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The possibility to align and organize facetted particles in the bulk offers intriguing possibilities 

for the design and discovery of materials and architectures exhibiting novel functional properties. 

The growth of ice crystals can be used to trigger the self-assembly of large, anisotropic particles 

and consequently to obtain three-dimensional porous materials of large dimensions in a limited 

amount of time. These mechanisms have not been explored so far, due to the difficulty to 

experimentally investigate these systems. Here we elucidate the self-assembly mechanisms of 

facetted particles driven by ice growth by a combination of X-ray holo-tomography and discrete 

element modeling, providing insights into both the dynamics of self-assembly and their final 

packing. The encapsulation of particles is the result of a delicate balance between the force 

exerted by the percolating network of concentrated particles and the force exerted by the moving 

interface. We illustrate the benefits of such self-assembly for thermal management composite 

materials. 
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1. Introduction 

The controlled alignment of facetted or anisotropic particles holds the promise of a new class 

of crystalline materials at all length scales, exhibiting appealing structural and functional 

properties1. Understanding and controlling how such particles organize is required for the 

optimization of functional properties. Superlattices, for instance, with translational and rotational 

order of the building blocks, are currently investigated for their optical and electrical properties 

or for plasmonic applications2. 

Most of the approaches developed so far are based on the evaporation of a solvent3,4 or the 

sedimentation of particles5; ordering in these phenomena is ultimately controlled by the pressure 

applied to a dense particles assembly, the particle interactions6 and the rate at which the particle 

concentration increases. Reaching an optimal packing thus requires a fine control over the 

particle shape, polydispersity, self-assembly driving force, and particle interactions, which 

restrict the applicability of the approaches to specific systems.  

For larger particles (typically above one micron in diameter for ceramics), the diffusion is 

limited because of their weight and therefore so is their capacity to form dense structures upon 

concentration with conventional methods. Sequential deposition methods7–9 are able to order 

anisotropic particles, although such methods are limited to thin samples and work only with high 

aspect ratio particles because the alignment results from shear forces acting on the particles. 

Anisotropic structural or functional properties could thus emerge from an assembly of 

anisotropic building blocks with an approximate alignment. Yet, very few approaches are able to 

provide such alignment in bulk materials (centimeter scale) and within reasonable time scale 

(minutes). The growth of ice crystals in a colloidal suspension can be used to drive the self-

assembly of anisotropic building blocks10–12. Several benefits are associated with ice growth in 
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this case, such as the possibility to obtain bulk materials or a reduced processing time of the 

order or minutes –vs. hours or days for evaporation or sedimentation processes5. In addition, the 

process is in principle almost independent of the nature of the materials used13.  

Although alignment has been demonstrated experimentally, the underlying phenomena have 

not been deeply investigated so far. Several mechanisms have been hypothesized10,12, and 

numerous important questions must be addressed. What is the driving force for the self-

assembly? How do particles organize? How should the freezing conditions be adjusted to 

optimize the structural organization of the particles? How much do particle-particle interactions 

matter? The answers to these questions are essential for a proper control of the phenomenon and 

the resulting functional properties of the materials. 

We demonstrate here how the ice growth induced self-assembly of facetted particles can be 

accurately described and understood by a combination of discrete element modeling and 

observation of the experimental spatial distribution using high resolution X-ray computed holo-

tomography. These tools are used to explore the self-assembly behavior and predict the evolution 

of such colloidal system. The benefits in terms of functional properties of the resulting structures 

are illustrated with the thermal properties of Boron Nitride (BN)/silicon rubber composites. The 

methodology developed here is then extended to predict the self-assembly of cubic particles. 

 

2. Materials and Methods 

2.1 Materials processing 

Suspensions were prepared by mixing distilled water, a cellulose ether (Tylose H4000P2, Shin 

Etsu, at a weight ratio Tylose on BN powder of 0.5%) an organic binder (Poly Ethylene Glycol 

4M, Sigma Aldrich, 2 wt.% of dried powder mass) and the BN powder (TRES BN PUHP 3008, 
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Saint-Gobain BN products) at different volume fractions. The powder used in the study present 

platelet morphology with a diameter around 8 µm and 1 µm in thickness. After a first mixing 

step with a propeller stirrer, ultra sonic mixing was conducted with a sonotrode (Digital Sonifier 

250) with an applied energy around 150 W.h/kg.  

Freezing of the slurries was done by pouring them into a silicone mold (diameter 20 mm, 21 

mm height) placed on a cooled copper plate. The copper plate was cooled by silicone oil at a 

temperature regulated by a cryothermostat. The cooling rate were adjusted between 0.5°C/min 

and 2°C/min. Faster cooling rate were obtain by dipping a copper finger with the mold on top in 

liquid nitrogen. Measurement of ice front velocity was made by dipping a ruler at different times 

in the slurry and measuring the height of frozen sample. Once freezing was completed, the 

samples are freeze-dried for at least 48 hrs in a commercial freeze-dryer (Free Zone 2.5 Plus, 

Labconco, Kansas City, Missouri, USA), to ensure a complete removal of the ice crystals. 

Holo-tomography experiments were carried out at European Synchrotron Facility at the beam 

line ID-22. More details on this technique can be found elsewhere14. To enhance phase contrast, 

porous sample were infiltrated by silicone rubber under vacuum prior to observation. 

Segmentation and density measurements were made using the software Fiji15. 

 

2.2 Thermal diffusivity measurement 

A flash lamp method was used to measure the thermal diffusivity of the BN/Silicone rubber 

composite. Disk samples of 20 mm diameter and 5 mm thick were put in a holder, a flash 

produced by a lamp heated a side of the sample and the temperature profile was recorded on the 

other side. The thermal diffusivity was obtained by a fit of this profile by the quadripole 

method16. At least five different measurements were made on each sample. 
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2.3 Percolation threshold estimation 

The percolation threshold of platelet particles can be estimated from an empirical formula 

developed for permeability clay composite17,18: 

ϕp =
2

3𝑆 + 1
𝑊
𝐿 𝑝! 

With W and L the thickness and length of the platelet respectively, pc = 0.718 and S the order 

parameter of platelet orientation given by the following relationship: 

𝑆 =
3 < 𝑐𝑜𝑠²𝜃 > −1

2  

Where <cos²θ> is the mean of the platelet angles with respect to the preferred direction (equal 

to 54° for random orientation). 

 

2.4 Discrete Elements Modeling 

Discrete element modeling was carried out by a custom version of the LAMMPS Package. To 

reproduce the lamellar structure characteristic of ice crystal growth, a rectangular simulation box 

was created. The method used to produce platelet-like particles using spherical ones consist in 

the creation of a cylindrical region in the simulation box. The region was then filled with spheres 

with a diameter corresponding to the thickness of the particle, here 1 µm. During the simulation, 

the spheres were fixed together as a rigid body, the software just sums the interaction on all the 

spheres to calculated the resulting displacement and torque applied to the assembly. To introduce 

the polydispersity of particle size, a random number from a Gaussian statistical distribution was 

used to adjust the radius of each cylindrical region. The distribution was centered on 4 µm with 

standard deviation of 1 µm. To avoid any overlap of the region that could lead to truncated 
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particles, they were created successively at different x coordinate, while the z and y coordinates 

was randomly selected. The simulation box dimensions were first set to 300 x 200 x 200 µm3, 

thus a dilute system was obtain. The box sizes were then shrunk to dimensions of 100 x 50 x 50 

µm3. The number of particles was calculated to obtain the desired volume fraction, knowing the 

density of BN (2.26 g/cm3) and mean particles volume.  

To replicate the growth of ice crystals, two opposite walls were moved at a given speed 

(Figure 1a), the speed of the ice front velocity measured experimentally. The simulation box was 

constraint to remain small in the two directions z and y, which allows us to neglect the curvature 

of ice crystals tips; they were therefore fixed at 50 µm. The y direction was thus extended to 

100 µm to model enough particles to have statistical information. The other walls were 

maintained fix during the whole simulation, at a distance corresponding to particle radius, to 

allow the rotation of the particle placed in the box boundaries. Software limitations do not allow 

a periodic condition with rigid body assemblies. Considering the low surface charge of BN 

particles in water19 and the large size of the particles, only the repulsive part of the Lennard-

Jones potential was used to model particle interaction: 

𝑉 𝑟 = 𝜖!(
!
!
)!"    

where σ = 1 µm is the particle diameter, r the distance between two particles and ε0 the 

Hamaker constant of the BN / water / BN interfaces. This potential, because it is only repulsive, 

creates an excluded volume to avoid unphysical particle overlaps, while simultaneously saving 

CPU time. The particle / ice front interaction is represented by a Van der Waals potential for a 

sphere and a plane near contact20: 

𝑊 ℎ =   − !"
!"
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where R = σ / 2 corresponds to the particle radius, A the Hamaker constant of particle / water / 

ice interaction and h the distance between the ice front and the particle. The non-retarded lifshitz 

theory was used to calculate the different Hamaker constants with the refractive index and 

dielectric constant of each material (hexagonal BN, water and ice). The input values for 

simulation were H = 4 x 10-20 J and A = - 3 x 10-21 J. The negative value of the Hamaker constant 

for ice / particle interaction indicates repulsion, characteristic of many solidification front21–23. 

The simulations were carried out in an NVT ensemble with the temperature regulated by a 

Langevin thermostat. The Langevin thermostat allowed the addition of a viscous force 

characteristic of the solvent interaction, which is intimately linked to the repulsion / engulfment 

phenomenon.  

The repulsive interaction between the ice front and the particle lead to a disjoining pressure 

thus to the appearance of a thin liquid film at the interface. If the particle comes closer to the 

front, there is a chance of being encapsulated in the ice. No existing model grasps the complexity 

of the repulsion / engulfment equilibrium in concentrated colloids and a simplified one 

introduced by Barr et al.24 has been used here. It is based on the balance between drag and 

repulsive forces. The repulsive forces come from the interactions with the ice front and the drag 

forces from solvent interaction. The maximum drag force attained at the encapsulation can be 

calculated via Stokes’s law: 

𝐹!"#! = 6𝜋𝜂𝑅𝑣!  (3) 

where η is the viscosity of water (1.8 mPa.s at 0°C), R the particle radius and vc the critical 

velocity (determined experimentally at 35 µm/s for BN particle). The critical distance δ before 

encapsulation can be deduced by equating the force applied by the moving front (the opposite of 

the derivative of the interaction potential) with the maximum drag force undergoes by the 
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particle:   − !"
!!
=   𝐹!"#! . The construction of the anisotropic particles introduced here let us apply 

all the interaction and forces on each individual sphere without any assumption on the whole 

particle. This model comprises up to 800 particles, thus close to 42000 individual spheres. 

For visualization and image analysis purpose, the center, radius and normal vector of each 

particle was extracted and a plugin for Fiji was developed to visually reconstruct the particles 

from the knowledge of their geometry. The time-lapse density measurements were made by the 

use of a programmed plugin and the percolation region by the existing “Find connected region” 

plugin with Fiji. The images presented here have been made with the software Paraview. 

 

3. Results and Discussion 

3.1 Ice Growth Induced Self-Assembly of Anisotropic, Facetted Particles  

The self-assembly of facetted particles during ice-templating occurs at length scale of tens of 

microns. The resulting spatial distribution is intimately linked to dynamical interactions between 

the particles and the growing crystals but also to viscous interactions with the unsolidified 

solvent. The imaging possibility offered now by synchrotron radiation facilities25 allows the 

visualization of the growth of large crystals in real time26 but the spatial resolution is still not 

sufficient to image in situ the dynamic arrangement of particles. After freezing and ice removal 

however, the resulting samples can be imaged at a resolution good enough to distinguish the 

particles. In the present paper, we have used high resolution KB focused X-Ray holo-

tomography on impregnated samples of 1x1x1 mm3 at the ID22NI beam line at the ESRF. 
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Figure 1. Comparison between the modeling initial state with 700 platelets and the holo-

tomography reconstruction of ice templated samples, with the same viewing direction. (a) 

Schematic view of the sample geometry, the solidification fronts, their direction, and the 

observation direction for (b-d) (b) and (c) Cross-sections perpendicular to the wall direction (thus 

parallel to the lateral growth of the ice crystals) of holo-tomography reconstructions, as defined 

in (a).  Structures obtained with the slow freezing rate (15 µm/s) (b) and the fast cooling rate 

(25 µm/s) (c), resulting respectively in the thickest and the thinnest wall. The two types of 

structure are visible, with a better alignment of particles in the outer regions than in the core for 

(b) and the homogenous orientation of the particles in (c). (d) Initial state of the modeled system, 

representing the random orientation and polydispersity of the particles size before compaction. 

The black arrows indicate the direction of the solidification fronts. Scale bars: 10 µm. 

 

Microstructures of ice-templated BN platelets infiltrated by a silicon rubber are shown in 

Figure 1a and 1b. The 50 nm resolution of the holo-tomography is sufficient to discern the 

platelets packing in the wall. In Figure 1b, the slow solidification interface velocity (7 µm/s) 

leads to thick walls (~30 µm) and the particles that are directly in contact with the growing ice 

are well aligned, parallel to it. Oppositely, in the inner region of the wall the particles are less 

ordered. This type of structure will be referred to as the sandwich structure. When the 
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solidification interface is moving faster, (close to 25 µm/s), the wall obtained is significantly 

thinner (~15 µm, Figure 1c) and the packing and alignment of particles is improved. This type of 

structure will be referred to as the compact structure.  

The model used in this study consists in a Langevin simulation of colloidal particles with 

different interaction potential, one for the particles/ solidification front interaction and one for the 

particles/particles interaction (see details in section 2). The initial state of the modeled platelets is 

depicted in Figure 1d and shows the Gaussian size distribution of the particles, their random 

orientation, as well as the width of the model box (e.g. 50 µm). These dimensions are close to the 

ones of the walls obtained in the silicones/boron nitride composites. This model comprises up to 

800 platelets in a volume of 100 x 50 x 50 µm3. The simulated volume is willingly limited to 

those dimensions, to reflect closely the actual experimental conditions (Figure 1) and to neglect 

the curvature of the ice crystals in the freezing direction. Because crystal nucleation (and 

therefore branching) cannot be taken into account in this type of model, the lateral dimension has 

been extended just enough to have a representative number of particles in a reasonable 

simulation time. The benefits of self-assembly of large particles in bulk materials are 

demonstrated here with the thermal properties of the BN/silicon rubber composite shown in 

Figure 1. Controlling the orientation of BN particles to take advantage of their anisotropic 

thermal conductivity could be highly beneficial in thermal management applications, where the 

heat needs to be taken away from the components in the most efficient manner. BN is a prime 

choice for ceramic materials that are used in thermal management systems. The crystalline 

anisotropy of BN can be used to obtain platelet-like particles which exhibit orthotropic thermal 

properties27 that are 20 times lower in the c-axis (30 W/m/K) direction than in the perpendicular 

plane (600 W/m/K).  
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Figure 2. Improvement in thermal properties resulting from the control of the orientation of 

anisotropic particles. (a) Microstructure obtained for both randomly oriented (upper left) and ice 

templated Boron Nitride/silicon rubber composite (lower right). Scale bar: 100 µm. (b) 

Comparison of the thermal diffusivity of the two composites and the silicon rubber. (c) 

Comparison of the relative improvements RI (calculated as RI = (α aligned-α random)/ α random, where 

α aligned and α random are respectively the thermal diffusivities’ of the materials with the aligned 

platelets and with the randomly oriented platelets) in thermal properties due to the alignment of 

BN particles induced by an electric field28, a magnetic field (with29 or without30 

superparamagnetic nanoparticles coating), or ice templating (this study). The BN volume 

fractions of these composites are respectively 0.6 vol.%31, 10 vol.%29, 5 vol.%30, and 18 vol.%. 

 

Here we took advantage of the ice growth induced self-assembly to obtain bulk, macroporous 

materials where the anisotropic particles are aligned along the freezing direction (Figure 2a). The 

samples were then infiltrated with a silicon rubber before their thermal properties were assessed. 

For the sake of comparison, a homogeneous composite was obtained by simply mixing the same 

amount of particles in the silicon rubber (Figure 2a). The corresponding microstructures are 

shown in Figure 2, along with the results of the thermal diffusivities measurements (Figure 2b). 

The material with the controlled architecture presents a thermal diffusivity almost three times 

greater than the homogeneous composite, illustrating the benefits of an aligned structure, even if 
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the alignment is not completely perfect. Alternative strategies based on the application of an 

electric28, magnetic (with the aid of superparamagnetic nanoparticles29 or not30) field have been 

proposed to align BN particles to improve the thermal properties. The relative improvement in 

thermal properties (Figure 2c), estimated using the difference of the thermal properties in the 

random and aligned structures normalized by the thermal properties of the random structure, 

provides a comparison of the efficiency of these strategies. Ice templating is comparatively much 

more efficient. On top of that, it is also able to align particles in much more concentrated 

suspensions (almost 20 vol.%, compared to less than 5 vol.% for the other methods). 

 

3.2 Predictions of Particle Packing 

The driving force for ice growth induced self-assembly of large (>1 µm) particles is not 

random thermal motion. The potential energy needed to lift a particle (of 8 µm diameter and 0.5 

µm thick) from its own diameter in water can be estimated by the following relationship: 

 𝑈! = 𝑚 ∙ 𝑔 ∙ ∆ℎ =   𝜋𝑟!𝑒 𝜌!" − 𝜌!!"#$ ∙ 𝑔 ∙ 2𝑟 = 2.6×10!!"  𝐽 (1) 

where m is the weight of the particle, r its diameter, e its thickness, and ρBN and ρwater the 

density of BN and water respectively. This energy is thus around three orders of magnitude 

superior to the energy brought by the thermal motion (of the order of 𝑘!𝑇, so 3.8×10!!"  𝐽 at 

273K). This means that the behavior in water of particles of this size will not be controlled by 

thermal energy.  

The common modeling approaches (e.g. Monte Carlo32) thus cannot accurately describe the 

behavior of the system. In particular, the particle encapsulation by the interface22, a key feature 

of the phenomenon, cannot be taken into account. Discrete element modeling (DEM) is able to 

take into consideration several crucial aspects of the phenomena, such as the viscosity of the 
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suspension, the interactions between particles (modeled here by a Van der Waals and Lennard-

Jones pair potential for the ice and inter particles interactions respectively), and the continuous 

particle size distribution. The key feature implemented is the possible engulfment of particles by 

the moving solidification interface. Many different analytical models have been developed to 

predict this complex phenomenon23,33–36, but are only valid for single, isolated particles. By using 

DEM, a simple force equilibrium between repulsion and drag forces can be introduced and thus 

take the dynamical and collective aspects (e.g. shock between particles) of this phenomena into 

account. It also provides access to the dynamics (time-lapse position and orientation) of particle 

redistribution by the growing ice crystals, which is currently impossible to obtain experimentally. 

Particular attention must be paid to the particle shape and interactions. Different pair potentials 

can be used for anisotropic, facetted particles. These anisotropic potentials have been developed 

for clay suspension, such as the Gay-Berne37,38 potential, based on Lennard-Jones potential and a 

quadripole orientation. The RE-squared39 potential, based on an assembly of small isotropic 

Lennard-Jones potential has also been used. Even if those potentials allow a lot of the complexity 

involved in anisotropic particles interaction to be taken into account, they are limited to model 

systems with monomodal particles and therefore, cannot accurately describe the interactions with 

planar interface such as the solidification front here. 
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Figure 3. Comparison and characteristics of particle packing of the two types of architectures in 

the tomography reconstruction and the model. (a-d) Compact structure and (e-h) sandwich 

structure. (a) and (b), respectively (e) and (f) represent a 3D-view of the structures, as seen by 

holo-tomography (left) and DEM (right). (c) and (g) Packing density vs. reduced structure size. 

A continuous evolution of density is observed in the compact structure, while the density drops 

in the inner region in the sandwich structure. (d) and (h) Distribution of particles orientation for 

both structures vs. reduced wall thickness. The darker color indicates where the modeled and the 

experimental distributions overlap. Scale bar: 20 µm. 

 

A different strategy has been developed here. Spheres (with an associated Lennard-Jones 

potential) are fixed together as cylindrical rigid bodies. The radius of those discs follows a 

Gaussian distribution to represent the polydispersity of platelet size. During the simulation, the 

software sums the interactions on all the spheres to calculate the resulting displacement and 

torque applied to the assembly. The simulated engulfment phenomenon can thus take place 
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locally, at the scale of the constitutive spheres instead of the whole platelet and thus is closer to 

the reality. The comparison of the modeling and experimental results in terms of structures, 

particle density packing and distribution of orientations are shown in Figure 3. The predicted 

compact structures (Figure 3b) are comparable to the experimental one (Figure 3a), with highly 

oriented particles in a thin wall. The same conclusion can be drawn for the sandwich structures 

(Figure 3e and 3f), where the particles present a better alignment on the outer region of the wall 

than in the inner region. The use of reduced coordinates where the thickness of the wall is 

normalized by the periodicity λ of the structure (structural wavelength40) allows the proper 

comparison between the experimental and predicted results.  

The experimental and predicted particles packing (Figure 3c) are very similar: the density 

reaches a maximum value of 0.45 (0.41 for the experimental one) in the inner region of the wall. 

The high aspect ratio and the particle size distribution lower the packing density, compared to 

that of random close packing of monodispersed spheres (known to be about 0.64). For the 

sandwich structure, the evolution of the experimental and predicted density is again similar 

(Figure 3g). The density appears higher in the border and reaches a value of 0.45, similar to the 

compact structure while the density in the inner region falls to 0.25 (0.35 and 0.29 respectively 

for the actual structure). Both structures present approximately the same overall density (0.32).  

The dispersion of particle orientations with respect to the wall direction is plotted in Figure 3d 

and Figure 3h, represented by their mean orientation and the full width at half maximum 

(FHWM) of their cumulative distribution. In the compact structure (Figure 3d), the mean 

orientation corresponds to that of the wall (mean angle of 0°), for both the model and the 

experiment. The concentration of the particle during the freezing does not induce any tilt of the 

particles. The FWHM is constant in the wall, and the value is slightly smaller in the model (10°) 
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than in the experiment (15°). The particles are slightly more aligned in the model than in the 

experiment and therefore the density and alignment are also slightly overestimated. In the 

sandwich structure (Figure 3h), the FWHM varies from 10° in the outer region to 20° in the inner 

region, revealing the misalignment of the particles in the inner region.  

 

 

Figure 4. Phase diagram of the possible anisotropic particle assemblies.  sandwich structure,  

compact structure, and  engulfed structure (the encapsulation is defined as when more than 

30% of the particles initially present have been engulfed in the ice). The background represents a 

map of the wall density predicted by DEM, each tone representing an isodensity region. 

 

We can now analyze through a parametric study the resulting structure as a function of the 

experimental conditions. The predicted phase diagram is shown in Figure 4. This diagram is 

calculated using simulation, as a function of particle size and interface velocity, the two main 

experimental parameters that can be adjusted to control the resulting microstructure. 

Encapsulation is defined as the situation where 30% of the particles initially present have been 
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encapsulated by the moving solidification front. The selection of this threshold of particle 

fraction as a criterion for encapsulation was made by looking at the fraction of engulfed particles 

at the critical velocities determined experimentally. To determine experimentally the critical 

velocity values, we froze the same suspension at different cooling rates and observed the 

resulting microstructure. The critical velocities values were determined when nearly all the 

particles did not rearrange with the front, in which case a lamellar structures pore/wall was not 

obtained anymore. Those structures are obtained at the same ice front velocity (above 40 µm/s) 

for the entire set of initial particle fractions (which confirmed this value as an intrinsic property 

of the particles) except for the highest solid loading (0.22). At this point the concentration is 

close to the percolation threshold (estimated at 0.215, see Experimental section and 

references17,18 for more details). The transition between sandwich and compact structures occurs 

at a higher ice front velocity as the solid loading increases, as higher solid loadings impinge the 

movement of the particles. The percolating network of platelets restricts and ultimately 

suppresses particles rearrangement during the compaction by the solidification front. 

The final densities are also represented in Figure 4 as an isodensity contour map. As described 

previously, the architecture of the wall reflects the particle orientation and thus the packing 

density. The packing density is calculated as the maximum particle density reached inside 

volume contained by the advancing solidification fronts. Area of high density corresponds to the 

compact structure. This phase diagram can be used as a predictive tool to adjust the properties of 

the final material, by predicting the density and structure of the particle packing as a function of 

the experimental conditions. 

 

3.3 Dynamics: Self-Assembly Principles 
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Because the structures obtained after freezing are the result of the redistribution and 

concentration of particles by a solidification front, the observed differences arise from different 

interactions that take place in this peculiar system. In a first approximation, the process can be 

considered as equivalent to a simple powder compaction by two moving fronts. Nevertheless, 

particles can be encapsulated by the moving front, depending of the conditions (viscosity, 

velocity, existence of premelted films23,33). The dynamic behavior of the system can be 

investigated by DEM (Figure 5).  

 

 

Figure 5. Dynamic evolution of particle organization and packing density. (a-e) Snapshots of the 

time-lapse evolution that illustrate the progressive alignment of the particles as the interface 

progresses. The color code corresponds to the percolation of particles: particles having the same 

colors belong to the same percolating network. (f) Dynamical evolution of the fraction of 

encapsulated particles during the freezing for two different volume fraction: 10 and 18 vol.% and 
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three different interface velocities. (g) Evolution of the fraction of particles that belongs to the 

largest percolating network as a function of the interface position Δ, for the compact and 

sandwich structures. A complete percolation is obtained around 17 µm for both types of 

structure, although further local alignment of the particles occurs, as can be observed in (a-e). 

The fraction is not reaching a value of 1 as some particles are engulfed in the early stages of 

interface movement. (h) Time-lapse evolution of the density profile through the wall thickness, 

for both types of structure.  

 

The time-lapse snapshots of the DEM results (Figure 5a to 5e) and the corresponding density 

profiles (Figure 5h) illustrate how the alignment is initiated in the outer region and then 

progressively propagates towards the inner region. Particles with the same color belong to the 

same percolating network. The criterion to identify the different regions is a simple pixel-

growing algorithm, available in the image analysis software used (see Methods). A different 

RGB color is then attributed to each percolating network of particles. The evolution of the 

system follows three stages (Figure 5g). Because the interface moves slowly, very few or no 

particle are engulfed during the first moments of growth (stage 1), they are just locally aligned 

and densely packed (Figure 5a and 5b). Some are then engulfed (Figure 5c) as the interface 

keeps moving. The layer of aligned particles is still pushed and the concentration of particles in 

the inner region of the system starts to increase (Figure 5h). Percolating networks grow rapidly 

(stage 2). It starts to act against the displacement and rotation of particles. The pressure exerted 

by the moving interface is eventually not strong enough to overcome the counter pressure 

exerted by the percolating network of particles (stage 3); the system is ultimately jammed in a 
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configuration where particles are aligned in the outer region and in the inner region (compact 

structure) or not (sandwich structure). 

The evolution of the fraction of particles encapsulated in the ice is plotted in Figure 5f, for two 

initial concentrations (10 vol.% and 18 vol.%) and three different ice front velocities (15, 25 and 

40 µm/s). For the 18 vol.% system, the density evolutions present similar trajectories at three 

different velocities (15, 25 and 40 µm/s), even if the final densities differ. The evolution is 

similar in a more dilute system (10 vol.%). An increase of either the volume fraction of particles 

or the interface velocity results in more encapsulation of particles by the moving interface. 

Percolation arguments are not enough to predict the type of structure obtained. In both types of 

structure, complete percolation is obtained at approximately the same position of the moving 

interfaces (Figure 5g). Further local ordering of the particles is still possible after reaching 

complete percolation, as illustrated in Figure 5a to 5e (white arrows).  

For large particles like the ones used here, the critical factor controlling the evolution of the 

system and the type of packing obtained is thus the encapsulation of the particles by the moving 

interface. With the same initial volume fraction of particles, an increase in interface velocity 

results in an increase of particle encapsulation. As a result, the concentration of the solid phase 

between the moving interfaces is lower. Particles have more freedom to reorient before the 

interface eventually encapsulates everything, leading to the compact structure. If all of them are 

repelled by the moving interface, the concentration is too high when the particle networks start to 

percolate. Particles do not have enough time to rearrange before total encapsulation, leading to 

the sandwich structure. The thinner the wall, the higher would be the shear stresses applied in the 

suspension for the same lateral growth velocity. With these conditions of solidification front 



 21 

velocity, particle size, and solid loading, the thickness of the wall nevertheless does not play an 

important role, since the shear forces in the vicinity of the solidification front induce ordering. 

 

3.4 Self-Assembly of Cubic Facetted Particles 

 

 

Figure 6. Ice growth induced self-assembly of cubic particles. (a) and (b) Final architectures 

predicted by DEM for 25 µm/s (a) and 15 µm/s (b) ice front velocity, at the same solid loading 

(18 vol.%). Denser packing’s are obtained for the slowest front velocity. (c) Particle packing 

density for different concentrations (14 and 18 vol.%) and interface velocities (15 and 25 µm/s). 

(d) Orientation of the resulting architecture (see text for details) showing the alignment of the 

cubes along the wall direction (0° and 90°).  

 

Being able to orient platelet-like particles in porous or bulk materials is highly valuable, in 

particular for structural materials but also piezoelectric or thermal management materials. 

However the self-assembly induced by ice-templating is not limited to this specific particle shape 

and might be extended to any type of facetted particle. To illustrate the fact that facetted particles 

can self-assemble even if they have an isotropic aspect ratio, the self-assembly of cubic particles 

has been explored with our simulation tool. Three different conditions (Figure 6) have been 
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simulated, to predict the effect of the ice front velocity and the initial volume fraction. The 

obtained morphologies at two different ice front velocities are presented in Figure 6a and 6b. 

Only one type of organization is obtained with all the simulation conditions: after solidification, 

all the cubes are well aligned in the wall’s direction. This is confirmed by the density profile in 

Figure 6c, where the maximum density is at the center of the wall. However, this value changes 

with the applied conditions. The higher the initial density and the slower the compaction rate, the 

higher the final density. The packing density can reach a value as high as 0.80, slightly higher 

than the theoretical random packing of cubes found in the literature (0.74 for reference41, 0.78 for 

reference42, both using different model type). The nearly perfect stacking in one direction (the 

direction of the wall thickness) can explain this slight discrepancy.  The alignment of cubes is 

similar in all the conditions tested and the image analysis revealed nearly only the edges of the 

cube at 0° and 90° (Figure 6d). The cubes are then nearly all perfectly stacked in the thickness of 

the wall. Those three conditions reveal the potential of this model to easily determine the best 

conditions to obtain dense packing of cubic particles or any others shaped particles of interest. 

 

4. Conclusions and Perspectives 

Using the growth of ice crystals as a driving force for the self-assembly of large, facetted 

particles is an appealing alternative to the current evaporation or sedimentation strategies. A key 

conclusion of this work is that a high aspect ratio is not required for ice growth induced self-

assembly, in contrast to the sequential deposition methods7,9. The steric interaction between the 

moving interface and the particle is highly localized; working with facetted particles is therefore 

the only morphological requirement to obtain alignment. The methodology developed here can 
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easily be generalized to other systems, in particular by taking into account different models of 

interaction potentials for smaller particles where gravity is not the controlling parameter. 

Although the particle alignment is not perfect, in comparison to superlattices obtained by 

sedimentation for instance, the benefits on the functional properties have been demonstrated here 

for thermal properties. The possibility to align particles in the bulk (centimeter sized samples) 

and in short times (minutes), holding the promise of novel crystalline materials with appealing 

functional properties, make it worth further research efforts. 
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