by

fd(x) =
(− log(x))d−1

(d− 1)!
1{x∈[0,1]}. (13)
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From (12) and (13), it comes

E[µ([0, 1]d\Un)] = E[
(
1− U1 · · ·Ud

)n
] =

∫ 1

0

(1− u)n
(− log(u))d−1

(d− 1)!
du.

One has

n(d− 1)!

log(n)d−1
E[µ([0, 1]d\Un)] =

n

log(n)d−1

∫ 1

0

(1− u)n(− log(u))d−1du,

and the substitution u = x/n gives

n

log(n)d−1

∫ 1

0

(1− u)n(− log(u))d−1du =
1

log(n)d−1

∫ +∞

0

(1 − x/n)n(− log(x/n))d−1
1{x≤n}dx,

=

∫ +∞

0

(1− x/n)n(1− log(x)/ log(n))d−1
1{x≤n}dx,

−→
n→+∞

1.

The last equation holds by the dominated convergence theorem apply to fn(x) =

(1− x/n)n(1 − log(x)/ log(n))d−1
1{0≤x≤n} ≤ exp (−x)1{x≥0}.

Proof of Proposition 9. Let u ∈ Γ and v ∈ [0, 1]d such that u ≺ v. Assume v ∈ Γ.

There exist ε > 0 such that B((u + v)/2, ε) ⊂ Γ. That implies µ(Γ) > 0, which is

impossible by Assumption 2. Then v /∈ Γ. �

Proof of Theorem 1. (1). Obvious since hX(u) ≤ hX(v) for all X ∈ Ξ+
n and for

all u,v ∈ [0, 1]d such that u � v.

(2), (3). By construction U−
n ⊂ Fn ⊂ [0, 1]d\U+

n .

(4). Since U− is regular (by convexity) and U+ is regular (by Lemma 3 below), the

result is a consequence of Equation (2).

Lemma 3. Let K be a compact, convex subset of [0, 1]d such that for all y ∈ K there

is no x ∈ Kc = [0, 1]d\K such that x � y. Then Kc is (α, γ)-regular.

Proof of Lemma 3. Since K is a compact convex set, there exists α, γ > 0 such

that K is (α, γ)-regular [1]. Given x ∈ Kc, since K is closed convex the projection of



34 N. Bousquet et al.

x on K, denoted PK(x), is unique. Let 0 ≤ ε ≤ γ and x ∈ Kc, then

µ(B(x, ε) ∩Kc) ≥ µ(B(PK(x), ε) ∩Kc),

≥ µ(B(PK(x), ε) ∩K), since K is convex

≥ αµ(B(PK (x), ε)), since K is (α, γ)-regular

≥ αµ(B(x, ε)),

then Kc is (α, γ)-regular. �

Proof of Corollary 3. Since g is differentiable at p, the Delta method and Propo-

sition 5 imply that

n(g(p)− g(p−n ))
L−−−−−→

n→+∞
Exp(1/g′(p)),

n(g(p+n )− g(q))
L−−−−−→

n→+∞
Exp(1/g′(p)).

Since qp is the p-order quantile of g(X), it comes that P(g(X) ≤ qp) = p. Since g is

continuous and strictly increasing, then

P(g(X) ≤ qp) = P(X ≤ g−1(qp)).

Moreover X ∼ U([0, 1]), then P(X ≤ g−1(qp)) = g−1(qp) = p. It can be deduced that

qp = g(p). Then, the two last equations becomes

n(qp − g(p−n ))
L−−−−−→

n→+∞
Exp(1/g′(p)),

n(g(p+n )− qp)
L−−−−−→

n→+∞
Exp(1/g′(p)).

�
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Appendix A. Computing hypervolumes (deterministic bounds)

The computation of bounds (p−n , p
+
n ) defining in (1) can be conducted exactly or

using simulation, in function of the dimension.

A.1. An exact method in dimension d = 2

Consider a design x1, . . . ,xn ∈ [0, 1]2. The first stage is to order the element

according to their first (or second) coordinate, such that x1
1 < · · · < x1

n. Since no

design element is dominated by another one, then x2
i > x2

i+1 for i ∈ {1, . . . , n − 1}.
The point x1 delimit a first rectangle P1 with the following vertices:




0 0

x1
1 0

0 x2
1

x1
1 x2

1




,

such that µ(P1) = x1
1x

2
1. For all i ∈ {2, . . . , n} a new rectangle Pi can be defined with

the following vertices:




x1
i−1 0

x1
i−1 x2

i

x1
i 0

x1
i x2

i




,

such that µ(Pi) = (x1
i − x1

i−1)x
2
i . The second stage consist to compute the volume of

each rectangles:

p−n = x1
1x

2
1 +

n∑

i=2

(x1
i − x1

i−1)x
2
i .
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To compute p+n it is enough to transform each xi into 1− xi, to compute p̃+n with the

previous approach. Then p+n = 1− p̃+n .

A.2. An accelerated Monte Carlo method in upper dimensions

A sweepline algorithm described in [6] allows to compute the bounds in any di-

mension, but at an exponential cost. An alternative approach is using a Monte Carlo

method. Considering an iid uniform sample ŪN = U1, . . . ,UN over [0, 1]d, (p−n , p
+
n )

can be estimated by

p̂−n =
1

N

N∑

i=1

1{Ui∈U−

n },

p̂+n = 1− 1

N

N∑

i=1

1{Ui∈U+
n}.

The computation can be strongly accelerated by adapting the order of evaluation to

the monotonic context, using the following algorithm (easily adaptable to estimating

p+n ).

Algorithm 1 Estimation of p−n by accelerated Monte Carlo

p̃−n ← 0, V = Ūn, Ū−
N = Ūn ∩ U−

n

for i : 1 to Card(Ū−
N ) do

u ∈ argmax
x∈Ū

−

N

d∏

j=1

xj

Ξ−
n ← Ξ−

n \u
p̃−n ← p̃−n + Card({U ∈ V : U � u})
V← V\{U ∈ V : U � u}

end for
return p̃−n /N

Appendix B. Adapted Support Vector Machines

B.1. Usual situations: a reminder

B.1.1. Linear situation. Consider a situation where some available dataDn = (Xi, yi)1≤i≤n

where Xi ∈ [0, 1]d and yi = sign(h(Xi)), with sign(x) = 1 if x > 0 and −1 otherwise,
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can be perfectly separated according to y by an hyperplane h defined by

h(x) = β0 + βTx, (14)

with (β0,β) ∈ IR×IRd. In this linear framework, an infinity of hyperplanes can separate

perfectly the data. Therefore it is needed to add some constraints to make a unique

(optimal) choice of hyperplane. Define the distance of x from Γ :

∆(x,Γ) = inf
y∈Γ
‖x− y‖ = |β0 + βTx|/‖β‖,

from (14). The chosen hyperplane is the solution of the following problem:





max
β0,β

mβ0,β

min
i=1,...,n

|β0 + β
TXi|

‖β‖ ≥ m.

(15)

After the substitution w = β
m‖β‖ and w0 = β0

m‖β‖ [19], the problem (15) becomes:





min
w0,w

1

2
‖w‖2

for i = 1, . . . , n yi(w0 +wTXi) ≥ 1.

(16)

A number d+ 1 of parameters associated to n linear constraints has to be estimated.

Since the problem (16) is quadratic with linear constraints, a unique solution can be

found. The dual form of the problem is given by the following optimisation problem





max
a

n∑

i=1

ai −
1

2

n∑

i,j=1

aiajyiyjx
T
i xj

n∑

i=1

aiyi = 0

a � 0.

(17)
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where a = (a1, . . . , an) is a Lagrange multiplier. Let a = (a1, . . . , an) be the solution

of problem (17). The computer model g can be estimated by

ĝn(x) = w0 +

n∑

i=1

aiyiX
T
i x. (18)

Table 3 suggest to solve the primal problem if d ≤ n, and the dual problem in the

other case.

primal dual
Number of parameters d+ 1 n
Number of constraints n n+ 1

Table 3: Numbers of constraints and dimension of parameters to be estimated for the
primal and dual problems in the usual SVM framework.

B.1.2. Nonlinear situation. Assume now that Dn cannot be separated by a hyperplane

but by a nonlinear surface. Let K be a symmetrical positive definite kernel. From

Mercer’s theorem there exists a transformation h : [0, 1]d → H where H is an Hilbert

space with the inner product

〈h(x), h(y)〉H = K(x,y). (19)

such that the data can be linearly separated. Then g can be written as

g(x) = β0 + βTh(x),

and using (18) and (19), it can be estimated by:

ĝn(x) = w0 +
n∑

i=1

aiyiK(Xi,x).



On the convergence of random sets and measures in monotonic Monte Carlo frameworks 41

The optimization problem (17) becomes





max
a

n∑

i=1

ai −
1

2

n∑

i,j=1

aiajyiyjK(Xi,xj)

n∑

i=1

aiyi = 0

a � 0

or





min
a

1
2a

T K̂a− dTa

Aa
∗
≥ c,

where the symbol
∗
≥ means that the first constraint is an equality constraint and the

other are inequalities constraints, and

A =


y1 · · · yn

In


 , c =




0
...

0


 ∈ Rn+1, d =




1
...

1


 ∈ Rn

and K̂i,j=1,...,n = yiyjK(Xi,Xj), with In the identity matrix.

B.2. Monotonic SVM

Let g be defined by (14) and assume now that g is globally increasing. Let x =

(x1, . . . , xd) ∈ [0, 1]d and xi = (x1, . . . , xi−1, xi + η, xi+1, . . . , xd) with η > 0, then

x � xi and g(x) ≤ g(xi). It comes that

g
(
xi
)
− g(x) ≥ 0⇒ βi ≥ 0,
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for all i = 1, . . . , d. The problem (16) becomes:





min
w0,w

1

2
‖w‖2

for i = 1, . . . , n yi(w0 +wTXi) ≥ 1

for i = 1, . . . , d wi ≥ 0

. (20)

The associated LagrangianM(w, w0, a,b) can be written as

M(w, w0, a,b) =
1

2
‖w‖2 −

n∑

i=1

ai[yi(w0 +wTXi)− 1]− bTw,

where a and b are the Lagrangian multipliers. The dual problem becomes





max
a,b

n∑

i=1

ai −
1

2

n∑

i,j=1

aiajyiyjX
T
i Xj − bT

n∑

i=1

aiyiXi −
1

2
‖b‖2

n∑

i=1

aiyi = 0

a � 0

b � 0.

.

Table 4 shows there is always less constraints and parameters to estimate in the primal

problem than in the dual problem. In practice, it is more interesting to solve the primal

problem.

primal dual
Number of parameters d+ 1 d+ n
Number of constraints d+ n d+ n+ 1

Table 4: Numbers of constraints and dimension of parameters to be estimated for the
primal and dual problems in the monotonic SVM framework.

The problem (20) can then be rewritten.





min
w0,w

1

2
‖w‖2

AW ≥ c
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where

A =


A1,1

A2,1


 , W =


w

w0


 , c =


1n

0d


 ∈ Rn+d,

with

A1,1 =




y1X
T
1 y1

...
...

ynX
T
n yn


 ∈ Mn×(d+1)(IR), A2,1 =

(
Id 0d

)
∈Md×(d+1)(IR),

and Id the identity matrix in IRd, 1T
n = (1, . . . , 1) ∈ IRn and 0T

d = (0, . . . , 0) ∈ IRd.


