

### Evaluation of 3D Discrete Angles Rotation Degradations for Myocardial Perfusion Imaging

Henri Der Sarkissian, Jeanpierre Guédon, Pierre Tervé, Nicolas Normand,

Imants Svalbe

#### ► To cite this version:

Henri Der Sarkissian, Jeanpierre Guédon, Pierre Tervé, Nicolas Normand, Imants Svalbe. Evaluation of 3D Discrete Angles Rotation Degradations for Myocardial Perfusion Imaging. 25th Annual Congress of the European Association of Nuclear Medicine, Oct 2012, Milan, Italy. Springer-Verlag, European Journal of Nuclear Medicine and Molecular Imaging, 39 (2), pp.S502-S502, 2012. hal-01133250

#### HAL Id: hal-01133250 https://hal.science/hal-01133250

Submitted on 18 Mar 2015

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. P0685



# **EVALUATION OF DISCRETE ANGLES ROTATION DEGRADATIONS FOR MYOCARDIAL PERFUSION IMAGING**



Henri DER SARKISSIAN<sup>1,2</sup>, Jeanpierre GUEDON<sup>1</sup>, Pierre TERVE<sup>2</sup>, Nicolas NORMAND<sup>1</sup>, Imants SVALBE<sup>3</sup> 1. LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597, Nantes, FRANCE 2. KEOSYS, Nantes, FRANCE 3. Monash Univ., Melbourne, AUSTRALIA

# **INTRODUCTION & PURPOSE**

For myocardial perfusion imaging, the tomographic transaxial cardiac volume must be reoriented in the standard views for inter-patient comparison and diagnosis accuracy, as advised by the EANM guidelines.

The volume is then resampled and displayed in the standard HLA, VLA and SA axis.

Rotation of digital images defined on discrete grid introduce image degradation and artifact arising from the lack of perfect match between continuously rotated grid and the original one. As a result, every rotation has to be considered cautiously and be held in the manner to minimize the quantification error.

The goal of this poster is :

1) to compare existing rotation algorithms for nuclear medicine images (with their specific spectral content),

2) to use a novel method (Svalbe) both based on discrete angle rotation and image sampling to ensure an one-to-one pixel mapping,

3) to measure rotation operator defaults using the same discrete angles for all tested methods.

## **SUBJECTS & METHODS**

### **Continuous rotation of a 2D image**





| Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                      |                                           |                                          |                                           | Error measurement using 2 metrics                                                                                                                                                                                               |                                            |                                |                      |             |              |                |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|----------------------|-------------|--------------|----------------|----------------|
| <ul> <li>2 kind of experiments are used :</li> <li>1) kN rotations of 2π/N angle. 2π/N is chosen to be a discrete angle. This scheme is only used for continuous rotations (c.f. Table 1),</li> <li>2) Rotation of angle (p<sub>1</sub>,q<sub>1</sub>), followed by (p<sub>2</sub>,q<sub>2</sub>). The resulting image is then rotated one last time by the global reverse angle (p<sub>1</sub>p<sub>2</sub>-q<sub>1</sub>q<sub>2</sub>,q<sub>1</sub>p<sub>2</sub>+p<sub>1</sub>q<sub>2</sub>). This scheme is tested for continuous and discrete rotations (c.f. Table 2).</li> </ul> |                                          |                                      |                                           |                                          |                                           | Mean Square Error (MSE) – the $\mathcal{V}^2$ norm of error image : $MSE = \frac{1}{PQ} \sum_{x=0}^{P-1} \sum_{x=0}^{Q-1} (I(x,y) - I'(x,y))^2$<br>Peak Signal to Noise Ratio (PSNR) : $PSNR = 20 \log(\frac{255}{\sqrt{MSE}})$ |                                            |                                |                      |             |              |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                      |                                           |                                          |                                           |                                                                                                                                                                                                                                 |                                            | Res                            | ULTS                 |             |              |                |                |
| Table 1: kN rotati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ions of 2                                | 2π/N<br>F                            | PFT                                       |                                          |                                           | C                                                                                                                                                                                                                               | Т                                          |                                |                      |             |              |                |                |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 Rotations of 45°                       |                                      | 80 Rotations of 45°                       |                                          | 8 Rotations of 45°                        |                                                                                                                                                                                                                                 | 80 Rotations of 45°                        |                                | 0                    |             |              | 0              | 0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSE                                      | PSNR                                 | MSE                                       | PSNR                                     | MSE                                       | PSNR                                                                                                                                                                                                                            | MSE                                        | PSNR                           |                      |             |              |                |                |
| Nearest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.90                                    | 34.17                                | 24.90                                     | 34.17                                    | 145.41                                    | 26.50                                                                                                                                                                                                                           | 145.41                                     | 26.50                          | PET <sup>82</sup> Rb | 8 Rotations | 80 Rotations | 8 Rotations    | 80 Rotations   |
| Bilinear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.29                                    | 34.10                                | 98.55                                     | 28.19                                    | 155.29                                    | 26.22                                                                                                                                                                                                                           | 326.36                                     | 22.99                          | СТ                   | (Bilinear)  | (Bilinear)   | (Cubic Spline) | (Cubic Spline) |
| CubicB- spline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.64                                    | 34,98                                | 20.92                                     | 34.93                                    | 115.17                                    | 27.52                                                                                                                                                                                                                           | 139.64                                     | 26.68                          |                      |             |              |                |                |
| High order (Spline 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.93                                    | 34,72                                | 71.57                                     | 29.58                                    | 116.87                                    | 27.45                                                                                                                                                                                                                           | 267.27                                     | 23.86                          |                      |             |              |                |                |
| For continuous rotation<br>results. We discourage<br>discourage the use of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns, cubic sp<br>the use of<br>even degre | oline see<br>f bilinear<br>e splines | ms to give<br>interpolati<br>, as for exa | the best re<br>on since it<br>mple SP2 v | sults. Even<br>blurs drama<br>which gives | higher ord<br>atically the<br>rise to stro                                                                                                                                                                                      | er spline giv<br>image. We<br>ong aliasing | ve worse<br>also<br>artifacts. |                      |             |              |                |                |

Table 2: Rotation of angle (1,1) followed by (2,1) and reverse rotation by

| (1,-3) Mothod         | F     | EI    |        |       |  |
|-----------------------|-------|-------|--------|-------|--|
| s wiethod             | MSE   | PSNR  | MSE    | PSNR  |  |
| Nearest               | 10.18 | 38.05 | 162.29 | 26.03 |  |
| Bilinear              | 1.14  | 47.56 | 98.85  | 28.18 |  |
| Cubic B-spline        | 0.01  | 66.55 | 82.12  | 28.99 |  |
| Discrete FRT rotation | 0.08  | 59.10 | 146.65 | 26.47 |  |

Corresponding error images

The discrete FRT-based rotation does not give the best MSE values, but it does not introduce any blur. Moreover, the original pixel intensities are preserved thus the rotation is totally reversible and lossless, which is very appreciable for quantitative analysis based on pixel intensity.

Some drawbacks, like the magnification of image size increases memory usage and the periodic sampling of FRT needs a specific mapping to achieve discrete rotation from real acquisition.

### CONCLUSION

The key points of our method are:

- The method is fully discrete so no assumption is made about an underlying continuous model, making it fast, exact and reversible
- It is performed into a discrete projection space, close to the data acquisition space. Thus no tomographic reconstruction has to be made prior to reorientation, minimizing the smoothing effects of interpolation.

Future work: Effects of both reconstruction and reorientation have to be assessed simultaneously. For this purpose, we need estimators of left ventricle orientation directly into the projection space.

