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Abstract

This work deals with parallel optimization of expensive objective func-
tions which are modelled as sample realizations of Gaussian processes.
The study is formalized as a Bayesian optimization problem, or continu-
ous multi-armed bandit problem, where a batch of q > 0 arms is pulled
in parallel at each iteration. Several algorithms have been developed for
choosing batches by trading off exploitation and exploration. As of to-
day, the maximum Expected Improvement (EI) and Upper Confidence
Bound (UCB) selection rules appear as the most prominent approaches
for batch selection. Here, we build upon recent work on the multipoint
Expected Improvement criterion, for which an analytic expansion relying
on Tallis’ formula was recently established. The computational burden of
this selection rule being still an issue in application, we derive a closed-
form expression for the gradient of the multipoint Expected Improvement,
which aims at facilitating its maximization using gradient-based ascent al-
gorithms. Substantial computational savings are shown in application. In
addition, our algorithms are tested numerically and compared to state-
of-the-art UCB-based batch-sequential algorithms. Combining starting
designs relying on UCB with gradient-based EI local optimization finally
appears as a sound option for batch design in distributed Gaussian Pro-
cess optimization.
Keywords : Bayesian Optimization, Batch-sequential design, GP, UCB.
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1 Introduction

Global optimization of deterministic functions under a drastically limited eval-
uation budget is a topic of growing interest with important industrial applica-
tions. Dealing with such expensive black-box simulators is typically addressed
through the introduction of surrogate models that are used both for recon-
structing the objective function and guiding parsimonious evaluation strate-
gies. This approach is used in various scientific communities and referred to as
Bayesian optimization, but also as kriging-based or multi-armed bandit opti-
mization [20, 5, 23] [16, 15, 25, 11]. Among such Gaussian process optimization
methods, two concepts of algorithm relying on sequential maximization of in-
fill sampling criteria are particularly popular in the literature. In the EGO
algorithm of [16], the sequence of decisions (of where to evaluate the objective
function at each iteration) is guided by the Expected Improvement (EI) criterion
[19], which is known to be one-step lookahead optimal [14]. On the other hand,
the Upper Confidence Bound (UCB) algorithm [1] maximizes sequentially a well-
chosen kriging quantile, that is, a quantile of the pointwise posterior Gaussian
process distribution. Similarly to EI [24, 6], the consistency of the algorithm
has been established and rates of convergence have been obtained [23].

Recently, different methods inspired from the two latter algorithms have
been proposed to deal with the typical case where q > 1 CPUs are available.
Such synchronous distributed methods provide at each iteration a batch of q
points which can be evaluated in parallel. For instance, [10] generalizes the
UCB algorithm to a batch-sequential version by maximizing kriging quantiles
and assuming dummy responses equal to the posterior mean of the Gaussian
process. This approach can be compared with the so-called Kriging Believer
strategy of [15] where each batch is obtained by sequentially maximizing the
one-point EI under the assumption that the previously chosen points have a
response equal to their Kriging mean. Originally, the strategies suggested in
[15] were introduced to cope with the difficulty to evaluate and maximize the
multipoint Expected Improvement (q-EI) [22], which is the generalization of
EI known to be one-batch lookahead optimal [7, 14]. One of the bottlenecks
for q-EI maximization was that it was until recently evaluated through Monte-
Carlo simulations [15], a reason that motivated [11] to propose a stochastic
gradient algorithm for its maximization. Now, [8] established a closed-form
expression enabling to compute q-EI at any batch of q points without appealing
to Monte-Carlo simulations. However, the computational complexity involved
to compute the criterion is still high and quickly grows with q. Besides, little
has been published about the difficult maximization of the q-EI itself, which
is an optimization problem in dimension qd, where d is the number of input
variables.

In this work, we contribute to the latter problem by giving an analytical
gradient of q-EI, in the space of dimension qd. Such a gradient is meant to
simplify the local maximization of q-EI using gradient-based ascent algorithms.
Closed-form expressions of q-EI and its gradient have been implemented in the
DiceOptim R package [21], together with a multistart BFGS algorithm for max-
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imizing q-EI. In addition, we suggest to use results of the BUCB algorithm as
initial batches in multistart gradient-based ascents. These starting batches are
shown to yield good local optima for q-EI. This article is organized as fol-
lows. Section 2 quickly recalls the basics of Gaussian process modeling and the
closed-form expression of q-EI obtained in [8]. Section 3 details the analytical
q-EI gradient. Finally, numerical experiments comparing the performances of
the q-EI maximization-based strategy and the BUCB algorithms are provided
and discussed in Section 4. For readability and conciseness, the most technical
details about q-EI gradient calculation are sent in Appendix.

2 General Context

Let f : x ∈ D ⊂ Rd −→ R be a real-valued function defined on a compact subset
D of Rd, d ≥ 1. Throughout this article, we assume that we dispose of a set
of n evaluations of f , An =

(
x1:n := {x1, . . . ,xn},y1:n = (f(x1), . . . , f(xn))>

)
,

and that our goal is to evaluate f at well-chosen batches of q points in order to
globally maximize it. Following each batch of evaluations, we observe q deter-
ministic scalar responses, or rewards, yn+1 = f(xn+1), . . . , yn+q = f(xn+q). We
use past observations in order to carefully choose the next q observation loca-
tions, aiming in the end to minimize the one-step lookahead regret f(x∗)−tn+q,
where x∗ is a maximizer of f and ti = maxj=1,...,i(f(xj)). In this section, we
first define the Gaussian process (GP) surrogate model used to make the de-
cisions. Then we introduce the q-EI which is the optimal one-batch lookahead
criterion (see, e.g., [14, 3, 12] for a definition and [14, 7] for a proof).

2.1 Gaussian process modeling

The objective function f is a priori assumed to be a sample from a Gaussian
process Y ∼ GP(µ,C), where µ(·) and C(·, ·) are respectively the mean and
covariance function of Y . At fixed µ(·) and C(·, ·), conditioning Y on the set of
observations An yields a GP posterior Y (x)|An ∼ GP(µn, Cn) with:

µn(x) = µ(x) + cn(x)>C−1
n (y1:n − µ(x1:n)), and (1)

Cn(x,x
′
) = C(x,x

′
)− cn(x)>C−1

n cn(x
′
), (2)

where cn(x) = (C(x,xi))1≤i≤n, and Cn = (C(xi,xj))1≤i,j≤n. Note that, in
realistic application settings, the mean and the covariance µ and C of the prior
are assumed to depend on several parameters which require to be estimated.
The results presented in this article and their implementations in the R pack-
age DiceOptim are compatible with this more general case. More detail about
Equations 1, 2 with or without trend and covariance parameter estimation can
be found in [21] and is omitted here for conciseness.
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2.2 The Multipoint Expected Improvement criterion

The Multipoint Expected Improvement (q-EI) selection rule consists in max-
imizing, over all possible batches of q points, the following criterion, which
depends on a batch X = (xn+1, . . . ,xn+q) ∈ Dq:

EI(X) = E
[
(maxY (X)− Tn)+

∣∣An], (3)

where (·)+ = max(·, 0), and the threshold Tn is the currently observed maximum
of Y , i.e. Tn = max1≤j≤n Y (xj). Recalling that Y (X)|An ∼ N (µn(X), Cn(X,X)),
and denoting Y (X) = (Y1, . . . , Yq)

>, an analytic expression of q-EI at locations
X over any threshold T ∈ R can be found in [8] and is reproduced here :

EI(X) =

q∑
k=1

(
(mk − T )Φq,Σ(k)

(
−m(k)

)
+

q∑
i=1

Σ
(k)
ik ϕΣii

(
m

(k)
i

)
Φ
q−1,Σ

(k)

|i

(
−m(k)

|i

))
(4)

where ϕσ2(·) and Φp,Γ(·) are respectively the density function of the centered
normal distribution with variance σ2 and the p-variate cumulative distribution
function (CDF) of the centered normal distribution with covariance Γ ; m =
E(Y (X)|An) and Σ = cov(Y (X)|An) are the conditional mean vector and
covariance matrix of Y (X) ; m(k) and Σ(k), 1 ≤ k ≤ q, are the conditional

mean vector and covariance matrix of the affine transformation of Y (X), Z(k) =

L(k)Y (X)+b(k), defined as Z
(k)
j := Yj for j 6= k and Z

(k)
k := T−Yk ; and finally,

for (k, i) ∈ {1, . . . , q}2, m
(k)
|i and Σ

(k)
|i are the mean vector and covariance matrix

of the Gaussian vector (Z
(k)
−i |Z

(k)
i = 0), the index −i meaning that the ith

component is removed.

3 Gradient of the multipoint Expected Improve-
ment

In this section, we provide an analytical formula for the gradient of q-EI. Getting
such formula requires to carefully analyze the dependence of q-EI written in
Eq. (4) on the batch locations X ∈ Rq×d. This dependence is summarized in
Fig. 1 and exhibits many chaining relations. In the forthcoming multivariate
calculations, we use the following notations. Given two Banach spaces E and
F , and a differentiable function g : E → F , the differential of g at point x,
written dx [g] : E → F , is the bounded linear map that best approximate g
in the neighborhood of x. In the case where E = Rp and F = R, it is well
known that ∀h ∈ E, dx [g] (h) = 〈∇g(x), h〉. More generally the differential
can be written in terms of Jacobian matrices, matrix derivatives and/or matrix
scalar products where E and/or F are Rp or Rp×p. To simplify notations and
handle the different indices in Eq. (4), we fix the indices i and k and focus on

differentiating the function EI(k)(i), standing for the generic term of the double
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ϕ
Σ

(k)
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g3 //
(
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)
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g7
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(
m

(k)
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Σ
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|i
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Figure 1: Link between the different terms of Eq. (4) and the batch of points
X

sums in Eq. (4). We can perform the calculation of dX

[
EI(k)(i)

]
by noticing

than EI(k)(i) can be rewritten using the functions gj , 1 ≤ j ≤ 8 defined on Fig. 1
as follows:

EI(k)(i) = (mk − T ) · g7 ◦G+ g4 ◦ g2 · g5 ◦G · g8 ◦ g6 ◦G, (5)

where G = (g3 ◦ g1, g4 ◦ g2), ◦ is the composition operator and · the multipli-
cation operator. The differentiation then consists in applying classical differ-
entiation formulas for products and compositions to Eq. (5). Proposition 3
summarizes the results. For conciseness, the formulae of the differentials in-
volved in Eq. (6) are justified in the Appendix. The calculations notably rely
on the differential of a normal cumulative distribution functions with respect to
its covariance matrix obtained via Plackett’s formula [4].
Proposition 1. The differential of the multipoint Expected Inmprovement cri-

terion of Eq. (4) is given by dX [EI] =
∑q
k=1

∑q
i=1 dX

[
EI(k)(i)

]
, with

dX

[
EI(k)(i)

]
= dX [mk] . g7 ◦G+ (mk − T ) . dG(X) [g7] ◦ dX [G] (6)

+ dg2(X) [g4] ◦ dX [g2] . g5 ◦G . g8 ◦ g6 ◦G
+ g4 ◦ g2 . dG(X) [g5] ◦ dX [G] . g8 ◦ g6 ◦G
+ g4 ◦ g2 . g5 ◦G . dg6(G(X)) [g8] ◦ dG(X) [g6] ◦ dX [G] ,

where the gj’s are the functions introduced in Fig. 1. The gj’s and their respec-
tive differentials are as follow :

• g1 : X ∈ Dq → g1(X) = (µn(xj))1≤j≤q ∈ Rq,
dX [g1] (H) = (〈∇µn(xj), H

>
j,1:d〉)1≤j≤q,

with ∇µn(xj) = ∇µ(xj) +
(
∂cn(xj)>

∂x`

)
1≤`≤d

C−1
n (y1:n − µ(x1:n)).

• g2 : X ∈ Dq → g2(X) = (Cn(xj ,x`))1≤j,`≤q ∈ Sq++. Sq++ is the set of
q × q positive definite matrices.
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dX [g2] (H) =
(〈
∇xCn(xj ,x`), H

>
j,1:d

〉
+
〈
∇xCn(x`,xj), H

>
`,1:d

〉)
1≤j,`≤q

,

with ∇xCn(x,x
′
) = ∇xC(x,x

′
)−

(
∂cn(x)>

∂xp

)
1≤p≤d

C−1
n cn(x

′
).

• G : X →
(
m(k),Σ(k)

)
, dX [G] =

(
L(k)dX [g1] , L(k)dX [g2]L(k)>).

• g7 : (a,Γ) ∈ Rq × Sq++ → Φq,Γ(a) ∈ R,

dG(X) [g7] (h, H) = 〈h,∇xΦq,Σ(k)(m(k))〉+tr(H∇ΣΦq,Σ(k)(m(k))). ∇xΦq,Σ(k)

and ∇ΣΦq,Σ(k) are the gradient of the multivariate Gaussian CDF with re-
spect to x and to the covariance matrix, given in appendix.

• g4 : Σ→ Σ(k), dg2(X) [g4] (H) = L(k)HL(k)>.

• g5 : (a,Γ) ∈ Rq × Sq++ → ϕΓii
(ai) ∈ R,

dG(X) [g5] (h, H) =
(
− ai

Γii
hi + 1

2

(
a2i
Γ2
ii
− 1

Γii

)
Hii

)
ϕΓii(ai)

• g6 : (m(k),Σ(k)) ∈ Rq × Sq++ → (m
(k)
|i ,Σ

(k)
|i ),

d(m(k),Σ(k)) [g6] (h,H) =

(
h−i −

hi

Σ
(k)
ii

Σ
(k)
−i,i +

m
(k)
i Hii

Σ
(k)2
ii

Σ
(k)
−i,i −

m
(k)
i

Σ
(k)
ii

H−i,i ,

H−i,−i +
Hii

Σ
(k)2
ii

Σ
(k)
−i,iΣ

(k)>
−i,i −

1

Σ
(k)
ii

H−i,iΣ
(k)>
−i,i −

1

Σ
(k)
ii

Σ
(k)
−i,iH

>
−i,i

)

• g8 : (a,Γ) ∈ Rq−1 × Sq−1
++ → Φq−1,Γ(a) ∈ R,

dg6(G(X)) [g8] = 〈h,∇xΦq,Σ(k)(m(k))〉+ tr(H∇ΣΦq,Σ(k)(m(k))).

The gradient of q-EI, relying on Eq. (6) is implemented in the version 1.5 of
the DiceOptim R package [9], together with a gradient-based local optimization
algorithm. In the next section, we show that the analytical computation of
the gradient offers substantial computational savings compared to numerical
computation based on a finite-difference scheme. In addition, we investigate the
performances of the batch-sequential EGO algorithm consisting in sequentially
maximizing q-EI, and we compare it with the BUCB algorithm of [10].

4 Numerical tests

4.1 Computation time

In this section, we illustrate the benefits – in terms of computation time – of
using the analytical gradient formula of Section 3. We compare computation
times of gradients computed analytically and numerically, through finite differ-
ences schemes. It is important to note that the computation of both q-EI and

6



Φq−3 Φq−2 Φq−1 Φq Total
analytic q-EI 0 0 q2 q O(q2)

finite differences gradient 0 0 q(d+ 1) q2 q(d+ 1) q O(dq3)

analytic gradient q2 q(q−1)
2 q q(q−1)

2 + q3 q2 + 2q2 q O(q4)

Table 1: Total number of calls to the CDF of the multivariate Gaussian distri-
bution for computing q-EI or its gradient for a function with d input variables.
The last column gives the computational complexity as a function of q and d.
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lines) of the regret for three different
batch-sequential optimization strategies
(see Section 4.2 for detail).

its gradient (see, Eqs. (4),(6)) involve several calls to the cumulative distribu-
tion functions (CDF) of the multivariate normal distribution. The latter CDF
is computed numerically with the algorithms of [13] wrapped in the mnormt R
package [2]. In our implementation, computing this CDF turns out to be the
main bottleneck in terms of computation time. The total number of calls to
this CDF (be it in dimension q, q− 1, q− 2 or q− 3) is summarized in Table 1.
From this table, let us remark that the number of CDF calls does not depend
on d for the analytical q-EI gradient and is proportional to d for the numerical
gradient. The use of the analytical gradient is thus expected to bring savings
when q is not too large compared to d. Figure 2 depicts the ratio of computa-
tion times between numerical and analytical gradient, as a function of q and d.
These were obtained by averaging the evaluation times of q-EI’s gradient at 10
randomly-generated batches of size q for a given function in dimension d being
a sample path of a GP with separable Matérn(3/2) covariance function [21]. In
the next section, we use the values q = 6 and d = 5 and we rely exclusively on
the analytical q-EI formula which we now know to be faster.
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4.2 Tests

4.2.1 Experimental setup

We now compare the performances of two parallel Bayesian optimization algo-
rithm based, respectively, on the UCB approach of [23] and on sequential q-EI
maximizations. We consider a minimization problem in dimension d = 5 where
n = 50 evaluations are performed initially and 10 batches of q = 6 observations
are sequentially added. The objective functions are 50 different sample realiza-
tions of a zero mean GP with unit variance and separable isotropic Matérn(3/2)
covariance function with range parameter equal to one. Both algorithms use the
same initial design of experiment of n points which are all S-optimal random
Latin Hypercube designs [17]. The mean and covariance function of the un-
derlying GP are supposed to be known. Since it is difficult to draw sample
realizations of the GP on the whole input space D := [0, 1]d, we instead draw
50 samples on a set of 2000 space-filling locations and interpolate each sample
in order to obtain the 50 objective functions.

Two variants of the BUCB algorithms are tested. Each of them constructs
a batch by sequentially minimizing the kriging quantile µ?n(x)− βnsn(x) where
sn(x) =

√
Cn(x,x) is the posterior standard deviation at step n and µ?n(x) is

the posterior mean conditioned both on the response at previous points and at
points already selected in the current batch, with a dummy response fixed to
their posterior means in the latter case. Following the settings of [10], in the
first and second variant of BUCB, the coefficients βn are given by:

β(1)
n := 2βmult log

(
π2d

6δ
(k + 1)2

)
and β(2)

n := 2βmult log

(
π2d

6δ
(1 + qk)2

)
(7)

where βmult = 0.1, δ = 0.1, and k is the number of already evaluated batches
at time n, i.e., here, k ∈ {0, . . . , 9}. The BUCB1 strategy is expected to select
locations in regions with low posterior mean (exploitation) while BUCB2 is
meant to favour more exploration due to a larger βn. The minimization of the
kriging quantile presented above is performed using a genetic algorithm [18].
Regarding the algorithm based on q-EI sequential maximization, we propose
to use a multi-start BFGS algorithm with analytical gradient. This algorithms
operates gradient descents directly in the space of dimension qd = 30. To limit
computation time, the number of starting batches in the multi-start is set to
3. These 3 batches are obtained by running the BUCB1 algorithm presented
above with 3 different values of βmult equals to 0.05, 0.1, 0.2 respectively.

At each iteration, we measure the regrets of each algorithm and average
them over the 50 experiments. To facilitate the interpretation of results, we
first focus on the results of the algorithms after 1 iteration, i.e. after having
added only 1 batch of q points. We then discuss the results when 10 iterations
are run.
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4.2.2 First step of the optimization

To start with, we focus on the selection of the first batch. Table 2 compares the
average q-EI and real improvement obtained for the three selection rules. For
the first iteration only, the BUCB1 and BUCB2 selection rules are exactly the
same. Since q-EI is the one-step optimal, it is not a surprise that it performs

Selection rule
Average expected

improvement
(q-EI)

Average realized
improvement

q-EI 0.672 0.697
BUCB 0.638 0.638

Table 2: Expected and observed first batch Improvement for q-EI and BUCB
batch selection methods, in average for 50 functions.

better at iteration 1 with our settings where the objective functions are sample
realizations of a GP. If only one iteration is performed, improving the q-EI
is equivalent to improving the average performance. However, we point out
that, in application, the maximization of q-EI was not straightforward. It turns
out that the batches proposed by the BUCB algorithms were excellent initial
candidates in our descent algorithms. The use of other rules for the starting
batches, with points sampled uniformly or according to a density proportional
to the one-point EI, did not manage to yield this level of performance.

4.2.3 10 optimization steps

The average regret of the different batch selection rules over 10 iteration is
depicted in Fig. 3. This Figure illustrates that choosing the one-step optimal
criterion is not necessarily optimal if more than one iteration is run [14]. In-
deed, after two steps, q-EI maximization is already beaten by BUCB2, and q-EI
becomes better again after iteration 7. Among the 50 optimized functions, q-EI
maximization gives the smallest 10-steps final regret for only 30% of functions,
against 52% for the BUCB1 and 18% for the BUCB2. On the other hand,
the q-EI selection rule is eventually better in average since, for some functions,
BUCB is beaten by q-EI by a wide margin. This is further illustrated with the
curve of the 95% quantile of the regret which indicates that, for the worst simu-
lations, q-EI performs better. This gain in robustness alone explains the better
average performance of q-EI. Such improved performance comes at a price : the
computational time of our multistart BFGS algorithm with analytical gradient
is 4.1 times higher compared to the BUCB computation times.

5 Conclusion

In this article, we give a closed-form expression of the gradient of the multi-
point Expected Improvement criterion, enabling an efficient q-EI maximization
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at reduced computational cost. Parallel optimization strategies based on maxi-
mization of q-EI have been tested and are ready to be used on real test case with
the DiceOptim R package. The BUCB algorithm turns out to be a good com-
petitor to q-EI maximization, with a lower computational cost, and also gives
good starting batches for the proposed multistart BFGS algorithm. In general,
however, the maximization of q-EI remains a difficult problem. An interesting
perspective is to develop algorithms taking advantage of some particular proper-
ties of the q-EI function in the space of dimension qd, for example its invariance
to point permutations. Other research perspectives include deriving cheap but
trustworthy approximations of q-EI and its gradient. Finally, as illustrated in
the application, q-EI sequential maximizations have no reason to constitute op-
timal decisions for a horizon beyond one batch. Although the optimal policy is
known [14], its implementation in practice remains an open problem.
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6 Appendix : Differential calculus

• g1 and g2 are functions giving respectively the mean of Y (X) and its
covariance. Each component of these functions is either a linear or a
quadratic combination of the trend function µ or the covariance function
C evaluated at different points of X. The results are obtained by matrix
differentiation. See the appendix B of [21] for a similar calculus.

• g3 (resp. g4) is the affine (resp. linear) tranformation of the mean vector
m into m(k) (resp. the covariance matrix Σ into Σ(k)). The differentials
are then expressed in terms of the same linear transformation :

dm [g3] (h) = L(k)h and dΣ [g4] (H) = L(k)HL(k)>.

• g5 is defined by g5

(
m(k),Σ(k)

)
= ϕ

Σ
(k)
ii

(
m

(k)
i

)
. Then the result is ob-

tained by differentiating the univariate Gaussian probability density func-
tion with respect to its mean and variance parameters. Indeed we have
:

d(m(k),Σ(k)) [g5] (h,H) = dm(k)

[
g5(·,Σ(k))

]
(h) + dΣ(k)

[
g5(m(k), ·)

]
(H)

• g6 gives the mean and the covariance of Z
(k)
−i |Zi = 0. We have :

(
m

(k)
|i ,Σ

(k)
|i

)
= g6

(
m(k),Σ(k)

)
=

(
m

(k)
−i −

m
(k)
i

Σ
(k)
ii

Σ
(k)
−i,i ,Σ

(k)
−i,−i −

1

Σ
(k)
ii

Σ
(k)
−i,iΣ

(k)>
−i,i

)

10



d(m(k),Σ(k)) [g6] (h, H) = dm(k)

[
g6

(
·,Σ(k)

)]
(h)+dΣ(k) [g6]

(
m(k), ·

)
(H),

with : dm(k)

[
g6

(
·,Σ(k)

)]
(h) =

(
h−i −

hi

Σ
(k)
ii

Σ
(k)
−i,i , 0

)

and : dΣ(k)

[
g6

(
m(k), ·

)]
(H) =

(
m

(k)
i Hii

Σ
(k)2
ii

Σ
(k)
−i,i −

m
(k)
i

Σ
(k)
ii

H−i,i ,

H−i,−i +
Hii

Σ
(k)2
ii

Σ
(k)
−i,iΣ

(k)>
−i,i −

1

Σ
(k)
ii

H−i,iΣ
(k)>
−i,i −

1

Σ
(k)
ii

Σ
(k)
−i,iH

>
−i,i

)

• g7 and g8 : these two functions take a mean vector and a covariance ma-
trix in argument and give a probability in output : Φq,Σ(k)

(
−m(k)

)
=

g7

(
m(k),Σ(k)

)
, Φ

q−1,Σ
(k)

|i

(
−m(k)

|i

)
= g8

(
m

(k)
|i ,Σ

(k)
|i

)
So, for {p,Γ,a} =

{q,Σ(k),−m(k)} or {q−1,Σ
(k)
|i ,−m

(k)
|i }, we face the problem of differenti-

ating a function Φ : (a,Γ)→ Φp,Γ(a), with respect to (a,Γ) ∈ Rp × Sp++:

d(a,Γ) [Φ] (h, H) = da [Φ(·,Γ)] (h) + dΓ [Φ(a, ·)] (H).

The the first differential of this sum can be written :

da [Φ(·,Γ)] (h) =

〈(
∂

∂ai
Φ(a,Γ)

)
1≤i≤p

,h

〉
,

with : ∂
∂ai

Φ(a,Γ) =
a1∫
−∞
. . .
ai−1∫
−∞

ai+1∫
−∞
. . .

ap∫
−∞

ϕp,Γ(u−i, ai)du−i = ϕ1,Γii
Φp−1,Γ|i

(
a|i
)
.

The last equality is obtained with the identity : ∀u ∈ Rq, ϕq,Γ(u) =
ϕ1,Γii(ui)ϕp−1,Γ|i(u|i), with u|i = u−i − ui

Γii
Γ−i,i and Γ|i = Γ−i,−i −

1
Γii

Γ−i,iΓ
>
−i,i. The second differential is :

dΓ [Φ(a, ·)] (H) :=
1

2
tr

(
H.

(
∂Φ

∂Γij
(a,Γ)

)
i,j≤p

)
=

1

2
tr

(
H.

(
∂2Φ

∂ai∂aj
(a,Γ)

)
i,j≤p

)

where : ∂2Φ
∂ai∂aj

(a,Γ) =

 ϕ2,Σ{i,j},{i,j}(xi, xj)Φp−2,Σ|ij (x|ij) , if i 6= j,

− xi

Γii

∂
∂ai

ΦΓ(a,Γ)−
∑p
j=1
j 6=i

1
Γii

Γij
∂2

∂ai∂aj
Φ(a,Γ).
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