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 applies (modulo rescalling) and deduce new stabilization results for weakly damped wave equations which extend to product manifolds previous results by obtained for products of tori.

 s'applique (modulo un changement d'échelle) et on en déduit de nouveaux résultats de stabilization pour l'équation des ondes faiblement amortie qui généralisent au cas des variétés produits des résultats antérieurs de obtenus dans le cas de produits de tores.

Notations and main results

In this work we continue our investigation [START_REF] Burq | Concentration of eigenfunctions of Laplace operators and stabilization of weakly damped wave equations[END_REF] of concentration properties of eigenfunctions (or more generally quasimodes) of the Laplace-Beltrami operator on submanifolds and we study here the very particular setting of product manifolds.

Let (M j , g j ), j = 1, 2 be two compact manifolds. We denote by (M = M 1 × M 2 , g = g 1 ⊗ g 2 ) the product, and by d j (resp. d) the geodesic distance in M j (resp. M ). Let q 0 ∈ M 2 and Σ = M 1 × {q 0 }.

For β > 0 we introduce (1.1)

N β = {m = (p, q) ∈ M : d(m, Σ) < β} = M 1 × {q ∈ M 2 : d 2 (q, q 0 ) < β}.
Our first result is the following.

Theorem 1.1. -For any δ > 0, there exists C > 0, h 0 > 0 such that for every 0 < h ≤ h 0 and every solution ψ ∈ H 2 (M ) of the equation we have the estimate

(1.2) ψ L 2 (N h δ ) ≤ C ψ L 2 (N 2h δ \N h δ ) + h 2δ-2 F L 2 (N 2h δ ) .
As an application of Theorem 1.1, we consider weakly damped wave equations on a compact Riemaniann manifold (M, g),

(1.3) (∂ 2 t -∆ g + b(m)∂ t )u = 0, (u, ∂ t u)| t=0 = (u 0 , u 1 ) ∈ H 1+k (M) × H k (M)
, where 0 ≤ b ∈ L ∞ (M), for which the energy 

T = S * M \ GC, T = Π x T
where T is the trapped set and Π x the projection on the base manifold M.

Our second result is the following.

Theorem 1.2. -Assume that 1. there exists a neighborhood V of T in M, a compact Lipschitz Riemannian manifold (M 1 , g 1 ) of dimension k and a Lipschitz isometry

Θ : V → (M 1 × B(0, 1), g = g 1 ⊗ g 2 )
where B(0, 1) is the unit ball in R d-k endowed with the (Lipschitz) metric g 2 , 2. there exists γ > 0, c, C > 0 such that

(1.5) c|z| 2γ ≤ b(Θ -1 (p, z)) ≤ C|z| 2γ , ∀(p, z) ∈ M 1 × B(0, 1).
Then there exists C > 0 such that for any

(u 0 , u 1 ) ∈ H 2 (M) × H 1 (M), the solution u to (1.3) satisfies E(u) 1/2 (t) ≤ C t 1+ 1 γ u 0 H 2 (M) + u 1 H 1 (M) .
Remark 1.3. -A simpler (but weaker) statement would be to assume

(i) (M, g) = (M 1 × M 2 , g 1 ⊗ g 2 ), q 0 ∈ M 2 , T = Σ = M 1 × {q 0 }, (ii) cd(m, Σ) 2γ ≤ b(m) ≤ Cd(m, Σ) 2γ ∀m ∈ M 1 × U.
It is classical that for non trivial dampings b ≥ 0, the energy of solution to (1.3) converge to 0 as t tend to infinity. The rate of decay is uniform (and hence exponential) in energy space if and only if the geometric control condition [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF][START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF] is satisfied. In [START_REF] Burq | Concentration of eigenfunctions of Laplace operators and stabilization of weakly damped wave equations[END_REF], we explored the question when some trajectories are trapped and exhibited decay rates (assuming more regularity on the initial data). This latter question was previously studied in a general setting in [START_REF] Lebeau | Equation des ondes amorties[END_REF] and on tori in [START_REF] Burq | Energy decay for damped wave equations on partially rectangular domains[END_REF][START_REF] Phung | Polynomial decay rate for the dissipative wave equation[END_REF][START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF] (see also [START_REF] Burq | Geometric control in the presence of a black box[END_REF][START_REF] Burq | Bouncing ball modes and quantum chaos[END_REF]) and more recently by Leautaud-Lerner [START_REF] Leautaud | Energy decay for a locally undamped wave equation[END_REF]. The geometric assumptions in [START_REF] Burq | Concentration of eigenfunctions of Laplace operators and stabilization of weakly damped wave equations[END_REF] are much more general than in [START_REF] Leautaud | Energy decay for a locally undamped wave equation[END_REF] which is essentially restricted to the case of product of flat tori. On the other hand, due to this more favorable geometry, the decay rate in [START_REF] Leautaud | Energy decay for a locally undamped wave equation[END_REF] is better than in [START_REF] Burq | Concentration of eigenfunctions of Laplace operators and stabilization of weakly damped wave equations[END_REF]. Theorem 1.2 shows that Leautaud-Lerner's result (the better decay rate) extends straightforwardly to the case of product manifolds (M 1 × M 2 , g = g 1 ⊗ g 2 ).

Remark 1.4. -1. According to Theorem 1.6 in [START_REF] Leautaud | Energy decay for a locally undamped wave equation[END_REF] the rate of decay in t obtained in Theorem 1.2 above is optimal in general. 2. Theorem 1.1 is a propagation result in the z-variable in B(0, 1), and since z is actually very close to 0, the relevant object is g 2 (0) (constant coefficients) rather than g 2 (z). The smaller δ, the further we need to propagate in the z variable and hence we better the quasi modes we need to consider (due to the worse error factor h 2δ-2 ) 3. The case δ = 1/2 in Theorem 1.1 is a particular case of our results in [START_REF] Burq | Concentration of eigenfunctions of Laplace operators and stabilization of weakly damped wave equations[END_REF] (which are actually much more general and hold without the "product" assumption on the geometry). On the other hand, the results in [START_REF] Burq | Concentration of eigenfunctions of Laplace operators and stabilization of weakly damped wave equations[END_REF] 

λ n = n(n + d -1) = h -2 n which concentrate in an h 1/2 n -neighborhood of the equator E = {x ∈ R d+1 : |x| = 1, x 3 = • • • = x d+1 = 0}.
In this case, we get (h 2 n ∆ + 1)e n = 0, but

e n L 2 (N h δ n ) ∼ C 1 h d-1 4 n , e n L 2 (N 2h δ n \N h δ n ) ≤ C 2 e -ch 2δ-1 n , n → +∞, contradicting (1.2) since 2δ -1 < 0. 4.
No smoothness is assumed on the function b ∈ L ∞ (M). Notice however that (contrarily to the results in [START_REF] Burq | Concentration of eigenfunctions of Laplace operators and stabilization of weakly damped wave equations[END_REF]) the lower bound in (1.5) is not sufficient (at least with our approach) and we do need also the upper bound. 5. As will appear clearly in the proof, we could assume that T is isometric to finitely many product manifolds, with possibly different constants γ, the final decay rate being given by the largest γ.

The paper is organized as follows. We first show how to deduce from Theorem 1.1 a resolvent estimate which according to previous works by Borichev-Tomilov imply Theorem 1.2. Then we prove Theorem 1.1 by elementary scaling and propagation arguments.

From concentration to stabilization results (Proof of Theorem 1.2)

According to the works by Borichev-Tomilov [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], stabilization results for the wave equation are equivalent to resolvent estimates. As a consequence, to prove Theorem 1.2, it is enough to prove (see [12, 

(2.1) L h = -h 2 ∆ g -1 + ihb, b ∈ L ∞ (M).
Then there exist C > 0, h 0 > 0 such that for all 0 < h ≤ h 0

ϕ L 2 (M) ≤ Ch -1-γ γ+1 L h ϕ L 2 (M) ,
for all ϕ ∈ H 2 (M).

Proof. -We start with a simple a priori estimate. Multiplying both sides of the the equation

(2.2) (-h 2 ∆ g -1 + ihb)ϕ = f.
by ϕ, integrating by parts on M and taking real and imaginary parts gives

h M b(m)|ϕ(m)| 2 dv g (m) ≤ ϕ L 2 (M) f L 2 (M) , (2.3) h 2 M g m ∇ g ϕ(m), ∇ g ϕ(m dv g (m) ≤ ϕ 2 L 2 (M) + ϕ L 2 (M) f L 2 (M) . (2.4)
Now, in the neighborhood V of T we use our isometry Θ and we set

(2.5) u(p, z) = ϕ(Θ -1 (p, z)), b(p, z) = b(Θ -1 (p, z)), f (p, z) = f (Θ -1 (p, z)).
Then from (2.2) we obtain the equation on M 1 × B(0, 1)

(h 2 ∆ g + 1)u = ih bu -f .
We can therefore apply Theorem 1.1 and we obtain

(2.6) u L 2 (M 1 ×{|z|≤h δ }) ≤ C u L 2 (M 1 ×{h δ ≤|z|≤2h δ }) + Ch 2δ-2 ih bu -f L 2 (M 1 ×{|z|≤2h δ }) .
On the other hand, from (2.3), and the lower bound in assumption (1.5), we deduce

(2.7) u 2 L 2 (M 1 ×{h δ ≤|z|}) ≤ Ch -1-2δγ ϕ L 2 (M) f L 2 (M)
while from the upperbound in assumption (1.5), we get (2.8)

ih bu 2 L 2 ({M 1 ×{|z|≤2h δ }) ≤ h 2 sup M 1 ×{|z|≤2h δ } | b| b 1/2 u 2 L 2 (M 1 ×{|z|≤2h δ })) ≤ Ch 1+2δγ ϕ L 2 (M) f L 2 (M) .
Gathering (2.6), (2.7) and (2.8) we obtain, (2.9)

u 2 L 2 (M 1 ×B(0,1)) ≤ Ch -1-2δγ ϕ L 2 (M) f L 2 (M) + Ch 4δ-4 h 1+2δγ ϕ L 2 (M) f L 2 (M) + f 2 L 2 (M) .
Optimizing with respect to δ leads to the choice 2δ = 1 1+γ , which gives

u 2 L 2 (M 1 ×B(0,1)) ≤ Ch -1-γ 1+γ ϕ L 2 (M) f L 2 (M) + Ch -2-2γ 1+γ f 2 L 2 (M) . According to (2.5) this implies (2.10) ϕ L 2 (V ) ≤ Ch -1-γ 1+γ ϕ L 2 (M) f L 2 (M) + Ch -2-2γ 1+γ f 2 L 2 (M)
. We can now conclude the proof of Proposition 2.1 by contradiction. If (2.1) were not true, then there would exists sequences

ϕ n ∈ H 2 (M), f n ∈ L 2 (M), 0 < h n → 0 such that (-h 2 n ∆ g -1 + ih n b)ϕ n = f n , ϕ n L 2 (M) > n h 1+ γ 1+γ n f n L 2 (M) .
Dividing ϕ n by its L 2 -norm, we deduce

(2.11) ϕ n L 2 (M) = 1, f n L 2 (M) = o(h 1+ γ 1+γ n ), n → +∞,
and from (2.10) we get (2.12) lim

n→+∞ ϕ n L 2 (V ) = 0.
On the other hand, the sequence (ϕ n ) is bounded in L 2 (M), and extracting a subsequence, we can assume that it has a semi-classical measure µ (see e.g. [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF]Théorème 2]). We recall that it means that for any symbol a ∈ C ∞ 0 (S * M),

lim n→+∞ a(x, h n D x )ϕ n , ϕ n L 2 (M) = µ, a .
Here, since we work locally, we quantize the symbols a ∈ C ∞ 0 (T * R d ) by taking first φ ∈ C ∞ 0 (R d ) equal to 1 near the x-projection of the support of a and

a(x, hD x )u = 1 (2πh) n e i h (x-y)•ξ a(x, ξ)φ(y)u(y)dydξ.
It is classical that modulo O(h ∞ ) smoothing operators, the operator a(x, hD x ) does not depend on the choice of φ. From (2.4), the sequence (ϕ n ) is h n oscillating and hence any such semi-classical defect measure has total mass 1 = lim n→+∞ ϕ n L 2 (M) (see [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF]Proposition 4]). From (2.3) and (2.11) we also have (notice

that |b| ≤ C|b| 1/2 ) (-h 2 ∆ -1)ϕ n = -ih n bϕ n + f n = o(h n ) L 2 ,
and consequently (see [START_REF] Burq | Semi-classical estimates for the resolvent in non trapping geometries[END_REF]Proposition 4.4]) the measure µ is invariant by the bicharacteristic flow. Since from (2.3) it is 0 on S * ω, we deduce by propagation that it is also 0 on GC, and hence from (2.12) it is identically null, since S * (M) = T ∪ GC. This gives the contradiction.

Concentration properties (Proof of Theorem 1.1)

Recall that we have (M, g) = (M 1 × M 2 , g 1 ⊗ g 2 ). The proof of Theorem 1.1 follows, after taking scalar products with Laplace eigenfunctions in M 1 , from a rescaling argument and standard (non trapping) resolvent estimates in M 2 . When the metric g 2 is flat, the scaling argument is straightforward, while it requires a little care in the general case (see Lemma 3.5).

Let B(q 0 , r) ⊂ M 2 be the ball (for the metric d 2 ) of radius r > 0 centered at q 0 . Proposition 3.1. -For any δ > 0, there exists C > 0, h 0 > 0 such that for every

0 < h ≤ h 0 , every τ ∈ R, every solution U ∈ H 2 (M 2 ), G ∈ L 2 (M 2 ) of the equation on M 2 (-∆ g 2 -τ )U = G
we have the estimate

(3.1) U L 2 (B(q 0 ,h δ )) ≤ C U L 2 (B(q 0 ,2h δ )\B(q 0 ,h δ )) + h 2δ G L 2 (B(q 0 ,2h δ )) .
3.1. Proof of Theorem 1.1 assuming Proposition 3.1. -Let (e n ) be a sequence of eigenfunctions of the Laplace operator on M 1 with eigenvalues -λ 2 n forming an L 2 (M 1 ) orthonormal basis. For ψ ∈ L 2 (M ), we set ψ n (q) = ψ(•, q), e n L 2 (M 1 ) . Then we have ψ(p, q) = n∈N ψ n (q)e n (p) and it is easy to see that with the notations in (1.1), for r > 0

(3.2) ψ 2 L 2 (Nr) = ψ 2 L 2 (M 1 ×B(q 0 ,r)) = n∈N ψ n 2 L 2 (B(q 0 ,r) .
Now taking the scalar product of the equation (1.2) with e n we see easily that (-h 2 ∆ g 2 + h 2 λ 2 n -1) ψ n = F n which can be rewritten as

(-∆ g 2 -τ ) ψ n = h -2 F n , τ = h -2 -λ 2 n . Applying Proposition 3.1 to this equation yields ψ n 2 L 2 (B(q 0 ,h δ )) ≤ C ψ n 2 L 2 (B(q 0 ,2h δ )\B(q 0 ,h δ )) + h 4δ h -2 F n 2 L 2 (B(q 0 ,2h δ )) .
Taking the sum in n and using (3.2) we obtain the estimate (1.2).

Proof of Proposition 3.1.

-Since the problem is local near q 0 , after diffeomorphism we can work in a neighborhood of the origin in R k z and we may assume that the new metric g satisfies g| z=0 = Id. Then we make the change of variables z → x = z h δ and we set u(x) = U (h δ x), F (x) = G(h δ x). We obtain the equation on u

(-∆ g h -h 2δ τ )u = h 2δ F,
where g h is the metric obtained by dilatation g h (x) = g(h δ x). The family (g h ) converges in C ∞ topology to the flat metric g 0 = Id. Proposition 3.1 will follow easily from Proposition 3.2. -Consider a family (g n ) of metrics on B(0, 2) ⊂ R k , which converges in Lipschitz topology to the flat metric when n → +∞. Then there exists C > 0, N 0 > 0 such that for every

n ≥ N 0 , τ ∈ R, u ∈ H 2 (B(0, 2)), f ∈ L 2 (B(0, 2)) solutions of the equation on B(0, 2) (-∆ gn -τ )u = f we have the estimate (3.3) u L 2 (B(0,1)) ≤ C u L 2 (B(0,2)\B(0,1)) + 1 1 + |τ | 1/2 f L 2 (B(0,2))
(notice that since g n converges to the flat metric the choice of the metric to define the L 2 -norms above is of no importance). Remark 3.3. -Proposition 3.2 is standard for the fixed metric g 0 = Id (see e.g. [6, Section 3]), as the annulus {x : 1 < |x| < 2} controls geometrically the ball B(0, 1). As a consequence, in the special case of [START_REF] Leautaud | Energy decay for a locally undamped wave equation[END_REF] when g = g 0 (and hence g n is also the standard flat metric), the proof of Theorem 1.1 is completed. In the general case, we only have to verify that the usual proof can handle the varying metric through a perturbation argument, which is precisely what we do below. It is worth noticing that the proof belows implies that the propagation estimates involved in exact controlability results which are known to hold for C 2 metrics, see [START_REF] Burq | Contrôle de l'équation des ondes dans des ouverts peu réguliers[END_REF], are actually stable by small Lipschitz perturbations of the metric.

For r > 0 we shall set B r = B(0, r) ⊂ R k . To prove Proposition 3.2 we argue by contradiction. Otherwise, there would exist sequences,

σ n → +∞, (τ n ) ⊂ R, (u n ) ⊂ H 2 (B 2 ), (f n ) ⊂ L 2 (B 2 ) such that (-∆ gσ n -τ n )u n = f n , (3.4) 1 = u n L 2 (B 1 ) > n u n L 2 (B 2 \B 1 ) + 1 1 + |τ n | 1/2 f n L 2 (B 2 ) (3.5)
We now distinguish three cases

-lim inf n→+∞ τ n = -∞ (elliptic case) -(τ n ) N ∈N bounded (low frequency case)
lim sup n→+∞ τ n = +∞ (hyperbolic case) In the first case, working with a subsequence we may assume that lim n→+∞ τ n = -∞. Let ζ ∈ C ∞ 0 (B 2 ) equal to 1 on B 3/2 . Multiplying (3.4) by ζu n , integrating by parts and taking the real part gives

(3.6) (g σn ∇ gσ n u n , ∇ gσ n (ζu n )) -ζτ n |u n | 2 ) dv gσ n ≤ u n L 2 (B 2 ) f n L 2 (B 2 )
which implies (after another integration by parts)

(3.7) ζg σn ∇ gσ n u n , ∇ gσ n u n ) -τ n ζ + ∆ gσ n (ζ) 2 |u n | 2 dv gσ n ≤ u n L 2 (B 2 ) f n L 2 (B 2 ) = o(|τ n | 1/2 ), n → +∞. Since ∆ gσ n ζ is supported in {1 ≤ |x| ≤ 2} and u n L 2 (1<|x|<2) = o(1), we deduce if τ n → -∞ lim n→+∞ ζ|u n | 2 dx = 0,
which contradicts (3.5).

In the second case (low frequency), we can assume (after extracting a subsequence) that τ n → τ and (3.7) shows that the sequence (u n | B 3/2 ) is bounded in H 1 (B 3/2 ). Hence, (after taking a subsequence), we can assume that it converges weakly in H 1 (B 3/2 ) (and hence strongly in L 2 (B 3/2 ). Due to the convergence of the family of metrics, we get

-∆ gσ n u n = -∆ 0 u n + o(1) H -1 , (∆ 0 = k i=1 ∂ 2 j ),
and according to (3.5) this implies that the limit u satisfies

(-∆ 0 -τ )u = 0 in D ′ (B 3/2 ), u | 1<|z|<3/2 = 0.
Uniqueness for solutions of second order elliptic operators implies that u = 0 which is contradictory with the strong convergence of (u n ) in L 2 (B 3/2 ) and (3.5).

Finally it remains to study the last case (hyperbolic). Taking a subsequence, we can assume τ n → +∞. Moreover dividing both members of (3.4) by τ n we see that u n is solution of an equation of type (P (x, τ

-1 2 n D x ) -1)u n = τ -1 n f n → 0 in L 2 (B(0, 2)). The sequence (u n | |x|<3/2 ) has a semi-classical measure ν with scale h n = τ -1/2 n ,
(see the end of Section 2 for a few fact about these measures). Notice that this new semiclassical parameter h n has no relationship with the parameter h in Theorem 1.1 First of all multiplying both sides of (3.7) by h 2 n = τ -1 n and using the fact that u n L 2 (B 2 ) is uniformly bounded we deduce that there exists C > 0 such that (3.8)

h n ∇ x u n L 2 (B 3/2 ) ≤ C, ∀n ∈ N.
Using again (3.7) shows that the sequence u n | |x|<3/2 is h n -oscillatory (and hence the measure ν has total mass 1 = lim n→+∞ u n 2 L 2 (B 3/2 ) ). Now setting D n = det((g σn ) ij ) we can write

(3.9) ∆ gσ n = ∆ 0 + k i,j=1 ∂ i (g ij σn -δ ij )∂ j + 1 2D n k i,j=1 g ij σn (∂ i D n )∂ j .
The only point of importance below will be that

(3.10) lim n→+∞ g ij σn -δ ij W 1,∞ (B 2 ) = 0, lim n→+∞ D n -1 W 1,∞ (B 2 ) = 0. Proposition 3.4.
-The measure ν is supported in the set {(x, ζ) : |ζ| = 1} and is invariant by the bicharacteristic flow associated to the metric g 0 :

2ξ • ∇ x ν = 0.
The contradiction now follows since by (3.5) we have u n L 2 (1<|z|<2) → 0 which implies that ν| 1.1<|x|<1.9 = 0 and by propagation that ν| |x|<3/2 = 0. It remains to prove Proposition 3.4.

Proof. -We have for a with compact support (in the x variable) in B(0, 2),

(3.11) a(x, h n D x )( h 2 n ∆ gσ n -1)u n , u n L 2 = (1) + (2 + (3), (1) = a(x, h n D x )( h 2 n ∆ 0 -1)u n , u n L 2 , (2) = i,j (g ij σn -δ ij ) h n ∂ j u n , h n ∂ i a * (x, h n D x )u n L 2 , (3) = h n ij 1 2D n (g ij σn ∂ i D n h n ∂ j u n , a * (x, h n D x )u n L 2 .
On one hand, using the symbolic calculus, the term 

∈ W 1,∞ (R 2k ). Then (3.12) [a(x, h n D x ), b] L(L 2 ) ≤ C h n ∇ x b L ∞ . Proof. -The kernel of the operator [a(x, h n D x ), b] is equal to (here φ ∈ C ∞ 0 (R k ) is equal to 1 on the x-projection of the support of a) K(x, x ′ ) = 1 (2π h n ) k ζ∈R k e i hn ζ•(x-x ′ ) a(x, ζ)(b(x) -b(x ′ ))φ(x ′ )dζ, which is for |x -x ′ | ≤ h n (since the support of a is compact) bounded by (3.13) C h -k n ∇ x b L ∞ |x -x ′ |, while for |x -x ′ | ≥ h n
we can integrate by parts using the identity

h n (x -x ′ ) i|x -x ′ | 2 • ∇ ζ (e i hn ζ•(x-x ′ ) ) = e i hn ζ•(x-x ′ ) , which gives K(x, x ′ ) = 1 (2π h n ) k ζ∈R k e i hn ζ•(x-x ′ ) h n (x -x ′ ) • ∇ ζ i|x -x ′ | 2 N a(x, ζ)(b(x) -b(x ′ )φ(x ′ )dζ,
and hence gives the bound for any N ∈ N,

(3.14) |K(x, x ′ )| ≤ C N h N -k n |x -x ′ | N -1 ∇ x b L ∞ .
It follows from (3.13) and (3.14) that

R k |K(x, x ′ )|dx + R k |K(x, x ′ )|dx ′ ≤ C h n ∇ x b L ∞ .
Then Lemma 3.5 follows from Schur's lemma.

Denoting by [A, B] the commutator of the operators A and B let us set

C = i h n a(x, h n D x ), ( h 2 n ∆ gσ n -1) u n , u n L 2 .
Then we can write using (3.4) and (3.9), Let us look to [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF]. Each term in the sum can be bounded by 1

C = i h n a(x, h n D x ), h 2 n f n , u n L 2 = (1) + (2) + (3) (1) = i h n a(x, h n D x ), ( h 2 n ∆ 0 -1) u n , u n L 2 , (3.15) 
h n | a(x, h n D x ), h n ∂ j (g jl σn -δ jl ) h n ∂ l u n , u n L 2 | + 1 h n a(x, h n D x ), g jl σn -δ jl ) h n ∂ l u n , h n ∂ j u n | + 1 h n | (g jl σn -δ jl ) a(x, h n D x ), h n ∂ l u n , h n ∂ j u n |.
By the semiclassical symbolic calculus and Lemma 3.5 the norms in L(L 2 ) of the operators a(x, h n D x ), h n ∂ j and a(x, h n D x ), g jl σn -δ jl ) are bounded respectively by C h n and C h n ∇ x g jl σn L ∞ where C is independent of n. Therefore using (3.10) and (3.8) we deduce that (2) tends to zero when n goes to +∞.

Unfolding the commutator and using (3.5), (3.8) we see that the third term in (3.15) is a finite sum of terms which are bounded by C ∂ j D n L ∞ . We deduce from (3.10) 

1 2 n ) = o( h -1
n ) . This ends the proof of Lemma 3.4, and hence of Proposition 3.2

(h 2
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  (1) tends to ν, (|ζ| 2 -1)a(x, ζ) . Now using (3.8) and (3.10) we see easily that the terms (2) and (3) tend to zero when n → +∞. On the other hand, the l.h.side in (3.11) is equal to h 2 n a(x, h n D x )f n , u n L 2 . and according to (3.5) tends to 0. We deduce ∀a ∈ C ∞ 0 (R 2k , ν, (|ζ| 2 -1)a(x, ζ) ⇒ supp (ν) ⊂ {(x, ζ); |ζ| 2 = 1}. To prove the second part in Proposition 3.4, we shall use the following lemma Lemma 3.5. -Let a ∈ C ∞ 0 (R 2k ), and b

h 2 .

 2 , h n D x ), h n ∂ j (g jl σn -δ jl ) h n ∂ l u n , u n L 2 , n a(x, h n D x ), 1 2D n g jl σn (∂ j D n ) h n ∂ l u n , u n LBy symbolic calculus, the term (1) is modulo an O( h n ) term equal toOp({a(x, ζ), |ζ| 2 })u n , u n L 2 ,where {, } denotes the Poisson bracket, and hence tends to ν, {a(x, ζ), |ζ| 2 } = 2ζ • ∇ x ν, a .

  are local, while for δ < 1/2, the estimate (1.2) is non local. Indeed, trying to replace ψ by χψ will add to the r.h.s. a term ([h 2 ∆, χ]ψ) which is clearly bounded in L 2 by O(h), giving an error of order O(h 2δ-1 ) ≫ 1 to the final result. On the other hand, as soon as δ < 1/2, estimate (1.2) is false without the product structure assumption as can be easily seen on spheres by considering the eigenfunctions e n = (x 1 + ix 2 ) n with eigenvalues

  that (3) tends to zero when n goes to +∞. Now, opening the commutator we see that the r.h.s. in the first equation in(3.15) is equal to i h n a(x, h n D x ) h 2 n f n , u n L 2 -(x, h n D x )u n L 2 .These terms are bounded byC h n f n L 2 (B 2 ) u n L 2 (B 2 )and tend to zero when goes to +∞ since, according to (3.5), u n L 2 (B 2 ) is uniformly bounded and f n L 2 (B 2 ) = o(τ

	i h n	h 2 n f n , a
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