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Abstract

Passive acoustic monitoring systems are used to study cetaceans through

the sounds they produce. Among them, toothed whales emit sequences of

acoustic impulses having a rhythmic pattern. As they generally live in pods,

click trains from several individuals are often interleaved and recorded to-

gether with additional natural or anthropogenic impulsive sources. This

paper presents an algorithm that uses the rhythmic properties of odonto-
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cete click trains for detecting rhythmic impulse trains embedded in other

impulse sounds and de-interleaving click trains from simultaneous clicking

odontocetes. The contributions of the article are: 1) a method to detect the

presence/absence of rhythmic click trains and to characterize the time - Inter

Click Interval (ICI) pattern of click trains; 2) an analytical analysis of the

performances of this method (jitter, length of click trains); 3) the demon-

stration of its efficiency on real data with wild beluga whales recorded in

Canada.

Keywords: Click train, Inter-click interval (ICI), deinterleaving,

time-period analysis, rhythm, marine mammals

PACS: 155, 720

1. Introduction

Sounds produced by marine mammals can be separated in two broad cat-

egories: tonal-sounds and clicks. Clicks are very short impulses lasting only

tens to hundreds of microseconds [1]. They are produced by all odontocetes

(toothed whales) to locate and explore seafloor, submerged obstacles and

preys or to communicate. Odontocetes generally emit sequences of several

consecutive clicks called click trains. The inter-click interval (ICI) ranges

from a few microseconds to more than 2 seconds, and varies depending on

the species and the activity of the individuals (echolocation, foraging, etc...)

[1, 2]. Trains with very short ICI (≤ 20 µs) are called burst pulses [3]. ICI

can vary during a train depending on the activity of the individual. As shown

by previous studies, there is a random part and a deterministic part in these

variations [4, 5, 6, 7].
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Tracking the deterministic component of the ICIs within click trains is

of great interest to detect and separate rhythmic sources from a mixture of

other impulsive sources like snapping shrimps, ice-cracking events or shipping

cavitation impulses. This detection and separation task can quickly become

difficult when the number of impulsive sources is very large.

Previous methods of detection and separation of odontocete click trains

have been based on acoustic descriptors of clicks, such as the amplitude [5],

the centroid and peak frequencies [8, 9], the temporal properties [10, 5], high

order statistics of the waveform [6, 11]. These methods use either only one or

several of these descriptors and range from a simple correlation technics to

advanced artificial neural network [12] or multi-hypothesis trackers [13, 14].

Most of them need relatively invariable parameters and/or a-prior training.

In a real context, these conditions are not suitable as odontocete clicks have

narrow directional beam patterns [1, 2, 15, 16] and most of their acoustic

characteristics quickly change or even vanish with the animal orientation.

To overcome this difficulty, the direction of arrival (DOA) of the clicks (i.e.

the angular position of the sources) can be used as an alternative method to

cluster clicks into trains [17, 18]. However, this approach requires the use of

an array of several hydrophones and the synchronized reception of each click

from each source on all these hydrophones to compute the time difference of

arrivals and deduce the DOA of each click. Additionnally, individuals must

be spatially distant to achieve a good separation of the clicks based on their

DOAs.

Recently, Zaugg et al.[19] have proposed a method using a rhythmic anal-

ysis and a spectral dissimilarity measure to cluster interleaved sperm whale
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clicks into separate click trains. They introduced a metric to estimate the

number of subsets of click trains per time unit and apply this metric in a

data-mining context.

Unlike previous methods, in our paper we do not use the clicks acous-

tic descriptors or direction of arrivals but only their time of arrivals (TOA)

and a rhythmic analysis algorithm to detect the presence of odontocete click

trains. We assume that clicks coming from odontocetes have a rhythmic pat-

tern whereas impulses from other sources have not. Compared to amplitude

or spectral characteristics, which can vary greatly during the propagation of

the acoustic wave in water, TOAs have the advantage of being less affected

by these propagation conditions and by the directivity of the source. Fur-

thermore, TOAs are easy and fast to estimate with traditional click detectors

[20, 21, 11].

Classical TOA-based rhythmic algorithms use the autocorrelation of the

click trains to build an histogram having peaks located at lags correspond-

ing to ICI-values of the different interleaved trains [22, 23, 24]. It is known

that autocorrelation also produces spurious peaks located at values corre-

sponding to multiples of the fundamental ICIs. These subharmonics severely

disturb the interpretation of the results. We propose to overcome this prob-

lem by using a complex autocorrelation function, which almost completely

suppress subharmonics of the autocorrelation while keeping peaks located

at the ICI-values of the interleaved trains [25, 26]. Several improvements of

this complex autocorrelation have been proposed [27, 28, 29, 30] in a Radar

community. Drawing on time-frequency representations Nishiguchi has in-

troduced a time-rhythm (or time-ICI) representation, by computing the com-
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plex autocorrelation for windows sliding along the click train, leading to a

time-ICI map.

Based on these previous works on the complex autocorrelation, we pro-

pose a method capitalizing on the rhythmic properties of odontocete click

trains to: 1) detect click trains mixed with other impulsive sources; 2) sepa-

rate interleaved click trains from several odontocetes emitting simultaneously.

We transpose tools based on the complex autocorrelation function and the

time-ICI detection to underwater bio-acoustics and passive acoustic moni-

toring (PAM) methodology. The key question is the behavior of these tools

when they are faced with natural signals having their own specific variability

rather than regular human-made RADAR signal. The first objective of our

paper is to give a whole comprehensive description of this algorithm (from

the raw data to the automatic segmentation/detection of time-ICI map).

The second objective is to evaluate its analytical performances in regards to

its different degree of freedom. The final objective is to show its efficiency

on real data of wild beluga.

To our knowledge, only Zaugg et al.[19] have used the complex auto-

correlation for estimating the ICI of interleaved click trains. Our approach

differs on several points. First, our algorithm does not perform precondition-

ing tests based on spectral dissimilarities between pairs of clicks to suppress

some of them. Instead, we consider all click pairs as possible candidates for

the rhythm analysis. So, our algorithm comes right after usual click detectors

in the processing chain. Second, unlike Zaugg et al.’s algorithm, the analysis

window is not centered on the detected clicks but slides along the click train

as it is usually the case in time-frequency analysis. Third, the time-ICI rep-
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resentation obtained at the output of our algorithm has never been used in

underwater bio-acoustics and offers several interesting applications.

In the first part of this paper, we present an overview of the complex

autocorrelation function and its use with a sliding window to build a time-

ICI representation. The second part deals with the performances of the

algorithm from a theoretical and analytical point of view. The detectability

of a click train depending on parameters such as the length of the train, the

jitter and the presence of false alarms, is studied. In this part, we also study

the ability of the algorithm to separate interleaved click trains. The third

part, uses simulated examples to confirm results obtained in the performance

analysis section. The last part shows the efficiency of the proposed method

on real data from wild beluga whales recorded at sea.

2. Description of the algorithm

2.1. Overview

Prior to the proposed algorithm, clicks are detected on the waveform

with standard click detectors [11, 20, 21] (top part of Fig. 1). Times of

local maximum amplitude of the detected clicks are considered as the time

of arrival (TOA) of the clicks. This latter list of TOAs is used to perform

the rhythmic analysis and separate interleaved click trains. This processing

is divided in three steps (Fig. 1).

The first step transforms the list of TOAs to a new representation called

time-ICI map (Fig. 1). This transformation is based on the complex autocor-

relation function, which highlights the fundamental ICIs of the interleaved

click trains, while avoiding the subharmonics given by the classical autocorre-
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lation. By calculating such complex-autocorrelation in sliding windows along

the signal, we obtain a map with the time on the abscissa-axis, the ICI on the

ordinate-axis and the amplitude of the autocorrelation on the elevation-axis.

The second step of the algorithm aims to calculate a threshold to identify

peaks corresponding to click trains and suppress the possible noise or spurious

spike on the time-ICI map. The third step is the thresholding of the time-

ICI map to produce the binary time-ICI map more suitable to analyze and

distinguish the rhythm of interleaved click-trains.

This method needs 7 input parameters to build the time-ICI represen-

tation and calculate the detection threshold (Table 1). Their values have

an influence on the performance of the algorithm and are discussed in the

performance analysis section. In the next subsections, we detail the signal

processing techniques used in each of the three steps. We assume that the

list of TOAs is already known so that our analyses do not depend on the

click detector performances.

2.2. Complex autocorrelation vs classical autocorrelation

Nelson [25] and Nishiguchi [26] introduced the concept of complex-valued

autocorrelation, which automatically suppresses subharmonics that normally

appear when calculating the autocorrelation function of rhythmic click trains.

The complex autocorrelation function is given by:

D(τ) =

∫ +∞

−∞
m(t)m(t− τ)exp(2πit/τ)dt (1)

while the classical autocorrelation function is:

C(τ) =

∫ +∞

−∞
m(t)m(t− τ)dt (2)
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where τ ∈ R+ and m(t) represents the click train. Considering that the

TOA is the only parameter used to represent each click, this click train can

be modeled as a sum of Dirac delta functions:

m(t) =
N−1∑
n=0

δ(t− tn) (3)

where tn is the TOA of the nth click, δ(.) is the Dirac delta function and N

is the total number of clicks in the train.

As click detectors usually detect all kind of acoustic impulses, we assume

that TOAs of m(t) are a mixture of click trains emitted by odontocetes and

others clicks coming from other sources considered as undesirable. Substi-

tuting Eq. (3) in Eq. (1) and (2) yields:

D(τ) =
N−1∑
n=1

n−1∑
m=0

δ(τ − (tn − tm))exp(2πitn/τ) (4)

C(τ) =
N−1∑
n=1

n−1∑
m=0

δ(τ − (tn − tm)) (5)

where tn is the TOA of the nth click and tm is the TOA of the mth click.

The only difference between the classical and the complex autocorrelation

is the use of the complex exponential, which acts like a phase term to elim-

inate the subharmonics. Mathematical developments [25, 26, 30] explaining

subharmonics cancellation can be found in Appendix A.

To illustrate, we have interleaved two simulated click trains whose respec-

tive ICIs are equal to 0.0435 s and 0.09 s (Fig. 2a). The complex autocorrela-

tion function of the resulting TOA sequence has two peaks at τ -values equal

to the ICI of the two mixed click trains (Fig. 2c). In contrast, the classical
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autocorrelation of the mixed click trains shows several peaks located at τ -

values corresponding to subharmonics of the fundamental ICIs of each click

train (Fig. 2b).

2.3. Time-Rhythm Analysis

2.3.1. Time-ICI map

In this subsection, we describe the step-1 block of the proposed algorithm

(Fig. 1). To characterize the temporal pattern of the ICI, the complex auto-

correlation is performed on sliding windows. This allows: 1) to track rhythm

changes due to the odontocete behavior 2) to detect short click-trains mixed

with longer click-trains. By analogy to the time-frequency analysis, a time-

rhythm analysis is defined by:

D(t, τ) =

∫
s∈W (t,τ)

m(s)m(s− τ)exp(2πis/τ)ds (6)

where W (t, τ) = [t−ν×τ/2, t+ν×τ/2] is the time-support of a rectangular

sliding window along the interleaved click trains [30]. The window is centered

around t and its width is ντ with ν ∈ R+, so that there are always ν periods

with ICI equal to τ contained in the window W (t, τ). This window W (t, τ)

slides with a constant time period, written ”step” in the rest of this article.

The result of the time-rhythm analysis is an image called time-ICI map,

which is obtained by taking |D(t, τ)|.

To illustrate this point, we present in Fig. 2 (d and e) the time-ICI map

of the two previous simulated click trains (Fig. 2a), for both the classical

(Fig. 2d) and the complex (Fig. 2e) autocorrelation approaches. This first

step of the algorithm requires 6 parameters (see Table 1).
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2.3.2. Implementation aspects

To estimate the complex autocorrelation from Eq. (6), the range [τmin,τmax]

of the ICIs to be investigated is segmented into bins. Values of τmin and τmax

are chosen by the user according to the smallest and the highest ICI produced

by the target species we want to detect. For beluga whale (target species),

τmin = 0.001 s and τmax = 0.2 s.

Initially, the range of ICIs was uniformly divided into small equal intervals

[26]. However, evenly spaced bins give a lower density of bins at small ICI

values and over fitted bins at larger ICI values [28]. Therefore the resolution

of the ICI bins is not constant along the ICI range [τmin,τmax]. To keep a

constant accuracy and an appropriate constant ICI resolution, Mahdavi pro-

poses to segment the ICI range [τmin,τmax] by using a geometric progression

[28]. The center of each bin, written τk, is therefore given by:

τk = rk−1τ1 (7)

where r is the bin resolution, k = 1, ..., K the bin index and τ1 the first

term of the progression (equal to τmin). As suggested by Mahdavi’s work,

the resolution r must be slightly higher than 1 to provide a good compromise

between the ICI resolution, the number of ICI bins to explore between τmin

and τmax and the computational time. In this study, r will be equal to 1.005

(arbitrary choice), giving thus a resolution of 0.5%.

To be able to work with jittered click trains and avoid the reduction of

the peaks when ICI values are distributed into many bins, each τk value is

assigned to a bin bk centered on τk and whose width is given by:

bk = [(1− σ

2
)τk, (1 +

σ

2
)τk] (8)
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where σ ∈ R+ represents the upper limit of the jitter. Therefore, each bin

has a width equal to στk and overlaps with its neighboring bins (See Fig. 3).

Overlapping helps counterbalancing the jitter effects that tends to smear ICI

values into several adjacent bins.

According to this discretization of the ICI range and to the expression

used in Eq. (3) to model the click train, we can rewrite Eq. (6) in a discrete

form as follow:

D(t, τk) =
∑

{(tn−tm)∈bk,tn∈W (t,τk)}

exp (2πitn/τk) (9)

where tn and tm are respectively the TOAs of the nth and mth clicks.

2.3.3. Thresholding of the time-ICI map

In this subsection, we introduce an expression to calculate the detection

threshold needed in step-2 block of the proposed algorithm (Fig. 1). When

calculating the modulus of D(t, τk), we obtain a time-ICI map whose ampli-

tude of each pixel with coordinate (t, τk) comes from the contribution of all

click pairs (tn, tm) that satisfies (tn− tm) ∈ bk and tn ∈ W (t, τk). These click

pairs can be part of one of the following categories (hypothesis):

• tn and tm do not belong to the same click train, i.e. come from two

different sources (H0)

• tn and tm belong to the same click train, i.e. come from the same source

(H1)

Since the aim of the algorithm is to detect pulse trains, we want to find

a threshold Γ such that for hypothesis H0: |D(t, τk)| < Γ and for hypothesis

H1: |D(t, τk)| ≥ Γ.
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Admitting that sources emit click trains independently from each other,

then the difference between two successive TOAs is a random process and the

number of clicks within a bin bk follows a Poisson distribution with parameter

λ [31]. In practice, a value of λ is calculated in each window W (t, τk) as follow

[30]:

λ =
N2(t, τk)σ

ν
(10)

whereN(t, τk) is the total number of clicks within the sliding windowW (t, τk),

ν is the constant defined in section 2.3.1 and σ is the constant defined in sec-

tion 2.3.2.

A relation [30] between the detection threshold Γ, the probability of false

alarm Pfa and the Poisson parameter λ is proposed:

Pfa = 1− Γ×
∫ ∞
0

exp[λ× (J0(s)− 1)]J1(s× Γ)ds (11)

where J0(.) and J1(.) are respectively the Bessel functions of order 0 et 1.

With such relation between λ, Pfa and Γ, the threshold adapts to the number

of clicks N(t, τk) in each window W (t, τk).

In practice, we are more interested in computing the detection threshold

Γ for a given probability of false alarm Pfa. Therefore, we numerically solved

Eq. (11) with respect to Γ and built a table (or a plot curve) giving Γ for

a set of couples (λ, Pfa). Fig. 4 gives the evolution of the threshold Γ as

a function of Pfa and λ. From Fig. 4 we show that the detection threshold

increases with λ and decreases when Pfa increases.

As an example, to threshold the time-ICI maps (Fig. 2d and 2e), we

have saved the value taken by λ in each window W (t, τk) and then found

the detection threshold associated to each of them for a Pfa equal to 10−4.
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Figures 2f and 2g show the results of this thresholding. Again, we can see

the advantage of using the complex autocorrelation on Fig. 2g, where no

harmonics show up, at the contrary of Fig. 2f.

3. Analytical performances of the algorithm

Performances of the proposed algorithm are affected by the parameters

configuration (see Table 1) and by characteristics of the source producing the

click train. Critical parameters of the algorithm itself are:

• σ: upper limit of the jitter;

• ν: number of times a given value of ICI is contained in the window

W (t, τk);

• Pfa: probability of false alarm of the detector.

Critical parameters relative to the click train itself, i.e. dependent of the

source producing the sound and its surrounding environment are:

• w: number of clicks in the train to detect;

• ζ: jitter width of the train to detect;

• q: proportion of extra clicks (i.e. undesirable TOAs) mixed with the

click train to detect.

Performance analysis presented in this section is derived from Nishiguchi’s

analytical formulas [30] and on the statistical properties of our test dataset.

In this part we focus on the assessment of:
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• detectability of a click train as a function of the parameters cited above;

• minimum ICI difference between two interleaved click-trains allowing

their separation.

For a click train to be detected in the window W (t, τk), we recall that

the result of the time-ICI map D(t, τk) must satisfy hypothesis H1 given

previously:

|D(t, τk)| ≥ Γ (12)

where Γ is the detection threshold obtained numerically from Eq. (11)

as explained in section 2.3.3. However, as click trains are affected by a

jitter (random variable) the exact distribution of D(t, τk) is unknown. This

difficulty is by-passed by computing the signal intensity [30] defined by:

Is =
√
E[D2(t, τk)] (13)

Nishiguchi shows that this signal intensity can be expressed as a function

of the critical parameters (σ, ν, w, ζ, q) [30]:

I2s = (1 + 2σq)2I20 + (qν + 2w′)σq (14)

where w′ = min(w, ν) and I0 is given by:

I20 = w′
1 + sinc(ζ)

1− sinc(ζ)
− 2sinc(ζ)[1− sincw′

(ζ)]

[1− sinc(ζ)]2
(15)

The detectability condition becomes:

Is ≥ Γ (16)

Poisson distribution coefficient defined by Eq. (10), can also be rewritten

as a function of σ, ν, w and q [30] and is now given by:

λ =
(qν + w′)2σ

ν
(17)

14



By varying the values of the sextuple (ν, w, q, σ, ζ, Pfa), we can determine

the conditions for which a click train will be theoretically detectable.

3.1. Detectability of a click train

The question addressed in this section is the detectability of a click train

when parameters (σ, ν, Pfa) used to built the time ICI map and to calculate

the detection threshold are set to fixed value. Therefore, for a given triplet

(σ, ν, Pfa), we use Eq. (14) and (16) to find values of (w, ζ, q) allowing click

train detection.

In a first simulation, we arbitrarily set (σ, ν, Pfa) = (0.3, 10, 10−4) and

then calculate the minimum number of clicks (wmin), the click train should

contain to be detected when ζ ∈ [0 , 0.4] and q ∈ {1, 2, ..., 10}. Results of

all (q, ζ) combinations are summarized in Fig. 5a.

Figure 5a should be read as follow: if ζ = 0.02 and if q = 4, then wmin = 7.

This means that the click train should have at least 7 rhythmic clicks to be

detected in these conditions (ζ = 0.02, q = 4).

A comprehensive analysis of Fig. 5a shows that for values (σ, ν, Pfa)

chosen above, when ζ < 0.16 the click train should contain at least 6 to

9 clicks to be detected in a mixture of other impulsions. Now if the jitter

reaches ζ = 0.35, then we will only be able to detect the click train if it has

more than 8 clicks and if q < 4. For this same value of ζ, the click train will

never be detected if q > 4. At last, for the set of parameters (σ, ν, Pfa)

chosen here, a click train having a jitter ζ > 0.4 will never be detected.

Repeating the above simulation with ν = 20 and the couple (σ, Pfa)

kept as before, we observe for all combinations of ζ and q, an increase of the

minimum number of clicks wmin required to detect the click train (Fig. 5b).
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In a general manner, as long as ν increases, wmin increases as well.

To study the influence of σ, we redo the same simulation with the follow-

ing parameters: (σ, ν, Pfa) = (0.2, 10, 10−4). Again, we calculate wmin for

different combinations of ζ and q. Results of this simulation are summarized

on Fig. 5c. Comparing Fig. 5a and 5c, show that for a given couple (q, ζ),

when σ decreases, more rhythmic clicks are generaly needed in the train to

be able to detect it. We notice that for σ = 0.2, a click train with a jitter

ζ = 0.35 mixed to other clicks with a q equal to 4 will not be detectable

anymore (Fig. 5c), whereas it was when σ was equal to 0.3 (Fig. 5a).

Synthetization of results from Fig. 5a, 5b and 5c can be expressed as:

• For a given value of the number of extra pluse q, the minimum num-

ber of clicks (wmin) required to detect a click train increases when ζ

increases.

• For a given value of the jitter ζ, the minimum number of clicks (wmin)

required to detect a click train increases when q increases.

• One can detect a rhythmic click trains whose jitter ζ is slightly higher

than the width of the ICI bin bk given by σ.

These theoretical results should be compared to the characteristics of click

trains produced by odontocetes, and particularly to those of belugas we want

to detect, in order to see if the conditions of detectability discussed above

with the help of Eq. (14) and (16) are compatible with the sound production

of this species.

To do, we analyzed an extensive database of beluga’s click train, with a

focus on the number of clicks produced in each train, on the width of the ICI
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range and on the jitter width in between each ICI. Details concerning the

database, the material and the method followed to perform this analysis are

given in Appendix B. Results of this analysis can be summarized as follow:

• 90 % of beluga’s click trains contain more than 6 clicks;

• 90 % of beluga’s click trains have a jitter width ζ below 0.25;

• ICI of beluga’s click trains ranges in [0.001 s - 0.2 s].

From these real data, we notice that the number of clicks emitted in each

click train is compatible with what is required by the proposed algorithm,

especially if ν is around 10. Also, the jitter width of beluga’s click trains

falls within the range of those simulated above. This analysis can help us to

choose appropriate values for ν and σ. According to results shown on Fig. 5

and to those obtained in Appendix B, taking ν = 10 and σ = 0.3, we should

be able to detect most of click trains of belugas.

3.2. Minimum ICI ratio to separate two interleaved click trains

One aim of the algorithm is to separate interleaved click trains of simul-

taneously clicking multiple odontocetes. Each ICI value τk is linked to an

ICI-bin bk whose width depends upon the parameter σ (see Eq. (8)), which

affects the ICI resolution. A small σ allows differencing two close ICI while

a large σ cannot.

Assuming two click trains with respective ICI τ1 and τ2 such as τ1 < τ2,

the click train with ICI = τ1 can theoretically be detected up to the ICI-bin

b
′

k whose lower boundary is given by τ
′

k(1 − σ
2
) = τ1. Same, the click train

with ICI = τ2 can theoretically be detected down to the ICI-bin b
′′

k whose
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upper boundary is given by τ
′′

k (1+ σ
2
) = τ2. So τ1 and τ2 will be discriminated

on the time-ICI map if:

τ
′

k < τ
′′

k ⇐⇒ τ1
1

(1− σ
2
)
< τ2

1

(1 + σ
2
)

(18)

i.e.

τ1 <
2− σ
2 + σ

τ2 (19)

Fortunately in practice, the minimum ICI difference to distinguish two

click trains does not need to strictly respect condition of Eq. (19). Indeed,

when τ1 ≈ τ ′k(1− σ/2) the list of TOAs of the click train is given by:

[0, τ1, 2τ1, 3τ1, ..., Nτ1] = [0, τ ′k(1−σ/2), 2τ ′k(1−σ/2), ..., Nτ ′k(1−σ/2)] (20)

and the complex autocorrelation in bin τ ′k is equal to:

D(t, τ ′k) =
N−1∑
n=0

exp (2πitn/τ
′
k) (21)

= 1 + exp (2π(1− σ/2)i) + exp (4π(1− σ/2)i)

+ ...+ exp (N × 2π(1− σ/2)i) (22)

Coefficient (1−σ/2) acts like a phase-shift term in all exponentials. Because

of this phase shift, exponentials are not perfectly in-phase and the amplitude

of |D(t, τ ′k)| remains low and below the detection threshold. Same reasoning

applies for τ2 with a phase-shift equal to (1 + σ/2).

4. Results on simulated data

To validate analytical results obtained in the previous section, we test the

proposed algorithm on simulated click trains.
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A first simulation is made to check results regarding the minimum num-

ber of clicks wmin the click train should have to be detectable. We have

interleaved a click train containing w = 370 clicks having an ICI = 0.02 and

a jitter width ζ = 0.16 (red curves on Fig. 6) with shorter click trains having

an ICI = 0.035, a jitter width ζ = 0.16 and containing w = 5, 6, 7, ..., 11

clicks (purple curves on Fig. 6). With these ICI values, there are about two

clicks from first click train in between each pair of clicks from the second

train. Thus, for the second click train q = 2. The time-ICI map associated

to these interleaved click train is built with parameters ν = 10, σ = 0.3,

Pfa = 10−4 (Fig. 6). With these parameters, according to theoretical results

from Fig. (5a), the second click train can only be detected if it contains more

than 7 clicks. Figure 6 shows that the click train with an ICI = 0.035, i.e.

with a q = 2, is not detected when w = 5, w = 6 and w = 7. However, when

w ≥ 8 conditions of detectability are reached and click trains are perfectly

detected. Click train with ICI = 0.02 (in red) has a q almost equal to zero

throughout the time and its w > wmin. Thus it satisfies conditions of de-

tectability and is perfectly detected on the time-ICI map. These observations

validate theoretical results from section 3.1.

A second simulation is made with a higher number of interleaved click

trains, in order to check the conditions of detectability in a more complicated

environment. All click trains have a constant ICI and a jitter width ζ = 0.1.

Time-ICI map resulting from this simulation is shown on Figure 7. Click

trains are well detected most of the time, as shown by the good agreement

between the detection obtained with our algorithm and the ground truth

(colored solid lines). However, we see that the more click trains are inter-
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leaved, the more missed detections we have. This is particularly the case with

the slowest click train (ICI = 0.12), for which missed detections appear in

time intervals [3 s, 4 s] and [6 s, 7.5 s], when the two fastest click trains

are present. In time interval [3 s, 7.5 s] the number of extra clicks q inserted

between two clicks of the slowest click train is higher than 8. Therefore, we

are at the boundaries of the conditions of detectability discussed in section

3.1. As soon as the fastest click trains stops, click train with ICI = 0.08 and

ICI = 0.12 are well detected again.

5. Results on real data

The proposed algorithm is then validated on real data coming from the

database studied in Appendix B.

5.1. Results on regular click trains

For this first example, echolocation click trains, i.e. without burst click

trains, of wild belugas are interleaved (Fig. 8a). Conditions of separability

given by Eq. (19) can again be assessed on this example, as various ratio for

τ1
τ2

are met. As above, parameters used to compute the time-ICI map are

ν = 10, σ = 0.3, Pfa = 10−4. Result of the algorithm is shown on figure 8b

(before thresholding) and figure 8c (after thresholding).

In the range [ 0 s, 20 s] the different interleaved click trains are perfectly

detected. Their respective jitter ζ and q are quite low and they all contain a

high number w of clicks so that conditions of detectability given by Eq. (14)

and (16) are fully respected. Figure 8d also shows the upper and lower ICI bin

till where each click train could theoretically be detected. We see there is no

overlapping between these boundaries, meaning that separability conditions
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(Eq. (19)) are respected, which is confirmed by the binary time-ICI map

obtained in-fine.

At the contrary, in the range [27 s, 32 s], we have two interleaved click

trains with overlapping boundaries. Fortunately, most of the time the com-

plex exponentials are not perfectly in phase for the τk values that are common

to both click trains, avoiding both tracks to concatenate. Detections of both

click trains only merges at 30 s when their ICIs are nearly equal. Most of

the time, ICIs of belugas clicking simultaneously are sufficiently different to

be perfectly distinguished on time-ICI map.

Interpretation of this time-ICI map can help biologists or bio-acousticians

to know that within this 30 s period, at least two animals were present around

the hydrophone and that they were using ICI associated to echolocation

behavior.

5.2. Results on regular click trains mixed with burst click trains

In this other example, we choose a sequence where an echolocation click

train and a burst click train of two belugas from our database are mixed

(Fig. 9a). Results obtained with the proposed algorithm are shown on figure

9b and 9c.

While the echolocation click train is alone, in the time interval [28 s, 30.5

s], the detection is nearly perfect and there are no false alarms. We only

observe a missed detection around t = 29 s due to a too fast increase of the

rhythm. At that time, the jitter suddenly increases because the ICI is very

different from one click to another (see Train 1 on Fig. 9a). We also notice

that the amplitude of the complex autocorrelation is much lower during this

rhythm change.
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When the burst pulse sound appears (t = 31.5 s), the number of false

alarms, which take the form of large black spots on the binary time-ICI map,

increases (Fig. 9c). On this example, false alarms appears in all ICI values

higher than 0.8 s within the time interval [30.5 s, 33 s]. Since a burst pulse

sound is characterized by a very small ICI, we obtain, for the lowest ICI

values, a very high number of couples (tn , tm) for which tn belongs to the

regular click train and tm belongs to the burst. The amplitude of the modulus

of D(t, τk) (Eq. 6) generated by all these couples (tn , tm) is thereby greatly

increased. These high amplitudes appears in dark red on figure 9b. Despite

the use of an adaptive threshold, this sharp increase can not be compensated.

These false alarms preferably show up in ICI bins for which apparent q

is very high (greater than 5 Fig. 9d). This is a real issue in our application

field because the dynamics of ICIs produced by all odontocete species is very

high. A ratio of 1 to 200 between the smallest and the biggest ICI values

emitted is a common thing for most of the species.

6. Discussion

The proposed algorithm only relies on TOAs of the detected clicks, which

is a very simple parameter to measure, in comparison to other acoustical pa-

rameters like the frequency content for instance. Moreover, as the waveform

can suffer of distortions during its propagation through the oceanic canal

as well as through the narrow directivity beam pattern of the sound source

production mechanism of the animal, amplitude and frequency content of

the signal received at the hydrophone can be greatly affected. In contrast,

the uncertainty concerning the exact position of the TOA, even with highly
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warped waveforms or in low signal to noise ratio conditions, is negligible

compared to the size of the ICI (about ten microseconds versus 1 to 100 mil-

liseconds), and so is included within the jitter width. Therefore, TOAs are

less affected by the acoustic properties of the source and by the conditions

of propagation, which make it a reliable parameter for rhythmic click train

detection and click train separation.

The algorithm proposed needs 7 inputs parameters (τmin, τmax, σ, ν, r,

step, Pfa) (see Table 1 for details), which is less than in most of the other

algorithms found in the literature. Baggenstoss[6] extracts 28 features for its

click association process and Zaugg[19] 13 features. Among the 7 parameters

used in our algorithm, the performance analysis showed that only 3 were

really critical for the proper functioning of the algorithm (ν, σ and Pfa)

as they directly impact the results of the complex autocorrelation or the

thresholding of the time-ICI map. The respective influences of ν and σ on

the click train detectability have been exhaustively examined in section 3.

The four other parameters (τmin, τmax, r, step) have an impact on the speed of

the algorithm, as they directly influence the number of sliding windows used

to build the time-ICI map and so the computational cost of the algorithm.

This computational cost is also affected by the number of clicks in the sliding

windows. Indeed, when the number of clicks increases, the number of couples

(tn, tm) the algorithm has to examine and associate to an ICI bin increases.

Tests performed on simulated and real data showed that the main dif-

ficulty met by our algorithm is its capacity to deal with interleaved click

trains having very different rhythms (burst pulse sound mixed with a regular

echolocation train) or with single click train mixed with a high number of
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false alarms. In both cases, the apparent value of q for the click train we

want to detect is very high, typically more than 10.

A solution that we have tried (not presented in this article) to solve this

problem is a sequential approach to detect and remove burst pulse sounds be-

fore detecting regular echolocation click trains. Results obtained are promis-

ing in term of false alarm reduction. Sequence search approach has also been

proposed in the literature, either for similar purpose [23] or to finish the pro-

cess of separation and clustering of clicks belonging to the same train [19].

In this later reference, the sequential search uses the frequency content of the

click as a complementary features to obtain better clustering performances.

Other features could be used as already suggested in [13, 6, 19].

The algorithm presented in this article works on a single hydrophone,

which makes it interesting for long-term monitoring based on sparse au-

tonomous recorders. Its use can then be fruitful for bioacousticians as it

improves the detection of odontocetes in areas where other impulsive sources

exist. By separating the click train on the time-ICI map and by showing

the evolution of the rhythm of each animal with the time, it can be used to

study the bio-sonar of these animals. But this time-ICI analysis may also

prove to be a complementary method to separation methods based on DOA,

that use arrays of multiple hydrophones. Indeed, put our algorithm before

the computation of DOAs could help to detect and identify click trains that

are common on all hydrophone before associating them for DOA estimation.

This might be particularly useful on large aperture array. The processing

steps would be as follow: 1) compute the time-ICI map of each hydrophone

taken separately; 2) identify spots on the time-ICI map that are common to

24



all hydrophones 3) calculate DOAs between click trains associated to these

identified spots.

7. Conclusion

This paper proposes an algorithm based on a rhythm analysis of the

signal to detects rhythmic click-train mixed with non-rhythmic clicks and

separates interleaved rhythmic click-trains. We showed that using a complex

exponential term in the autocorrelation function was helpful to cancel the

subharmonics usually found in the classical autocorrelation. Applying the

proposed complex autocorrelation in a window sliding along the interleaved

click train allowed to obtain a map representing the ICI of the rhythmic click-

trains as a function of the time. An exhaustive analysis of the performances of

the algorithm was performed. It showed that the algorithm performs well and

is compatible with the properties of click trains of beluga whales recorded

in the wild. The approach presented in this paper to analyze odontocete

click trains appears to be complementary to the ones found in the literature.

Working on a single-hydrophone design, it could also be useful in a multi-

hydrophone application context. Possible applications of this method are

numerous: detection of odontocete click train in a noisy environment where

the signal is polluted by frequent impulses, estimation of the number of

odontocetes clicking simultaneously, input for sequential search algorithms

that need to know the ICI.
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Parameter name Description

[τmin τmax] Expected minimum and maximum ICI values

r Resolution of ICI bins

ν Number of periods with ICI equal to τ contained in the window W(t,τ)

step Sliding step size of the time window along the pulse train

σ Upper limit of the jitter in ICI bins bk

Pfa Targeted probability of false alarm

Table 1: algorithm parameters to built the time-ICI map

percentile 10th 20th 30th 40th 50th 60th 70th 80th 90th 100th

number of click

per train

6 9 15 21 29 40 55 76 120 293

ICI (s) 0.013 0.029 0.034 0.038 0.044 0.049 0.057 0.068 0.093 0.22

ICI jitter given

by Eq. (B.1) (%)

0.17 0.37 0.6 0.94 1.4 2.0 3.1 5.2 12.4 100

Table 2: Percentiles of the characteristics of the manually annotated wild beluga click

trains recorded in Canada by Fisheries and Oceans Ministery. Total number of clicks in

the dataset: 11881. Number of ICI values: 11633.
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Appendix A. Subharmonic Suppression

In this appendix, we demonstrate the effect of the complex exponential

term on the suppression or reduction of the subharmonics. Let’s consider

the particular case of a pulse train coming from a single source, without any

additional undesirable clicks. TOAs for this rhythmic source are given by

the following equation:

ti = i× ICI (A.1)

where ICI is the rhythm at which clicks are emitted by the source and i = 1,

..., N is the click index.

With such TOA expression, Eq. (4) becomes

D(τ) = (N − 1)δ(τ − ICI) +
N−1∑
l=2

δ(τ − l × ICI)
sin(Nπ/l)

sin(π/l)
eπi(N+1)/l (A.2)

The first term on the right hand side of Eq. (A.2) represents the contribu-

tion of impulses located at the fundamental ICI (τ = ICI) and its modulus

is N − 1. The second term represents the contribution of impulses located

at integer multiples of the ICI, i.e. τ = l × ICI, and gives the amplitude

of subharmonics. For l ∈ [2 ; N-1] the amplitude of the lth subharmonic is

given by: ∣∣∣sin(Nπ/l)

sin(π/l)

∣∣∣ (A.3)

In the case of a single pulse train, the classical autocorrelation function

gives the following result:

C(τ) =
N−1∑
l=1

(N − l)δ(τ − lp) (A.4)

The amplitude of the lth subharmonic is N − l.
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For a click train having N = 100 clicks, we calculate the amplitude of all

subharmonics (l ∈ [2, ..., 100]) for both complex and classical autocorrelation

using Eq. (A.3) and Eq. (A.4) respectively (Fig. 10). We clearly see that for

most of the subharmonics, the amplitude of the complex autocorrelation is

much lower than the amplitude of the classical autocorrelation. They have

the same amplitude only when the index of the harmonic l becomes very

close to N . Changing the number of clicks N only alters the amplitude of

both the complex and the classical autocorrelation by a common scale factor.

Appendix B. Click train production by beluga whales

Numerous publications [2, 8, 15] and books [1, 3] describe the character-

istics of bio-sonar clicks produced by odontocetes, in term of source level,

frequency content, directivity or ICI. However, little is known about proper-

ties of click trains taken in their entirety.

To properly tunes the proposed algorithm parameters and assess its oper-

ating conditions, it is necessary to know the characteristics of the click trains

of the particular species we want to detect. Among the characteristics of

interest, we can cite the range of ICI produced by the species, the number

of click per train or the distribution of the jitter, that will directly affect the

proper functioning of the algorithm and the tuning of its parameters.

Appendix B.1. Materials and methods

We therefore studied a large amount of data of beluga whale (Delphi-

napterus leucas) click trains recorded in August 2011 in the Cumberland

sound, southern Baffin Island (Lat. 66.577◦N, Long. 67.481◦W, Canada).
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During the experiment, the signal of a hydrophone (High Tech Inc., Gul-

port, MS, USA) was amplified by 25 dB before to be recorded by an IOtech

DaqBoard3000/USB having a 16-bit resolution, connected to a personal com-

puter (PC). A sampling frequency of 300 kHz was used for recording the

hydrophone signal under a wave format.

To analyze click-train properties, 248 click trains containing a total of

11881 clicks were manually annotated by looking at the waveform and the

spectrogram. Here, we call click train, a set of consecutive clicks emitted

by the same beluga. Only trains for which clicks could be associated to a

single individual without any doubt were selected. The TOA of each click

was assigned to the signal sample corresponding to the peak amplitude of

the click. The list of TOAs corresponding to each annotated click train was

then used to estimate the successive ICIs and extract the statistical and serial

characteristics:

• number of clicks per train;

• ICI;

• average relative jitter.

Appendix B.2. Results

Appendix B.2.1. Beluga click train statistics

One of the main parameters affecting the performances of the proposed

algorithm is the number of clicks in each click-train, which should exceed

a minimum threshold (see below). The probability density function (PDF)

and the cumulative distribution function (CDF) of the number of clicks per
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train for the 11881 clicks show that the number of clicks per click train ranges

from few clicks, typically 4 or 5, to more than 250 clicks (Fig. 11a). Overall,

90 % of the click trains contain more than 6 clicks, 70 % have more than 15

clicks and 50 % have more than 29 clicks (Table 2).

A second parameter to consider when tuning the algorithm is the range

of ICI of interest, i.e. the interval [τmin, τmax] in which the complex au-

tocorrelation will be computed, as already discussed in section 2.3.2. ICIs

of the annotated database are mainly distributed between 0.004 and 0.2 s

(Fig. 11b). More than 60% of them are between [0.025 s, 0.07 s] and 80%

between [0.015 s, 0.092 s] (Table 2 ). A peak at ICI ≤ 0.01 s corresponds to

clicks belonging to burst pulse sounds. Burst pulses represent less than 10%

of the annotated clicks. The ICI range setting can be done with the help of

the PDF of Fig. 11b. We recall that for all results for belugas shown in this

paper we took τmin = 0.001 s and τmax = 0.2 s

The distribution of the ICI values depends on the number of clicks in the

train (Fig. 11c). Short click trains generally have higher ICI values and a

larger variability. The ICI distribution narrows down and the median ICI

decreases with increasing number of clicks per train.

Appendix B.2.2. Rhythmic properties of beluga click trains

The proposed algorithm requires that clicks follow a rhythmic pattern.

To validate this assumption, we examined the relationships between the ICI

of the nth and the (n + 1)th pairs of clicks of each annotated click train.

Results show that the ICI of the nth and the (n+ 1)th click pairs are linearly

related (Fig. 11d). The linear relation is given by: ICI(n) = ICI(n+1). The

coefficient of determination, which is a real value indicating how well data fit
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a linear model, is equal to 0.86, confirming the linear relation from one ICI

to the next one. The hypothesis that clicks are not randomly produced but

follow a rhythmic pattern is therefore validated. However, the residual from

the linear regression increases with increasing ICI. We evaluate the average

relative jitter between all nth and (n+1)th ICI pairs of the database as follow:

δICI1 =
∣∣∣ ICI(n+ 1)− ICI(n)

0.5× [ICI(n) + ICI(n+ 1)]

∣∣∣ (B.1)

Although the jitter can reach high values, it is below 10 % most of the time

(Table 2). The median is 1.4 %, the 80th percentile is 5.2 % and the 90th

percentile is 12.4 %. Ignoring burst pulse sounds, the mean of the average

relative jitter per ICI decile increases with increasing ICI (Fig. 11e, Table 2).

In summary, the useful click characteristics for the tuning and the per-

formance analysis of the algorithm are:

• ICI range: [τmin, τmax] = [0.001 s , 0.2 s]

• Number of click per train: [4 , 293]

• Jitter width (i.e. 2×δICI1): [0 0.3]
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Figure 1: Signal processing steps of the proposed algorithm. The seven parameters needed

to build the time-ICI map and perform the detection of the click trains are: [τmin τmax]:

the expected minimum and maximum ICI values; r: the resolution of ICI bins; ν: the

number of periods with ICI equal to τ contained in the window W(t,τ); step the size of

the sliding step of the time window along the pulse train; σ: the upper limit of the jitter

in ICI bins bk; Pfa: the targeted probability of false alarm.
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Figure 2: (a) Example of two interleaved simulated click trains as it would be received

by a hydrophone. Respective ICIs are 0.09 s and 0.0435 s ; b-g) Output of the steps of

the proposed algorithm using the complex autocorrelation (right column) and comparison

with the classical autocorrelation (left column); b-c) Results of the classical and complex

autocorrelation for mixed click trains from a.3; d-e) Step 1: Corresponding time-ICI map;

f-g) Step 3: Corresponding binary time-ICI map. The inverted direction of the ordinate

axis in d-g are consistent with the usual frequency direction of the spectrograms.
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Figure 3: Implementation aspects of RACESS algorithm. The drawing represents how the

width of the sliding window and the width of the ICI-bin evolves depending on the value

of the ICI τ on the time-ICI map. When the ICI τ increases, the width of the ICI-bin

increases proportionally to σ. When the ICI τ increases, the length of the sliding windows

increases proportionally to ν.
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a)

Figure 4: Detection thresholds as a function of the probability of false alarm (Pfa) and

the Poisson parameters λ, given by Eq. (11).
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Figure 5: Theoretical conditions of detectability expressed in term of minimum length of

detectable click train (wmin) as a function of the proportion of extra pulse q and for jitter

width ζ = 0.02, ζ = 0.16 and ζ = 0.35. Parameters used to built the time-ICI map are: a)

(ν, σ, Pfa)=(10, 0.3, 10−4); b) (ν, σ, Pfa)=(20, 0.3, 10−4); (ν, σ, Pfa)=(10, 0.2, 10−4).
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Figure 6: (Assessment of the theoretical conditions of detectability with simulated data.

a) First click train (purple curve) is sub-divised in 7 parts. Within each part the ICI=

0.035 s and jitter width is ζ = 0.16. Number of clicks within each sub-part is respectively:

5, 6, 7, 8, 9, 10 and 11. b) Second click train (red curve) has an ICI=0.02 s, a jitter

width ζ = 0.16 and w = 370 clicks. c) Time-ICI map of two interleaved click trains. Thin

colored lines on the time-ICI map correspond to the instantaneous ICI (ground truth).
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Figure 7: Time-ICI map of five interleaved simulated click trains. Thin colored lines

correspond to the instantaneous ICI (ground truth).
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Figure 8: Results of the algorithm for six interleaved wild beluga click trains. a) Sequence

of the six click trains. b) Time-ICI map. c) Binary time-ICI map (bold line). ICI measured

manually (thin line). d) Instantaneous rhythm of interleaved click train (solid line) and

their respective lower and upper ICI-bin limit (dashed line). e) q the average number of

extra pulses mixed with the train to detect.
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Figure 9: Results of the algorithm for interleaved beluga burst pulse train and click train.

a) Clicks time of arrival. b) Time-ICI map. c) Binary time-ICI map (bold line). ICI

measured manually (thin line). d) q the average number of extra pulses mixed with the

train to detect.
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Figure 10: Amplitude of the harmonics (the classical autocorrelation - solid line, the

complex autocorrelation - dashed line)when the number of clicks in the train is N=100.

For most subharmonics l, the amplitude obtained with the complex-autocorrelation is

much lower than with the classical-autocorrelation.
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Figure 11: a) PDF (dashed line) and CDF (solid line) of the number of clicks per train.

Total number of clicks: 11881. b) PDF (dashed line) and CDF (solid line) of the ICI

values of the annotated click train dataset. c) Box-plot of the ICIs as a function of the

number of click per train. Marks are at the 1st, the 10th, the 25th, the 50th, the 75th and

the 90th percentiles of the CDF. Crosses are outliers. d) Relation between the ICI of the

(n + 1)th and the (n)th click pairs. e) Mean of the average relative jitters calculated for

each ICI decile. Ignoring burst pulses, the mean of the average relative jitters increases

with increasing ICI. 46


