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Abstract

Detecting early signs of failures (anomalies) in complex systems is one
of the main goal of preventive maintenance. It allows in particular to
avoid actual failures by (re)scheduling maintenance operations in a way
that optimizes maintenance costs. Aircraft engine health monitoring is
one representative example of a field in which anomaly detection is crucial.
Manufacturers collect large amount of engine related data during flights
which are used, among other applications, to detect anomalies. This arti-
cle introduces and studies a generic methodology that allows one to build
automatic early signs of anomaly detection in a way that builds upon hu-
man expertise and that remains understandable by human operators who
make the final maintenance decision. The main idea of the method is
to generate a very large number of binary indicators based on parametric
anomaly scores designed by experts, complemented by simple aggregations
of those scores. A feature selection method is used to keep only the most
discriminant indicators which are used as inputs of a Naive Bayes classi-
fier. This give an interpretable classifier based on interpretable anomaly
detectors whose parameters have been optimized indirectly by the selec-
tion process. The proposed methodology is evaluated on simulated data
designed to reproduce some of the anomaly types observed in real world
engines.

Keywords: Engine Health Monitoring; Turbofan; Fusion; Anomaly Detection.
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1 Introduction

Automatic anomaly detection is a major issue in numerous areas and has gener-
ated a vast scientific literature [5]. We focus in this paper on a very important
application case, aircraft engine health monitoring which aims at detecting early
signs of failures, among other applications [1, 18]. Aircraft engines are gener-
ally made extremely reliable by their conception process and thus have low rate
of operational events. For example, in 2013, the CFM56-7B engine, produced
jointly by Snecma and GE aviation, has a rate of in flight shut down (IFSD)
of 0.002 (per 1000 Engine Flight Hour) and a rate of aborted take-off (ATO) of
0.005 (per 1000 departures). This dispatch availability of nearly 100 % (99.962
% in 2013) is obtained via regular maintenance operations but also via engine
health monitoring (see also e.g. [19] for an external evaluation).

This monitoring is based, among other sources, on data transmitted by satel-
lites1 between aircraft and ground stations. Typical transmitted messages in-
clude engine status overview as well as useful measurements collected as specific
instants (e.g., during engine start). Flight after flight, measurements sent are an-
alyzed in order to detect anomalies that are early signs of degradation. Potential
anomalies can be automatically detected by algorithms designed by experts. If
an anomaly is confirmed by a human operator, a maintenance recommendation
is sent to the company operating the engine.

As a consequence, unscheduled inspections of the engine are sometimes re-
quired. These inspections are due to the abnormal measurements. Missing a
detection of early signs of degradation can result in an IFSD, an ATO or a delay
and cancellation (D&C). Despite the rarity of such events, companies need to
avoid them to minimize unexpected expenses and customers’ disturbance. Even
in cases where an unscheduled inspection does not prevent the availability of the
aircraft, it has an attached cost: it is therefore important to avoid as much as
possible useless inspections.

We describe in this paper a general methodology to built complex automated
decision support algorithms in a way that is comprehensible by human operators
who take final decisions. The main idea of our approach is to leverage expert
knowledge in order to build hundreds of simple binary indicators that are all
signs of the possible existence of an early sign of anomaly in engine health
monitoring data. The most discriminative indicators are selected by a standard
forward feature selection algorithm. Then an automatic classifier is built on
those features. While the classifier decision is taken using a complex decision
rule, the interpretability of the features, their expert based nature and their
limited number allows the human operator to at least partially understand how
the decision is made. It is a requirement to have a trustworthy decision for the
operator. It should be noted that while this paper focuses on aircraft engines, the
methodology can be applied to various other contexts. For instance a related but
simpler methodology was proposed in [10] in the context of malware detection.

1using the commercial standard Aircraft Communications Addressing and Reporting Sys-
tem (ACARS, see http://en.wikipedia.org/wiki/ACARS), for instance.
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Figure 1: Localization of some followed parameters on the Engine

The rest of the paper is organized as follows. Section 2 describes the engine
health monitoring context. The methodology is presented in details in Section
3. Section 4 is dedicated to a simulation study that validates the proposed
approach.

2 Application context

2.1 Flight data

Engine health monitoring is based in part on flight data acquisition. Engines
are equipped with multiple sensors which measure different physical quantities
such as the high pressure core speed (N2), the Fuel Metering Valve (FMV), the
Exhausted Gas Temperature (EGT), etc. (See Figure 1.) Those measures are
monitored in real time during the flight. For instance the quantities mentioned
before (N2, FMV, etc.) are analyzed, among others, during the engine starting
sequence. This allows one to check the good health of the engine. If a potential
anomaly is detected, a diagnostic is sent to an operator of the owner of the
engine. The airline may then have to postpone the flight or cancel it, depending
on the criticality of the fault and the estimated repair time.

The monitoring can also be done flight after flight to detect any change that
can be flagged as early signs of degraded behavior. This is done by compress-
ing the in flight measurements into engine status overviews. The methodology
introduced in this article is mostly designed for this latter kind of monitoring.

2.2 Detecting faults and abnormal behaviors

Traditional engine health monitoring is strongly based on expert knowledge and
field experience (see e.g. [1, 18] for surveys and [7] for a concrete example).
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Faults and early signs of faults are identified from suitable measurements as-
sociated to adapted computational transformation of the data. For instance,
the different measurements (temperatures, vibration, etc.) are influenced by the
flight parameters (e.g. throttle position) and conditions (outside temperature,
etc.). Variations in the measured values can therefore result from variations
in the parameters and conditions rather than being due to abnormal behav-
ior. Thus a typical computational transformation consists in preprocessing the
measurements in order to remove dependency to the flight context [15].

In practice, the choice of measurements and computational transformations
is generally done based on expert knowledge. For instance in [17], a software is
designed to record expert decision about a time interval on which to monitor the
evolution of such a measurement (or a time instant when such a measurement
should be recorded). Based on the recorded examples, the software calibrates a
pattern recognition model that can automatically reproduce the time segmenta-
tion done by the expert. Once the indicators have been computed, the normal
behavior of the indicators can be learned. The residuals between predictions and
actual indicators can be statistically modeled as a Gaussian vector, for instance.
A score measurement is obtained from the likelihood of this distribution. The
normalized vector is a failure score signature that may be described easily by
experts to identify the fault origin, in particular because the original indicators
have some meaning for them. See [6], [7] and [14] for other examples.

However experts are generally specialized on particular subsystems, thus each
algorithm focuses mainly on a specific subsystem despite the need of a diagnostic
of the whole system.

2.3 Data and detection fusion

The global diagnostic is currently done by the operator who collects all available
results of diagnostic applications. The task of taking a decision based on all
incoming information originating from different subsystems is difficult. A first
difficulty comes from dependencies between subsystems which means that for
instance in some situations, a global early sign of failure could be detected by
discovering discrepancies between seemingly perfectly normal subsystems. In
addition, subsystem algorithms can provide conflicting results or decisions with
very low confidence levels. Furthermore, the extreme reliabilities of engines
lead to an exacerbated trade off between false alarm levels and detection levels,
leading in general to a rather high level of false alarms, at least at the operator
level. Finally, the role of the operator is not only to identify a possible early
sign of failure, but also to issue recommendations on the type of preventive
maintenance needed. In other words, the operator needs to identify the possible
cause of the potential failure.

2.4 Objectives

The long term goal of engine health monitoring is to reach automated accu-
rate, trustworthy and precise maintenance decisions during optimally scheduled
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shop visits, but also to drastically reduce operational events such as IFSD and
ATO. However, partly because of the current industrial standard, pure black box
modeling is unacceptable. Indeed, operators are currently trained to understand
expertly designed indicators and to take complex integrated decisions on their
own. In order for a new methodology to be accepted by operators, it has at
least to be of a gray box nature, that is to be (partially) explainable via logical
and/or probabilistic reasoning. Then, our objective is to design a monitoring
methodology that helps the human operator by proposing integrated decisions
based on expertly designed indicators with a “proof of decision”.

3 Architecture of the Decision Process

3.1 Engine health monitoring data

In order to present the proposed methodology, we first describe the data obtained
via engine health monitoring and the associated decision problem.

We focus here on ground based long term engine health monitoring. Each
flight produces dozens of timestamped flight events and data. Concatenating
those data produces a multivariate temporal description of an engine whose
dimensions are heterogeneous. In addition, sampling rates of individual dimen-
sions might be different, depending on the sensors, the number of critical time
points recorded in a flight for said sensor, etc.

Based on expert knowledge, this complex set of time series is turned into a
very high dimensional indicator vector. The main idea, outlined in the previ-
ous section, is that experts generally know what is the expected behavior of a
subsystem of the engine during each phase of the flight. Then the dissimilarity
between the expected behavior and the observed one can be quantified leading
to one (or several) anomaly scores. Such scores are in turn transformed into bi-
nary indicators where 1 means an anomaly is detected and 0 means no anomaly
detected. This is somewhat related to the way malware are characterized in [10],
but with a more direct interpretation of each binary feature2.

This transformation has two major advantages: it homogenizes the data and
it introduces simple but informative features (each indicator is associated to a
precise interpretation related to expert knowledge). It leads also to a loss of
information as the raw data are in general not recoverable from the indicators.
This is considered here a minor inconvenience as long as the indicators capture all
possible failure modes. This will be partially guaranteed by including numerous
variants of each indicator (as explained below). On a longer term, our approach
has to be coupled with field experience feedback and expert validation of its
coverage.

After the expert guided transformation, the monitoring problem becomes
a rather standard classification problem: based on the binary indicators, the

2In [10], a value 1 for a feature simply means that the software under study has a particular
quality associated to the feature, without knowing whether this quality is an indication of its
malignity.
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Figure 2: Variance shift
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Figure 3: Mean shift
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Figure 4: Trend modification

decision algorithm has to decide whether there is an anomaly in the engine and
if, this is the case, to identify the type of the anomaly (for instance by identifying
the subsystem responsible for the potential problem).

We describe now in more details the construction of the binary indicators.

3.2 Some types of anomalies

Some typical univariate early signs of anomalies are shown on Figures 2, 3 and
4 which display the evolution through time of a numerical value extracted from
real world data. One can identify, with some practice, a variance shift on Figure
2, a mean shift on Figure 3 and a trend modification (change of slope) on Figure
4. In the three cases, the change instant is roughly at the center of the time
window.

The main assumption used by experts in typical situations is that, when
external sources of change have been accounted for, the residual signal should
be stationary in a statistical sense. Assuming that a signal of length m

Xi = (Xi1(θ1), ..., Xim(θm)),

is made of m values generated independently from a fixed parametric probability
model with a parameter θ. In this framework, the signal is stationary if the
parameters are fixed, that is, if all the θj are identical. Then, detecting an
anomaly amounts to detecting a change in the time series (as illustrated by the
three Figures above). This can be done via numerous techniques [5] in particular
with well known statistical tests [2]. In the multivariate cases, similar shifts in
the signal can be associated to anomalies. More complex scenarios, involving for
instance time delays, can also be designed by experts.

3.3 Exploring the parameter space

While experts can generally describe explicitly what type of change they are ex-
pecting for some specific early signs of anomaly, they can seldom provide detailed
parameter settings for statistical tests (or even for the aggregation technique that
could lead to a statistical test after complex calculations). To maximize cover-
age it seems natural to include numerous indicators based on variations of the
anomaly detectors compatible with expert knowledge.
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Let us consider for illustration purpose that the expert recommends to look
for shifts in mean of a certain quantity as early signs of a specific anomaly. If the
expert believes the quantity to be normally distributed with a fixed variance,
then a natural test would be Student’s t-test. If the expert has no strong priors
on the distribution, a natural test would be the MannWhitney U test. Both can
be included to maximize coverage.

Then, in both cases, one has to assess the time scale of the shift. Indeed those
tests work by comparing summary statistics of two populations, before and after
a possible change point. To define the populations, the expert has to specify the
length of the time windows to consider before and after the possible change
point: this is the expected time scale at which the shift will appear. In most
cases, the experts can only give a rough idea of the scale. Again, maximizing
the coverage leads to the inclusion of several scales compatible with the experts’
recommendations.

Given the choice of the test, of its scale and of a change point, one can con-
struct a statistic. A possible choice for the indicator could be the value of the
statistic or the associated p-value. However, we choose to use simpler indicators
to ease their interpretation. Indeed, the raw value of a statistic is generally diffi-
cult to interpret. A p-value is easier to understand because of the uniform scale,
but can still lead to misinterpretation by operators with insufficient statistical
training. We therefore choose to use binary indicators for which the value 1 cor-
responds to a rejection of the null hypothesis of the underlying test to a given
level (the null hypothesis is here the case with no mean shift).

3.4 Confirmatory indicators

Finally, as pointed out before, aircraft engines are extremely reliable, a fact
that increases the difficulty in balancing sensibility and specificity of anomaly
detectors. In order to alleviate this difficulty, we build high level indicators from
low level tests. For instance, if we monitor the evolution of a quantity on a
long period compared to the expected time scale of anomalies, we can compare
the number of times the null hypothesis of a test has been rejected on the long
period with the number of times it was not rejected, and turn this into a binary
indicator with a majority rule.

3.5 Decision

To summarize, we construct parametric anomaly scores from expert knowledge,
together with acceptable parameter ranges. By exploring those ranges, we gen-
erate numerous (possible hundreds of) binary indicators. Each indicator can be
linked to an expertly designed score with a specific set of parameters and thus is
supposedly easy to interpret by operators. Notice that while we are focused in
this presentation on temporal data, this framework can be applied to any data
source.

The final decision step consists in classifying these high dimensional binary
vectors into at least two classes, i.e., the presence or absence of an anomaly.
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A classification into more classes is highly desirable if possible, for instance to
further discriminate between seriousness of anomalies and/or sources (in terms
of subsystems of the engine).

As explained before, we aim in the long term at gray box modeling, so while
numerous classification algorithms are available see e.g. [13], we shall focus on
interpretable ones. In this paper, we choose to use Random Forests [3] as they are
very adapted to binary indicators and to high dimensional data. They are also
known to be robust and to provide state-of-the-art classification performances
at a very small computational cost. While they are not as interpretable as their
ancestors CART [4], they provide at least variable importance measures that
can be used to identify the most important indicators.

Another classification algorithms used in this paper is naive Bayes classifier
[12] which is also appropriate for high dimensional data. They are known to pro-
vide good results despite the strong assumption of the independence of features
given the class. In addition, decisions taken by a naive Bayes classifier are very
easy to understand thanks to the estimation of the conditional probabilities of
the feature in each class. Those quantities can be shown to the human operator
as references.

Finally, while including hundreds of indicators is important to give a broad
coverage of the parameter spaces of the expert scores and thus to maximize the
probability of detecting anomalies, it seems obvious that some redundancy will
appear. Unlike [10] who choose features by random projection, the proposed
methodology favors interpretable solutions, even at the expense of the classifica-
tion accuracy: the goal is to help the human operator, not to replace her/him.
Therefore, we have chosen to apply a feature selection technique [9] to this prob-
lem. The reduction of number of features will ease the interpretation by limiting
the quantity of information transmitted to the operators in case of a detection by
the classifier. Among the possible solutions, we choose to use the Mutual infor-
mation based technique Minimum Redundancy Maximum Relevance (mRMR,
[16]) which was reported to give excellent results on high dimensional data (see
also [8] for another possible choice).

4 A simulation study

4.1 Introduction

It is difficult to find real data with early signs of degradations, because their are
scarce and moreover the scheduled maintenance operations tend to remove these
early signs. Experts could study in detail recorded data to find early signs of
anomalies whose origins were fixed during maintenance but it is close to looking
for a needle in a haystack, especially considering the huge amount of data to
analyze. We will therefore rely in this paper on simulated data. Our goal is to
validate the interest of the proposed methodology in order to justify investing
in the production of carefully labelled real world data.

In this section we begin by the description of the simulated data used for
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the evaluation of the methodology, and then we will present the performance
obtained on this data.

4.2 Simulated data

The simulated data are generated according to the univariate shift models de-
scribed in Section 3.2: each observationXi is a short time series which is recorded
as at specific time points, e.g., Xi = (Xi(tij))1≤j≤mi

. As pointed out in Section
3.1, signals can have different time resolutions. This difficulty is integrated in
the simulated data by using different lengths/dimensions for each observation
(hence the mi numbers of time points). Notice that the time points (tij)1≤j≤mi

are introduced here only for generative purposes and are not used in the actual
decision process. For multivariate data sets, they could become useful (e.g. to
correlate potential shift detection), but this is out of the scope of the present
paper.

In the rest of the paper, the notation Z ∼ N (µ, σ2) says that the random
variable Z follows a Gaussian distribution with mean µ and variance σ2 and
the notation W ∼ U(S) says that the random variable W follows the uniform
distribution on the set S (which can be finite such as {1, 2, 3} or infinite such as
[0, 1]).

We generate two data sets: a simple one A and a slightly more complex one B.
In both cases, it is assumed that expert based normalisation has been performed.
Therefore when no shift in the data distribution occurs, we observe a stationary
random noise modeled by the standard Gaussian distribution. This assumption
made about the noise may seem very strong but the actual goal of this paper is to
evaluate the methodology and we choose to use simple distribution and simple
statistical tests. In the future, we plan to use more realistic noise associated
with more complex tests. An observation Xi with no shift is then generated as
follows:

1. mi, the length of the signal, is chosen as mi ∼ U({100, 101, . . . , 200}) ;

2. the mi values (Xi(tij))1≤j≤mi are sampled independently from the stan-
dard Gaussian distribution, that is Xi(tij) ∼ N (µ = 0, σ2 = 1).

Anomalous signals use the same distribution of the signal length as normal
signals. More precisely, an anomalous observation Xi is generated as follows:

1. mi, the length of the signal, is chosen as mi ∼ U({100, 101, . . . , 200}) ;

2. the change point tsi is chosen as

tsi ∼ U
({⌊

2mi

10

⌋
,

⌊
2mi

10

⌋
+ 1, . . . ,

⌊
8mi

10

⌋})
,

where bxc is the integer part of x. For instance, if mi = 100, then the
change point is chosen among the time points t20 to t80 ;
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3. the mi values (Xi(tij))1≤j≤mi
are generated according to one anomaly

model.

Anomalies are in turn modelled after the three examples given in Figures 2, 3
and 4. The three types of shift are:

1. a variance shift: in this case, the parameter of the shift is the variance after
the change point, σ2

i , with σi ∼ U([1.01, 5]). Given σi, the (Xi(tij))1≤j≤mi

are sampled independently as Xi(tij) ∼ N (µ = 0, σ2 = 1) when tij < tsi
(before the change point) and Xi(tij) ∼ N (µ = 0, σ2 = σ2

i ) when tij ≥ tsi
(after the change point). See Figure 5 for an example;

2. a mean shift: in this case, the parameter of the shift is the mean after
the change point, µi. In set A, µi ∼ U([1.01, 5]) while in set B, µi ∼
U([0.505, 2.5]). Given µi, the (Xi(tij))1≤j≤mi

are sampled independently
as Xi(tij) ∼ N (µ = 0, σ2 = 1) when tij < tsi (before the change point) and
Xi(tij) ∼ N (µ = µi, σ

2 = 1) when tij ≥ tsi (after the change point). See
Figure 6 for an example;

3. a slope shift: in this final case, the parameter of the shift is a slope λi with
λi ∼ U([0.02, 3]). Given λi, the (Xi(tij))1≤j≤mi

are sampled independently
as Xi(tij) ∼ N (µ = 0, σ2 = 1) when tij < tsi (before the change point)
and Xi(tij) ∼ N (µ = λi(tij − tsi ), σ2 = 1) when tij ≥ tsi (after the change
point). See Figure 7 for an example.

We generate according to this procedure two data sets with 6000 observations
corresponding to 3000 observations with no anomaly, and 1000 observations for
each of the three types of anomalies. The only difference between data set A
and data set B is the amplitude of the mean shift which is smaller in B, making
the classification harder.
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Figure 5: variance shift
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Figure 6: mean shift
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Figure 7: trend modification

4.3 Indicators

As explained in Section 3.3, binary indicators are constructed from expert knowl-
edge by varying parameters, including scale and position parameters. In the
present context, we use sliding and jumping windows: for each possible position
of the window, a classical statistical test is conducted to decide whether a shift
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Figure 8: Illustration of the sliding and jumping windows. τ is the length of the
window. δ is the jump parameter. tsi is the change point.

in the signal occurs at the center of the window (see Figure 8). Individual tests
obtained from different positions are combined to create binary indicators.

More precisely, a window of length τ is a series of τ consecutive time points in
a signal (Xi(tij))1≤j≤mi (in other words, this is a sub-signal). For a fixed τ ≤ mi,
there are mi−τ+1 windows in Xi, from (Xi(tij))1≤j≤τ to (Xi(tij))mi−τ+1≤j≤mi

(when sorted in order of their first time points).
Given a window of length τ (assumed even) starting at position k, a two

sample test is conducted on the two subsets of values corresponding to the first
half of the window and to the second half. More precisely, we extract from the
series of values (Xi(tij))k≤j≤k+τ−1 a first sample S1 = (Xi(tij))k≤j≤k+τ/2−1

and a second sample S2 = (Xi(tij))k+τ/2≤j≤k+τ−1. Then a test of inequality
between S1 and S2 is conducted (inequality is defined with respect to some
statistical aspect). The “expert” designed tests are here (notice that those tests
do not include a slope shift test):

1. the Mann-Whitney-Wilcoxon U test (non parametric test for shift in mean);

2. the two sample Kolmogorov-Smirnov test (non parametric test for differ-
ences in distributions);

3. the F-test for equality of variance (parametric test based on a Gaussian
hypothesis).
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From this general principle, we derive a large set of indicators by varying the
length of the window, the level of significance of the test and the way to combine
results from all the windows that can be extracted from a signal.

In practice, for an observation (Xi(tij))1≤j≤mi , we use three different window
lengths, τ = 30, τ = 50 and τ = 100. We use also three different levels for the
tests, namely 0.005, 0.1 and 0.5. For a fixed window length τ and a fixed test,
an observation (Xi(tij))1≤j≤mi

is transformed into mi− τ +1 p-values produced
by applying the test to the mi − τ + 1 windows extracted from the observation.
For each significance level, the p-values are binarized giving 1 or 0 whether the
null hypothesis of identical distribution between S1 and S2 is rejected or not,
leading to mi − τ + 1 binary values.

The next step consists in turning the raw binary values into a set of indicators
producing the same number of indicators for all observations. The simplest
binary indicator equals to 1 if and only if at least one binary value among the
mi − τ + 1 is equal to 1 (that is if at least one window defines two sub-samples
that differ according to the chosen test). Notice that as we use 3 window lengths,
3 tests, and 3 levels, we obtained this way 27 simple binary indicators.

Then, more complex binary indicators are generated, as explained in Section
3.4. In a way, this corresponds to build very simple binary classifiers on the
binary values obtained from the tests. All those indicators are based on the
notion of consecutive windows. In order to vary the time resolution of this
process, we first introduce a jump parameter δ. Two windows are consecutive
according to δ if the first time point of the second window is the (δ + 1)-th
time point of the first window. For instance, if δ = 5, (Xi(tij))1≤j≤τ and
(Xi(tij))6≤j≤τ+5 are consecutive windows. In practice, we use three values for
δ, namely 1, 5 and 10.

For each value of δ and for each series of mi−τ+1 binary values, we compute
the following derived indicator:

1. the global ratio indicator is equal to 1 if and only if on a fraction of at
least β of all possible windows, the test detects a change. This indicator
does not use the fact that windows are consecutive, but it is nevertheless
affected by δ. Indeed, values strictly larger than 1 for δ reduce the total
number of windows under consideration;

2. the consecutive ratio indicator is equal to 1 if and only if there is a series
of β(mi− τ + 1) consecutive windows on which the test detects a change ;

3. the local ratio indicators is equal to 1 if and only if there is a series of
l consecutive windows among which the tests detects at least k times a
change.

Those derived indicators are parametric. In the present experiments, we use
three different values for β (used by the first two derived indicators), namely
0.1, 0.3 and 0.5. For the pair (l, k) used by the last derived indicator, we used
three different pairs (3, 2), (5, 3) and (5, 4).

A simple series of mi − τ + 1 binary values allows us to construct 27 derived
indicators (3 values for δ times 3 values for the parameters of each of the 3 types
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of derived indicators). As we have 27 of such series (because of the 3 window
lengths, 3 tests and 3 levels), we end up with 729 additional indicators for a
total of 756 binary indicators.

In addition, based on expert recommendation, we apply the entire processing
both to the original signal and to a smoothed signal (using a simple moving
average over 5 measurements). The total number of indicators is therefore 1512.
However many of them are identical over the 6000 observations and the final
number of distinct binary indicators is 810. The redundancy is explained by
several aspects. For instance, while the smoothing changes the signal, it has a
limited effect on the test results. Also, when the level of the test is high, the
base binary values tend to be all equal to one. When the ratio β is low, there
are not many differences between the derived indicators with respect to δ, etc.

It should be noted that the parameters used both for the simulated data and
the indicators have been chosen so as to illustrate the possibilities of the proposed
architecture of the decision process. The values have been considered reasonable
(see Table 1 for a summary of these values) and representative of what would be
useful in practice by experts of our application domain. It is however expected
than more statistical tests and more indicators should be considered in practice
to cover the range of the possible anomalies.

4.4 Performance analysis

Each data set is split in a balanced way into a learning set with 1000 signals and
a test set with 5000 signals (the class proportions from the full data set are kept
in the subsets). We report the global classification accuracy (the classification
accuracy is the percentage of correct predictions, regardless of the class) on the
learning set to monitor possible over fitting. The performances of the method-
ology are evaluated on 10 balanced subsets of size 500 from the 5000 signals’
test set. This allows to evaluate both the average performances and their vari-
ability. For the Random Forest, we also report the out-of-bag (oob) estimate
of the classification accuracy: this quantity is obtained during the bootstrap
procedure used to construct the forest. Indeed each observation appears as a
training observation in only roughly two third of the trees that constitute the
forest. Then the prediction of the remaining trees for this observation can be
aggregated to give a decision. Comparing this decision to the true value gives
the out-of-bag estimate of the classification error for this observation (see [3] for
details). Finally, for the Naive Bayes classifier, we use confusion matrices and
class specific accuracies to gain more insights on the results when needed.

4.5 Performances with all indicators

As indicators are expertly designed and should cover the useful parameter range
of the tests, it is assumed that the best classification performances should be
obtained when using all of them, up to the effects of the curse of dimensionality.

Table 2 reports the global classification accuracy of the Random Forest, using
all the indicators. As expected, Random Forests suffer neither from the curse of
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Parameters Values

statistical test
Mann-Whitney-Wilcoxon U test
Two sample Kolmogorov-Smirnov test
F-test

length of window (τ)
30
50
100

levels
0.005
0.1
0.5

jump (δ)
1
5
10

fraction for global ratio indicator
and consecutive ratio indicator (β)

0.1
0.3
0.5

k among l for local ratio indicators
(l, k)

(3,2)
(5,3)
(5,4)

moving average
1
5

Table 1: Listing of the values used for the parameters of the indicators.

Data set Training set acc. OOB acc. Test set average acc.

A 0.9770 0.9228 0.9352 (0.0100)
B 0.9709 0.9118 0.9226 (0.0108)

Table 2: Classification accuracy of the Random Forest using the 810 binary
indicators. For the test set, we report the average classification accuracy and its
standard deviation between parenthesis.
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dimensionality nor from strong over fitting (the test set performances are close
to the learning set ones). Table 3 reports the same performance indicator for the
Naive Bayes classifier. Those performances are significantly lower than the one
obtained by the Random Forest. As shown by the confusion matrix on Table 4,
the classification errors are not concentrated on one class (even if the errors are
not perfectly balanced). This tends to confirm that the indicators are adequate
to the task (this was already obvious from the Random Forest).

Data set Training set accuracy Test set average accuracy

A 0.7856 0.7718 (0.0173)
B 0.7545 0.7381 (0.0178)

Table 3: Classification accuracy of the Naive Bayes classifier using the 810 binary
indicators. For the test set, we report the average classification accuracy and its
standard deviation between parenthesis.

4.6 Feature selection

While the Random Forest gives very satisfactory results, it would be unaccept-
able for human operators as it operates in a black box way. While the indicators
have simple interpretation, it would be unrealistic to ask to an operator to re-
view 810 binary values to understand why the classifier favors one class over the
others. In addition, the performances of the Naive Bayes classifier are signifi-
cantly lower than those of the Random Forest one. Both drawbacks favor the
use of a feature selection procedure.

As explained in Section 3.5, the feature selection relies on the mRMR ranking
procedure. A forward approach is used to evaluate how many indicators are
needed to achieve acceptable predictive performances. Notice that in the forward
approach, indicators are added in the order given by mRMR and then never
removed. As mRMR takes into account redundancy between the indicators, this
should not be a major issue. Then for each number of indicators, a Random
Forest and a Naive Bayes classifier are constructed and evaluated.

Predicted class
No anomaly Variance Mean Slope total

True class

No anomaly 1759 667 45 29 2500
Variance 64 712 50 3 829
Mean 7 2 783 37 829
Slope 32 7 195 595 829

Table 4: Data set A: confusion matrix with all indicators for Naive Bayes clas-
sifier on the full test set.
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Figure 9: Data set A Random Forest: classification accuracy on learning
set (circle) as a function of the number of indicators. A boxplot gives the clas-
sification accuracies on the test subsets, summarized by its median (black dot
inside a white circle). The estimation of those accuracies by the out-of-bag (oob)
bootstrap estimate is shown by the crosses.
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Figure 10: Data set B Random Forest, see Figure 9 for details.

Figures 9, 10, 11 and 12 summarize the results for the 100 first indicators.
The classification accuracy of the Random Forest increases almost monotonously
with the number of indicators, but after roughly 25 to 30 indicators (depending
on the data set), performances on the test set tend to stagnate (this is also the
case of the out-of-bag estimate of the performances, which shows, as expected,
that the number of indicators could be selected using this measure). In practice,
this means that the proposed procedure can be used to select the relevant indi-
cators implementing this way an automatic tuning procedure for the parameters
of the expertly designed scores.

Results for the Naive Bayes classifier are slightly more complex in the case
of the second data set, but they confirm that indicator selection is possible.
Moreover, reducing the number of indicators has here a very positive effect on the
classification accuracy of the Naive Bayes classifier which reaches almost as good
performances as the Random Forest. Notice that the learning set performances of
the Naive Bayes classifier are almost identical to its test set performances (which
exhibit almost no variability over the slices of the full test set). This is natural
because the classifier is based on the estimation of the probability of observing a
1 value independently for each indicator, conditionally on the class. The learning
set contains at least 250 observations for each class, leading to a very accurate
estimation of those probabilities and thus to very stable decisions. In practice
one can therefore select the optimal number of indicators using the learning set
performances, without the need of a cross-validation procedure (optimality is
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Figure 11: Data set A Naive Bayes classifier: classification accuracy on
learning set (circle) as a function of the number of indicators. A boxplot gives
the classification accuracies on the test subsets, summarized by its median (black
dot inside a white circle).
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Figure 12: Data set B Naive Bayes classifier, see Figure 11 for details.

with respect to the classification accuracy).
It should be noted that significant jumps in performances can be observed in

all cases. This might be an indication that the ordering provided by the mRMR
procedure is not optimal. A possible solution to reach better indicator subsets
would be to use a wrapper approach, leveraging the computational efficiency of
both Random Forest and Naive Bayes construction. Meanwhile Figure 13 shows
in more detail this phenomenon by displaying the classification error class by
class, as a function of the number of indicators, in the case of data set A. The
figure shows the difficulty of discerning between mean shift and trend shift (for
the latter, no specific test have been included, on purpose). But as the strong
decrease in classification error when the 23-th indicator is added concerns both
classes (mean shift and trend shift), the ordering provided by mRMR could be
questioned.

4.7 Indicator selection

Based on results shown on Figures 11 and 12, one can select an optimal number
of binary indicators, that is the number of indicators that maximizes the classifi-
cation accuracy on the learning set. However, this leads in general to a too large
number of indicators. Thus we restrict the search below a maximal number of
indicators in order to avoid flooding the human operator with to many results.

For instance Table 5 gives the classification accuracy of the Naive Bayes
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Figure 13: Data set A Naive Bayes classifier: classification error for each
class on the training set (solid lines) and on the test set (dotted lines, average
accuracies only).
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classifier using the optimal number of binary indicators between 1 and 30.

Data set Training set acc. Test set average acc. # of indicators

A 0.8958 0.8911 (0.0125) 23
B 0.8828 0.8809 (0.0130) 11

Table 5: Classification accuracy of the Naive Bayesian network using the optimal
number binary indicators between 1 and 30. For the test set, we report the
average classification accuracy and its standard deviation between parenthesis.

While the performances are not as good as the ones of the Random Forest,
they are much improved compared to the ones reported in Table 3. In addition,
the selected indicators can be shown to the human operator together with the
estimated probabilities of getting a positive result from each indicator, condi-
tionally on each class, shown on Table 6. For instance here the first selected
indicator, confu(2, 3), is a confirmation indicator for the U test. It is positive
when there are 2 windows out of 3 consecutive ones on which a U test was
positive. The Naive Bayes classifier uses the estimated probabilities to reach a
decision: here the indicator is very unlikely to be positive if there is no change or
if the change is a variance shift. On the contrary, it is very likely to be positive
when there is a mean or a trend shift. While the table does not “explain” the
decisions made by the Naive Bayes classifier, it gives easily interpretable hints
to the human operator.

5 Conclusion and perspectives

In this paper, we have introduced a diagnostic methodology for engine health
monitoring that leverages expert knowledge and automatic classification. The
main idea is to build from expert knowledge parametric anomaly scores associ-
ated to range of plausible parameters. From those scores, hundreds of binary
indicators are generated in a way that covers the parameter space as well as in-
troduces simple aggregation based classifiers. This turns the diagnostic problem
into a classification problem with a very high number of binary features. Using
a feature selection technique, one can reduce the number of useful indicators to
a humanly manageable number. This allows a human operator to understand
at least partially how a decision is reached by an automatic classifier. This is
favored by the choice of the indicators which are based on expert knowledge and
on very simple decision rules. A very interesting byproduct of the methodology
is that it can work on very different original data as long as expert decision
can be modelled by a set of parametric anomaly scores. This was illustrated by
working on signals of different lengths.

The methodology has been shown sound using simulated data. Using a ref-
erence high performance classifier, Random Forests, the indicator generation
technique covers sufficiently the parameter space to obtain a high classification
rate. Then, the feature selection mechanism (here a simple forward technique
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type of indicator no change variance mean trend

confu(2,3) 0.010333 0.011 0.971 0.939
F test 0.020667 0.83 0.742 0.779
U test 0.027333 0.03 0.977 0.952

ratef(0.1) 0.0016667 0.69 0.518 0.221
confu(4,5) 0.034333 0.03 0.986 0.959
confu(3,5) 0.0013333 0.001 0.923 0.899

U test 0.02 0.022 0.968 0.941
F test 0.042 0.853 0.793 0.813

rateu(0.1) 0.00033333 0.001 0.906 0.896
confu(4,5) 0.019 0.02 0.946 0.927
conff(3,5) 0.052333 0.721 0.54 0.121

U test 0.037667 0.038 0.983 0.951
KS test 0.016 0.294 0.972 0.936

confu(3,5) 0.049 0.043 0.988 0.963
F test 0.030667 0.841 0.77 0.801
U test 0.043 0.043 0.981 0.963

lseqf(0.3) 0.0093333 0.749 0.59 0.36
rateu(0.1) 0.001 0.002 0.896 0.895
lsequ(0.1) 0.062667 0.06 0.992 0.949
confu(3,5) 0.025667 0.021 0.963 0.936
lseqf(0.3) 0.008 0.732 0.656 0.695
KS test 0.016333 0.088 0.955 0.93

confu(3,5) 0 0 0.003 0.673

Table 6: Probability of observing 1 conditionally the class, for each of the 23
best indicators according to mRMR for data set A. Confu(k,n) corresponds to a
positive MannWhitneyWilcoxon U test on k windows out of n consecutive ones.
Conff(k,n) is the same thing for the F-test. Ratef(β) corresponds to a positive
F-test on β ×m windows out of m. Lseqf(β) corresponds to a positive F-test
on β × m consecutive windows out of m. Lsequ(β) is the same for a U test.
Detailed parameters of the indicators have been omitted for brevity.
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based on mRMR) leads to a reduced number of indicators (23 for one of the data
set) with good predictive performances when paired with a simpler classifier, the
Naive Bayes classifier. As shown in the experiments, the class conditional prob-
abilities of obtaining a positive value for those indicators provide interesting
insights on the way the Naive Bayes classifier takes a decision.

In order to justify the costs of collecting a sufficiently large real world labelled
data set in our context (engine health monitoring), additional experiments are
needed. In particular, multivariate data must be studied in order to simulate
the case of a complex system made of numerous sub-systems. This will naturally
lead to more complex anomaly models. We also observed possible limitations
of the feature selection strategy used here as the performances displayed abrupt
changes during the forward procedure. More computationally demanding solu-
tions, namely wrapper ones, will be studied to confirm this point.

It is also important to notice that the classification accuracy is not the best
way of evaluating the performances of a classifier in the engine health moni-
toring context. Firstly, engine health monitoring involves intrinsically a strong
class imbalance [11]. Secondly, engine health monitoring is a cost sensitive area
because of the strong impact on airline profit of an unscheduled maintenance. It
is therefore important to take into account specific asymmetric misclassification
cost to get a proper performance evaluation.

The Gaussian assumption made on the noise of the simulated data is a strong
one. In our future work, we plan to use more realistic noise and to test the
robustness of the methodology. We will evaluate if we can compensate this new
complexity with the use of more complex indicators.
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