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Microlocal analysis of the generalized Radon
transform over the level curves of CES-functions

A.D. Agaltsoﬂﬂ

We show that the generalized Radon transform over the level curves
of CES-functions in the positive quadrant is an integral Fourier op-
erator satisfying the condition of microlocal regularity. We describe
a method for reconstruction of singularities of a function from the
singularities of its generalized Radon transform.

Keywords: generalized Radon transform, microlocal analysis, in-
tegral Fourier operator

1 Introduction

We consider the generalized Radon transform R,, a € R\ 0, on the positive
quadrant X = {(z1,22): 1 > 0,22 > 0} which maps a sufficiently regular real-
valued function u on X to the function R,u on P = {(p1,p2): p1 > 0,p2 > 0}
defined as follows:

Rou(p) = /X u(2) wa,ps (1.1)

@,p

where p = (p1, p2),

Xap = {(z1,22) € X: qo(p121, pow2) = 1}, (1.2)
Go(1,22) = (8 + 29V, 1,29 >0, (1.3)

Wa,z is the Gelfand-Leray 1-form given by the interior product:

Wa,p = deqa (P11, p222) 2 (dxy A do), (1.4)

and orientation on X, , is given by the volume form |V ¢, (p121, p222)|wa,p-
Recall that by definition w,,p is the restriction to X, , of any 1-form w, ,
on X satisfying
dea(pﬂUl;PZfQ) A &a,p = dx1 N dx.

The form w, , doesn’t depend on the choice of wq p.

Transform with @ < 1 is closely related to the profit function in the
generalized model of pure industry which takes into account the substitution of
production factors at the micro-level, see, e.g., Refs. [Shal], [Sha2].
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In this setting g, is the unit cost function, (1 — ) is the elasticity of substi-
tution of production factors at the micro-level and u has the meaning of density
of distribution of production powers over technologies. In this context function
o is called the constant elasticity of substitution function (CES-function).

The case a = 1 corresponds to production systems with no substitution of
production factors at the microlevel. This assumption is not fulfilled in the
majority of production systems experiencing the effects of standartization and
globalization. In this case transform is the classical Radon transform in
R? with limited data: only those straight lines that intersect both coordinate
axes in the first (nonnegative) quadrant are considered. The properties of this
transform were studied in [HS].

Passing a — 0 in we obtain the transform R, that integrates function
u over the sets xyxo2 = const. This case corresponds to production systems
with the Cobb—Douglas production functions. Note that transform Ry maps
a function of two variables to a function of one variable (after an appropriate
change of variables). We exclude this case from consideration.

We are mainly interested in the following problems for transform R,.

Problem 1 (Uniqueness). Find sufficient conditions for injectivity of transform
R, on a suitable space. Find examples of non-injectivity of transform R, .

Problem 2 (Characterization). Decribe the range of transform R, on a suitable
space.

Problem 3 (Inversion). Find a stable algorithm (or formula) for inversion of
R, on a suitable space. Obtain the stability estimates.

Problem 4 (Microlocal properties). Describe the propagation of singularities
by transform R,,.

By «suitable spaces» we understand the spaces which naturally arise in the
above setting of the generalized model of pure industry, for example, the space of
non-negative compactly supported continuous functions or more general spaces.

Transform R, was introduced in Ref. [HS] in the case when o = 1. It was
studied for the first time under the assumption that o > 0 in Ref. [Agl]. In Ref.
[Ag2] the more general transform was considered, where integration in is
over the level hypersurfaces of an arbitrary positively homogeneous function in
positive orthant satisfying some regularity assumptions.

Problem 1 was considered in Ref. [Ag2]. In this work it was shown that
transform R, is injective on the subspace of non-negative functions (and even
measures) growing not faster than exponents at infinity. Besides, it was shown
that the ranges of transforms R, and R for a > 0, 8 > 0, o # 3, on a subspace
of functions (and even measures) with sufficient decay at infinity intersect only
by zero function.

Problem 2 was studied in Ref. [Agl]. In a subsequent work we will present
results on Problem 2 in the case of more general integral transform over the
level hypersurfaces of an arbitrary sufficiently regular positively homogeneous
function.



Problem 3 was addressed in Ref. [Agl] in the case of transform R, and in
Ref. [Ag2] in the case of more general integral transform.

Besides, Problems 1, 2, 3 for transform R, were studied in Ref. [HS] in the
case when o = 1.

In the present paper we study Problem 4. More precisely, we show that R,
a € R\ {0, 1}, is a Fourier integral operator satisfying the property of microlo-
cal regularity and we propose a method for reconstruction of singularities, see
Theorem [2.1] and Proposition [2.1] of Section

We don’t consider the case a = 1 for the following reason. On the one hand,
our method of proof of microlocal regularity is based on a version of method
of stationary phase presented in Section [4] which uses the fact that the linear
function S(x,&) = {11 + awe at fixed &, & with &€ > 0 attains the unique
extremum z*(p,§) on X, , for any p € P when a € R\ {0,1} and this is not
true when o = 1. On the other hand, restrictions in space prevent us from
studying the microlocal properties of R; as an exceptional case in the present
paper. Finally, our study of transform R, is mainly motivated by the study
of production systems with substitution of production factors at the microlevel
and this case corresponds to a # 1.

It is important to note that in many applications related with generalized
Radon transforms we are interested in anomalies in distribution of a quantity
described by function w rather than in exact values of w. In this case the
property of microlocal regularity allows us to estimate these anomalies via the
singularities of R,u without constructing the inverse operator R, .

Besides, the knowledge of microlocal properties of operator R, is very im-
portant if we are interested in reconstruction problem for this operator from
incomplete data (or in presence of noise). In particular, even if the reconstruc-
tion is possible it may be not convenient for numerical computations if the
generalized Radon transform has bad microlocal properties.

On the other hand, even if the generalized Radon transform is not injective,
it is sometimes possible to construct a convenient pseudo-inverse operator if
the generalized Radon transform has good microlocal properties. For related
discussion, see, e.g., Ref. [Fal.

In addition, the property of microlocal regularity (in the case of analytic
singularities) was used by some authors to estimate the support of function u
given the support of its generalized Radon transform, see, e.g., Refs. [BQ1],
[BQ2], [Bol, [Qu2], [Qu3], [Kx].

Note that the history of microlocal approach to generalized Radon trans-
forms goes back to Refs. [Gu], [GS].

Concerning the results given in literature on microlocal properties of gener-
alized Radon transforms, see, e.g., Refs. [ABKQ)], [Bo], [BQ1], [BQ2], [FLU],
[FQ], [GU], [KLQ], [Qu2], [Qu3], [SU] and references therein.



2 Main results

To formulate main results we need to introduce some notations. For fixed o €
R\ O, z € X we define

Pa,z - {(p17p2) S P: Qa(Plxl»P%@) = ]-}a

with orientation given by the volume form |V,qq (p121, p222)|wa,z, Where wqy ; =

dpq(p11, p2w2) 2 (dp1 A dps).
The dual transform R}, to R, maps a sufficiently regular real-valued function
v on P to the function R}v on X given by the formula

Riv(z) = /P V(P) Woy,z- (2.1)

a,x

Note that since P & X, in fact, transform R, is self-dual.
Let Z, be the following incidence relation between the points in X and P:

def
Zo == {(p1,p2;21,22) € P x X: qo(p101, paa) = 1},

We consider Z,, as a submanifold of P x X.
The total space of conormal bundle N*Z, of Z, in P x X is given by the
following formula:
2 2
N*Zo = {(p1,p2; )‘ijl 2 py dpy; 4y, wa; Azjzlpi’w?ﬂd%) S
ET'PXT*X 2T*(Px X): gu(pra1,p2x2) =1, A € R}.

(2.2)

We denote by N* Z, the manifold N*Z, with zero section removed.
In a similar way, the total space of conormal bundle N*X, , of X, , in X
is given by formula

2
N*'Xqp = {(zl,mg;)\ZjZIP?x?z—ldxj):

(z1,22) € X, qa(pra1,p2w2) =1, AER}, peP.

(2.3)

We define the canonical relation C, to be the total space of the twisted
conormal bundle of Z,, in P x X with zero section removed:

Co 2L (N*Z,) = {(p,ndp; z, —€dx) € T*P x T* X :

) (2.4)
(p,ndp, x,&dx) € N*Zy},

where
p=(p1,p2), 1= (N1,Mm2), T = (21,22), £ = (£1,82),

ndp = mdp1 + n2dp2,  {dz = &idwy + Eadws.
Theorem 2.1. Let « € R\ {0,1} be fized. Then:



1. R, is a Fourier integral operator associated with canonical relation C,.
Hence R, is the linear continuous operator from C°(X) to C*°(P) and
from &'(X) to 2'(P), where &' (X) denotes the space of compactly sup-
ported distributions from 2'(X);

2. (microlocal reqularity) for any fized u € &' (X) the condition p ¢ sing supp Rau
is satisfied if and only if

WFu)NN*X., =92, (2.5)
where WF denotes the wave front set and N* X, , is defined in (2.3));
3. for any u € &'(X) if (x,&dx) € WF(Rqu), £ = (&1,&2), then §1&5 > 0.

Statement 2 of Theorem tells us that if distribution v € &’(X) has a
singularity at point x € X, , which is conormal to curve X, ,, then distribution
Ryu has a singularity at point p. Furthermore, all singularities of R,u arise in
this way.

Note that since the dual transform R}, defined in is given by the same
formula as transform R, (after changing x to p and vice versa), Theorem
also holds for R}, if we replace X by P, X,, by P,. and vice versa in its
statement.

Theorem is proved in Section The proof of the “only if” part of
statement 2 of Theorem [2:1]is based on Lemma [3.1] of Section [3] which is proved
in Section Bl

In order to formulate the following result we need to introduce two notations.

For fixed 0 < § < % chose any x5 € C*°(0,+00) such that

0, ift<dort>d*
t) = ’ ’ 2.6
xs(f) {1, if > 26 and £ < 1671, (26)
For fixed a € R\ {0, 1} define v(«) by formula
14+a7l, a>1,
Ya)=q-1+3a"t 0<a<l, (2.7

1—3a71, a < 0.

Proposition 2.1 (reconstruction of singularities). Let « € R\ {0,1} and 0 <
€< % be fized. Define v(«) by formula (2.7)) and put 6 = 2= w17 Then for
any u € &'(X) such that

suppu C {(z1,22) € X: e < <et j=1,2, (2.8)
and for all (xz,&dx) € T*X, x = (x1,22), £ = (&1,&2), satisfying e < x; < e !,
71=1,2¢e< % < e~ 1, the following formula holds:

(z,&dx) € WF(u) if and only if (x,&dx) € WF(R;Xéngau), (2.9)

where X% denotes the operator of multiplication by xs(p;), 7 =1, 2, and x5 is
defined in formula (2.6)).



Proposition [2.1]is proved in Section |3 The proof is based on Lemma of
Section [3l

Proposition allows us to reconstruct singularities of u given R} u and a
priori information about bounds on support of u, by choosing an appropriate &
and applying operator R, X%X% to Ryu. For example, consider a function u¥ on
X as in Fig. [1f (a). Proposition tells us that function RZX};X(%RQUV, where
a = 0.5, § = 0.01, will have the singularities at same points and directions as
function u” (not taking corners in Fig. (a) into account). Since A = 8%1 + 6%2
is elliptic on X the function AR, X}s XgRauV will also have the same singularities
as u”, see Fig. [1] (b) (we apply A in order to make singularities more sharp).

It is important to note that it isn’t possible in principle to reconstruct sin-
gularities of u of type (z,&dx), x € X, £ = (&1,&2) with £ & < 0 since the wave
front set of distribution of type Rjv, v € &'(P), can’t contain such points as
follows from statement 3 of Theorem Consider, for example, function u! as
in Fig. [1| (¢). Function AR} x}x3Rau', where a = 0.5, § = 0.01, in this case

will have singularities only at corners in Fig. [1| (¢), see Fig. [1] (d).

Remark 2.1. Note that replacing function ¢, in formula by the function
of the same form but with n > 3 arguments, we could consider the generalized
Radon transform over the level hypersurfaces of CES-function in dimension n.

The generalization of Theorem [2.I]and Proposition[2.1]to this case is straight-
forward. We consider the two-dimensional case in order to simplify the proofs.

Remark 2.2. In fact, statements 1, 3 and the “if” part of statement 2 of
Theorem remain valid if we replace function ¢, in definition by much
more general smooth function ¢. In particular, we could consider functions
q € C*(X) satistying the following conditions:

QL. g(Az) = M), z € X, A > 0,
Q2. q(z), 01q(z), O2q(z) are positive for x € X, where 0;¢ = 9q/0z;, j =1, 2;
Q3. for any fixed p € P the map ®,,: X, , — (0,+00) defined by

B, (z) = 2101q(p121, p22)
op T202q(p121, p22)’

Xop = {(21,22) € X1 q(pr01, poa) = 1}, (2.10)

is bijective.

These conditions are satisfied, in particular, by functions ¢,, a € R\ 0.

In the above interpretation of transform in the setting of the generalized
model of pure industry functions ¢,, o < 1, correspond to unit cost functions
for production systems with constant coefficient of elasticity of substitution of
production factors whereas concave functions ¢ different from ¢,, a < 1, and
satisfying assumptions Q1, Q2 correspond to production systems with variable
coefficient of elasticity of substitution.



Figure 1: (a) original function u"¥ equal to 1 in black domain and to 0 in white
domain; (b) function AR} xix2R,u’, where a = 0.5, § = 0.01; (c) original
function u! equal to 1 in black domain and to 0 in white domain; (d) function
AR xix3Rau!, where a = 0.5, § = 0.01.



Let us sketch the proof of statements 1, 2 (“if” part) and 3 of Theorem
in the case of smooth functions ¢ satisfying Q1, Q2, Q3, see also the proof of
Theorem 211

Denote by R, the generalized Radon transform defined by formula using
function ¢ instead of g,. Denote by C, the corresponding canonical relation.

The proof of statement 1 of Theorem [2.1] for this class of functions ¢ remains
the same as for functions g4, see Section

It follows from Q2 that for any set M C T*X, if (p,ndp) € Cyo M, n =
(n1,m2), then nyny > 0, where

CyoM def {(p,ndp) € T*P: I(x,&dx) € M: (p,ndp;z,&dx) € Cq}.  (2.11)

This implies statement 3 of Theorem if we take into account the inclusion
WF(Ryu) C CqoWF(u), u € &' (X).

It follows from assumptions Q1, Q2, Q3 that the canonical projection from
Cy to T* X is injective and that the following inclusion holds:

CooWF(u)NTIP C CyoN* Xy, (2.12)

Using we can obtain the “if” part of statement 2 of Theorem [2.1

The “only if” part of statement 2 of Theorem is the most difficult to
prove. To generalize it to the case of smooth functions ¢ satisfying Q1, Q2, Q3
we need to obtain an analogue of Lemma below. Restrictions in space and
time prevent us from obtaining this analogue in the present paper. Nevertheless,
we prove the main part of Lemma (see also Lemma for the general case
of smooth functions ¢ satisfying Q1, Q2 to be able to use it in a subsequent

paper.
Remark 2.3. It follows from definitions (1.1)), (2.1)) that:

1. even if u is compactly supported in X, v = R,u doesn’t have compact
support in general;

2. if v is not compactly supported in P, the value of R}v is not always
defined.

Hence R} R,u is not always defined for u € C$°(X).

In the Gelfand’s approach to generalized Radon transforms via double fi-
brations (see, e.g., Ref. [GGS]) this corresponds to the fact that the canonical
projection from Z, to X is not a proper map. Furthermore, this problem can’t
be resolved even by considering transform R, on functions which have supports
in some fixed compact subset of X.

Therefore, we are not able to deduce the “only if” part of statement 2 of
Theorem from the microlocal regularity properties of operator R} R, as it
can be done when the canonical projection from the incidence relation to the
source space is a proper map and the double fibration corresponding to the
generalized Radon transform satisfies the so-called Bolker assumption, see, e.g.,
Refs. [Gu], [GS], [Qul] for more details.



3 Proof of Theorem and Proposition

3.1 Approximation of R, by proper Fourier integral oper-
ators

In this subsection we show that R, is the Fourier integral operator associated

with C, and we formulate an auxilary lemma, which is crucial in the proof of

the “only if” part of statement 2 of Theorem
Let a € R\ {0,1} be fixed. For any u € C°(X) the following chain of

equalities holds:

Ru(p) :/ U(T)Wa,p = / o(s — 1)/ U(T)we,p ds
Xa-,p R qQ(P111,p2$2):S
1 .
= 7// ’0(571)/ u(x)wam dfds (3.1)
T qa(P121,p2T2)=
/ / 1020y () dzdo),

where p € P and ¢, (p, x,0) is the real phase function:
¢Oé(p7$79):e(q(x(plxlap2x2)_1)7 pGP,a:EX,GGR\O (32)

It follows from (3.1 , . 3.2) that R, is a Fourier integral operator associated with
Cy. Hence R, is a linear continuous operator from C2°(X) to C*°(P) and from
&'(X) to 2'(P). Statement 1 of Theorem [2.1]is proved.

Formula implies that R, is not a proper operator. We are going to
approximate R, by proper Fourier integral operators.

Let 0 < § < £ be fixed. Chose x5 € C*(0,+00) as in (2.6) and Y5 € C=(R)
such that

1, |t <16,

S ) — 5
Xs(?) {07 [t| > 4.
Put

2a,5(D, ) = x5 (p1)xs(P2)Xs(21) x5 (22) X5 (ga (P121, P22) — 1), (3.3)

where p = (p1,p2) € P, x = (21, 22) € X.
We define the Fourier integral operator R, s by the following formula:

Rogulp) =5 [ [ ¢ 0m0, oo, z)ula) deds, peP. (34

where u € C°(X) and ¢, is defined in (3.2).
In a similar way with formula (3.1) we can obtain that

R, su(p) = /X ®a,6(P, T)U(T)Wa,p, pEP. (3.5)

«@,p



In particular, the definition of R, s doesn’t depend on the choice of function ;.
It follows from formula (3.4) that the Schwartz kernel K, s of operator R, s
is given by formula

1 .
Ka’(;(p’ g[;) = 27/ ei¢a(p7$79)%a’6(p7 3:) do. (3.6)
R

™

Formulas (3.3), (3.6) imply that

supp Ko, C {(p1,p2; 1, 22) € P x X:

3.7
do (P11, p222) <6, 6 <x; < 50 <p;j < s = 1,2}. 3.

Hence, K, s is compact and R, s is a proper operator.

As a proper Fourier integral operator, R, s continuously maps C2°(X) to
C(P) and &"(X) to &'(P). Note that the dual operator R, ; is given by the
same formula (after changing = to p and vice versa). Hence, the composi-
tion I, ;1,6 is a well-defined proper linear continuous operator on C*(X) and
on &”(X). We will show that, in fact, R}, ;4,5 is a pseudo-differential operator
and we will compute its principal symbol.

In order to formulate the following result we need to introduce the set X,
0<e<:

26:{(51,52)€R2:6<§—1<6_1}. (3.8)
2
Lemma 3.1. Let a € R\ {0,1} and 0 < § < § be fived. Then R}, R, s is
a classical proper pseudo-differential operator of order 1 on X with principal
symbol o (x, &dw), (z,&dx) € T*X, given by formula

% GXP(Z(TF/4) . sgn(l — a) . (1 — sgn gl))(xlxz)_% »
ohs(@,éde) = § x|16a|TFEa R el 5(p* (2, ) 2), 66 >0, (3.9)
0, otherwise,

where x = (1, 72), £ = (§1,&2), ™ (2, €) = (p1 (2, €),p5(2,§)), {x = §121 + &,
1/a+1/8 =1,
P (@, 8) = €| w[glen, 7, j=1,2 (3.10)

Besides, there ezists € = e(c,d) > 0 such that the full symbol o, s(z,Edx) of
R}, sRa s is zero forx € X, £ e R?\ (OU X U —%,).

For the definition of classical pseudo-differential operator see, e.g., Ref.
[Shu], Definition 3.5.

The biggest part of the present paper is devoted to the proof of Lemma (3.1
In Section [4 we will present and prove a version of method of stationary phase
and in Section [5| we will apply this method to prove Lemma, (3.1

10



3.2 Final part of the proof of Theorem

We begin this subsection by proving a lemma which follows from Lemma [3.1]and
which will be used in the proof of the “only if” part of statement 2 of Theorem
In the end of this subsection we prove statements 2, 3 of Theorem [2.1

We need to introduce some notations. For canonical relation C, defined in
the transposed canonical relation C?, is defined by the following formula:

CL %2 {(2, €, p,ndp) € T*X x T*P: (p,ndp, z,£dx) € Co} =

— . 2 a, a—1 . . 2 a, a—1

= {(Il,l’z’/\zj:lpj x5 dag;pr,pas —A ijl zip; dpj) € (3.11)
eT*X X T*P: qo(p121,p222) =1, A € R\O}.

In a similar way with (2.11)), for a subset M’ C T*P we denote
Ct oM def (z,&dz) € T*X: I(p,ndp) € M': (z,&dx;p,ndp) € CL}. (3.12)
We also need to introduce the following sets:

Y={t=(&4,&L)eR*: & >0, & >0},
TiX = {(z,&dzx) e T*X: { € £%},

- . (3.13)
TiP = {(p,ndp) € T*P: 1 € £33},
Xs={(zn,2) €X:0<a; <6 ', j=12}, 0<6<]1, (3.14)
Ps={(p1,p2) EP:6<p; <6 ", j=12}, 0<d<L '
Lemma 3.2. Let a € R\ {0,1} and u € &'(X) be fired. Then
WF(u)N (T X UT*X) C CL o WF(Rqu). (3.15)

Proof. Let u € &'(X) and (2°,£%z) € WF(u) with £€° € S U (-X) be fixed.
Lemma [3.2| will be proved if we show that

(2°,%z) € C! o WF(Rqu). (3.16)
Chose 0 < < % such that
suppu C Xos and p*(a°,£°) € Pas, (3.17)

where p*(20,£9) = (p1 (29, £°), p5(2©,£0)) is defined in (3.10).
If follows from (3.3)), (3.9), (8-17) that e, s(p*(2°,£Y),2%) =1 and

ol 5(a°,0%dx) # 0. (3.18)
Formula (3.18) implies that
(2°,¢%dx) € WF (R}, sRa,su). (3.19)

11



Operator Ry, 5 is a Fourier integral operator associated with canonical rela-
tion C!, and the following inclusion holds:

WF (R}, sRa,su) C Cl o WF(Rq,su). (3.20)
It follows from formulas (2.6), (3.3), (3.5), (3.17) that

(Ra,su)(p) = xs(p1)xs(p2) (Rau)(p), p€ P.

Hence
WF(Rysu) C WF(Rqu). (3.21)

Formula (3.16) follows from (3.19), (3:20), (3:2I). Lemma[3.2]is proved. O

Proof of statements 2, 3 of Theorem[2.1. We denote by wp, mx, Tp, Tx the
canonical projections:

Ca Ca
TP TrX X TP

As above, the dot means that we exclude the zero section.
Note that the maps np, mx, Tp, Tx are injective. Consider, for example,
the map 7p. By definition

2 2
e (pLpas A Y afpy T dp e aa Ay piag T day)

, (3.22)
_ . =17,
—(pl,pzdzj:lx?p}” dp;).

It follows from (3.22)) that the value of mp(p, ndp, z,£dx) determines uniquely

the ratio x1 /5. Since z{py + xz§p3 = 1, it also determines z1, z5. Hence, it

also determines A and the map mp is injective.

The following formulas follow from (2.2)), (2.3)), (2.4), (3.11):

mpomy (WF(u)) CTIPUT*P, (3.23)
mpomy (N*Xap) =T; ,PUT* P, (3.24)
Tx o7p (TFX\0) = N*"Xo . (3.25)
where p € P, T P is defined in (3.13) and T} , =TI PNT P.
Besides, using definitions (2.4)), (3.11)), (2.11)), (3.12) we obtain that
mp oy (WE(u)) = Co 0o WF(u), (3.26)
Tix oTp (WF(Rou)) = CL o WF(Ryu). (3.27)

Statement 3. Using (3.23), (3.26) and inclusion WF(R,u) C C, 0o WF (u)
we obtain that if (z,{dz) € WF(Rau), £ = (&1,&2), then &€ > 0. Statement
3 of Theorem [2.1]is proved.

12



Statement 2: “if” part. Suppose that (2.5 holds. Using injectivity of 7p we
obtain that )
mpomy (WE(u)Nrpony (N*X,,) = .

This formula together with formulas (3.23)), (3.24), (3.26)) imply that

CooWF(u)NT,P=2. (3.28)

Using formula (3.28)) and inclusion WF(R,u) C C, oW F(u) we obtain that

p ¢ sing supp R, u.
Statement 2: “only if” part. Suppose that p ¢ sing supp R,u. Equivalently,

WFE(Rqu) N (T, P\0)=2. (3.29)

Using injectivity of 7x and formulas (3.25)), (3.27) we obtain from ([3.29)) the

following formula: '
ClLoWF(Ryu) N N*X,, = @. (3.30)

Note that formula (2.3) implies that
N*X,, CTiXUT*X. (3.31)

Using inclusion (3.15) of Lemma and formulas (3.30)), (3.31)), we obtain
formula (2.5). Theorem is proved. O
3.3 Proof of Proposition 2.1
Let u € &'(X) and (z,&dx) € T*X satisfying the conditions of Proposition
be fixed. It follows from the definition of ¢ and from (3.10) that

o s(2,Edx) # 0, (3.32)

where 05’ s is the symbol of operator R}, sR, s defined in (3.9).
“Only if” part. Suppose that (z,&dx) € WF(u). Then it follows from (3.32)
that

(z,&dx) € WF (R}, 5Ra,5u). (3.33)
Since u satisfies (2.8) and 20 < €, the following formula is valid:
Ro5u = X5X3 Rau. (3.34)
Also note that
R 5 = XsX5Raxs X, (3.35)

where >~<§ is the operator of multiplication by xs(z;), j =1, 2.

Formulas (3.34)), (3.35) imply that
WE (R} 5Rastt) € WF(RA ()2 () Rat).
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From this formula, taking into account that we can replace (Xg)2 by xf;, j=1,
2, and from formula (3.33) it follows that

(z,&dx) € WF(Rix5x3Rau). (3.36)

“If” part. Suppose now that (3.36) holds. Then we have the following se-
quence of inclusions:

(z,&dx) € WF (Rl x5x3Rau)
C Cf o WF(xjx3Rau) C C, 0o WF(Ru)
CCloCyoWF(u) CWF(u),
since R}, is the Fourier integral operator associated with canonical relation ct

and the inclusion C!, o C\, C diag(T*X x T*X) holds, where

diag(T*X x T*X) 2£L { (2, &dw, x, &dx) € T*X x T* X}, (3.37)

CloCo 2L Ly, ¢dy, z,6dz) € T*X x T*X :
3(p,ndp) € T*P: (y,(dy, p,ndp) € C.,, (p,ndp,x,&dx) € Cq}.

Proposition [2.1}is proved.

(3.38)

4 Method of stationary phase

In this section we formulate and prove a version of method of stationary phase
which will be used in Section [5]in the proof of Lemma [3.1
We say that a subset ¥ C R?\ 0 is conic if

{tteR*:t>0, €3} =5

Let & C R?2 \ 0 be an open conic set. We denote by S7(X x i), v € R,
the set of functions a € C®°(X x fl) satisfying the following property: for any
compact K C X x S and for any o = (o, ), 8= (B1,02) € Z2 there exists
such constant C” > 0 that

|DEDa(w, )| < CRPIEPT, g =1, £ =1, t >0, (x,8) € K,

where
Do olal 5 _ LI
T0aP0a? T8 pelogl
and |a| = a1 + ag, [B] = i + Pa.
The space S7(P x X), v € R, is defined in a similar way. We also put
57X X £) = NyerS? (X x ) and S~°(P x £) = NyepS? (P x 3).

14



We will formulate and prove a version of method of stationary phase for the
integrals of the following form:

Im@:[;eWMV@@%@ (4.1)

q,p

where ¢ € O (X)) satisfies Q1, Q2 of Remark[2.2] X, is defined in (2.10) with
orientation given by the volume form |V q(pix1, p2z2)|wy,p, where wy, is the
Gelfand—Leray form:

Wq,p = de(plxlaPQ'TZ) - (dml A de)a
and S € C®(X x %) satisfies the following assumption:
S1. S(z,A¢) = AS(z,8), 2 € X, £ €3, A> 0.

Assumtion Q2 of Remark [2.2] implies that at fixed p € P the curve X, is the
graph of C'*° function

2 = xa(z1,p), 1 (p) <z < xf’(p) < +o0. (4.2)

Put 5(t,p,€) = S((t,22(t. ), ).
We suppose that ¢ and S satisfy the following additional assumptions:

QS1. at fixed p e P, € € S function 5(-,p,§) has the unique local extremum
2% (p, &) on the interval (z7 (p), =] (p)) which is the unique zero of function

St(+,p, €); the map a}: X x S - (0, +00) is C*° and open;

QS2. the second derivative Sy (2% (p,€), p,€) is nonzero and has the same sign
forallpe P, £ € X,

Lemma 4.1. Let S be ¥ or —%. Let q € C*(X) satisfy assumptions Q1, Q2 of
Remark and S € C*(X x f]) satisfy assumption S1 above. Suppose also that
q, S satisfy assumptions QS1, QS2 defined above. Suppose that f € S™(X x f}),
m € R, and f(-,£) has compact support in X for any fized £ € . Then:

1. the following inclusion holds:

e PO(p,6) € S™TE(P x D), (4.3)

where I(p,€) is defined in (1), S*(p,&) = S(a*(p,€),€), *(p,&) =
(z3(p, &), x5 (p,£)), =7 is defined in assumption QSI above, x5(p,&) =

z2(z3(p,€),p);

2. if, in addition, function f satisfies
@A) = A" f(x,6), ze€X, €S, A>0, (4.4)
then there exist the unique functions a; € C*°(P x i), j € NUO, satisfying

a;(p,\E) = N5 a(p,€), peP €S, A>0,jeNUO, (4.5)
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and such that for any N € NUO the following formula is valid:

~

- N
T EOI(p.E) =Y ai(p ) =rn(p€) € STTNTHP X D) (46)
furthermore, the following formula is holds:

ao(p, &) = (2m) 2™/ (2 (p, €), &) (Su (@} (0, €), p, €))7 x

» . . 1 (4.7
xpy ' (82q(p123 (p, €), p223(p, €)))
Proof. We suppose that $ =3 and
S (2} (p,€),p,€) >0, peP, €. (4.8)

The other three cases (f) = -3, gtt > 0; S = X, gtt < 0; S = =3, gtt < 0) can
be considered in a similar way.

The proof of Lemma [41] consists of six steps.

Step 1: uniform Morse coordinate. Using integration by parts and taking
into account that S¢(z%(p,£),p,&) = 0 we obtain that at fixed p € P, £ € ¥ for
x1 sufficiently close to 7 (p, £) the following chain of equalities holds:

S(Jflyp»f) - S*(p7 g)

1 P2 -
:/O =1L 50 6) + (a1 — 23 (.6)). p.€) dr

dr?

1 _ (4.9)
=@ =aip. O [ (=Sl + 7@~ 7i(0.0).p.E)dr
1
= izf(xlapa g)u
where z1(x1,p, ) is defined for z; sufficiently close to x7(p,&):
Zl(xhpa 6) = \/5(%1 - fET(]L 5))><
(4.10)

X </01(1 —7)Ss (x5 (p, €) + (21 — 25 (p, €)), P, §)d7> 1/2.

Let 0 < € < 1 be fixed. Define s = 21 — 23 (p, €) for z; € (z7 (p), 27 (p)).

Recall that the sets X¢, P, € > 0, are defined in formulas , . Since
x7 is open and continuous, the set 2} (P, x X.) in an interval and zj(P, x 3.) €
(a7 (), o (D).

Hence, for all p € P, and £ € ¥, the range of variable s contains an interval
(=Ve, Ve), Ve > 0, not depending on p, &.

Fix p € P and £ € ¥. Tt follows from (Z3), that

21 (5.8, 5,8) = (Sl (5.8.5.8) " > 0. (4.11)

3x1
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Since the derivatives Sy (z1,p,£) and azl/axl(xhn €) are continuous w.r.t.
(z1,p, &), there exist open neighborhood Ui (p, {) of point 0 € R, open neigh-
borhood Us(p, f) of point p € P and open conic neighborhood Us(p, 5) of point
§~ € ¥ such that for any (s,p,§) € szlUJ (p, f) function z1(z1,p, &) is well-
defined and the following inequality holds:

0z

axl (S + .'1/'1<p’ €>7pa f) > 0.

The set P, is compact and the set X, is conically compact (i.e., it is conic
and its intersection with the unit circle S* in R? is compact). The system of sets
H?:2Uj(]'5, E), pEP,£€Y, isan open cover of Pe x 5. Let H?ZQUj(ﬁk,gk),
k =1, ..., Ny, be its finite subcover. Denote by ( Ve, Ve) any symmetric
with respect to zero interval contained in ﬁk UL (P fk). Then z (z1,p, &) is
well-defined for z1 — 25 (p, &) € (—ve, V), p € P, £ € ¥, and

821

%(mlapv g) >0 for 1 — f{(pvf) € (_Vea Ve); pe Pe: § € Ee- (412)
1

Step 2: partition of unity. Fix p € P, §~ € Y. Since 7 is continuous, there
ex1st an_open neighborhood P(f)} of p p in P, and an open conic neighborhood
5(€) of € in X, such that |27 (P(p) x 2(€))| < Ve
The set P, is compact and the set Yoe is conically compact. The sets
P(p) % E( £), p € P., £ € X, form an open cover of Py, x T.. Let P(pF) x $(€F),

k=1, , N> be its finite subcover, so that
No o~ _ ~
Py x g C Ukzl(P(pk) x B(&7)) C P. x Z. (4.13)
Denote (2], 27 ,) = 23 (P(PF) x S(EF)), k = ., Na. Then
+ - 1 —
i~ < gl k=1,...,Ns. (4.14)
It follows from , 4.14) that
821 _ ~ =,
8—961(331,]9, §) >0 on (x7, — 5V, + 3vc) X P(PF) x B(&F). (4.15)

Fix k € {1,...,Na}. Let of € C>(0, +00) satisfy 0 < o¥(x1) <1, z; > 0,

1, ifzy, — v, <z <2l + iv,
(1) = LBk s Lk T 8T (4.16)
0, ifzq <Xy — gleor Ty >y + gl
We define @§ = 1 — ¥, Formula (4.16) implies that
dist (supp 5, 25 (P(5*) x 3(€¥)) > §ve. (4.17)
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At fixed k € {1,...,N2}, p € P, £ € ¥ we rewrite integral (4.1) in the
following form:

xf(ﬁ) eig(mmai)f(:cl, T2 (I’l,p), f)gpk (1'1) dI’l
I} (p,€) = / J . j=1,2, (4.19)
zy (p) P202q(p121, p22(x1,p))

where 29(y1,y2) = 3= (Y1, y2)-
Step 3: integral If(p,&). Tt follows from ) that at fixed p € P(p"),
¢ € $(*) function zl( ) on (zl %I/e,xl’k+ Ve) has the inverse z1 (-, p, £).

It follows from , , that

. a* too 2
I]I.C(pa f) = eZS (P,E)/ e%Z1gk(zlap7 g) le, (420)
where
f(@1(21,p,€),22(21, 1, €), §) 32 (21, p, ) X 1
9 (21, p, €) = ng_l(82Q(p1$1(21’p7f)’p2$2(21>p75)))_ X (4.21)

X@lf(xl(zlapag))a if ml(zlap7€) € supp(ﬁllcv
0, otherwise,

and xQ(Zlvpa g) = 1’2(x1(21,p, g)ap)

Define z1(z1,p,&) = |§|*%zl(:c1,p, £). It follows from assumption S1 and
from formula (4.10) that z; (1, p, A) = Z1(21,p, ), 1 € (xik—%ue,xf’k—&-%ué),
pE Ig(ﬁk), &€ E(Ek), A > 0. Note that at fixed p € Ig(ﬁk), ¢ e i({k) the inverse
Z1(,p, &) of 1 (-, x, &) on (xfk - %1/6, xfk—i-%l/e) exists and the following formulas
hold:

1'1(2'1,]9, g) = 51(‘§|7%2’1,p7 5)) (422)
%1<517pa )\f) = %1(2717]97 5)7 A> 0) (423)

for all z; (resp. z1) in the domain of definition of x1(-,p,&) (resp. Z1(-,p,&)),
p € P(p"), & € ().
It follows from assumption S1 and from formula that the quantity
|§|’%zl(x1,p7 ¢) is uniformly bounded for x; € supp ¥, p € ]5(17“), e i(g’“)
Taking this into account and using formulas (4.22), we obtain that at
fixed k € {1,..., Ny} for any «, § € Z2 there exist constants kaﬂ > 0 such
that the following inequalities hold:

|DaDﬂxl(Z17pa } |D Dﬂl'g(Zl,p, | |DaD£g01(x1(Zl7p7£))|a
|Da ( (p1m1(217p7€)7p2x2(217p7 ) |Scﬁ}gﬁ|§| |B|7
4.24
D225 o, 8)| < 3l .

|D3D§ f(xl(zlvpa f),$2(217p,§)7§)| < Cﬁf'ﬂmilﬁlv
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where p € P(7"), £ € S(€F), [¢] > 1, 21 € 21 (supp ¢F, p, €).

Formulas (4.20), (4.21) and inequalities (4.24) imply that at fixed k €
{1,...,No} for any «, 8 € Z% there exist constants C’;‘kﬁ > 0, ngkﬂ > 0 such
that

o Blepm—1—
| Dy D" (21,0, 6)] < O™ =717, (4.25)
@ —iS* a, m—Li_
| Dy D (e 0O (p,€)) | < O g™ 2P, (4.26)

where z; € R, p € P(%), € € £(€¥), |¢| > 1.

We need to introduce some notations. Let P C P be an open set and ¥ cy
be an open conic set. Let v € R be fixed. We denote by S7(P x ¥) the set of
functions a € C>(P x ¥) such that for any o, 3 € 72 there exists a constant
C*# > 0 such that

|DgDla(p,€)| < C*PleP~1Pl, peP, ey, g >1. (4.27)

Besides, we denote S~ (P x %) = ﬁv.e]R:S:'Y(]3 x 3.
Note that we can rewrite formula (4.26) in the following form:

eSO (p 6) € S (P(PF) x 2(EF)), k=1,...,N. (4.28)

Step 4: functions a;(p,€). Throughout the Steps 4, 5 we suppose that (4.4)
holds.

Using assumptions Q1, S1 and formulas (4.4)), (4.19), (4.20) we obtain the
identity

+oo +oo
/ €771 gk (21, p, A) dzy = A / eI M gk (21, p, €) dz, (4.29)
—c0 —00

where p € ﬁ(ﬁk), ¢ € i(g’“), A > 0.
Using the Plancherel identity we get

-

too . [T 2
/ e§>\z%gk(21ap» 5) le = (27’1’A)7§61Z / e2x @\k(t7pa g) dt’ (430)

— 00 — 00

where p € 13(17’“), ¢ e i(gk), A > 0 and
“+oo

P (tp,€) = / =51 gk (21, p, ) dy.

— 00

Note that the following formula holds for t e R, A >0, N e NUO:

N . j . N+1 1/\ N
22 12\ 1 it e
2 = — | — — [ — 29 - ds.
eF =2 7! (2/\> T (2) /0 ¢ </\ S) §
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Hence, the following equality is valid:

400 N . . 4o

it? B PN
/62*9 (t,p,€) (@)2" (8, p, ) dt + (A, p, ), (4.31)
—00 J=0 . —o0

where p € P(pF), £ € £(€¥), A > 0 and

+oo 1/A th N+1 5 1 N .
wupr8) //N'QNH (A—S) g (t,p,&) dsdt. (4.32)
—oo 0

Taking into account formulas (4.16)), (4.21]), we obtain the formula

“+oo ) 823
/ (75" (t.p.€) dt =205 2(0.9,€), 5 =00, (4.33)

s Zl

where p € ﬁ(ﬁk), £ e i(gk)a

91,0.6) = F1(21,. ), 22(e1, .)€ S o1, €)%

-1

(4.34)
xpy ! (82Q(p1$1(21,p7 &), paza(z1, p, f)))

Note that functions x1(z1,p,§) (resp. Z1(z1,p,€)), g(z1,p, ) at fixed p € P,
& € ¥ are defined, at least, for z; (resp. z1) in a small neighborhood of 0 € R
and in this neighborhood formulas ([£.22), hold. This is a consequence of
(£11), (@.34).

Formulas (4.22), (4.23) imply that

0* T 73 (95:171
A 4,
P - (0,p,A§) = A72 o2 0,p,€), A>0, (4.35)
where p € P, £ € ¥, s € NUO. Using (4.4), (4.34)), (4.35) we obtain the identity
9% 0%
2 (0,p,7) = A" 75 (0,p.6), A>0, jeNUO, (4.36)
dzy” 0z7”
where p e P, £ € 3.
Define )
2m) 2 8 g )
a;j(p,§) = (27) et (0,p,¢), j7=0,...,N, (4.37)

(2i)75! 8sz
where p € P, £ € X.

It follows from (4.10)), (4.11), (4.34), I4 36), (4.37) that a; € C>(P x X),
4.5)), (4.7) hold.

j=0,..., N, and that formulas
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Step 5: function 7% (\,p,€). Using formulas (£.20), [@.29), (4.30), (4.31),
(4.37), we obtain the following equalities:

Jp— N 1 .o
TP = D 0P A = (2m) 2Ty (Lp, A, (438)

ok N .
oS (p,)\f)]{f (p7 )\5) _ ijo )\m—%—Jaj (p7 5) (4 39)

= (2%)_%)\7’1_%6%7‘?\,()\,]),5),

where p € P(p%), £ € £(€¥), A> 0, N e NUO.
Formulas , (4.38)), (4.39) imply that

i (1,p,€) = €] 2k (€], p, €] 6), (4.40)

where p € P(p%), € € £(€%), N e NUO.

Note that at fixed p € ]3(]'5]“), (= i(gk), o, B € Z2 function Dngg(-,p, )
belongs to C°(R). Hence, its Fourier transform belongs to the Schwartz space
and there exists such constant C’z’kﬁ > 0 that

&=, (4.41)

400
/ HEN D D2 DGt p, €] 7€) |at < O

oo

where p € P(7%), € € S(€F), |¢] > 1.

It follows from formulas (4.32), (#.40), (4.41) that

ke (1,p,€) € SPNI(PE*) x S(€¥), k=1,...,N;, Ne NUO. (4.42)

Step 6: final part of the proof. Using formula (4.17), taking into account
that f(-,£) has the compact support at fixed £ € ¥ and integrating by parts in

(4.19) we obtain

I (p,€) € ST(P(H*) x B(€Y), k=1,...,N;. (4.43)
Formulas ([£.18)), (4.28), (#.43) imply that
¢ POI(p,€) € S (PR x B(EY), k=1, No. (4.44)

Finally, using (4.13)), (4.44) we get
¢ POI(p,€) € ST (Poe x Tae).

Since we can chose € arbitrarily small, we obtain (4.3)).
Denote

- N
rn(p &) =e (P = Y a;(p.),
where pe P, £ € ¥, N e NUO. It follows from formulas (4.18)), (4.38) that

rv(p,§) = e PO LE(p, &) + (2m) 7R (1,p, ©), (4.45)
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where p € P(p%), £ € (€%), k=1, ..., Ny and N € NUO.
Using formulas (4.13)), (4.42), (4.43)), (4.45) we obtain
TN(pa 5) € SmiN?%(P2e X 226)'

Since € can be chosen arbitrarily small, we get (4.6).
Uniqueness of functions a;, j € NUO, follows from uniqueness of asymptotic
expansion (i-.6) of function e=*" PO [(p, ). Lemma is proved. O

5 Proof of Lemma 3.1]

In this section we prove Lemma [3.1}] The proof is divided into five lemmas.

Lemma 5.1. Let a € R\ {0,1} and 0 < § < % be fized. Then R} sRas is a
proper pseudo-differential operator.

Proof. Note that the following statements are true:

1. C, doesn’t contain points of types (p,0,z,£dz), (p,ndp,x,0) and C?
doesn’t contain points of types (z, 0, p,ndp), (z,£dx, p,0);

2. the support of Kq,s (resp. K 5) is compact in P x X (resp. X x P),
where K, 5 is the Schwartz kernel of R, s defined in (3.6) and K ; is the

[e}%

Schwartz kernel of R* 5, given by the same formula (3.6) after changing p

a,d?
to x and vice versa;

3. submanifolds C!, x C,, and T*X x diag(T*P x T*P) x T*X (where diag
is defined in (3.37))) of T*X x T*P x T*P x T*X intersect transversally.

Statement 3 can be proved in the following way. Note that

(CL x Co) N (T*X x diag(T*P x T*P) x T*X) =
2 2 2
= {(1'7 )\ijl p?xj 1d$j7p, -A Zj:l x?pj 1dpj7p7 -A Zj:l x?pj 1dpj7
2 a,a—1
x’)‘Zj:1pj xf  dzj): x € X, p € P, qa(p171,p2x2) =1, A € R\ O}.

It follows from this formula and from formulas (2.2)), (2.4), (3.11) that
dim(Cf, x Cy) =8, dim(T*X x diag(T*P x T*P) x T*X) = 12,
dim((C}, x Co) N (T*X x diag(T*P x T*P) x T*X)) = 4.

Hence, the dimension of sum of tangent spaces of C% x C, and of T*X X
diag(T*P x T*P) x T* X in points of interection of these submanifolds is equal
to dimension of T*X x T*P x T*P x T*X. Statement 3 is proved.

It follows from statements 1, 2, 3 above that R}, ;R. s is a Fourier integral
operator associated with canonical relation C?, o C\, C diag(T*X x T*X) (see
and Ref. [Du|, Theorem 2.4.1). Hence, R}, ;R,,s is a pseudo-differential
operator.

Operator R, ;R s is proper since operators R? 5 and R, s have compactly
supported Schwartz kernels. O
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The remaining part of this subsection is devoted to computation of principal
symbol of R}, sRq 5.

We need to introduce some notations. Note that at fixed p = (p1,p2) € P
the curve X, , is the graph of function

2y = wa (21, p) <= py t(1 - pfag) /e,
0<x1<1017 if a >0,
pfl<:r1<—i—oo7 if @ <0.
Similarly, at fixed z = (21, z2) € X the curve P, , is the graph of function

def
P2 = pa(p1, ) <= a5t (1 — pfag)t/e,

0<p1<x117 if a >0,
x1_1<p1<+oo, if  <0.

Let € R\ {0,1} and £ = (&1,&) € XU (=) be fixed, 1/a+1/5 = 1.
Define

S(xz,8) = &1 + Sawa, x = (x1,22) € X, (5.1)
Up,€) = (sen &) (161°pr” + 1&1°p, 7). p= (pr,p2) € P. (5.2)

Restricting functions S(z,¢) and U(p,&) to X, and P, ,, respectively, we
obtain the following functions:

S(x1,p,€) E£ S((1, 22(1,)), €)
= &ay + Epy (1 — pfad)te,
fj(plaxvg) g U((plaPQ(pl7x))a§)'

Lemma 5.2. Let « € R\ {0,1} and § = (&1,&2) € Z U (—X) be fized. Let
1/a+1/8=1. Then:

1. at fized p = (p1,p2) € P function S(-,€) has the unique local extremum
(21(p, &), 25(p,&)) on Xap and the following formulas are valid:

5 (p,€) = [U@.OI'71g1"p ", =12, (5.3)
( p E ‘T2 paf))a&) - (l‘,f), (54)
gxlzl(ﬂcl‘(p,f)m,é)=(1—a)IU(p, )P (pip2) &l P62 775 (5.5)

2. at fized © = (x1,22) € X function U(-,€) has the unique local extremum
on Py 5 given by formula (3.10) and the following formulas are valid:

U((pi(2,€),p5(2,8)), &) = S(=,9), (5.6)

1+B _1

Upspn (9 (x,€), 2, €) = aBIS (2, &), [k op (5.7)
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Proof. 1. Derivatives of function S (-, p, &) are given by the following formulas:

~ _ _ 1_9q
S&cl (Z’l,p, E) = 51 - ng?pQ lx(ll ! (1 - ptllx?) “ )

Q — o a\e~2 a_a—
Sazlwl(xlapvg) = (1—Oé)p2 152(1_])1‘1:1) P12y 2' (58)
Solving equation §w1(x1,p, §)=0atfixedp e P, £ € XU (-X) for x1, we find

the unique point x§(p, &) given by (5.3).
Formula (5.4) follows from ([5.3)) and formula (5.5) follows from ([5.3)), (5.8).

2. Derivatives of function U (-, z, &) are given by the following formulas:
Up (pr,,€) = —(sgn &) p " |U (pr, 2, )"~
x (1&°py ™ = el Paf ol (1= o) ~7),
Upsis (pr.2,€) = (1= B)(U(p1,2.)) " (Up (p1.7.)) "+
+af(sgn &) pi U (pr, 2, €)' x (5.9
x (16117p7 7 + |l py “ Pt az 2opy )

Solving equation lj'pl (p1,2,€) =0 at fixed z € X, £ € XU (—X) for p; we obtain

the unique point pj(x, &) given by (3.10]).

Formula (5.6) follows from (3.10) and formula (5.7)) follows from formulas
(3-10), (5.9)- O
Lemma 5.3. Let a € R\ {0,1} and 0 < § < 3 be fized. Then:

1. there exists &' = 0'(a, ) > 0 such that for any v € C*(X)
(Ra,s" 5 9u)(p) € S7°(P x (R*\ (0U Sy U—35))),
where S is defined in , Y5 s defined in ;
2. there exists 8" = §"(a, ) > 0 such that for any v € C*>°(P)
(R;, eV C00)(z) € S7°(X x (R*\ (0UZgr U—X4n))),

where U is defined in (5.2), X5 is defined in (3.8]).

Proof. 1. It follows from that it is sufficient to show that there exists
8" = §'(a,8) > 0 such that function S(-, &) defined in at fixed £ € R?\ (OU
Y5 U —%s) doesn’t have local extrema on X, , Nsuppa, s for all p € P.
Note that S(-,&) at fixed £ € R?\ (0U X U —X) doesn’t have local extrema
on curve X, , for all p € P.
It follows from definition that

®q,5(p,x) =0, if p¢& Ps or x & X5, (5.10)

where X5, Ps are defined in formula ([3.14).
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Using Lemma (1) we obtain that at fixed p € P, £ € £ U (—X) function
S(-,€) has the unique local extremum (z73(p,§), z5(p,§)) on X, , given by for-
mula (5.3). It follows from formula that there exists such 6’ = ¢ («,d) > 0
that for any p € P2, { = (1,€2) € XU(—X) such that & /& < ¢ or §/6 < ¢,

we have z*(p, &) € Xs/2.
Hence, using we obtain that if p € P, £ € (£\ Zs) U ((—X) \ (—Xs)),
then «*(p, &) & Xa,p Nsupp &4, The first statement of Lemma [5.3|is proved.
2. The second statement can be proved in a similar way. O

Lemma 5.4. Let a € R\ {0,1} and 0 < § < 3 be fized. Let 1/a+ 1/ = 1.
Then there exist the unique functions a; € C*°(P xR?\0), j € NUO, satisfying

a;(p,AE) = A" 2a;(p,€), peP, £€R?\0, A>0, (5.11)

and such that the following formula holds:

e VPO (R 550N (p) =Y a;(p,€) € STNTHP xR\ 0),  (5.12)

Jj=

where N € NUO, S is defined in (5.1), U is defined in (5.2).

Furthermore, the following formula holds:

ao(p, €) = (2m)2[1 — |2 exp(i(r/4) - sgn(1 — a))
% (p1p2)~ F1€1&a T U (9, €)1 3 P s (p, (25 (p, €), 23(0, €))).

where p € P, £ € XU (=X); zi(p,§), 23(p, &) are defined in (5.3).

Proof. We will prove this lemma using Lemma [£.1] of Section [4

Note that function g, satisfies assumptions Q1, Q2 of Remark and func-
tion S defined in (5.1) satisfies assumption S1 of Section {4 with ¥ = ¥ and
S = —%. It follows from Lemma (1) that functions g, S satisfy assump-
tions QS1, QS2 of Section [4]
Using formulas , of Lemma we also obtain the following equal-
ity:

(5.13)

|Sarar (3 (9, €). 1, )| 20240 (175 (9, €), p2a5(p, €)) =
= 1= al? (pip2) ? |16 3 U (p, €)|~3,

where pe P, £ €e S U (—X).
Now Lemma follows from Lemmas (1) if we take into account
that asymptotic expansions are unique. O

(5.14)

The following lemma finishes the proof of Lemma [3.1

Lemma 5.5. Let a € R\ {0,1} and 0 < § < 3 be fized. Let 1/a+ 1/ = 1.
Then there exist the unique functions b, € C>°(X xR2\0), m € NUO0, satisfying

b (2, A6) = A", (2,€), € X, £€R*\0, A >0, (5.15)
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and such that the following formula is valid:

N

eii&(Rz,aRa,seiS("g))(x) - Z b (2,€) € STVT2(X x R?\0),  (5.16)

where N € NUO, S is defined in (5.1)).
Furthermore,

bo(,€) = 2mla| " exp(i(r/4) - sgn(l — a) - (1 — sgn&1)) x
X (z122) T [E1 | TF €V R o2 5 (0] (2, ), p (2, €)), ),

where x € X, £ € XU (=X); pi(x,&), ps(x,&) are defined in (3.10)).
Besides, there exists ¢ = €(a,d) > 0 such that by, (z,§) = 0 for z € X,

EeR?\ (0UX. U-X,), m >0, where . is defined by formula (3.8).

m=0

(5.17)

Proof. Using Lemma [5.4] we obtain the expansion:

T VPO (R, 5¢50:8))(p) = ZN

100 (2:6) + 1N (6, (5.18)

where p e P, £ € R2\ 0, 7y € S™N-3(P x R2\ 0), N e NUO.

Note that function g, satisfies assumptions Q1, Q2 of Remark and func-
tion U defined in satisfies assumption S1 of Section 4| with ¥ = ¥ and
$ = —%. It follows from Lemma (2) that functions ¢, U also satisty
assumptions QS1, QS2 of Section [

Using formulas , we also obtain the following formula:

Uy (02, . ) 00 (0 . )1 i, E)) =
= [af|% (z102) 25 |€162|F 7 || E,

where z € X, £ € XU (-X); pi(x,§), p5(x, &) are defined in (3.10).
Using Lemmas (2) we obtain that there exist the unique functions

bir € C®(X xR*\ 0), j, k € NUO, satisfying

(5.19)

bin(w,AE) = ANT7F 1 (2,€), x€ X, £€R?\0, A >0, (5.20)

and such that the following formula holds:

M
R (V090,49 (0) = D bilw, ) € STTMTH(X X R2\0), (5.21)
k=0
where j, M € NUO. Furthermore, it follows from Lemma (2) that there
exists € = 0" (c, §) > 0 such that b; x(2,§) =0if z € X, £ e R*\ (0UX U —-X)
for all j, k e NUO.

Besides, denoting by = by,o we obtain (5.17]).

Taking into account that ry € S~V=%(P x R? \ 0) and using Lemmas
(2), we obtain that

R S (ez‘U(-,OrN(.,g)) (r) € STN72(X x R\ 0). (5.22)
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Denote by, i kem ik, m € N. Now Lemma [5.5( follows from
(5.20), (5.21), (5. 22; if we take into account that asymptotlc expansions are

unique. ]

Lemmas [5.1} [5.5] imply the statement of Lemma [3.1]if we take into account
that the full symbol of R}, ;R s is given by formula

Oas(2,&dx) = e 7% (RY, s Ra 5509 (2).

and the principal symbol 05’5(9&, &dx) is the term of top degree in the asymptotic
expansion of o, 5(z,{dx),
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