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This article investigates the theoretical convergence properties of the estimators produced by a numerical exploration of a monotonic function with multivariate random inputs in a structural reliability framework. The quantity to be estimated is a probability typically associated to an undesirable (unsafe) event and the function is usually implemented as a computer model. The estimators produced by a Monte Carlo numerical design are two subsets of inputs leading to safe and unsafe situations, the measures of which can be traduced as deterministic bounds for the probability. Several situations are considered, when the design is independent, identically distributed or not, or sequential. As a major consequence, a consistent estimator of the (limit state) surface separating the subsets under isotonicity and regularity arguments can be built, and its convergence speed can be exhibited. This estimator is built by aggregating semi-supervized binary classifiers chosen as constrained Support Vector Machines. Numerical experiments conducted on toy examples highlight that they work faster than recently developed monotonic neural networks with comparable predictable power. They are therefore more adapted when the computational time is a key issue.

Introduction

Due to the increasingly powerful computational tools, so-called computer models g are developed to mimic complex processes (e.g., technical, biological, socio-economical, etc. [START_REF] Casti | Would-be worlds: How simulation is changing the frontiers of science[END_REF][START_REF] De Marchi | Computational and Mathematical Modeling in the Social Sciences[END_REF]). The exploration of multivariate deterministic black-box functions x → g(x) by numerical designs of experiments has become, over the last years, a major theme of research in the interacting fields of engineering, numerical analysis, probability and statistics [START_REF] Smith | Uncertainty Quantification: Theory, Implementation, and Applications[END_REF]. Numerical investigations based on Monte Carlo variance reduction techniques [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF] are often needed since, on the one hand, the complexity of g restricts the use of intrusive explorations, and in the other hand each run of the computer model can be very costly. A number of studies have for common aim to delimit the set of input situations x dominated by a limit state surface Γ defined by the equation g(x) = 0, where the dominance rule is defined by a partial order. In multi-objective optimization frameworks, where g is assimilated to a decision rule, Γ can be viewed as a Pareto frontier delimiting a performance space [START_REF] Figueira | Multiple criteria decision analysis -State of the art -Survey[END_REF]. In structural reliability it is often wanted to assess the measure of the set U -= {x; g(x) ≤ 0}, which can be interpreted as the probability p of an undesirable event when the input vector x is randomized [START_REF] Lemaire | Structural reliability[END_REF].

The Pareto dominance between the inputs x is the natural partial order needed to formalize an assumption of monotonicity placed on g. This hypothesis corresponds to a technical reality in numerous situations encountered in engineering [START_REF] De Rocquigny | Structural reliability under monotony: A review of properties of FORM and associated simulation methods and a new class of monotonous reliability methods (MRM)[END_REF] or decisionmaking [START_REF] Blaszczynski | Inductive discovery of laws using monotonic rules[END_REF], or a conservative approximation to reality in reliability studies. Therefore the exploration of monotonic time-consuming computer models by numerical means has been investigated by a growing number of researchers [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF][START_REF] Da Veiga | Gaussian process modelling with inequality constraints[END_REF][START_REF] Golchi | Monotone Function Estimation for Computer Experiments[END_REF]. The most immediate benefit of monotonicity is surrounding the isotonic limit state surface Γ by two Paretodominated sets delimited by the elements of the numerical design, the measures of which defining deterministic bounds for the probability p [START_REF] De Rocquigny | Structural reliability under monotony: A review of properties of FORM and associated simulation methods and a new class of monotonous reliability methods (MRM)[END_REF]. Recent works focused on the estimation of these bounds and the computation of statistical estimators of p based on Monte Carlo numerical designs [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF].

While random designs appear as powerful tools for surrounding Γ and building estimators of p, the stochastic behavior of the associated random sets and their measures has not been investigated yet. The aim of this paper is to fill in this gap by establishing first convergence results for these objects from random set theory. A corollary of these results, under a convexity argument, is the consistency of an estimator of Γ built from the hull of the numerical design, accompanied with its convergence rate. Such an estimator is proposed by a combination of Support Vector Machines (SVM), which appears as a faster alternative in large dimensions to neural networks specifically developed for isotonic situations [START_REF] Velikova | Solving Partially Monotone Problems with Neural Network[END_REF], while both techniques are usual in structural reliability frameworks [START_REF] Hurtado | An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[END_REF]. This article is organized as follows. Section 2 details the main concepts and notations. The convergence of a dominated set is examined in Section 3. First we study conditions leading to convergence. Then, under some regularity assumption on the limit state, a rate of convergence for an estimator of Γ is provided in term of Hausdorff distance. Lastly, more precise results are given for two particular cases. Taking into account monotonicity properties, Section 4 focuses on a sequential sampling strategy.

A non naive acceptance-rejection method to simulate in the so-called non-dominated set is provided . Then the convergence rates of bounds is compared numerically with a standard Monte Carlo and a sequential sampling. These theoretical results are derived in Section 5 to build a consistent semi-adaptive SVM-based classifier of the limit state surface Γ respecting isotonic and convexity constraints. Numerical experiments conducted in Section 5.2 complete this analysis by comparing the properties of the classifier with the recently developed monotonic neural networks. The proofs of the new technical results are postponed to Section 7.

Framework

Let consider as in [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF] the space U = [0, 1] d . Let X be a random vector uniformly distributed on U and g be a measurable application from U to IR. The function g discriminates two sets of input situations, leading to undesirable and safe events, respectively. These classes are denoted U -= {x ∈ [0, 1] d : g(x) ≤ 0} and U + = {x ∈ [0, 1] d : g(x) > 0}, with [0, 1] d = U -∪ U + . Hence the probability p that an undesirable event may occur is p = P(g(X) ≤ 0) = P(X ∈ U -).

Estimating p by a minimum number of calls to g is a prominent subject of interest in engineering. This number can be drastically diminished when g is assumed to be monotonous. Characterizing the monotonicity of g requires to use the Pareto dominance between two elements of IR d , recalled in next definition.

Definition 1. Let u = (u 1 , . . . , u d ) and v = (v 1 , . . . , v d ) ∈ IR d . We say that u is (resp. strictly) dominated by v, denoting u v (resp. u ≺ v), if for all i = 1, . . . , d, u i ≤ v i (resp. u i < v i ). Assumption 1. Let g : U ⊂ IR d → IR. It is assumed that g is globally increasing, i.e.
for all u, v ∈ U such that u v, then g(u) ≤ g(v).

Remark 1. Obviously as pointed in [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF], any monotonic function can be reparametrized to be increasing with respect to all its inputs. This property has for consequence to simplify the exploration of U -and U + and provide deterministic bounds on p. Let x ∈ U -(resp. U + ) and y ∈ U. Since g is increasing, if y x (resp. y x) then y ∈ U -(resp. U + ). More generally, consider a set A of elements on [0, 1] d (for instance a design of numerical experiments) and define

U -(A) = x∈A∩U - {u ∈ [0, 1] d : u x}, U + (A) = x∈A∩U + {u ∈ [0, 1] d : u x}.
Then the monotonicity property implies the following result, since

U -(A) ⊂ U -⊂ [0, 1] d \U + (A).
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x8 x4 x2 x5 x7 x1 x3 x6 {1} d {0} d Γ U + U - Figure 1: Illustration for d = 2 of the designs U -(x 1 , x 2 , x 5 , x 6 ) and U + (x 3 , x 4 , x 7 , x 8 ). Proposition 1. Denote µ the Lebesgue measure on U. For any countable set A, µ(U -(A)) ≤ p ≤ 1 -µ(U + (A)).
Remark 2. In general, the set A will be {X 1 , . . . , X n }, the sets U -(A) and U + (A) would then be random sets and the inequality becomes an almost sure inequality.

The non-dominated subset

U(A) = [0, 1] d \(U -(A) ∪ U + (A)) contains necessarily Γ and
is the only subset of [0, 1] d for which a deeper numerical exploration is needed in view of estimating Γ and p. Formally

Γ = U -\ Ů-∩ U + \ Ů+
where E and E are respectively the closure and the interior of a set E. Next (mild) assumption is required to view the problem of estimating Γ as a binary classification problem with perfectly separable classes, and is needed to study the convergence of the dominated sets to U -and U + when the number of elements of the design increases. A two-dimensional illustration is provided on Figure 1.

Assumption 2. Assume that µ(Γ) = 0 and Γ is simply connex.

In the remainder of the article, a design of numerical experiments {X i , g(X i )} i=1,...,n is considered. To alleviate the notations denote for all n ≥ 1,

U - n = U -{X 1 , . . . , X n } , U + n = U + {X 1 , . . . , X n } ,
and the non-dominated set

U n = [0, 1] d \(U - n ∪ U + n ).
The Lebesgue measures (or hypervolumes) of sets (U - n , U + n ) are then denoted p - n and 1p + n , such that, from Proposition 1, we have with probability one

p - n ≤ p ≤ p + n . (1) 
These two bounds can be computed using a sweepline algorithm described in [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF] at an exponential cost. A faster approximation method is provided in Section 4.

Two situations are further investigated from the point of view of the convergence of dominated sets and bounds. First, the design is chosen static in [0, 1] d (usual Monte Carlo sampling). Then a sequential Monte Carlo approach is explored, assuming U 0 = [0, 1] d and X i being sampled within the current non-dominated set U i-1 for all i > 0. The convergence of the sets U - n and U + n will be studying via the Hausdorff distance defined as follows.

Definition 2. Let • q be the L q norm on IR d , that is for 0 < q < +∞, x q = ( d i=1 |x i | q ) 1/q , and for q = +∞, x ∞ = max i=1,...,d i=1,...,d

x i . Let (A, B) be two nonempty subsets of the normed vector space ([0, 1] d , • q ). The Hausdorff distance d H,q is defined by

d H,q (A, B) = max(sup y∈A inf x∈B x -y q ; sup x∈B inf y∈A x -y q ).
It is always finite since (A, B) ⊂ [0, 1] d 2 are bounded. The usual form of the Hausdorff distance is defined for q = 2. To alleviate notations, it is now denoted d H (., .) = d H,2 (., .) and . = . 2 .

Convergence results

Almost sure convergence for general sample strategy

The sequences (p - n ) n and (p + n ) n are respectively increasing bounded from above and decreasing bounded from below. Hence, there exists two random variables p - ∞ and p + ∞ such that almost surely p

- n -→ p - ∞ , p + n -→p + ∞ and p - ∞ ≤ p ≤ p + ∞ .
In this section we provide general conditions on the design of experiments that ensures that 

p - ∞ = p + ∞ = p. Proposition 2. [Independant Sampling] Let (X k ) k≥1 be a sequence of independent random vectors on [0, 1] d . If there exists ε 1 > 0 such that for all x ∈ Γ ε1 = {u ∈ [0, 1] d , d(u, Γ) < ε 1 } there exists ε 2 > 0 such that n≥1 P(X n ∈ B(x, ε 2 )) = +∞, then (p - n , p + n ) a.
T n+1 = min{j > T n , Y j ∈ U Tn }.
Let (X n ) n≥1 be the sequence of random variables defined for all n ≥ 1 by X n = Y Tn .

Then, conditionally to X 1 , . . . , X n-1 , X n ∼ U(U Tn-1 ), and (p - n , p + n )

a.s.

→ (p, p), where

(p - n , p + n ) are obtained from the sequence (X n ) n≥1 .
It is now natural to quantify the rate of convergence. While it seems difficult to provide an explicit rate in the general case. We will then provide some explicit rate in particular cases.

Rate of convergence under some regularity assumptions

In this section convergence in Haussdorf distance sense of (U - n ) n towards U -is proven, and under regularity assumption for the set U -a rate of convergence is provided. The regularity considered here is the (α, γ)-regularity introduced in [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. Definition 3. A set K is said (α, γ)-regular if there exist α, γ > 0 such that for all 0 < ε ≤ γ and for all x ∈ K one has

µ(B(x, ε) ∩ K) ≥ αµ(B(x, ε))
where B(x, r) is the open ball with center x and radius r.

This notion was introduced in [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF] to prove minimax rates in classification problems. It has also been considered in [START_REF] Cuevas | A plug-in approach to support estimation[END_REF][START_REF] Rodríguez Casal | Set estimation under convexity type assumptions[END_REF] in order to state convergence rate when estimating sets. In particular Proposition 4 below can be seen as an application of Theorem 2 in [START_REF] Rodríguez Casal | Set estimation under convexity type assumptions[END_REF].

Roughly speaking, this condition excludes pathological sets U -, as those having infinitely many sharper and sharper peaks or presenting a jagged border Γ. For instance, it is indirectly proved in [START_REF] Dümbgen | Rates of convergence for random approximations of convex sets[END_REF] that if U -is convex and has non-empty interior then it is regular. In a structural reliability framework this condition is conservative since it traduces the hypothesis that any combination of inputs located between two situations leading to an undesirable event leads also to such an event. Described in [34], so-called r-convex sets that generalize the notion of convexity are also regular [START_REF] Rodríguez Casal | Set estimation under convexity type assumptions[END_REF].

It is traduced in U -by the assumption (or "rolling condition", cf. [34]) that for each boundary point x ∈ Γ, there exists y ∈ U -such that x ∈ B(y, r). In practice the assumption of r-convexity appears mild, as small values of r can produce a large variety of limit state surfaces presenting irregularities [START_REF] Rodríguez Casal | Set estimation under convexity type assumptions[END_REF]. Proposition 4. Let (X k ) k≥1 be a sequence of iid random variables uniformly distributed on [0, 1] d and ( Xk ) k≥1 be a sequence of iid random variables uniformly dis-

tributed on U -. Denote Ũ- n = U -( X1 , . . . , Xn ). Let (F n ) n≥1 be a sequence of measur- able subsets of [0, 1] d such that for all n ≥ 1, U - n ⊂ F n ⊂ [0, 1] d \U + n . Then (1) d H (F n , U -) a.s.
-→ n→+∞ 0 and µ(F n ) a.s.

-→ n→+∞ p.

(2) If U -is regular, then almost surely

d H ( Ũ- n , U -) = O (log n/n) 1/d .
(3) Furthermore, if U + is also regular, and if g is continuous, then almost surely

d H (F n , U -) = O (log n/n) 1/d . (2) 
Remark 3. Note, that if in (2), we replace ( Ũn ) by (U - n ), the a.s. bound becomes O (log N 1 /N 1 )

1/d , where N 1 is the number of points X i such that g (X i )) < 0 and follows the binomial distribution with parameter n and p. Moreover the continuity assumption in (3) can be weakened, it is enough (see the proof) that one can cut [0, 1] d following g -1 ({0}) and glue it.

Convergence results in dimension 1

In dimension 1, we provide a complete description of the rate of convergence, in particular we prove that n(pp - n ) and n(p + np) are asymptotically exponentially distributed.

Proposition 5. Let (X n ) n≥1 be an iid sequence of random variables uniformly dis-

tributed on [0, 1] and p ∈ [0, 1]. Define p - n = max i=1,...,n (X i • 1 {Xi≤p} ) and p + n = 1 {maxi=1,...,n(Xi)≤p} + min i=1,...,n (X i • 1 {Xi>p} ). Then n(p -p - n ) L -----→ n→+∞ Exp(1), n(p + n -p) L -----→ n→+∞ Exp(1), E[p + n -p - n ] = 2 n + 1 - 1 n + 1 p n+1 + (1 -p) n+1 , (3) 
where Exp(λ) is the exponential distribution with density

f λ (x) = λ exp(-λx)1 {x≥0} .
The cost of adopting a naive sequential strategy to decrease the volume of the nondominated set, by sampling a new design element within [0, 1] d , can be appreciated by coming back to the unidimensional case (d = 1). In this framework, denote

W n = min{j ≥ 1 : X n+j ∈]p - n , p + n [} where (X n+j ) j≥1
is an iid sequence of random variables uniformly sampled on [0, 1]. For all r ≥ 1, one has

P(W n = r) = P(X n+1 / ∈]p - n , p + n [, . . . , X n+r-1 / ∈]p - n , p + n [, X n+r ∈]p - n , p + n [), = E[P(X n+1 / ∈]p - n , p + n [, . . . , X n+r-1 / ∈]p - n , p + n [, X n+r ∈]p - n , p + n [|X 1 , . . . , X n )], = E[(1 -(p + n -p - n )) r-1 (p + n -p - n )].
From linearity of the expectation and Jensen inequality, it comes

E[W n ] = E[(p + n -p - n ) -1 ], ≥ E[p + n -p - n ] -1 , ≥ n + 1 2 from (3) (4) 
which is (as expected) a prohibitive cost for large values of n.

More accurate results can be only obtained in some particular case. The following proposition provides a result of the expected Lebesgue measure of the non-dominated set for d = 1.

Proposition 6. Let p - 0 = 0, p + 0 = 1, X 1 ∼ U([p - 0 , p + 0 ]), ξ 1 = 1 {X1≤p} and F 1 = σ{X 1 }. For all n ≥ 1 define conditionally to F n = σ{X k , 1 ≤ k ≤ n}: X n+1 ∼ U([p - n , p + n ]), ξ n+1 = 1 {Xn+1≤p} p - n+1 = p - n + (X n+1 -p - n )ξ n+1 , p + n+1 = p + n -(p + n -X n+1 )(1 -ξ n+1 ).
Then, for n ≥ 1,

1 2 n ≤ E[p + n -p - n ] ≤ 3 4 n . Corollary 2. If p ∈ {0, 1}, E[p + n -p - n ] = 2 -n .
Remark 4. The shrinking convergence rate, which is inversely linear in n in a static Monte Carlo strategy, is significantly improved by becoming exponential when opting for a sequential strategy.

Asymptotic results when Γ = {1} d

Equivalent results are difficult to obtain for greater dimension and for a general limit state Γ. The followings proposition provides asymptotic results in the particulare case

Γ = {1} d . Proposition 7. Assume Γ = {1} d . Let (X k ) k≥1 be a sequence of iid random variables uniformly distributed on [0, 1] d . For 0 < q < +∞ denote A(1, q) = 1 and for d ≥ 2, A d,q = 1 dq d-1 d-1 i=1 B(i/q, 1/q) with B(a, b) = 1 0 t a-1 (1 -t) b-1 dt. For all n ≥ 1, let U - n = U -(X 1 , . . . , X n ).
(1) If 0 < q < +∞ then

(A d,q n) 1/d d H,q U - n , [0, 1] d L -----→ n→+∞ W(1, d).
(

) If q = +∞ then n 1/d d H,∞ U - n , [0, 1] d L -----→ n→+∞ W(1, d), 2 
where W(1, d) is the Weibull distribution with scale parameter 1 and shape parameter d having cumulative density function F (t) = 1e -t d for all t ≥ 0.

Proposition 8. Under the assumptions and notations of Proposition 7 we have

E[µ([0, 1] d \U - n )] ∼ n→+∞ log(n) d-1 n(d -1)! . Remark 5. Denoting C ∞ (K) the convex hull of a set K, the result of Proposition 8
is tantamount to the following result provided in [START_REF] Bárány | Random polytopes, convex bodies, and approximation[END_REF]:

E[µ([0, 1] d \C ∞ ({X 1 , . . . , X n }))] ∼ n→+∞ log(n) d-1 n .
When d = 1, the convergence order obtained in Proposition 5 is retreived.

Sequential sampling

Using a naive methods to simulate in a constrained space can be time consuming.

Indeed, Equation 4gives the expected number of simulation needed to simulate in the non-dominated set in dimension 1. A method to simulate in the non-dominated set is provided in the first part of this section. In a second part, the measure of the non-dominated set is compared in function of the strategies of simulation adopted:

standard Monte Carlo or sequential sampling.

Fast uniform sampling within the non-dominated set

Simulating uniformly on [0, 1] d can be time consuming when the aim is to simulate in the non-dominated set. The strategy provided in this section involves to build a subset of [0, 1] d containing the non-dominated set then to simulate uniformly within this subset. After n calls to g let

x in U + n . From construction, the non-dominated set is in [0, 1] d \U + n (x)
, it remains to simulate uniformly on this subset of [0, 1] d . The choice of x is described further in this section. The proposed method use the following lemma coming from a simple acceptance-rejection method.

Lemma 1. Let A be a measurable subset of [0, 1] d with µ(A) > 0 and such that A = A 1 ∪ • • • ∪ A m with A i ∩ A j = ∅ if i = j. Let (X k ) k≥1 be an iid sequence of random vectors satisfying for all i, P(X k ∈ A i ) = µ(A i )\µ(A). Let C be a measurable subset of A, and T = inf{k ≥ 1, X k ∈ C} then X T is uniformly distributed on C.
The construction involves to split up [0, 1] d in hyperrectangles (see Figure 2) which are defined for all i = 0, . . . , 2 d -1 by

Q i (x) = I 1 i × I 2 i × • • • × I d i ,
with

I j i =      [x j , 1] if b i j = 0, [0, x j ] if b i j = 1, where b i = (b i 1 , . . . , b i d ) is equal to i coded in base 2. Since 0 is coded as 00 • • • 0 in base 2 with d numbers, one deduce that Q 0 (x) = [x 1 , 1] × [x 2 , 1] × • • • × [x d , 1] = U + (x). Let (X k ) k≥1 be an iid sequence of random vectors satisfying for all i = 1, . . . , 2 d -1 P(X ∈ Q i (x)) = µ(Q i (x)) 1 -µ(Q 0 (x)) . ( 5 
) Define T = inf{k ≥ 1, X k ∈ U n }.Applying Lemma 1 with A = Q 1 (x) ∪ • • • ∪ Q 2 d -1 (x)
and C the non-dominated set U n , one deduce that X T is uniformly distributed on the non-dominated set. The point x is chosen in order to maximise the quantity in Equation ( 5). It must be noticed that more p is close to 0 more the points of Ξ + n are close to {0} d then the probability to have a simulation in the non-dominated set increases.

Numerical study

To complete the previous theoretical studies, a brief numerical comparison of convergence rates obtained for some static and sequential strategies is conducted in this paragraph. The impact of design strategies on the mean measure of the non-dominated set U n is examined through two repeated experiments conducted over the following model, defined such that U -= [0, 1] d , p = 1 and Γ = {1} d for various dimensions 1 shows that the gain provided by a sequential sampling strategy decrease as the dimension increase. For d = 10, the remaining volume obtain with the two strategies of simulations are close.

{1} d {0} d x * Q 0 (x * ) Q 1 (x * ) Q 3 (x * ) Q 2 (x * ) Figure 2: Splitting up [0, 1] d from x * in dimension 2. The hyperrectangle Q 0 (x * ) is in U + . d ∈ {1, 2,

Application : estimating Γ using Support Vector Machines (SVM)

The previous sections provide convergence results for different strategies of simulations without the estimation of the limit state Γ. This section provide an estimator of the sign of g under some convexity assumption on U -. The proposed estimator is in fact a classifier based on linear SVMs. It will then be compared on a toy example, with the monotonic neural networks recently developed in [START_REF] Velikova | Solving Partially Monotone Problems with Neural Network[END_REF].

Theoretical study

Dominated sets (U - n , U + n ) surrounding Γ can be improved by sampling within the non-dominated set U n . In view of improving a naive Monte Carlo approach to estimate p, as in [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF], usual techniques like importance sampling or subset simulation should aim at targeting input situations close to Γ [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and Support Vector Machines[END_REF]. Such approaches can be guided by a consistent estimation of Γ, under the form of a supervised binary classification rule calibrated from (U - n , U + n ). This classifier has to agree with the following (isotonic) ordinal property of the limit state surface Γ. Proposition 9. Under Assumption 2 For all u, v ∈ Γ such that u = v, u is not strictly dominated by v.

Respecting this constraint a monotonic neural network classifier was recently proposed in [START_REF] Velikova | Solving Partially Monotone Problems with Neural Network[END_REF] and applied in [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF] to structural reliability frameworks. While consistent, its computational cost remains high or even prohibitive when the size of the design

X 1 , . . . , X n defining (U - n , U + n ) increases.
Benefiting from a clear geometric interpretation, Support Vector Machines (SVM) offer an alternative to neural networks by their robustness to the curse of dimensionality [START_REF] Hurtado | An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[END_REF]. A semi adaptive solution can be build from a combination of SVM when U -is convex. Conversely, it can be easily adapted when U + is a convex set.

Assuming U -is convex, any points x of U + can be separated from U -by a hyperplane h x (u) = α + β T

x u (see [START_REF] Rockafellar | Convex analysis[END_REF] Theorem 11.5) that maximises the minimal distance of h x to x and U -. It is also possible to construct h satisfying the ordinal property on Assumption 1 (see Appendix B for more details).

Given the numerical experiment

D n = (X i , y i ) 1≤i≤n ∈ U × {-1, 1}} where y i = 1 if g(X i ) > 0 and -1 otherwise. Let Ξ + n = {X 1 , . . . , X n } ∩ U + and Ξ - n = {X 1 , .
. . , X n } ∩ U -and for any x ∈ Ξ + n define h x as the hyperplane separating x from Ξ - n . The proposed classifier f n is defined by

f n : [0, 1] d → {-1, +1} y →      -1 if for all X ∈ Ξ + n , h X (y) ≤ 0 +1 otherwise.
Denote

F n = {x ∈ [0, 1] d : f n (x) = -1}
the set of all inputs classified as leading to undesirable events by f n .

Theorem 1. Assume U -is convex, then (1) 
f n is globally increasing.

(2) For all X ∈ {X 1 , . . . , X n }, sign(g(X)) = f n (X).

(3) The set F n is a convex polyhedron.

(4) Furthermore if (X k ) k≥1 is a sequence of independent random vectors uniformly distributed on [0, 1] d , then

d H (F n , U -) a.s. -→ n→+∞ 0,
and almost surely,

d H (F n , U -) = O (log n/n) 1/d .
Updating the classifier given a new design element X n+1 found in U + can be done by a partially (semi) adaptive principle, illustrated on Figure 3 in dimension 2. To get

f n+1 it is enough to build the hyperplane h Xn+1 which separates X n+1 from Ξ - n+1 = Ξ - n (unfortunately, if X n+1 ∈ U -all
hyperplanes must be rebuild, but this occurs rarely with low probability pp - n when the design is sampled uniformly on [0, 1] d ). If X n+1 x for all x ∈ Ξ - n , the support vectors and the hyperplanes will not be modified. ). The dotted lines represents {x : h X (x) = 0} for some X in U + . Left: there is one point in U + then the dashed line is both {x : h X (x) = 0} and the frontier of the classifier. Right: Dotted lines represent the two sets {x : h X (x) = 0} for X represented by the two white points. Dashed line represent the frontier of the classifier.

Numerical experiments

This section examines first the gain of including the constraint of monotonicity in the calibration of SVM (detailed in Appendix B), with respect to usual SVM and the constrained neural networks proposed in [START_REF] Velikova | Solving Partially Monotone Problems with Neural Network[END_REF] when the associated code is globally monotonic.

First, the case of a linear limit state is studied. Next, the comparison will be made on a function which verifies the monotonicity and convexity properties. The rate of good classification obtained with the monotonic classifier and the monotonic neural networks are compared at each step of the algorithm. 5.2.1. Linear case. Investigating the efficiency of the new classifier, let start the numerical experiments with the linear case. The function g is a hyperplane defined by

h(x) = β 0 + β T x,
with positive parameters which are, in dimension d, uniformly distributed on the unit sphere

S + d = {x ∈ IR d + : x = 1}.
Various sample size N are used to examine the rate of good classification when the monotonicity is taking account or not. For each ordered pair (d, N ), a hyperplane is build with parameters uniformly distributed on S + d . Then, 200 data are simulated on the unit sphere to be predicted. The rate of good classification is compared for linear SVM and linear monotonic SVM. That step is repeated 100 times for each hyperplane, and also repeated with 100 differents hyperplane.

The results are summarised by Table 2 where there is respectively a proportion 0.1, 0.2, 0.3, 0.4 and 0.5 among N which are in {x : g(x) ≤ 0}. In general, taking account of the monotonicity provides better results. As expected, more N is great and d is low more the rate of good classification increase for the two methods. Results are comparable for d = 2 but for a fixed N the difference grows when d increase. Finally, the constrained SVM provides significantly better results for small N . 5.2.2. Convex case. In this section section, the classifier given in Theorem 1 is tested on a toy example. Let U = (U 1 . . . , U d ) be uniformly distributed on [0, 1] d , and denote Let q d,p be the p-quantile of Z d and define the function g(U) = Z dq d,p . This quantile can be deduced from Equation ( 13) in Section 7. Indeed, let t ∈ [0, 1], then

Z d = (U 1 U 2 • • • U d ) 2 .
P(Z d ≤ t) = P(U 1 U 2 • • • U d ≤ √ t) = √ t 0 (-log(x)) d-1 (d -1)! dx.
The function g is globally increasing and the set {u ∈ [0, 1] d , g(u) > 0} is convex. It is shown in this example that the semi-adaptive SVM-based classifier is less timeconsuming than the non-adaptive constrained neural networks for different dimensions.

Nonetheless, when the dimension increases the gain of time decrease. 

Discussion

This articles initiates a theoretical counterpart to the increasing developments linked to the exploration of computer models that make use of their geometrical properties.

The original framework is related to structural reliability problems, but the obtained results can be adapted to multi-objective optimisation contexts, characterized by strong constraints of monotonicity. The main results presented here are the consistency and law convergence of the main ingredients (random sets, deterministic bounds, classification tools) used to solve such problems in the common case where the numerical design is generated by a Monte Carlo approach. Therefore such results should be understood as benchmark objectives for more elaborated approaches. For example, use the monotonic estimation of the limit state surface proposed in this article which presents good theoretical and practical properties.

These more elaborated approaches are, obviously, based on sequential sampling within the current non-dominated set. Importance sampling (or more generally variance reduction ) techniques could directly benefit from the current estimation of the limit state surface by the SVM-based tool : the importance distribution must be calibrated to optimize the sampling according to some criterion of volumic reduction.

A first step was done in this direction in [START_REF] Moutoussamy | Comparing conservative estimations of failure probabilities using sequential designs of experiments in monotone frameworks[END_REF]. Such approaches appear more difficult to study theoretically, especially in multidimensional settings. However, a straightforward argument consists in selecting the sequence of importance samplings as a (finite or infinite) subsequence of an infinite nested uniform sampling, such that the consistency properties be kept. The extension of the results presented here to sequential importance sampling, which was already suggested in [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF], is the subject of a future work.

Developing specific techniques for fast sampling in a tortured set U n should also be part of this work.

Numerous other avenues for future research can be highlighted. Especially, monotonicity of computer models can be exploited to get deterministic bounds of output quantiles, instead of probabilities (associated to undesirable events too). Quantiles provided for a limit tail value are typical tools in risk analysis. A preliminary result is given beneath in dimension 1, in corollary of Proposition 5, to introduce this theme of research, which will be investigated in another future work.

Corollary 3. Assume that g is continuous, strictly increasing and differentiable at p. Denote q p = inf q∈I R (P(g(X) ≤ q) = p) the p-order quantile of g(X) and g ′ the derivative of g. Then

n(q p -g(p - n )) L -----→ n→+∞ Exp(1/g ′ (p)), n(g(p + n ) -q p ) L -----→ n→+∞ Exp(1/g ′ (p)). 7. Proofs Proof of Proposition 2. Set U - ∞ = k≥1 U - k , U + ∞ = k≥1 U + k and the non- dominated set U ∞ = [0, 1] d \ (U - ∞ ∪ U + ∞ ). We define p - ∞ = µ(U - ∞ ) and p + ∞ = µ([0, 1] d \U + ∞ )
. By inclusion and closure, the bounded sequences (p - n ) n≥1 and (p + n ) n≥1 are respectively increasing and decreasing, then p - n a.s.

→ p - ∞ and p + n a.s. → p + ∞ . Assume U ∞ is a non-empty open set such that µ(U ∞ ) = p + ∞ -p - ∞ > 0. There exist ε 1 > 0 and x 0 ∈ [0, 1] d such that B(x 0 , ε 1 ) ⊂ U ∞ . (6) 
Hence no element of the sequence (X k ) k≥1 belongs to B(x 0 , ε 1 ). Now, we introduce the events A n = {X n ∈ B(x 0 , ε 1 )}, the are independent by construction and

n≥1 P(A N ) = n≥1 π d/2 ε d Γ(d/2 + 1) = +∞.
We can then apply to Borel-Cantelli's lemma that ensures that P(lim

sup n A n ) = 1.
Therefore it exists almost surely at least one X k ∈ B(x 0 , ε 1 ), which is contradictory with [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF]. Hence µ(U ∞ ) = 0 and necessarily p - ∞ = p + ∞ = p almost surely.

Proof of Corollary 1. From construction, one has

U - n ⊂ U -then from Proposition 2 d H (U - n , U -) = sup x∈U - n inf y∈U - x -y ≤ µ(U -) -µ(U - n ) = p -p - n , -→ n→+∞ 0.
Proof of Proposition 3. It is an alternative proof to the consistency result given in [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF]. For any measurable set

A ⊂ [0, 1] d . If (Y n ) n is an i.i.d. sequence of variable
uniformly distributed on [0, 1] d and T = inf{n, X n ∈ A}. Then, it is a well known fact that Y T is uniformly distributed on A. Hence conditionnaly to Conditionally to X 1 , . . . , X n-1 one has

X n ∼ U(U Tn-1 ).
Denote (q - n ) n≥1 and (q + n ) n≥1 the sequences of bounds obtained from (Y n ) n≥1 . By construction, the sequences (p - n ) n≥1 and (p + n ) n≥1 are subsequences of (q - n ) n≥1 and (q + n ) n≥1 . Then

p + n -p - n ≤ q + n -q - n a.s. → n→+∞ 0.
Proof of Proposition 4. Proof of (1). By triangle inequality, one has

d H (F n , U -) ≤ d H (F n , U - n ) + d H (U - n , U -), ≤ d H ([0, 1] d \U + n , U - n ) + d H (U - n , U -), since U - n ⊂ F n ⊂ [0, 1] d \U + n ≤ d H ([0, 1] d \U + n , U -) + 2d H (U - n , U -)
, by a second triangle inequality.

We know from Corollary 1, that

d H ([0, 1] d \U + n , U - n ) a.s. -→ n→+∞ 0, d H (U - n , U -) a.s. -→ n→+∞ 0, hence d H (F n , U -) a.s. -→ n→+∞ 0. Besides µ(U - n ) ≤ µ(F n ) ≤ µ([0, 1] d \U + n ) by construction, then p - n ≤ µ(F n ) ≤ p +
n , and from Corollary 1, it can be deduced that

µ(F n ) a.s. -→ n→+∞ p,
that concludes the proof of (1). The proof of (2) and (3) are based on the following Theorem due to [START_REF] Rodríguez Casal | Set estimation under convexity type assumptions[END_REF].

Theorem 2. ( [26], Theorem 2). Let K be a compact set on IR d and standard with respect to a measure ν. Let (X k ) k≥1 be a sequence of i.i.d. random variables uniformly distributed on K, and K n be a set such that for all n large enough one has almost surely (X 1 , . . . , X n ) ⊂ K n ⊂ K. Then almost surely

d H (K n , K) = O log n n 1/d .
The notion of standard set generalizes the notion of (α, γ)-regularity that is used here.

Hence any (α, γ)-regular set is also standard in the sense of Theorem 2.

Proof of (2). It is a direct consequence of Theorem 2.

Proof of (3). Application of Theorem 2. In order to do so, we will cut [0, 1] d following g -1 ({0}) and glue it on [0, 1] d-1 in the following way. Set Then for all x ∈ [0, 1],

G : [0, 1] d-1 -→ [0, 1] x →    inf{t ∈ [0, 1], g(x, t) = 0} if {t ∈ [0, 1], g(x, t) = 0} = ∅, 0 if {t ∈ [0, 1], g(x, t) = 0} = ∅,
(X i 1 {Xi≤p} ) ≤ x) = P(X 1 1 {X1≤p} ≤ x) n = 1 -P(X 1 1 {X1≤p} > x) n = (1 -P(p ≥ X 1 > x)) n = (1 -p + x) n . (7) 
P(p - n ≤ x) =            0 if x < 0, (1 -p + x) n if 0 ≤ x ≤ p, 1 if x > p. (8) 
Let x > 0 and n be large enough such that x ∈ [0, np], then

P(n(p -p - n ) < x) = 1 -(1 -x/n) n -----→ n→+∞ (1 -e -x ),
by recursion E[p + n ] = 2 -n . For p = 1, using X n+1 ∼ U([p - n , 1]) proves the result.

The proof of Proposition 7 relies on the following Lemma that gives the value of the probability density function of a sum of independent beta distributed random variables.

Lemma 2. Denote f d the probability density function (pdf ) of

d i=1 B i , supported over [0, d],
where the B i are iid random variables following the Beta(1/q, 1) distribution.

Then for all x ∈ [0, 1]

f d (x) = C d,q x d/q-1 (10) 
with C 1,q = 1 and for d ≥ 2,

C d,q = 1 q d d-1 i=1 B(i/q, 1/q).
Proof of Lemma 2. We proceed by induction. For d = 1, the density given by [START_REF] De Marchi | Computational and Mathematical Modeling in the Social Sciences[END_REF] is the density of Beta(1/q, 1) distribution, that is

f 1 (x) = 1 q x 1/q-1 1 {0≤x≤1} .
Assume there exists k ∈ IN * such that for all 1 ≤ j ≤ k, f j is the density of j i=1 B i (only for x ∈ [0, 1]). Denote f ⋆ g the convolution of functions f and g. Then, for

x ∈ [0, 1],

f k+1 (x) = (f k ⋆ f 1 )(x) = x 0 f k (t)f 1 (x -t)dt, = x 0 1 q k k-1 i=1 B(i/q, 1/q) t k/q-1 1 q (x -t) 1/q-1 dt, = 1 q k+1 k-1 i=1 B(i/q, 1/q) x 0
x 1/q-1 t k/q-1 (1t/x) 1/q-1 dt, = C k+1,q x (k+1)/q-1 which proves the validity of [START_REF] De Marchi | Computational and Mathematical Modeling in the Social Sciences[END_REF].

Proof of Proposition 7. Set X i = (X 1 i , . . . , X j i ). Since U - n ⊂ U -, one has

d H,q (U - n , U -) = max( sup y∈U - n inf x∈U -x -y q ; sup x∈U - inf y∈U - n x -y q ), = sup x∈U - inf y∈U - n x -y q = inf y∈U - n {1} d -y q , = inf y∈{X1,...,Xn} {1} d -y q .
(1). Assume 0 < q < ∞. For t ∈ [0, d 1/q ], using the fact that if X is uniformly distributed on [0, 1] so is 1 -X we have

P(d H,q (U - n , U -) ≤ t) = 1 -   1 -P   d j=1 (X j 1 ) q ≤ t q     n .
Let (α n ) n≥1 be a sequence of real numbers such that α n → +∞ as n → +∞. Hence,

P(α n d H,q (U - n , U -) ≤ t) = 1 -1 -P d i=1 B i ≤ t q α q n n (11) 
where each B i = X q i L ∼ Beta(1/q, 1). From Lemma 2, for u ∈ [0, 1],

P d i=1 B i ≤ u = u 0 C d,q x d/q-1 dx = q d C d,q u d/q , where C d,q = 1 q d d-1 i=1
B(i/q, 1/q). Therefore, for n large enough

P(α n d H,q (U - n , U -) ≤ t) = 1 -1 - q d C d,q t d α d n n . Denoting A 1,q = 1 and for d ≥ 2, A d,q = 1 dq d-1 d-1 i=1
B(i/q, 1/q), and choosing α n = (nA d,q ) 1/d it comes

P (A d,q n) 1/d d H,q (U - n , U -) ≤ t -→ n→+∞ 1 -e -t d .
(2). Assume now q = ∞. Let (β n ) n≥1 be a sequence of real numbers such that β n → +∞ as n → +∞. Then for all t ∈]0, 1[

P(β n d ∞ H (U - n , U -) > t) = (1 -P( X 1 ∞ ≤ t/β n )) n = 1 -P( max j=1,...,d X j 1 ≤ t/β n ) n , = 1 -t d /β d n n , choosing β n = n 1/d , it comes P(n 1/d d ∞ H (U - n , U -) > t) -→ n→+∞ e -t d , and 
n 1/d d ∞ H (U - n , U -) L -----→ n→+∞ W(1, d).
Proof of Proposition 8. Let (X n ) n≥1 be a sequence of iid random variables uniformly distributed on [0, 1] d . Let U = (U 1 , . . . , U d ) be uniformly distributed on [0, 1] d and independent of the sample (X n ) n≥1 , then

E[µ([0, 1] d \U - n )] = E[E[1 U∈Un |U]], = E[E[1 U X1,...,U Xn |U]], = E[E[1 U X1 |U] • • • E[1 U Xn |U]], = E[E[1 U X1 |U] n ] = E[ 1 -(1 -U 1 ) • • • (1 -U d ) n ], = E[ 1 -U 1 • • • U d n ]. (12) 
Using the fact thatlog(U i )

L ∼ Exp(1), it is easy to see that d i=1 U i L = exp(-G d ),
where G d ∼ Gamma(d, 1) with density function

f (x) = x d-1 e -x (d -1)! .
We then easily get that the density function of d i=1 U i is given by

f d (x) = (-log(x)) d-1 (d -1)! 1 {x∈[0,1]} . (13) 
From ( 12) and ( 13), it comes

E[µ([0, 1] d \U n )] = E[ 1 -U 1 • • • U d n ] = 1 0 (1 -u) n (-log(u)) d-1 (d -1)! du.
One has

n(d -1)! log(n) d-1 E[µ([0, 1] d \U n )] = n log(n) d-1 1 0 (1 -u) n (-log(u)) d-1 du, and the substitution u = x/n gives n log(n) d-1 1 0 (1 -u) n (-log(u)) d-1 du = 1 log(n) d-1 +∞ 0 (1 -x/n) n (-log(x/n)) d-1 1 {x≤n} dx, = +∞ 0 (1 -x/n) n (1 -log(x)/ log(n)) d-1 1 {x≤n} dx, -→ n→+∞ 1.
The last equation holds by the dominated convergence theorem apply to

f n (x) = (1 -x/n) n (1 -log(x)/ log(n)) d-1 1 {0≤x≤n} ≤ exp (-x)1 {x≥0} . Proof of Proposition 9. Let u ∈ Γ and v ∈ [0, 1] d such that u ≺ v. Assume v ∈ Γ.
There exist ε > 0 such that B((u + v)/2, ε) ⊂ Γ. That implies µ(Γ) > 0, which is impossible by Assumption 2. Then v / ∈ Γ.

Proof of Theorem 1. (1). Obvious since h X (u) ≤ h X (v) for all X ∈ Ξ + n and for all u, v ∈ [0, 1] d such that u v.

(2), [START_REF] Bárány | Random polytopes, convex bodies, and approximation[END_REF].

By construction U - n ⊂ F n ⊂ [0, 1] d \U + n . ( 4 
). Since U -is regular (by convexity) and U + is regular (by Lemma 3 below), the result is a consequence of Equation (2). Lemma 3. Let K be a compact, convex subset of [0, 1] d such that for all y ∈ K there is no x ∈ K c = [0, 1] d \K such that x y. Then K c is (α, γ)-regular.

Proof of Lemma 3. Since K is a compact convex set, there exists α, γ > 0 such that K is (α, γ)-regular [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. Given x ∈ K c , since K is closed convex the projection of

x on K, denoted P K (x), is unique. Let 0 ≤ ε ≤ γ and x ∈ K c , then µ(B(x, ε) ∩ K c ) ≥ µ(B(P K (x), ε) ∩ K c ), ≥ µ(B(P K (x), ε) ∩ K), since K is convex ≥ αµ(B(P K (x), ε)), since K is (α, γ)-regular ≥ αµ(B(x, ε)), then K c is (α, γ)-regular.
Proof of Corollary 3. Since g is differentiable at p, the Delta method and Proposition 5 imply that

n(g(p) -g(p - n )) L -----→ n→+∞ Exp(1/g ′ (p)), n(g(p + n ) -g(q)) L -----→ n→+∞ Exp(1/g ′ (p)).
Since q p is the p-order quantile of g(X), it comes that P(g(X) ≤ q p ) = p. Since g is continuous and strictly increasing, then P(g(X) ≤ q p ) = P(X ≤ g -1 (q p )).

Moreover X ∼ U([0, 1]), then P(X ≤ g -1 (q p )) = g -1 (q p ) = p. It can be deduced that q p = g(p). Then, the two last equations becomes

n(q p -g(p - n )) L -----→ n→+∞ Exp(1/g ′ (p)), n(g(p + n ) -q p ) L -----→ n→+∞ Exp(1/g ′ (p)).
[33] Walther, G. and Lüts D. (1996). Rates of convergence for random approximations of convex sets.

[34] Walther, G. (1999). On a generalization of Blaschke's Rolling Theorem and the smoothing of surfaces, Mathematical methods in the applied sciences, 22, 301-316.

Appendix A. Computing hypervolumes (deterministic bounds)

The computation of bounds (p - n , p + n ) defining in (1) can be conducted exactly or using simulation, in function of the dimension.

A.1. An exact method in dimension d = 2

Consider a design x 1 , . . . , x n ∈ [0, 1] 2 . The first stage is to order the element according to their first (or second) coordinate, such that

x 1 1 < • • • < x 1 n .
Since no design element is dominated by another one, then x 2 i > x 2 i+1 for i ∈ {1, . . . , n -1}. The point x 1 delimit a first rectangle P 1 with the following vertices:

        0 0 x 1 1 0 0 x 2 1 x 1 1 x 2 1         , such that µ(P 1 ) = x 1 1 x 2 1 .
For all i ∈ {2, . . . , n} a new rectangle P i can be defined with the following vertices:

        x 1 i-1 0 x 1 i-1 x 2 i x 1 i 0 x 1 i x 2 i         , such that µ(P i ) = (x 1 i -x 1 i-1 )x 2 i .
The second stage consist to compute the volume of each rectangles:

p - n = x 1 1 x 2 1 + n i=2 (x 1 i -x 1 i-1 )x 2 i .
can be perfectly separated according to y by an hyperplane h defined by

h(x) = β 0 + β T x, (14) 
with (β 0 , β) ∈ IR×IR d . In this linear framework, an infinity of hyperplanes can separate perfectly the data. Therefore it is needed to add some constraints to make a unique (optimal) choice of hyperplane. Define the distance of x from Γ : ∆(x, Γ) = inf for i = 1, . . . , n y i (w 0 + w T X i ) ≥ 1.

(

) 16 
A number d + 1 of parameters associated to n linear constraints has to be estimated.

Since the problem ( 16) is quadratic with linear constraints, a unique solution can be found. The dual form of the problem is given by the following optimisation problem

                 max a n i=1 a i - 1 2 n i,j=1
a i a j y i y j x T i x j n i=1 a i y i = 0

a 0. ( 17 
)
where a = (a 1 , . . . , a n ) is a Lagrange multiplier. Let a = (a 1 , . . . , a n ) be the solution of problem [START_REF] Golchi | Monotone Function Estimation for Computer Experiments[END_REF]. The computer model g can be estimated by 

g n (x) = w 0 + n i=1 a i y i X T i x. (18) 
such that the data can be linearly separated. Then g can be written as g(x) = β 0 + β T h(x), and using ( 18) and [START_REF] Hastie | The elements of statistical learning[END_REF], it can be estimated by: g n (x) = w 0 + n i=1 a i y i K(X i , x).
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The optimization problem [START_REF] Golchi | Monotone Function Estimation for Computer Experiments[END_REF] becomes

                 max a n i=1 a i - 1 2 n i,j=1
a i a j y i y j K(X i , x j ) and K i,j=1,...,n = y i y j K(X i , X j ), with I n the identity matrix.

B.2. Monotonic SVM

Let g be defined by [START_REF] Edelsbrunner | Three dimensional alpha shapes[END_REF] and assume now that g is globally increasing. Let x = (x 1 , . . . , x d ) ∈ [0, 1] d and x i = (x 1 , . . . , x i-1 , x i + η, x i+1 , . . . , x d ) with η > 0, then x x i and g(x) ≤ g(x i ). It comes that 

g x i -g(x) ≥ 0 ⇒ β i ≥ 0,

Figure 3 :

 3 Figure3: Construction of the classifier based on SVM. The plain line represent Γ and black (resp. white) points are in U -(resp. U + ). The dotted lines represents {x : h X (x) = 0} for some X in U + . Left: there is one point in U + then the dashed line is both {x : h X (x) = 0} and the frontier of the classifier. Right: Dotted lines represent the two sets {x : h X (x) = 0} for X represented by the two white points. Dashed line represent the frontier of the classifier.

  The SVM-based classifier and the constrained neural networks are built from the points of a sequential design used to delimit the non-dominated set. At step n, the number of points which delimits this non-dominated set is denoted N n . The comparison is conducted as follows. At each step n ≥ 1, M = 500 random vectors are uniformly distributed on the non-dominated set U n-1 . The rate of good classification on these M random vectors and the time needed to build the two classifiers are stored. Then non-dominated set is updated with a random vector uniformly distributed on it. The comparison is conducted for different dimensions: 2, 3 , 4 and 5 and for p = 0.01 and have been averaged on 40 independent experiments. In Figure 4 the rate of good classification is compared in function of N n . The red values represent the number of times the situation where the non-dominated set is delimited by N n points. For some n ≥ 1, this number is greater than 40. Indeed, the sequence (N n ) n≥1 is not monotonic: at any step n, a new simulation employed to update the non-dominated set U n-1 can dominate one of the point of its frontier. Then the value of N n can be lower than N n-1 . At step n, having N n = n means no points of the sequential design is dominated by one another. The results show that the mean rate of good classification is equivalent for the two classifier and for the tested dimension. But, when the dimension increases the SVM-based classifier is more stable than the constrained neural networks. Denote (T SV M n ) n≥1 and (T N N n ) n≥1 respectively the cumulative time needed to build the SVM-based classifier and the constrained neural networks until step n. The ratio to construct these estimator are compared on Figure 5.
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 45 Figure 4: Boxplots of the rate of good classification for d ∈ {3, 4, 5, 6}, in function of n. In red are the sample size used for each boxplot. Left: Monotonic SVM. Right: Constrained neural networks. The results have been averaged on 40 independent experiments.

  and define Γ as the graph of the application x → G(x) -1. Now letΨ : [0, 1] d -→ IR d (x, y) →    (x, y) if g(x, y) ≤ 0, (x, y -1) if g(x, y) > 0. . We define now Ũ = Ψ([0, 1] d ) Γ (we have cut the space [0, 1] d following g -1 ({0}) and glue together [0, 1] d-1 × {0} and [0, 1] d-1 × {1}, see Figure 6). Now by assumption Ũ is a compact set and the random variables (Ψ(X i )) i are i.i.d uniformly distributed in Ũ. The result follows applying Theorem 2. Proof of Proposition 5. Let x ∈ [0, p]. Then P(p - n ≤ x) = P( max i=1,...,n

Figure 6 :

 6 Figure 6: Illustration of the cut given in proof of Proposition 4. Left: Illustration of [0, 1] d after some simulations. Right: Representation of Ũ delimited by the set in gray, Γ and Γ. Ψ(x i ) = x i for i ∈ {3, 4, 7, 8}.

  y∈Γxy = |β 0 + β T x|/ β , from[START_REF] Edelsbrunner | Three dimensional alpha shapes[END_REF]. The chosen hyperplane is the solution of the following problem: w = β m β and w 0 = β0 m β[START_REF] Hastie | The elements of statistical learning[END_REF], the problem (15) becomes:

1 2

 1 a T Kad T a Aa * ≥ c, where the symbol * ≥ means that the first constraint is an equality constraint and the other are inequalities constraints, and

for all i = 1 , 2 for i = 1 ,. ( 20 )a. 1 Table 4 :

 1212014 . . . , d. The problem[START_REF] Gadat | Classification with the nearest neighbor rule in general finite dimensional spaces[END_REF] becomes: . . . , n y i (w 0 + w T X i ) ≥ 1 for i = 1, . . . , d w i ≥ 0The associated Lagrangian M(w, w 0 , a, b) can be written asM(w, w 0 , a, b) = 1 2 w 2 -n i=1 a i [y i (w 0 + w T X i ) -1]b T w,where a and b are the Lagrangian multipliers. The dual problem becomes                         max i a j y i y j X T i X jb T n i=1 a i y i X i -Table4shows there is always less constraints and parameters to estimate in the primal problem than in the dual problem. In practice, it is more interesting to solve the primal problem. primal dual Number of parameters d + 1 d + n Number of constraints d + n d + n + Numbers of constraints and dimension of parameters to be estimated for the primal and dual problems in the monotonic SVM framework.The problem[START_REF] Hurtado | An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[END_REF] can then be rewritten. On the convergence of random sets and measures in monotonic Monte Carlo frameworks 43 n×(d+1) (IR), A 2,1 = I d 0 d ∈ M d×(d+1) (IR), and I d the identity matrix in IR d , 1 T n = (1, . . . , 1) ∈ IR n and 0 T d = (0, . . . , 0) ∈ IR d .

  s.

	→ n→+∞	(p, p).	
	Corollary 1. Under Assumption 2 and the conditions of Proposition 2, then
		d H (U -n , U -), d H (U + n , U + )	a.s. -→ n→+∞	(0, 0).
	Example 1. If a sequence (X n ) n∈I N * that is i.i.d. and uniformly distributed on [0, 1] d
	then it satisfies the assumption of Proposition 2. More generally any sequence of iid
	random variables with bounded from below densities on [0, 1] d satisfies the assumption
	of Proposition 2.		
	Since the only useful experiments are those which fall into the non-dominated set U n ,
	a sequential Monte Carlo strategy can be carried out, as detailed in next proposition.
	Proposition 3. [Sequential sampling] Let (Y n ) n≥1 be a sequence of iid random vari-
	ables uniformly distributed on [0, 1] d . Let (T n ) n≥1 be a sequence of random variables
	on N defined by T 1 = 1 and for all n ≥ 1	

Table 1

 1 

	. As

3, 4, 5, 10}. That means, after n simulations, the volume of x∈{X1,...,Xn} {u ∈ [0, 1] d : u x}, is compared, where X 1 , . . . , X n are respectively obtained from a uniform and a sequential sampling strategy. The model is run n = 100 times per experiment and repeated 100 times. The results of these experiments are summarized on

Table 1 :

 1 Mean measures (volumes) of non-dominated set U n after n = 100 runs.

	Remark 6. Table

Table 2 :

 2 Rate

		/78.40	58.14/62.72	53.05/57.65	50.80/53.53	50.49/52.32	50.09/50.88
	N =	84.04/84.19	63.77/68.99	56.66/62.20	52.37/56.83	51.80/55.85	50.40/52.83
	N =	91.22/91.34	71.65/74.13	62.64/67.38	56.25/61.44	54.59/59.91	51.68/55.75
	N =	93.04/93.07	73.92/76.41	65.04/70.05	57.43/63.04	56.16/61.65	52.36/56.87
	N =	92.57/92.74	78.72/80.34	68.95/72.59	60.24/66.02	58.71/63.99	53.73/58.58
	N = 100	94.41/94.41	83.36/84.43	73.66/76.95	64.50/69.03	62.11/67.26	55.54/60.96
	N = 200	97.09/97.09	88.87/89.30	82.09/83.55	72.83/76.07	69.55/73.22	61.24/66.50
	N =	84.86/85.73	62.79/68.05	57.78/63.67	53.08/58.46	52.75/57.92	50.95/54.41
	N =	90.41/90.44	70.27/74.69	61.98/68.49	57.64/63.62	55.88/62.30	52.56/57.87
	N =	93.65/93.67	78.89/80.90	70.51/74.88	62.48/68.38	60.23/66.30	55.44/61.93
	N =	95.51/95.51	82.06/83.78	72.30/76.28	64.84/70.50	62.62/68.35	57.01/63.39
	N =	96.28/96.29	85.36/86.99	77.63/80.25	69.12/73.65	66.41/71.86	59.88/66.15
	N = 100	96.87/96.87	88.44/89.18	81.04/82.94	72.39/76.21	69.71/74.30	62.02/67.80
	N = 200	98.48/98.49	93.37/93.63	88.37/89.19	81.10/83.18	78.02/80.40	69.65/74.13
	N =	86.55/87.42	67.76/73.2	60.98/68.26	56.49/63.74	55.67/62.95	52.86/59.30
	N =	92.39/92.68	74.94/78.36	67.68/73.32	61.13/68.43	58.87/66.38	55.40/62.69
	N =	95.27/95.40	83.20/85	75.22/78.75	66.73/72.70	65.15/71.56	59.24/66.67
	N =	95.35/95.37	85.12/86.46	77.81/81.04	69.39/74.81	66.72/72.89	61.00/68.37
	N =	97.06/97.06	88.88/89.42	82.24/84.51	73.64/78.11	71.40/76.19	63.80/70.19
	N = 100	97.90/97.90	91.55/91.79	85.68/86.71	77.47/80.77	74.69/78.78	66.59/72.88
	N = 200	98.73/98.73	95.16/95.26	91.53/91.94	85.40/86.99	82.95/85.09	74.62/79.08
	N =	88.53/89.14	68.99/74.31	64.20/71.35	59.36/67.83	58.06/66.78	55.23/64.17
	N =	92.10/92.22	77.54/81.02	70.60/75.69	63.92/71.54	62.88/70.56	58.04/66.88
	N =	95.25/95.26	85.06/86.52	77.75/81.31	70.62/76.28	68.48/74.74	62.33/70.43
	N =	97.20/97.20	87.02/87.74	80.91/83.52	72.58/77.60	70.60/75.88	63.98/71.50
	N =	97.51/97.51	90.99/91.54	84.84/86.84	76.90/80.92	74.86/79.32	67.58/74.37
	N = 100	97.98/97.99	92.86/93.06	87.65/88.57	80.11/83.03	77.88/81.74	70.57/76.39
	N = 200	98.81/98.81	95.95/96.07	93.50/93.83	88.27/89.44	86.55/88.18	78.6/82.36
	N =	88.91/89.52	70.12/75.03	64.23/71.39	59.93/68.41	59.17/67.97	56.88/66.48
	N =	93.44/93.59	77.65/80.22	71.63/76.71	65.03/72.34	63.77/71.59	59.74/68.46
	N =	95.85/95.85	86.33/87.23	78.95/81.88	71.58/77.11	69.16/75.35	64.00/71.87
	N =	96.28/96.36	88.25/89.00	81.36/84.56	74.22/79.23	71.72/77.56	65.78/73.53
	N =	97.51/97.51	91.01/91.61	85.96/87.60	78.60/82.51	75.85/80.09	69.66/76.18
	N = 100	98.04/98.04	93.18/93.46	89.03/89.81	81.92/84.43	79.55/82.73	72.08/78.06
	N = 200	99.07/99.08	96.18/96.27	93.57/94.12	89.05/90.12	87.16/88.70	80.09/83.76

of good classification for usual SVM (left) and monotonic SVM (right) in function of d and N . From up to down, there is respectively a proportion of 0.1, 0.2, 0.3, 0.4, 0.5 in the set {x : g(x) ≤ 0}.

Table 3

 3 suggest to solve the primal problem if d ≤ n, and the dual problem in the

	other case.		
		primal dual
	Number of parameters d + 1	n
	Number of constraints	n	n + 1

Table 3 :

 3 Numbers of constraints and dimension of parameters to be estimated for the primal and dual problems in the usual SVM framework.

B.1.2. Nonlinear situation. Assume now that D n cannot be separated by a hyperplane but by a nonlinear surface. Let K be a symmetrical positive definite kernel. From Mercer's theorem there exists a transformation h : [0, 1] d → H where H is an Hilbert space with the inner product h(x), h(y) H = K(x, y).
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Exp [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. From [START_REF] Cuevas | A plug-in approach to support estimation[END_REF], it comes:

Denote p - n (p) a random variable such that for all x ∈ [0, 1],

. Then, p + n have the same distribution as 1p - n (1p). For all x ∈ [0, 1], one has

, and

It can be deduced that for all n,

Proof of Proposition 6. F n will denote the natural filtration o One has

. By recursion, it can be deduced that

Since

, it comes by recursion that

, it can be deduced from ( 9) that

By recursion, it comes that

To compute p + n it is enough to transform each x i into 1x i , to compute p+ n with the previous approach. Then p + n = 1 -p+ n .

A.2. An accelerated Monte Carlo method in upper dimensions

A sweepline algorithm described in [START_REF] Bousquet | Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints[END_REF] allows to compute the bounds in any dimension, but at an exponential cost. An alternative approach is using a Monte Carlo method. Considering an iid uniform sample ŪN = U 1 , . . . ,

The computation can be strongly accelerated by adapting the order of evaluation to the monotonic context, using the following algorithm (easily adaptable to estimating where X i ∈ [0, 1] d and y i = sign(h(X i )), with sign(x) = 1 if x > 0 and -1 otherwise,