
HAL Id: hal-01133202
https://hal.science/hal-01133202v1

Submitted on 15 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-agent flocking under general communication rule
Samuel Martin, Antoine Girard, Arastoo Fazeli, Ali Jadbabaie

To cite this version:
Samuel Martin, Antoine Girard, Arastoo Fazeli, Ali Jadbabaie. Multi-agent flocking under general
communication rule. IEEE Transactions on Control of Network Systems, 2014, 1 (2), pp.155-166.
�10.1109/TCNS.2014.2316994�. �hal-01133202�

https://hal.science/hal-01133202v1
https://hal.archives-ouvertes.fr


1

Multi-agent flocking under general communication rule
Samuel Martin, Antoine Girard, Arastoo Fazeli and Ali Jadbabaie

Abstract—In this paper, we consider a multi-agent system
consisting of mobile agents with second-order dynamics. The
communication network is determined by a general interaction
rule based on the distance between agents. The goal of this
paper is to determine practical conditions ensuring that the
agents asymptotically agree on a common velocity, i.e. a flocking
behavior is achieved. Unlike previous studies on the topic, our
results simultaneously satisfy the three following features: our
conditions apply to a model which does not require long distance
communication; they only depend on the initial positions and
velocities of the agents, and most importantly, our results allow
for the disconnection of communication links which are not
necessary for flocking. To circumvent the difficulty arising from
the state dependent dynamics, a suitable bounding process is
used. We apply our result to two cases where communication
takes place either within deterministic or stochastic distance
radiuses. Our result is illustrated through simulations.

I. Introduction

Analysis and design of cooperative behaviors in networked
dynamic systems has lately received a lot of attention. Multi-
agent systems find applications in technical areas such as mo-
bile sensor networks [CB09], cooperative robotics [CMKB04]
or distributed implementation of algorithms [TBA86]. A cen-
tral question arising in the study of multi-agent systems
is whether the group will be able to reach a consensus.
Intuitively, agents are said to reach a consensus when all indi-
viduals agree on a common value (e.g. the heading direction
of a flock of birds, the candidate to elect for voters).

To carry out formal studies on consensus problems, one
usually assumes that the multi-agent system follows some ab-
stract communication protocol and then investigates conditions
under which a consensus will be reached. Existing frameworks
include discrete and continuous-time systems involving or
neglecting time-delays in the communication process (see e.g.
[OSFM07]). The communication network between agents is
usually modeled by a graph. The graph topology is either
assumed to be fixed or can switch over time. The switching
topology of the interactions is sometimes assumed to depend
on the state of the agents (e.g. the strength of the communi-
cation can be a function of the distance between agents).

Consensus can be modeled in a deterministic fashion;
however, in many applications it seems that the topology
of the network is quite random. Recently there has been a
growing interest in studying consensus algorithms in a prob-
abilistic setting [HM05], [Wu06], [PS07], [TSJ08], [PT07],
[AOP10], [TN10], [Cha09], [JLM03], [TJP07], where network
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Université de Grenoble, B.P. 53, 38041 Grenoble Cedex 9, France.
samuel.martinsa@gmail.com. A. Fazeli and A. Jadbabaie are with
the Department of Electrical and Systems Engineering at University of
Pennsylvania.

changes can be independent, identically distributed (i.i.d.) over
time [TSJ08], ergodic-stationary [TSJ10], or Markovian [IJ09].
This randomness can be due to the unpredictability of the
environment in which the communication between agents
occurs or due to the inherent probabilistic characteristic of
the communication among agents [FZ07].

An example where consensus protocols apply is when
agents in the network communicate if they are within some
distance which is governed by some random process. For
instance in wireless networks, the log-normal shadowing sta-
tistical model can be approximated assuming that the range
within which agents communicate is random and uniformly
distributed over some interval [BW09]. Therefore, in these
probabilistic cases one should investigate conditions under
which consensus will be reached with some given probability.
It would be quite useful if a lower bound for this probability
could be found as well.

Many papers have investigated sufficient conditions en-
suring asymptotic consensus. The assumptions made in the
models are usually rather general (see e.g. [Mor05]). This
enables the given conditions to apply in a wide range of
cases. Conditions usually require some connectivity properties
on the expected communication network to hold over time.
A drawback in such conditions is that they often cannot be
verified a priori.

In this paper we consider a group of agents with second
order dynamics. We generalize previous works from Martin
and Girard [MG10] and Martin et al. [MFJG12] by con-
sidering the following setting : The communication network
is determined by an interaction rule based on the distance
between agents (see section II). The influence between two
agents is a non-increasing function of the distance between
them. This influence is supposed to be symmetric. Under
these mild assumptions, the goal of the paper is to determine
practical conditions (on the initial positions and velocities of
agents) ensuring that the agents eventually agree on a common
velocity, i.e. a flocking behavior is achieved (see section IV-A).
These conditions depend on the initial configuration only. As
defined, the dynamics is state dependent and therefore hard
to forecast. We exhibit a suitable bounding process which
allows us to build upon previous work such as [TSJ06], to
establish such conditions (see section IV-C). In order to show
the applicability of our theoretical result, we apply it to two
distinct communication rules. First, agents interact whenever
their distance is smaller than a fixed communication radius
(section V-A). Then, we set distinct communication radiuses
for each agents, each of them varying randomly in time
(section V-A). In the latter case, we show how to compute
the optimal bound for flocking (section VI-A). This allows
us to test our result in numerical simulations (section VI-B).
Finally, we investigate the impact of the mean and variance



of the communication radiuses on the bound for flocking
(section VI-B). Our result is illustrated through simulations.

Unlike previous studies on the topic, our results simultane-
ously satisfy the following features:
• the change in the network topology is endogenous, i.e. it

depends explicitly on the agents’states,
• our conditions apply to a model which does not require

long distance communication,
• the conditions only depend on the initial configuration of

the system,
• and most importantly, our results allow for the discon-

nection of communication links which are not necessary
in order to obtain asymptotic flocking.

Related results in the literature include [DM09] where the
authors assume a hierarchy in the communication network
and [CM08] where the authors consider additive noise to
the dynamics (which makes the asymptotic velocity align-
ment impossible to achieve). Another viewpoints is adopted
in [ZTJP09] where authors control the communication weights
in order to preserve connectivity.

II. Problem Formulation
In this paper, we study a discrete time, multi-agent system.

We consider a set N = {1, . . . , n} of mobile agents evolving
in a d-dimensional space. Each agent i ∈ N is characterized
by its position xi(t) ∈ Rd and its velocity vi(t) ∈ Rd at time
εt where ε > 0 is the time step parameter of the system.
The initial positions and velocities are given by xi(0) = x0

i
and vi(0) = v0

i . The agents exchange information over a
communication network. The topology of the network depends
on the relative position of agents and is therefore subject to
change. The agents use the available information to adapt their
velocity in order to achieve a flocking behavior. Formally, the
evolution of each agent i ∈ N occurs every time step ε and
for some t ∈ N, this evolution is described at time εt by the
following discrete-time protocol:

xi(t + 1) = xi(t) + εvi(t)
vi(t + 1) = vi(t) + ε

∑
j∈N

ai j(t, ‖x j(t) − xi(t)‖)(v j(t) − vi(t)).

(1)
where ai j(t, ‖x j(t) − xi(t)‖) ≥ 0 is the communication weight
between i and j and ‖.‖ denotes the Euclidean norm1. The
weight ai j(t, ‖x j(t)− xi(t)‖) > 0 when communication between
agents j and i takes place at time εt and is equal to 0 otherwise.

In this paper we focus on communication of agents defined
by a metric rule, which explains why the communication
weights depend explicitly on the distance between agents. In
this paper, we also assume that the following condition is
satisfied:

Assumption 1. The communication weights ai j are symmetric
and decrease when agents go away from one another : for all
i, j ∈ N , and for all t ∈ R+,{

∀z ∈ R+, ai j(t, z) = a ji(t, z),
∀z1, z2 ∈ R

+, z1 ≤ z2 ⇒ ai j(t, z1) ≥ ai j(t, z2). (2)

1In the following, ‖.‖ will denote the usual Euclidean norm on Rd or Rnd

depending on the context.

The symmetry assumption allows us to make use of alge-
braic graph theory. Without this assumption our main results
do not hold. The fact that the weights decrease with the
distance between agents reflects communication constraints
often found in real systems: it is easier for the agents to
sense each other when they are closer to one another. As we
shall see in section V-B, the fact that the weights ai j depends
explicitly on time allows to include important classes of
systems such as systems with disturbance. Metric interactions
are usually assumed to be a good representation of how
collective behavior takes place. Thus, most of the literature
on the subject, including [Rey87], [VCBJ+95], uses them.

We say that the agents achieve a flocking behavior if all the
agents asymptotically move with a common direction:

∀i, j ∈ N , lim
t→+∞

|vi(t) − v j(t)| = 0.

The goal of this paper is to determine sufficient conditions
which guarantee that the flocking behavior is achieved. Such
conditions should be easily verifiable using only the initial
positions and velocities of agents.

III. Preliminaries

In this section, we review some results from algebraic graph
theory and multi-agent systems that will be useful in the
subsequent discussion.

A. Algebraic Graph Theory

Let us recall some standard results from algebraic graph
theory. More details can be found, for instance, in [GR01],
[Mer94]. We then apply the algebraic formalism to system (1)
to obtain preliminary results. A similar approach was carried
out in [TSJ06] and [KM07].

Denote the communication weight matrix A(t) = [ai j(t)]. We
only consider the case where A is symmetric with non-negative
entries according to the definition of the communication
weights. For the rest of the section, we drop the dependence
on time. Let D = diag(d1, d2, . . . , dn) be the degree matrix
of A where di =

∑
j∈N

ai j. Let L = D − A be the Laplacian

matrix of A. The matrix L is symmetric, positive-semidefinite.
Its eigenvalues are non-negative reals and its smallest one is
0 with eigenvector 1n, vector of all ones. We denote these
eigenvalues in increasing order as

0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L).

The second smallest eigenvalue of L, λ2(L) is usually referred
to as the algebraic connectivity of the network. Let ε > 0. Let
W = I − εL. The matrix W is symmetric and therefore also
has real eigenvalues. We denote them in decreasing order as
follows:

1 = λ1(W) ≥ λ2(W) ≥ . . . ≥ λn(W),

so that we have for i ∈ N ,

λi(W) = 1 − ελi(L). (3)

Lemma 2 (Lemma 8 [KM07]). Let J = 1
n 1n1T

n . The spectral
radius of W − J is max(1 − ελ2(L),−1 + ελn(L)).



Remark 3. In the rest of the paper, we shall assume ε < 1
λn(L)

for all Laplacian matrix considered. This is always possible by
choosing ε = 1

2(n−1) (see e.g. [GR01]). Under this assumption,
the spectral radius of W − J is 1 − ελ2(L). This assumption
also yields ε < 1

λ2(L) and thus 1 − ελ2(L) > 0.

To a communication weight matrix A, we associate a
weighted graph G = (N ,E, A) consisting of a set of nodes
N = {1, . . . , n} and a set of edges given by a relation
E ⊆ N × N such that (i, j) ∈ E iff ai j > 0. According
to assumption 1, E is symmetric ((i, j) ∈ E iff ( j, i) ∈ E)
and anti-reflexive (∀i ∈ N , (i, i) < E). If (i, j) ∈ E, we
say that i is a neighbor of j. A path between i and j is a
sequence of nodes (i1, i2, . . . , ip) such that i1 = i, ip = j and
∀k ∈ {1, . . . , p− 1}, (ik, ik+1) ∈ E. We shall consider throughout
this paper paths without loops, i.e. for all k, k′ ∈ {1, . . . , p− 1}
k , k′ implies ik , ik′ . A graph is said to be connected if for
every couple of nodes (i, j) ∈ N × N such that i , j, there
exists a path between i and j.

We define a partial order relation on weighted graphs.

Definition 4. A graph G′ = (N ,E′, A′) is said to be a
(spanning) subgraph of G, which is denoted

G′ 4 G,

when for all i, j ∈ N , A′i j ≤ Ai j.

The following proposition shows that λ2(L) is a good
measure of the connectivity of the graph:

Lemma 5 ([GR01]). Let L and L′ be the Laplacians matrices
associated to graphs G and G′ respectively.
• G is connected iff λ2(L) > 0.
• If G′ 4 G, i.e. G′ is a subgraph of G, then λ2(L′) ≤ λ2(L).

B. Consensus over Random Networks

In this section, we apply the algebraic formalism to system
(1) to derive a useful result. This approach was for instance
used in [TSJ06] and [KM07].

Let x(t) = (x1(t)T , . . . , xn(t)T )T ∈ Rnd and v(t) =

(v1(t)T , . . . , vn(t)T )T ∈ Rnd be the stacked vectors of positions
and velocities, respectively. We also define the stacked vectors
of initial positions and velocities: x0 = (x0

1
T
, . . . , x0

n
T )T ∈ Rnd

and v0 = (v0
1

T
, . . . , v0

n
T )T ∈ Rnd. Let L(t) = L(t) ⊗ Id,

W(t) = W(t) ⊗ Id and J(t) = J(t) ⊗ Id where Id is the d × d
identity matrix and ⊗ denotes the Kronecker product. Then,
system (1) becomes in matrix form

x(t + 1) = x(t) + εv(t)
v(t + 1) = W(t)v(t) = (Ind − εL(t))v(t). (4)

Since L(t) is symmetric and 1n is an eigenvector associated to
eigenvalue 0, the average of the velocities v∗ = 1/n · ((1n ⊗

Id)T v0) ⊗ 1n is preserved by (4). It follows that if the agents
achieve a flocking behavior, the common asymptotic velocity
is necessarily v∗.

For i ∈ N , let δi(t) = vi(t) − v∗, we define the velocity
disagreement vector δ(t) = (δ1(t)T , . . . , δn(t)T )T . Let yi(t) =

xi(t)−εv∗t and y(t) = (y1(t)T , . . . , yn(t)T )T . Denote z(t) = y(t)−

x0. We have z(0) = 0. The vector y(t) essentially gives the
relative positions of the agents, as we have

∀i, j ∈ N , xi(t) − x j(t) = yi(t) − y j(t)

whereas z(t) gives the modifications of the relative positions
since

∀i, j ∈ N , zi(t) − z j(t) = xi(t) − x j(t) − (x0
i − x0

j ). (5)

The dynamics of z and δ are as follows:

z(t + 1) = z(t) + εδ(t),
δ(t + 1) = W(t)δ(t). (6)

Lemma 6 (Lemma 7 [KM07]). For all time t ∈ N,

‖δ(t + 1)‖ ≤ (1 − ελ2(L(t)))‖δ(t)‖.

Lemma 6 gives a sufficient condition for flocking, i.e.
∞∏

t=0

(1−ελ2(L(t))) = 0. However, this condition is not simple to

verify since L(t) is a position dependent matrix. This is why,
in the next section, we introduce a bounding function of ‖δ(t)‖
which is easier to deal with.

IV. Sufficient condition for flocking

A. Main result

In this section, we propose a theorem giving sufficient
conditions for flocking. To do so, we introduce the variable
ρ > 0 which represents the maximal perturbation allowed on
the relative positions of agents. We then define the weighted
graph G̃(t) = (N , Ẽ(t), Ã(t)) corresponding to the initial relative
distance between agents perturbed by ρ, where Ã(t) = (ãi j(t))
with

ãi j(t) = ai j(t, ‖xi(0) − x j(0)‖ + ρ), (7)

where the functions ai j are the interaction weights used in
system (1). We denote L̃(t) the Laplacian matrix of weighted
graph G̃(t). Notice that the graph G̃(t) is not explicitly state-
dependant anymore.

These notation allow us to state the main theoretical theorem
of the paper :

Theorem 7. Flocking is achieved if 2 +∞∑
t=0

t−1∏
w=0

(1 − ελ2(L̃(w)))

 ‖δ(0)‖ ≤
ρ

ε
√

2
.

As given the computation of the sufficient condition for
flocking given in Theorem 7 may not seem obvious. We
shall see how this can be done for specific communication
rules in section V. We can already qualitatively comment on
this condition. The condition depends on the initial velocities
through the vector ‖δ(0)‖. As expected, flocking is more likely
to occur if the initial velocity disagreement is small. The
dependency on the initial positions comes from λ2(L̃(w)).
Notice that according to assumption 1 and lemma 5, λ2(L̃(w))
decreases when the distance between agents increases, making
flocking less likely to occur. The robustness ρ appears twice in

2In the equation and throughout the paper, we use convention
∏−1

w=0 fw =∏
w∈∅ fw = 1, for any fw ∈ R, and

∑−1
τ=0 gτ =

∑
τ∈∅ gτ = 0, for any gτ ∈ R.



the condition since λ2(L̃(w)) also depends on it. The optimal
choice of parameter ρ will be discussed in section VI-A.

The proof of the previous theorem requires intermediate
results which we derive in the next two sections. We thus
postpone the proof to the end of section IV-C. Essentially, we
will show that for all time t ≥ 0,

G̃(t) 4 G(t), (8)

i.e. G̃(t) bounds the minimal quantity of interactions taking
place in G(t). To do so, we combine the following steps:
• equation (8) imposes a minimal convergence rate for the

velocity disagreement, which in turns gives a bound on
the distance modification at time t + 1 (see lemma 9).

• if the distances between agents ‖xi(t + 1) − x j(t + 1)‖ are
not modified more than the robustness ρ then equation (8)
is satisfied at time t + 1 (see proposition 8).

An induction on time t allows to conclude. The fact that
equation 8 implies flocking lies implicitly in the fact that
it bounds the distances between agents and thus forces the
velocities to converge (see Theorem 10).

B. Robustness of the interaction graph

The definition of graph G̃(t) and assumption 1 yields a
sufficient condition for preserving the graph G̃(t) in G(t) over
time :

Proposition 8. Let t ∈ N. Let z(t) = y(t)−x0 as in section III-B.
If

‖z(t)‖ ≤
ρ
√

2
,

then G̃(t) is a subgraph of G(t), i.e. G̃(t) 4 G(t), where the
partial order 4 is defined in definition 4.

Proof. Let i, j ∈ N distinct. We have

−2〈zi(t)|z j(t)〉 ≤ ‖zi(t)‖2 + ‖z j(t)‖2.

Thus,

‖zi(t) − z j(t)‖2 = ‖zi(t)‖2 + ‖z j(t)‖2 − 2〈zi(t)|z j(t)〉
≤ 2(‖zi(t)‖2 + ‖z j(t)‖2)
≤ 2‖z(t)‖2.

Then, using the assumption of the proposition, we have ‖zi(t)−
z j(t)‖ ≤ ρ, so that equation (5) gives

‖xi(t) − x j(t)‖ = ‖xi(t) − x j(t) − (x0
i − x0

j ) + (x0
i − x0

j )‖

≤ ‖xi(t) − x j(t) − (x0
i − x0

j )‖ + ‖x0
i − x0

j‖

≤ ‖zi(t) − z j(t)‖ + ‖x0
i − x0

j‖

≤ ρ + ‖x0
i − x0

j‖.

This, along with assumption 1, allows to conclude. �

We will show in the application section that under certain
conditions, the assumption required in proposition 8 is verified,
i.e. the modification on the distances between agents is always
smaller than maximal perturbation ρ (which explains its name).

In the next section, we explain how to use proposition 8 to
derive a sufficient condition for flocking.

C. Bounding processes

We define a system of two variables lying in R+, (p, q)
which will serve to bound system (1) :

p(t + 1) = p(t) + εq(t),
q(t + 1) = (1 − ελ2(L̃(t)))q(t), (9)

where p(0) = 0 and q(0) = ‖δ(0)‖. Under a certain assumption,
we shall show that p bounds ‖z‖, the distance modification
between agents while q serves as a bound to the velocity
disagreement vector ‖δ‖ (see equation (6)). As we shall see in
the application, the behavior of (p, q) is easier to characterize
than the one of (z, δ).

We can now state the bounding property:

Lemma 9. We have(
∀t ∈ N, p(t) <

ρ
√

2

)
⇒

∀t ∈ N,


λ2(L(t)) ≥ λ2(L̃(t))
‖δ(t)‖ ≤ q(t)
‖z(t)‖ ≤ p(t)

 .
Proof. We show the result by induction on time. Assume that
the left-hand side of the implication is satisfied. By definition,
q(0) = ‖δ(0)‖ and p(0) = ‖z(0)‖ = 0. Assume the result is true
for some time t : ‖δ(t)‖ ≤ q(t) and ‖z(t)‖ ≤ p(t). The inequality
on the positions at time t + 1 comes as follows:

‖z(t + 1)‖ = ‖z(t) + εδ(t)‖ ≤ ‖z(t)‖ + ε‖δ(t)‖
≤ p(t) + εq(t) = p(t + 1).

For the inequality on the velocities, we have ‖z(t)‖ ≤ p(t) <
ρ/
√

2, where we used the left-hand side of the implication.
Thus, we can apply proposition 8 along with Lemma 5 to
obtain λ2(L(t)) ≥ λ2(L̃(t)). Then, Lemma 6 gives

‖δ(t + 1)‖ ≤ (1 − ελ2(L(t)))‖δ(t)‖
≤ (1 − ελ2(L̃(t)))‖δ(t)‖
≤ (1 − ελ2(L̃(t)))q(t) = q(t + 1).

�

This last lemma leads to the following result:

Theorem 10. If for all time t, p(t) ≤ ρ
√

2
then flocking is

achieved, i.e. lim
t→+∞

‖δ(t)‖ = 0.

Proof. We have that λ2(L̃(t)) > 0 (see algebraic graph theory
section III-A). Also, since λ2(L̃(t)) < λ2(L(t)) (see Lemma 9).
These two facts along with Remark 3 give that (1−ελ2(L̃(t))) ∈
(0, 1). Thus, since sequence q is defined by system (9), it is
non-negative and non-increasing. As a consequence, sequence
q must converge. It is easy to see that if lim

t→∞
q(t) > 0 then p

diverges. Thus, lim
t→∞

q(t) = 0. Using Lemma 9, we have ‖δ(t)‖ ≤
q(t), thus lim

t→∞
‖δ(t)‖ = 0 which guarantees flocking. �

In order to use the previous Lemma, we need to be able to
characterize the evolution of p in function of the initial con-
figurations of the system. This will be done in the application
section.

Proof of Theorem 7. Notice that, from system (9), for t ∈ N,

p(t) = ε

 t−1∑
τ=0

τ−1∏
u=0

(1 − ελ2(L̃(u)))

 ‖δ(0)‖,



which, using Remark 3, shows that p is a non-decreasing
sequence. Thus, Theorem 7 becomes a direct corollary of
Theorem 10. �

V. Applications

We now present two applications to our main theoretical
result. The first one assume that agents interact when at a
distance smaller than a fixed interaction radius R, whereas in
the second one the interaction radiuses are allowed to differ
with the agents and are subject to random variations over time.

A. Interactions under fixed communication radius

We consider n agents evolving according to system (1). We
suppose that two agents i and j ∈ N interact when their
distance is smaller than a certain interaction radius R > 0,
i.e.

ai j(t, ‖xi(t) − x j(t)‖) = χ
(
‖xi(t) − x j(t)‖ ≤ R

)
where the χ () is the characteristic function (for an assertion
A, χ (A) = 1 if A is true and 0 otherwise). Such interactions
weights satisfy assumption 1. Therefore, Theorem 7 applies :
flocking is achieved if +∞∑

t=0

t−1∏
w=0

(1 − ελ2(L̃(w)))

 ‖δ(0)‖ ≤
ρ

ε
√

2
,

where L̃(w) is the Laplacian matrix associated to adjacency
matrix Ã = (ãi j(t))i j defined so that, according to equation (7),

ãi j(t) = χ
(
‖x0

i − x0
j‖ + ρ ≤ R

)
.

The matrix L̃ is thus independent of time. A consequence of
this fact is the following theorem:

Theorem 11. Flocking is achieved if

‖δ(0)‖ ≤
λ2(L̃(0))ρ
√

2
.

Proof. Using the fact that L̃ is independent of time, we can
rewrite the assumption in Theorem 7 as +∞∑

t=0

(1 − ελ2(L̃(0)))t

 ‖δ(0)‖ ≤
ρ

ε
√

2
⇔

‖δ(0)‖
ελ2(L̃(0))

≤
ρ

ε
√

2

⇔ ‖δ(0)‖ ≤
λ2(L̃(0))ρ
√

2
,

where for the first equivalence, we have computed the infinite
sum of a geometric sequence, since according to Remark 3 and
Lemma 9, 1−ελ2(L̃(0)) ∈ (0, 1). The last equation is precisely
the assumption required in Theorem 11. Theorem 7 allows to
conclude. �

B. Interactions under random communication radius

In this section, we focus on communication of agents
defined by a metric rule parametrized by random interaction
radiuses. To do so, we assume that each agent i has a sensing
radius Ri(t) following uniform distribution over the interval
[R̄ − R̂/2, R̄ + R̂/2], R̄ > 0 being the average communication

range and R̂ ∈ [0, 2R̄] the width of the possible variations 3.
The communication weights are then defined by

ai j(t) = χ
(
‖xi(t) − x j(t)‖ ≤ Ri j(t) and i , j

)
, (10)

where
Ri j(t) = min(Ri(t),R j(t)).

Taking Ri j(t) = min(Ri(t),R j(t)) means that two agents interact
if and only if both agents can sense the other. Thus if the
sensing is low range, so will be the communication. It has
been shown in [BW09] that the uniform distribution is a good
approximation of the log-normal shadowing statistical model
for wireless networks and is, as such, of practical relevance.

Such metric interactions make the communication weights
symmetric and, given a fixed radius Ri j(t), decreasing with
the distance between agents and thus verify assumption 1.
Therefore, Theorem 7 applies. Moreover, the sensing radiuses
Ri are independent and identically distributed in time (i.i.d.).
Since Ri j is the minimum of two time-independent random
variables, it is itself time-independent. In the first part of the
section, we shall see how these facts helps to determine precise
a lower bound on the probability of flocking.

1) Probability of flocking: In this section we make use
of notation G̃(t), Ã(t) = [ãi j(t)], the adjacency matrix, and
L̃(t) the Laplacian associated to matrix Ã(t). Since Ri j(t) are
time-independent processes, so are ãi j(t), Ã(t) and L̃(t). Thus,
E(λ2(L̃(t))) is independent of time. Then, let λ̃2 = E(λ2(L̃(t))).
In the rest of the section, we will assume λ̃2 > 0. This occurs
iff G̃(t) is connected with non-zero probability (this is true
if for instance ρ = 0 provided that G(0) is connected with
non-zero probability).

According to [TSJ06], if the communication graph is con-
nected on average for all time (i.e. ∀t ≥ 0,E(λ2(L(t))) > 0),
then velocity alignment is guaranteed. Lemma 5 states that if
G̃(t) ⊆ G(t), E(λ2(L(t))) ≥ E(λ2(L̃(t))) > 0. Consequently, the
preservation of G̃(t) in the communication graph over time
allows to characterize the velocity alignment rate in function
of E(λ2(L̃(t))). This discussion leads to the following theorem:

Theorem 12. Assume that ρ > 0 and λ̃2 > 0. Moreover
suppose ‖δ(0)‖ ≤ ρλ̃2√

2
. Then the probability that flocking is

achieved is higher than

1 −
1

1 + κ
where κ =

1
νε

(
ρλ̃2

√
2‖δ(0)‖

− 1
)2

,

and νε =
εvar(λ2(L̃(t)))

(2λ̃2−εE(λ2(L̃(t))2)) ∈ [0, 1], where var(λ2(L̃(t))) =

E((λ2(L̃(t)))2) − E(λ2(L̃(t)))2 is the variance of λ2(L̃(t)).

Remark 13. As given, the result allows us to obtain the
probability of flocking arbitrarily close to 1 in three ways :
• First, one can choose the initial disagreement vector

sufficiently small.
• Second, since lim

ε→0
νε = 0, assume the condition on ‖δ(0)‖

is satisfied, and then choose ε sufficiently small.
• Finally, the variance var(λ2(L̃(t))) converges to 0 when R̂

vanishes. In this case, the limit bound is exactly the one

3Rigorously, we should write Ri(t, ω) where ω ∈ Ω, the set of probabilistic
events. For simplicity of notation, we drop ω, unless necessary.



given by Theorem 11, for the deterministic setting. This
is consistent since when R̂ vanishes, the stochasticity of
the system disappears.

Notice that, on the opposite, choosing ρ arbitrarily high would
not work since λ̃2 is a decreasing function of ρ. We detail the
optimal choice of ρ in section VI-A.

Remark 14. The result remains valid for any communication
rule leading to an independent and identically distributed
symmetric communication graph G(t).

The proof of the theorem requires characterizing the evo-
lution of the bound p on the modification of the distances
in function of the initial configuration of the system, and is
therefore relocated at the end of the next section.

Lemma 15. For all t ∈ N, we have{
E(q(t + 1)) = αE(q(t)),
E(q(t + 1)2) = βE(q(t)2)

where 
α = E(1 − ελ2(L̃(t))) = 1 − ελ̃2,
β = E((1 − ελ2(L̃(t)))2)

= 1 − 2ελ̃2 + ε2E(λ2(L̃(t))2).
(11)

Proof. The Lemma can be derived easily using the fact that
L̃(t) is independent of q(t).

�

The bounding process is useful only if the variance of q(t)
converges to 0. This is the case under the condition assumed
in Remark 3 regarding ε :

Remark 16. Assuming ε < 1/λn(L̃(t)) for all t as in Remark 3,
both α and β lie in interval (0, 1).

The previous remark holds since, according to Remark 3,
1−ελ2(L̃(t)) ∈ (0, 1) for any realization of the random radiuses
Ri(t). Then, the definition of α and β allows us to conclude.

A direct corollary of Lemma 15 is the following :

Corollary 17. For all t, u ∈ N, we have
E(q(t)) = αtq(0),
E(q(t)2) = βtq(0)2,
E(q(t + u)q(t)) = αuE(q(t)2)

Proof. The first and second equations are straight-forward.
The third one is also a consequence of L̃(t) being i.i.d.:

E(q(t + u)q(t)) = E(
u−1∏
j=0

(1 − ελ2(L̃(t + j)))q(t)2)

= (1 − εE(λ2(L̃(t)))uE(q(t)2).

�

Noticing that p(t) = ε

t−1∑
k=0

q(k) and with the assumption λ̃2 >

0, the following also holds :

Lemma 18. If we assume λ̃2 > 0, we have, for all t ∈ N, E(p(t)) = ε q(0)
1−α + o(t),

σ2(p(t)) = ε2 (β−α2)q(0)2

(1−α)2(1−β) + o(t)

where σ2(p(t)) = E(p(t)2) − E(p(t))2 and o(t) is a function
converging to 0 when time t approaches to infinity.

Proof. The first equality comes from the above remark and
the first equation in Corollary 17:

E(p(t)) = ε

t−1∑
k=0

E(q(k)) = ε

t−1∑
k=0

αkq(0)

= ε
1 − αt

1 − α
q(0) = ε

q(0)
1 − α

+ o(t)

where we used |α| < 1 as given in Remark 16.
For the second equality,

p(t)2 = ε2
t−1∑

k, j=0

q(k)q( j)

= ε2

 t−1∑
k=0

q(k)2 + 2
∑
k< j

q( j)q(k)


= ε2

t−1∑
k=0

q(k)2 + 2
t−1−k∑
u=1

q(k + u)q(k)

 .
Using the linearity of the expectation, Corollary 17 and |α| < 1,
we obtain

E(p(t)2) = ε2
t−1∑
k=0

E(q(k)2) + 2
t−1−k∑
u=1

αuE(q(k)2)


= ε2

t−1∑
k=0

(
1 + 2(

1 − αt−k

1 − α
− 1)

)
E(q(k)2)

= ε2
t−1∑
k=0

(
1 + α

1 − α
− (

2αt

1 − α
α−k)

)
βkq(0)2

= ε2

1 + α

1 − α

t−1∑
k=0

βk −
2αt

1 − α

t−1∑
k=0

(
β

α
)k

 q(0)2.

Moreover, Remark 3 gives 0 < ε < 1
λ2(L̃(t)) for any realization

of the random radiuses Ri(t) and choice ri j. Thus,

εE(λ2(L̃(t))2) = E(ελ2(L̃(t))2) < E(λ2(L̃(t))) = λ̃2.

So, we have

β = 1 − 2ελ̃2 + ε2E(λ2(L̃(t))2) < 1 − 2ελ̃2 + ελ̃2 = α.

Thus, β , α. Also |β| < 1, so we have

E(p(t)2) = ε2
(

1 + α

1 − α
1 − βt

1 − β
−

2αt

1 − α
1 − (β/α)t

1 − (β/α)

)
q(0)2

= ε2
(

1 + α

1 − α
1 − βt

1 − β
−

2
1 − α

αt − βt

1 − (β/α)

)
q(0)2

= ε2 1 + α

(1 − α)(1 − β)
q(0)2 + o(t).

Then,

σ2(p(t)) = E(p(t)2) − E(p(t))2

= ε2
(

1 + α

(1 − α)(1 − β)
−

1
(1 − α)2

)
q(0)2 + o(t).

Reformulating the last right-hand side leads to the expected
result. �



Finally, we translate the equation from the previous lemma
in terms of the expectation and deviation of the algebraic
connectivity:

Corollary 19. For all t ∈ N, we have E(p(t)) =
‖δ(0)‖
λ̃2

+ o(t),

σ2(p(t)) =
νε‖δ(0)‖2

λ̃2
2

+ o(t),

where νε ∈ [0, 1] is defined in Theorem 12.

Remark 20. Since lim
ε→0

νε = 0, the previous result shows that
one can obtain the limit variance of p(t) as small as desired
by choosing ε small enough.

Proof. Notice that the definitions of α and β give

1 − α = ελ̃2, 1 − β = ε(2λ̃2 − εE(λ2(L̃(t))2)),

1 + α = 2 − ελ̃2, β − α
2 = ε2(E(λ2(L̃(t))2) − λ̃2

2).

Then, the first equation is straightforward. The second is
derived as follows:

σ2(p(t)) = ε2 (β − α2)q(0)2

(1 − α)2(1 − β)
+ o(t)

= ε4 (E(λ2(L̃(t))2) − λ̃2
2)‖δ(0)‖2

ε3λ̃2
2(2λ̃2 − εE(λ2(L̃(t))2))

+ o(t)

=
νε‖δ(0)‖2

λ̃2
2

+ o(t).

The fact that νε ≥ 0 can be deduced from σ2(p(t) ≥ 0. The
inequality νε ≤ 1 comes from εE(λ2(L̃(t))2) < λ̃2 (see proof of
Lemma 18), which gives λ̃2 < 2λ̃2 − εE(λ2(L̃(t))2) and

νε < ε
(E(λ2(L̃(t))2) − λ̃2

2)

λ̃2
≤ ε
E(λ2(L̃(t))2)

λ̃2
< 1.

�

We can now give the proof of the central theorem of this
section.

Proof of Theorem 12. According to Theorem 10, the proba-
bility of flocking is higher than the probability of the event :
p(t) ≤ ρ

√
2

for all time t ∈ N. Denote At = {ω ∈ Ω|p(t) ≤ ρ
√

2
}

where Ω is the set of probabilistic events. Since p is increasing,
(At) is a decreasing sequence of events. Thus, we have

P(∀t, p(t) ≤
ρ
√

2
) = P(∩t≥0At)

= lim
t→+∞

P(At) = lim
t→+∞

P(p(t) ≤
ρ
√

2
)

= 1 − lim
t→+∞

P(p(t) >
ρ
√

2
).

The bound on the probability of flocking comes from the one-
sided Chebyshev’s inequality:

P(p(t) >
ρ
√

2
) ≤

1
1 + k(t)

where k(t) =

(
ρ
√

2
−E(p(t))

)2

σ2(p(t)) . We are only interested in the limit
when t diverges to infinity. We use Corollary 19 to derive a

lower bound on the limit of k(t) :(
ρ
√

2
− lim

t→∞
E(p(t))

)2

lim
t→∞

σ2(p(t))
≥

1
νε

(
ρλ̃2

√
2‖δ(0)‖

− 1
)2

.

�

VI. Numerical validation
In this section we show that our theoretical result can

be implemented. As mentioned in remark 13, the system
where agents interact within a fixed communication radius (see
section V-A) is a particular case of the stochastic setting when
the diameter of possible radiuses R̂ is reduced to 0. Thus, we
only deal with the latter setting in the present section.

A. Computation and optimization of the bound

Theorem 12 gives a lower bound on the probability that
a trajectory of system (1) reaches velocity alignment. To be
useful, this bound should be computable. In this section, we
explicit the quantities appearing in the bound which are not
direct to compute: E(λ2(L̃(t))) and E((λ2(L̃(t)))2). Since the
radiuses Ri(t) for i ∈ N are i.i.d., these two quantities are
independent of time. Thus, we drop the time dependency
notation. The computation method will be the same for both
E(λ2(L̃(t))) and E((λ2(L̃(t)))2), for this reason, we consider a
function φ :Mn(R) −→ R such that φ(L̃) is summable.

We assume that ρ ∈ [0, R̄ + R̂/2] is fixed unless otherwise
mentioned. Denote Rmax = R̄+R̂/2 and Rmin = R̄−R̂/2. Denote,
for ( j, i) ∈ N , ri j = ‖x0

i − x0
i ‖ + ρ. Also denote, for i ∈ N , the

set of uncertain neighbors of i as

Ui = { j ∈ N | Rmin ≤ ri j ≤ Rmax}.

Denote di the cardinal of set Ui. For a given i, we sort the di

values in Ui in increasing order and we denote (r1
i , r

2
i , . . . , r

di
i )

the resulting sequence.
Denote r0

i = Rmin and rdi+1
i = Rmax. These notation allow to

state that L̃ is a piecewise constant function of Ri for i ∈ N :

Lemma 21. Let ki ∈ {0, . . . , di} for i ∈ N . Then, for a fixed ρ,
L̃ is constant when radiuses Ri vary in [rki

i , r
ki+1
i [. Precisely, L̃

is given by
ãi j = χ

(
ri j ≤ min(rki

i , r
k j

j )
)
.

We denote L̃(k1, k2, . . . , kn) this constant.

Proof of lemma 21. Assume that ki ∈ {0, . . . , di} for i ∈ N
fixed. Let Ri ∈ [rki

i , r
ki+1
i [ for i ∈ N . Let i, j ∈ N distinct. We

show that ãi j is independent of the Ri. We have

ãi j = χ
(
‖x0

i − x0
j‖ + ρ ≤ min(Ri,R j)

)
= χ

(
ri j ≤ min(Ri,R j)

)
.

If ri j > Rmax, ãi j = 0. If ri j ≤ Rmin, ãi j = 1. In both cases, ãi j is
independent of Ri and R j. Assume that ri j ∈]Rmin,Rmax]. Also
assume that Ri ≤ R j so that

ãi j = χ
(
ri j ≤ Ri

)
.

If Ri > R j, we apply a similar reasoning. Denote k ∈ {1, . . . , di}

such that ri j = rk
i . If k ≤ ki, then, since Ri ≥ rki

i , ãi j = 1 (by the



assumption of the lemma). If k ≥ ki + 1, then, since Ri < rki+1
i ,

ãi j = 0. In each case, ãi j is independent of the value of Rl

for l ∈ N . Weight ãi j is independent of Rl for Rl ∈ [rkl
l , r

kl+1
l [,

l ∈ N . Thus, we may assume that Ri = rki
i and R j = rk j

j to
compute ãi j. So, for Ri ∈ [rki

i , r
ki+1
i [ and R j ∈ [rk j

j , r
k j+1
j [,

ãi j = χ
(
ri j ≤ min(Ri,R j)

)
= χ

(
ri j ≤ min(rki

i , r
k j

j )
)
.

�

We now introduce the main result of the section.

Proposition 22. The quantity E(φ(L̃)) has exact formulation :

E(φ(L̃)) =
1

R̂n

d1∑
k1=0

· · ·

dn∑
kn=0

n∏
i=1

(rki+1
i − rki

i )φ(L̃(k1, k2, . . . , kn)).

To obtain the exact expression of E(λ2(L̃(t))) or
E((λ2(L̃(t)))2), one needs to replace φ(L̃) by these quantities
in proposition 22.

Remark 23. Proposition 22 gives an exact expression to
the product E(λ2(L̃(t)))ρ. As a consequence, obtaining the
maximum probability of flocking according to Theorem 12
comes down to maximizing this expression in function of ρ,
which can be done using standard numerical methods. Once
the optimal value of ρ is obtained, proposition 22 also gives
a value for νε.

Remark 24. If we assume that degrees di are homogenous, the
number of constant L̃(k1, k2, . . . , kn) to be computed increases
as O(dn) where d is the average node degree. The computation
can thus be done when n is small. When n is too large, one
rather choose to compute an approximate value for E(φ(L̃))
using a Monte-Carlo method [MU49].

Proof of proposition 22. To stress that the matrix L̃ is a func-
tion of radiuses Ri, we use notation L̃(R1,R2, . . . ,Rn). The
radiuses Ri for i ∈ N are independent random processes, there-
fore the probability density function of vector (R1,R2, . . . ,Rn)
is the product of the probability density functions of radiuses
Ri for i ∈ N . Thus, we have

E(φ(L̃)) = 1
R̂n

Rmax∫
R1=Rmin

· · ·

Rmax∫
Rn=Rmin

φ(L̃(R1, . . . ,Rn))dR1 · · · dRn

= 1
R̂n

d1∑
k1=0

r
k1+1
1∫

R1=r
k1
1

· · ·

dn∑
kn=0

rkn+1
n∫

Rn=rkn
n

φ(L̃(R1, . . . ,Rn))dR1 · · · dRn.

We can then use lemma 21 so that

E(φ(L̃)) = 1
R̂n

d1∑
k1=0

(rk1+1
1 − rk1

1 ) · · ·
dn∑

kn=0

(rkn+1
n − rkn

n )φ(L̃(k1, . . . , kn)).

�

B. Simulations

In this section we use a simple 6-agent system to illustrate
our theoretical results. The agents evolve in R2 and initially
divide in two groups with velocities bearing opposite x-
coordinates. The initial positions induce a connected commu-
nication network with positive probability. We wonder with

which probability the group will overcome the initial conflict
and eventually stay together achieving a flocking behavior.
According to Theorem 12, our bound on the probability
of flocking depends on the ratio λ̃2ρ

‖δ(0)‖ . The numerator is
completely determined by the agents’ positions (vector x0)
while the denominator is a function of the initial velocities
(vector v0). In order to explore the different outcomes of the
system, we fix the initial positions and vary the initial veloci-
ties. Precisely, we choose x0

x = (−3.5,−2.3,−1.5, 1.5, 2.3, 3.5)
and x0

y = (1.5, 0.9, 0, 0, 0.9, 1.5), R̄ = 3.1, R̂ = 2 (which
makes the initial interaction graph G(0) connected when all
communication radiuses Ri(0) = R̄). We set a reference vector
of initial velocity disagreement d = 1

√
6
(−1,−1,−1, 1, 1, 1)T so

that ‖d‖ = 1. We choose the x-coordinate of the initial velocity
vector v0

x = γd where γ is the parameter we use to tune the
system. We take the y-coordinate v0

y = c1 where c > 0 is
an arbitrary constant which does not influence the flocking
outcome of the dynamics and serves only for visualization
purposes. We have ‖δ(0)‖ = ‖(I − J)v0‖ = ‖γd‖ = γ so γ
represents the amplitude of the initial velocity disagreement.

Since x0 is fixed, we can determine the optimal product
E(λ2(L̃))ρ for ρ ∈ [Rmin,Rmax]. The optimization gives ρopt =

0.34 and E(λ2(ρopt))ρopt = 0.018. We choose the time step ε =

0.2 as suggested in Remark 3 which gives a value νε = 0.0026.
To illustrate the results, we ran some simulations. First, we

chose ‖δ(0)‖ = 0.9 ρλ̃2√
2

which leads to a lower bound on the

probability of flocking of 0.82. Then, we chose ‖δ(0)‖ = 10 ρλ̃2√
2

for which Theorem 12 does not provide any information
regarding the asymptotic behavior. Figure 1 presents snapshots
of the evolution of the system for a realization of the random
process for the two different choices of ‖δ(0)‖ exhibiting
different outcomes. In the first case, the group asymptotically
converges to flocking despite that the graph does not remain
connected at all times. The second part of the figure presents
a case where the initial velocity disagreement is too high
and the two subgroups split apart, never reaching the flocking
behavior.

C. Parameter exploration

We consider the system 1 with random communication
radiuses as described in section V-B. Our goal is to explore
the influence of the width of the communication range on the
bound given by Theorem 12. To make the discussion more
concrete, we assume that agents in system (1) represent robots
using wifi communication. The initial positions are the ones
described in section VI-B. The agents have the possibility to
increase their maximal communication radius, but this comes
at the cost of decreasing the minimal radius so that the
average radius remains a constant. Using the notation defined
in section V-B, this means that the radius diameter R̂ is allowed
to vary whereas the average radius R̄ is fixed. We wonder
whether this possibility may increase the critical threshold ρλ̃2√

2
.

This threshold is the limit on the initial velocity disagreement
vector norm ‖δ(0)‖, beyond which no probability of flocking
is guaranteed by Theorem 12.

The answer depends on the choice of the initial mean
communication radius R̄. We illustrate this fact using two



−4 −3 −2 −1 0 1 2 3 4

−20

−15

−10

−5

0

5

−6 −4 −2 0 2 4 6

−20

−15

−10

−5

0

5

Fig. 1. The upper part of the figure presents an instantiation of the dynamics
for ‖δ(0)‖ = 0.9 ρλ̃2√

2
. The lower part is an instantiation when ‖δ(0)‖ = 10 ρλ̃2√

2
.

The figure shows the trajectories of the 6 agents and their positions, velocities
and connections for 5 specific times. The six extreme top red dots are
the initial agents’ positions. The blue arrows represent the velocities (their
amplitude has been increased 2 times for visualization purposes). The black
lines between dots represent communication links.

distinct values for R̄ : 2.7 and 3.1. If we assume that all
radiuses Ri(0) = R̄, in the first case, the graph G(0) with
Ri(0) = R̄ is unconnected, whereas in the second case, G(0)
starts connected. Using these two mean radiuses, we then vary
R̂. For each couple (R̄, R̂), we computed the optimal authorized
perturbation ρ maximizing the product ρλ̃2. Figure 2 presents
the results for the two different R̄.

In the upper part of figure 2, R̄ = 2.7. We see that the
probability of flocking is null for small R̂ values, which comes
from the fact that ρλ̃2 is null, this is consistent with the fact that
the graph is disconnected when communication radiuses Ri are
close to 2.7 and thus λ̃2 = 0. The increase in diameter R̄ allows
for larger Ri values, which in turns gives a more connected
graph on average (i.e. λ̃2 is higher). The initial communication
graph is also more robust, so that G̃ remain connected even
for higher ρ values, giving a higher ρopt value. This example
illustrates that when R̄ is such that G(0) is disconnected for
small value of R̂, the increase of R̂ can only increase the bound
for flocking, given in Theorem 12.

The lower part of figure 2 demonstrates that the previous
comment does not hold for all R̄ values. Here, R̄ = 3.1 so that
G(0) is connected for small value of R̂. As mentioned, the
increase of the diameter R̂ allows for higher Ri values but also
smaller ones. So that in the instance where a small decrease
on Ri is sufficient to disconnect G(0), increasing R̂ may lead
to decreasing the average connectivity λ̃2. In turn, this may
decrease the lower bound on the probability of flocking. This
is what is seen in the lower part of figure 2, for small R̂ values.

Lower bound on the probability of flocking

Fig. 2. The figure shows the lower bound on the probability of flocking (given
by Theorem 12) in function of the communication diameter R̂ and the initial
velocity disagreement norm ‖δ(0)‖. The value are given after optimization of
product ρλ̃2 in function of ρ. The upper part of the figure presents the case
where R̄ = 2.7 (see Section VI-A). The lower part is when R̄ = 3.1.

In this instance, reducing the communication radius variance
gives the highest bound on the probability of flocking.

Remark 25. Before closing the section on numerical val-
idation, we comment the conservativeness of our results.
Regarding the result we have obtained in the deterministic
setting (Theorem 11), it can be shown (see [Mar12]) that
the bound on the velocity disagreement vector is tight. This
is, there exists a sequence of systems (S n) of n agents whose
largest ‖δ(0)‖ leading to flocking converges to the bound given
in Theorem 11 when n goes to +∞. Regarding the stochastic
case, the bound in Theorem 12 is not as tight as the one in
Theorem 11. The reason why this is the case comes from the



following intuition. We use 1−εE(λ2(L̃)) in order upper bound
the convergence speed of ‖δ(t)‖. However, if ε is small enough,
the effect of communcations are averaged over time and ‖δ(t)‖
converges according to 1− ελ2(E(L̃)) instead. For instance, L̃
may correspond to a graph never connected but still connected
on average ; this gives E(λ2(L̃)) = 0 but λ2(E(L̃)) > 0. In this
case, we expect ‖δ(t)‖ to converge to 0 but Theorem 12 would
fail to predict it.

VII. Conclusion

In this paper, we have considered a multi-agent system con-
sisting of mobile agents with second-order dynamics, where
the communication network is determined by a general metric
rule. Our approach extends earlier work from Martin and
Girard [MG10] and Martin et al. [MFJG12]. It links algebraic
connectivity of the communication network to the speed of
convergence towards consensus.

We have established a lower bound on the probability
of velocity alignment depending on the initial positions and
velocities of the agents. Our main contribution has been to pro-
pose a suitable bounding process to the original system. Our
main theoretical result states that flocking occurs whenever
the initial velocity disagreement is smaller than a threshold
(formed with the robustness and the algebraic connectivity of
the graph of the bounding process). This result allowed us to
derived practical bounds for flocking for two distinct commu-
nication rules. In the first case, agents communicate when their
distance is smaller than a certain fixed communication radius.
In a second application, we have allowed the communication
radiuses to be different for each agent and to vary randomly
over time. The deterministic system is thus a limit case of the
stochastic one. For the stochastic system, we showed that the
probability of flocking can be made higher than any constant
arbitrarily close to 1 by choosing an appropriate initial velocity
disagreement or by setting the system time step small enough.
Finally, we have investigated the impact of the communication
radius mean and variance on the bound for flocking. The main
interest of our approach is the possibility of ensuring flocking
a priori. The condition can be easily verified through numerical
computation.

One limitation of our approach is to require symmetry in
the interactions. In fact, it is possible to assume other types
of interactions which are not-symmetric. For instance, one
may assume that agents communicate with their m closest
neighbors, with m a constant parameter ; this is the so-called
topological interaction rule. See [Mar13] for an analysis of
the flocking behavior under topological interactions. Another
way to break the symmetry is the following. The value of ε in
system (1) can be viewed as the discretization time step of the
equivalent continuous-time flocking system. This is why it is a
constant. However, we may also think of ε as the susceptibility
of one agent to be influenced by the rest of the group. Taking
a small ε for some agents and a big one for others would
mean that some agents are more stubborn than others. This
leads to non-symmetric interactions. The consequence of this
are explored for the first-order case in [YAO+11].

Before switching to different class of systems, we plan to
improve the tightness of the bound by taking into account
two facts: we will relate velocities with positions because two
agents with opposite velocities have more chance to agree on
their velocities if they point toward each other, than if they
point away from each other. Also, a subgroup of agents with
high connectivity is intuitively more inclined to agree on their
velocities than a subgroup of low connectivity. Thus, agents
belonging to a highly connected local neighborhood should
be allowed higher initial velocities (see for instance [FM12]).
Finally, assuming connectivity of the union of graphs rather
than connectivity at all time is sufficient for flocking [BHT05].
Taking into account this fact may lead to a less conservative
bound. However, only having connectivity on the union of
graphs over some time interval would lead to a slower con-
vergence of the velocity disagreement. Thus, it is not clear
whether this approach would lead to a better bound.

Also, our general theoretical result providing a bound for
flocking may be applied to many different metric communi-
cation rules such as the Cucker-Smale type [CS07].

Another possible extension to the present work is to derive
the probability that the initial configuration realize the bound
given in Theorem 7. This may be done assuming the positions
and velocities are uniformly distributed in a region of the
space. To do so, we could for use ideas from the random
goemetric graphs literature [Pen03].
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