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Abstract 

The design of an industrial workstation tends to include ergonomic assessment steps 

based on a digital mock-up and a virtual reality setup. Lack of interaction and system 

fidelity is often reported as a main issue in such virtual reality applications. This 

limitation is a crucial issue as thorough ergonomic analysis is required for an 

investigation of the biomechanics. In the current study, we investigated the 

biomechanical responses of the shoulder joint in a simulated assembly task for 

comparison with the biomechanical responses in virtual environments. Sixteen male 

healthy novice subjects performed the task on three different platforms: real (RE), virtual 

(VE), and virtual environment with force feedback (VEF) with low and high precision 

demands. The subjects repeated the task 12 times (i.e., 12 cycles). High density 

electromyography from the upper trapezius and rotation angles of the shoulder joint were 

recorded and split into the cycles. The angular trajectories and velocity profiles of the 

shoulder joint angles over a cycle were computed in 3D. The inter-subject similarity in 

terms of normalized mutual information on kinematics and electromyography was 

investigated. Compared with RE the task in VE and VEF was characterized by lower 

kinematic maxima. The inter-subject similarity in RE compared with intra-subject 

similarity across the platforms was lower in terms of movement trajectories and greater in 

terms of trapezius muscle activation. The precision demand resulted in lower inter- and 

intra-subject similarity across platforms. The proposed approach identifies biomechanical 

differences in the shoulder joint in both VE and VEF compared with the RE platform, but 

these differences are less marked in VE mostly due to technical limitations of co-

localizing the force feedback system in the VEF platform. 
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1. Introduction 

 

The use of virtual reality (VR) in relation to human factors and ergonomics is of certain 

interest to professionals involved in the design of technological interfaces, the 

improvement of work efficiency and the overall reduction of costs [1,2]. Digital human 

modeling and virtual human simulations are examples of such applications [3]. In 

particular the augmentation of VR setups with motion capture systems allows the 

calculation of the biomechanical attributes of a task. In turn these attributes can be 

utilized to analyze the physical risk factors that can lead to the discomfort and pain 

characterizing musculoskeletal disorders [4]. 

VR systems have advantages such as availability, safety and data provision. However, 

these systems still suffer from drawbacks related to the adopted technological solutions 

[2]. For instance, the level of the fidelity of VR to a similar real environment should be 

thoroughly addressed [5]. System and interaction fidelities as defined in [6] are of 

particular importance as they directly influence the motion and the biomechanical load. 

To our best knowledge only a few studies have assessed the biomechanics of the shoulder 

girdle in VR environments [7,8]. Despite fair correlations between VR and real 

biomechanical metrics, a recent study has pointed out considerable discrepancies between 

VR and real environments [9,10]. Particularly the range of movement between a VR and 

a real box-lifting task has been found to be comparable whereas significant differences 

have been reported in terms of movement velocity and acceleration [8]. In a recent study 

[7] we also found that the potential risks posed by posture for neck-shoulder 

musculoskeletal disorders are different in real and virtual environments. In the latter 
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study, postural risk factors were investigated over all segments of the upper extremity. 

However, due to the complex structure of the shoulder joint and the high prevalence of 

disorders in that region and its large range of motion, special attention has been drawn to 

movement patterns of this joint [11]. Some studies also suggest that the control of 

pointing movement can be decomposed into shoulder-elbow and wrist components. They 

conclude that shoulder flexion and elbow extension are independent of the wrist angular 

motion [12]. This study kept a focus on a detailed investigation of the shoulder joint in 

tasks performed in VR environments. 

A thorough assessment of the biomechanical response in VR platforms may require more 

than a mere comparison of the kinematic properties of movements. Surface 

electromyography (EMG) analysis can complement findings on the kinematic aspects of 

movements [13,14]. In our previous study we found a good correlation between a real 

and a virtual setup in terms of muscular activity in the upper extremities [7]. However, 

conventional bipolar EMG has a poor spatial representation of muscle activity [15]. As an 

alternative, high-density EMG (HD-EMG) from the upper trapezius creates the spatial 

pattern of muscular activity and thereby improves the physiological representation of the 

muscle being studied [16,17]. That being so, changes in the spatial pattern of the upper 

trapezius EMG activity have been reported in the presence of, for example, fatigue and 

pain [16,18]. 

Apart from the working environment, task attributes such as precision demands also 

affect the EMG activity of the upper trapezius muscle [19]. The biomechanical responses 

in VR environments could in turn be affected by the task attributes [5,20], although this 

has not yet been thoroughly investigated. 



 6 

The current study compares the shoulder kinematics and the spatial pattern of the 

trapezius activation during performance of a simulated real task and a similar virtual task 

with and without haptic force feedback. In ergonomics the extent of intra-subject 

variability of the exposure outcomes across the two different conditions has been 

compared with inter-subject variability within one of the conditions and this comparison 

has provided a contrast index between the two conditions [21,22]. Therefore, if the intra-

subject variability across the conditions is greater than the inter-subject variability within 

a task, the two conditions will be seen as different working conditions. Along with such 

an approach one can apply methods such as cross-correlation and normalized mutual 

information (NMI) to quantify the similarity (the opposite of the concept of variability) of 

the biomechanical response of subjects in different conditions and compare the inter- and 

intra-subject similarity [23]. NMI as a similarity index has been established and has a 

broad application in fields such as image processing [24] and biomedical signal 

processing [23]. In the context of biomechanics, mutual information has also been used to 

study the nonlinear properties of joint angle trajectories during gait [25]. We 

hypothesized that the intra-subject similarity of biomechanical response across real and 

virtual environments is comparable with inter-subject similarity within the real 

environment. The adopted approach can facilitate the assessment of improvements in 

VR-based solutions used for evaluating physical risk factors at work. 

2. Methods 

  

Sixteen male participants (aged 26.5±2.8 years; height 178.4±6:5 cm; body mass 

70.2±9.2 kg) took part in the present study. The study population was the same as in our 
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recent study [7]. No participants reported any history of neck-shoulder disorders and all 

were novices in VR (average experience of 1.4±0.5 on a five-point scale ranging from “1: 

Novice” to “5: Expert”). The study was conducted in accordance with the Helsinki 

Declaration and was approved by the local ethics committee (Den Videnskabsetiske 

Komité for Region Nordjylland, N-20120036). The participants signed an informed 

written consent form prior to the experiment. 

2.1 Experimental Procedure 

The participants performed a simulated task on three different platforms, i.e., a real (RE), 

a virtual (VE) and a virtual environment with haptic force feedback platforms (VEF). The 

inclusion of force feedback is supposed to yield to a higher level of fidelity in VR 

environments [9]. The task was a simplified assembly task and consisted of target 

reaching, object manipulation and sorting. Further, the investigated task was performed 

while the participants were standing.  

The RE platform consisted of storage and disposal shelves, a work panel, and twelve 

wooden objects (see Figure 1). The work panel had two holes with different cross-

sectional contours which could accommodate some of the objects (“fitter”) whereas the 

other objects (“non-fitter”) could not pass through any of the holes. The work panel was 

located on a table at elbow height in agreement with recommendations for light work 

[26]. The storage and disposal shelves were located 40 cm above the table surface and 16 

cm to the left and right of the work panel center, respectively. 

Within each of the platforms the participants had to move their right hand towards the 

objects on the storage shelf and grasp one after receiving a verbal let-go signal. The 

participants had to pass the “fitter” objects through the proper hole in the work panel. In 
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contrast they had to place the “non-fitter” objects on the disposal shelf. Before the 

recording on each platform the participants were familiarized with the task for at least 5 

min. 

Within each of the platforms the participants had to work with six “fitter” and six “non-

fitter” objects in total. Handling of “fitter” objects demanded a higher precision than 

handling of “non-fitter” objects. The order of the platforms and object types (“fitter” and 

“non-fitter”) was randomized. The participants took a 2 min rest prior to switching 

between the platforms. 

The VE and VEF were designed to resemble the RE but we acknowledge the limitations 

mentioned in our previous work (see also the discussion section) [7]. An overview of the 

hardware design and the numerical pipeline can be found in another previous work [27]. 

The 3D representation of the workstation and the work panel were derived from the 

digital mock-ups used to fabricate the RE. The virtual table height was also visually 

adjusted with respect to the elbow height of the participants. The virtual system used a 

high-resolution stereoscopic immersion room including a wall (front screen) and a floor 

(vertical wall: 9.6m×3.1m, 6240×2016 pixels, eight Barco NW12 projectors, BARCO 

Inc., USA; floor: 9.6m×2.88m, 3500×1050 pixels, three Barco Galaxy 7 projectors, 

BARCO Inc., USA). 3D glasses (ActiveEyes-Pro, Volfoni, SAS, France) tracked by a 

360° tracking system with 16 ART infrared cameras (Advanced Realtime Tracking 

GmbH, Germany) were used. The distributed architecture of the room was based on the 

framework described in [28]. The interaction with the VE was done with a wireless stick 

(Flystick2, Advanced Realtime Tracking GmbH, Germany) co-localized with the virtual 

scene. The flystick allowed navigation of the 3D immersive environment and camera 
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tracking to obtain the position of the object as well as the transmission of the user 

command by means of a trigger button.  The VEF was very similar to VE except that 

instead of the flystick the participant had to interact with the VR environment using a six-

degree of freedom haptic device (Virtuose™, Haption SA, France) co-localized with the 

virtual scene. The device was chosen for its large work volume (0.7 m x 0.5 m x 0.5 m) 

and its ability to render a range of forces close to the real ones (maximal continuous force 

of 10N). The participants performed the task with wooden objects, each weighting 20 g, 

the flystick (280 g) and the haptic device producing a simulated force of 0.2 N in RE, VE, 

and VEF, respectively. For VE and VEF platforms, the physics of the scene were 

simulated with the Bullet Physics Library (bulletphysics.org). Simplified forms of non-

convex objects were separately designed for the physics simulation. Both the virtual 

coordinates of Flystick and Virtuose devices were linked to the real coordinates by means 

of a standard proportional derivative control scheme for positions and a suboptimal 

control scheme with a quadratic cost for rotations [29]. Virtual gains were set to minimize 

undesirable collision effects such as jumps, vibrations and instability on the virtual 

objects [29].  

Grasping of the objects in VE and VEF was different from RE (see Figure 1). It was done 

by a trigger button actuated with the forefinger and the thumb in VE and VEF, 

respectively. The object was placed 5 cm above the center of the flystick or the haptic 

device to provide a proper visual interface for the participants. The offset was a relative 

offset and was not affected by the motion of the participants. This difference may have 

some effect on the kinematic patterns of movement. However, this offset represented 

only 8 to 16% of the range of movement, i.e., 32 cm (in “non-fitter” cycles) and 60 cm 
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(in “fitter” cycles). Further, only one active and visible object was displayed on the 

storage shelf at the time of grasping within the VE and VEF platforms.  

 

Figure 1: Illustration of the work place within the three platforms, i.e., a) real, b) virtual and c) virtual with 

force feedback. The participants stood in front of a work table adjusted to their elbow height and had to 

grasp an object from the storage shelf with the right hand. The participants had to pass the “fitter” objects 

through the work panel and laid the “non-fitter” objects on the disposal shelf. Consent to publication was 

obtained from the participant seen in the figure. 

 

2.2 Data Recordings 

The orientations of the arm in 3D, i.e., shoulder flexion (SF), internal rotation (SI), and 

shoulder abduction (SA), were tracked by six dedicated AR-Tracking targets, sampled at 

60 Hz. As the tracking outputs consisted of both the positions and the orientations of each 

segment relative to the immersive room reference frame, the relative rotation matrix 

describing the motion of the shoulder relative to the upper body (shoulder-upper body 

matrix) was obtained by multiplying the inverse upper body-reference matrix by the 

shoulder-reference matrix. The identification of the joint coordinates was performed from 

the rotation matrix on the basis of a simple spherical joint representing the shoulder 



 11 

[30,31]. The sequence of rotation angles over the time of each cycle was termed an angle 

trajectory. The rotation angles were reported with respect to a reference standing position 

with both arms along the body. 

The tracking system was able to track the hand position with a dedicated cluster of optical 

markers. The markers were attached to the hand of the participants throughout the whole 

experiment. 

HD-EMG signals were recorded with a semi-disposable adhesive grid of 64 electrodes 

(LISiN-Spes Medica, Italy, model ELSCH064R3S). The grid consisted of 13 rows and 5 

columns of electrodes (2-mm diameter, 8-mm inter-electrode distance in both directions) 

with a missing electrode at the upper left corner serving as the origin of the coordinate 

system to define the electrode location [18]. The 64-electrode grid was then placed on the 

upper trapezius muscle with the fourth row aligned with the C7-acromion line, parallel to 

the muscle fiber direction. The lateral edge of the grid was 10 mm medial to the mid-

point of a line between C7 and the acromion. 

The silver-silver chloride electrode surfaces in the grid were separated from the skin by a 

small cavity (~1-mm thick) filled with a conducting paste. The EMG signals were 

differentially amplified 2000 times (128-channel surface EMG amplifier, EMG-USB, 

LISiN-OT Bioelectronica, Turin, Italy; 3-dB bandwidth, 10 to 500 Hz), sampled at 2048 

Hz, and A/D converted in 12 bits. A reference electrode was placed on the C7 vertebra. 

Bipolar signals were computed along the fiber direction, and thus 51 bipolar derivations 

were obtained and arranged in nodes of a 13×4 grid. 

As a subjective evaluation of the tasks, the subjects scored the rate of perceived exertion 

around the shoulder area between “0: no exertion” and “10: maximal exertion” after 
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finishing the task in each platform. Moreover, the cycle time was also registered (see 

above). The cycle time was defined as the averaged time elapsed between the beginning 

and the end of the cycles within each platform and object type. 

 

2.3 Data Analysis 

The participant movement in each platform was divided into 12 cycles corresponding to 

the cycles described above. The onset and offset of the cycles were determined from the 

time of moving the hand towards the object until the object was passed through the work 

panel (“fitter” cycles) or laid on the disposal shelf (“non-fitter” cycles). The reaching 

times were determined using the kinematic trajectories.  

The velocities of the 3D angular trajectories were computed by numerical differentiation 

after smoothing the trajectories (bidirectional second order Butterworth low pass at 8 Hz 

[33]). The maximum values of instantaneous angle and velocity were obtained in 3D. The 

directions consisted of flexion-extension for SF (SF-Flx and SF-Ext), internal-external 

rotations for SI (SI-Int and SI-Ext), and abduction-adduction for SA (SA-Abd and SA-

Add). For example, the maximal deviation of the shoulder from the neutral posture in the 

direction of shoulder flexion was considered shoulder flexion maximum and the minimal 

deviation was considered shoulder extension maximum. Figure 2 shows an example of 

SF, SI, and SA angle trajectories over a typical cycle for fitter and non-fitter objects. The 

mean of the maximum values of the angular trajectories and their velocity profiles were 

extracted across the cycles for each participant, object type and platform [8]. This is 

relevant for ergonomic risk indices such as the rapid upper limb assessment [34] in 

agreement with known physical risk factors [35]. Subsequently, the angular trajectories 
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and velocity profiles were interpolated (200 samples represented the trajectories across 

one cycle). The trajectories were sorted based on the object type and the target location 

on the work panel (the latter only for “fitter” cycles). Then the trajectories were 

concatenated (6 cycles) to obtain a sequence of cycles performed in each of the platforms 

for each participant and object type. 

 

Figure 2: An example of the shoulder flexion (SF), internal rotation (SI) and abduction (SA) angle across a 

0 to 100% timeline of a cycle for “fitter” (dashed black) and “non-fitter” (solid gray) objects and “Real” 

(RE), “Virtual” (VE) and “Virtual with force feedback” (VEF) platforms. For “fitter” objects, the task 

requires consecutive shoulder flexion and extension to grasp an object and bring it down to pass it through 

the work panel. The shoulder flexion and extension were concomitant with a short burst of internal rotation 

and the shoulder was kept adducted while the object was passed through the work panel. For “non-fitter” 

objects, the shoulder was flexed to grasp an object and then it was kept flexed until the object was laid on 

the disposal shelf. The shoulder was internally rotated and abducted during approaching and after grasping 

the object. 

 

For each participant (𝑠𝑖) the cross correlation coefficient (CC), NMI, and the root mean 

square of the difference (RMS. Diff) were computed between the concatenated sequence 
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of angular trajectories and velocity profiles within VE and VEF on one hand and the 

corresponding trajectory within RE on the other hand, i.e., NMI(𝑅𝐸𝑠𝑖
, 𝑉𝐸𝑠𝑖

)) and 

NMI(𝑅𝐸𝑠𝑖
, 𝑉𝐸𝐹𝑠𝑖

), respectively. CC and NMI are two indices of the similarity of the two 

trajectories while RMS.Diff reflects the difference between the two indices. CC and 

RMS.Diff were utilized as conventional indices of similarity and variation, respectively, 

whereas the NMI is an index of nonlinear similarity and measures the amount of shared 

information between two time series [36]. Thus, it was used to quantify the similarity of 

the spatial pattern of shoulder kinematics. In comparison with other indices of similarity, 

such as cross-correlation coefficient, NMI encompasses both linear and non-linear 

correlations between two signals [37] (see the Appendix for further details). The 

application of non-linear indices such as NMI allows a better understanding of complex 

systems in VR [38]. NMI varies between “0: no common information” and “1: 

completely identical information.” Thus, the computed NMI represented an intra-subject 

similarity index across the virtual platforms. 

For each object type in RE a representative trajectory was obtained by taking the median 

of the concatenated angular trajectories and velocity profiles (𝑠̅). The NMI between the 

representative trajectory/ profile and the corresponding kinematic trajectories/ profiles 

provides an index of inter-subject similarity in RE, i.e., NMI(𝑅𝐸𝑠𝑖
, 𝑅𝐸𝑠̅ ). This approach is 

inspired by clustering algorithms such as K-medians [39]. The NMI values were termed 

SF-NMI, SI-NMI, and SA-NMI for shoulder flexion, internal rotation, and abduction 

angles, respectively. Similarly, SF-Vlc-NMI, SI-Vlc-NMI, and SA-Vlc-NMI denoted the 

NMI of the velocity profiles.  
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A linear envelope of EMG (low-pass filtering with a cut-off frequency of 8 Hz) was 

computed across one cycle. All the EMG envelopes were interpolated over time and 20 

time points represented the temporal changes of the muscular activity across one cycle.  

After alignment of the EMG maps [40] in RE a representative EMG map was computed 

as the median of the maps across the subjects at each node of the EMG grid and each 

time point. Then, the NMI was calculated as an index of similarity between two images at 

each time point [41]. Using a similar approach as described for kinematic trajectories, we 

computed the NMI between the EMG maps of each participant and the representative 

EMG map at each time point. The computed NMIs were then averaged across time 

points. This calculation provides an index of inter-subject similarity in RE. As an index 

of intra-subject similarity within the different platforms, NMI was computed between the 

EMG maps recorded in VE and VEF and the corresponding EMG map recorded in RE. 

The NMI between the EMG maps was denoted by HD-NMI. 

2.4 Statistics  

The number of subjects was initially determined for three repeated measures 

(corresponding to the three platforms) with a 0.75 correlation between them and with a 

medium effect size (η=0.25), confidence level (α=0.05), and desired power (80 %) 

(G*Power 3.1.4  [42]). A linear mixed model (LMM) fitting the outcome measures, i.e., 

rate of perceived exertion, the maximum of angular trajectories, velocity profiles, and 

their corresponding CC, NMI, RMS. Diff, and NMI of EMG maps, was used to 

investigate and compare the biomechanical responses within the three platforms. To find 

the most parsimonious and the best fit model a “top-down” modeling strategy [43] was 

applied. Platforms (RE, VE and VEF) and object types (“fitter” and “non-fitter”) were 
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introduced as within-subject factors of the LMM. Additionally, a repeated factor 

associated with the platforms was added to the model to allow for residuals with unequal 

variance at each level of the platforms. When a significant effect was observed, a 

Bonferroni adjustment was performed for a pairwise comparison. The following results 

were achieved for all 16 subjects although 6 subjects could not perform the task within 

the force feedback platform (hardware issue). However, LMM is capable of handling 

such unbalanced data sets [43]. In all tests, P<0.05 was considered significant. Mean 

values (standard error) were reported. The residual of the model was checked for 

normality (Kolmogorov-Smirnov test) and in cases where normality was violated the 

LMM was applied to the rank transformed data [44].  Since the LMM was associated 

with multiple fixed and random factors, the statistical test may have suffered from low 

power. Thus, we only discuss the significant effects to avoid type II errors. 

To achieve an empirical estimation of the precision of the computed NMI of the 

concatenated sequence of angular trajectories and angular velocity profiles, a 

bootstrapping resampling technique [45] was used by permuting the order of cycles in the 

concatenated sequence. We carried out this procedure for 16 (same as number of 

participants) randomly selected permutations of the cycles in the concatenated sequence. 

The NMI was computed as described above for the concatenated sequence of cycles. 

Then between and within (between-permutations) subject variance components of the 

computed NMI were computed using a one-way random effect model. The variance 

components were derived using the restricted maximum likelihood algorithm (SPSS 22.0, 

SPSS Inc., Chicago, IL, USA). 

3 Results 
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3.1 Comparison of the Platforms 

 

The interaction of the platform and the object type (platform× object type) had a 

significant effect on all angle and angular velocity maxima (P<0.02 in all cases), but a 

main effect of the platform (P<0.001) and the object (P=0.003) type was found on SF-Flx 

and the angular velocity of SI-Int. For the “fitter” objects the angular velocity maxima in 

VEF and RE were generally closer to each other compared with those in RE and VE, 

however, except for SA-Vlc-Abd, angular velocity maxima were higher in RE compared 

with the velocity maxima in both VE and VEF. As expected the velocity maxima were 

higher in RE than in VE and VEF, and they were generally, except for SI-Vlc-Int and SI-

Vlc-Ext, lower in VE compared with VEF for “fitter” objects (Figure 3 and 4). 
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Figure 3: The mean and standard error of maximum of angle trajectories of shoulder flexion (SF), internal 

rotation (SI) and abduction (SA) across participants and cycles. The figures in each column illustrate the 

outcomes for each of the object types (“fitter” and “non-fitter”). SF, SI and SA stand for shoulder flexion, 

internal rotation and abduction, respectively. SF-Flx and SF-Ext stand for maximum flexion and extension 

of SF angle, SI-Int and SI-Ext stand for maximum internal and external rotation of SI angle, and SA-Abd 

and SA-Add stand for maximum abduction and adduction of SA angle. * indicate a significant pairwise 

comparison between Real, Virtual and Virtual environment with feedback (Feedback) (p<0.05).  
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Figure 4: The mean and standard error of maximum of angular velocity profiles of shoulder flexion (SF), 

internal rotation (SI) and abduction (SA) across participants and cycles. The figures in each column 

illustrate the outcomes for each of the object types (“fitter” and “non-fitter”). SF, SI and SA stand for 

shoulder flexion, internal rotation and abduction respectively. SF-Vlc-Flx and SF-Vlc-Ext stand for 

maximum angular velocity in flexion and extension of shoulder, SI-Vlc-Int and SI-Vlc-Ext stand for 

maximum internal and external rotation of shoulder, and SA-Vlc-Abd and SA-Vlc-Add stand for maximum 

abduction and adduction of shoulder. * indicate a significant pairwise comparison between Real, Virtual 

and Virtual environment with feedback (Feedback) (p<0.05).  

 

The platform or its interaction with the object type had a significant effect on the NMI, 

CC, and RMS.Diff of angular trajectories and angular velocity profiles. NMI and CC 
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were largest in RE among the platforms whereas RMS.Diff was lowest in RE (Figure 5 

and table 1). Further, NMI and CC were lower in VEF compared with VE for SI whereas 

RMS.Diff revealed an opposite pattern. NMI detected a significant difference between 

VE and VEF in terms of the SI-Vlc-NMI. 

 

Table 1: The mean and standard error of cross-correlation (CC) and root mean square of the difference 

(RMS. Diff) across the participants and the cycles for shoulder flexion (SF), internal rotation (SI), 

abduction (SA) angle and angular velocity. RE, VE and VEF represent “Real”, ‘’Virtual” and “Virtual with 

force feedback” platforms, respectively and “fitter” and “non-fitter” determine the object type. The CC and 

RMS. Diff within RE represent the mean of CC and RMS.Diff, the angular trajectories and velocity profiles 

for an arbitrary participant (si) and a representative trajectory, i.e., the median of traces across all subjects 

(s̅). Thus, CC and RMS. Diff within RE indicate CC or RMS.Diff (REsi
, REs̅ ). Whereas CC and RMS. Diff 

within VE and VEF were between the kinematic trajectories in virtual and virtual with force feedback 

platforms on one hand and their corresponding trajectories within the real platform on the other hand, i.e., 

CC or RMS.Diff (REsi
, VEsi

) and CC or RMS.Diff (REsi
, VEFsi

), respectively. The bold fonts in RE 

columns indicate significant difference between RE and both VE and VEF. # indicates that this difference 

was significant only between RE and VEF. $ indicates a significant difference between VE and VEF. 
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Figure 5: The mean and standard error of normalized mutual information (NMI) between the angular 

trajectories and velocity profiles within real environment and a representative trajectory, i.e., the median of 

traces across all subjects (Real). For kinematic trajectories of an arbitrary subject (si), we computed 

NMI(REsi
, REs̅ )  where s̅ indicates the representative trajectory across the subject pool. NMI between the 

virtual and virtual with force feedback trajectories on one hand and their corresponding trajectories within 

the real platform on the other hand (Virtual and Feedback) NMI(REsi
, VEsi

) and NMI(REsi
, VEFsi

), 

respectively. The figures in each column illustrate the outcomes for each of the object types (“fitter” and 

“non-fitter”). SF, SI and SA stand for shoulder flexion, internal rotation and abduction, respectively. * 

indicate a significant pairwise comparison between Real, Virtual and Virtual environment with feedback 

(Feedback) (p<0.05).  
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As opposed to the kinematic trajectories, the HD-NMI was generally lowest in the RE 

platform (Figure 6). The type of platform had a significant effect on the ratings of 

perceived exertion (P=0.002). The subjects reported a higher score in VEF (2.4 (0.4)) 

compared with the other platforms (1.0 (0.2) and 0.9 (0.2) for RE and VE, respectively).  

The interaction of platform × object type had a significant effect on the cycle time 

(P<0.001). The cycle time was shortest in RE and longest in VEF with “fitter” (2.8 s 

(0.1), 4.7 s (0.3) and 16.8 s (3.3) for RE, VE, and VEF, respectively). The cycle time was 

shortest in VE and longest in VEF with “non-fitter” (2.5 s (0.1), 2.0 s (0.2) and 4.8 s (0.9) 

for RE, VE, and VEF, respectively). 

 

Figure 6: The mean and standard error of normalized mutual information within real, virtual and virtual 

with force feedback environment (Real, Virtual and Feedback) for fitter (A) and non-fitter objects (B). For 

an arbitrary subject (si), we computed inter-subject similarity NMI(REsi
, REs̅ ) where siand s̅ indicate the 

electromyography map for i-th subject and the representative electromyography map across the subject 

pool, respectively (Real). The intra-subject similarity was computed across the virtual platforms 

NMI(REsi
, VEsi

) and NMI(REsi
, VEFsi

), for virtual and virtual with force feedback (Feedback) 

environments, respectively . * indicate a significant pairwise comparison between Real, Virtual and virtual 

environment with feedback (Feedback) (p<0.05).  
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3.2 Effect of Task Attributes 

 

The cycles with “non-fitter” objects required higher SF angles from the reference 

standing posture compared with “fitter” objects, but the angular velocity was higher for 

“fitter” objects. CC of SI angle was lower for “fitter” objects compared with “non-fitter” 

objects in all platforms, but CC of SI angular velocity was lower for “fitter” compared 

with “non-fitter” objects in RE only. Similarly, SI-NMI and SI-Vlc-NMI in RE were 

lower for “fitter” compared with “non-fitter” objects. However, the SF-NMI in RE and 

SI-NMI in VE were higher in “fitter” than in “non-fitter” cycles. The RMS. Diff for both 

angle and angular trajectories was generally larger in “fitter” compared with the “non-

fitter” cycles, but it was lower in terms of SI for “fitter” cycles in VEF. HD-NMI was 

lower for “fitter” than for “non-fitter” objects in all the platforms.  

3.3 The Bootstrap Resampling  

As can be seen from table 2 for angular trajectories as well as angular velocity profiles, 

the between subject variance component was larger than the between permutation 

variance component (16 and 17 out of 18 combinations of platforms, object types and the 

three shoulder rotation angles for angular trajectories and angular velocity profiles, 

respectively).  
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Table 2: The variance components of computed normalized mutual information (NMI) resulted from 

bootstrap resampling applied to the permutation of concatenation order of shoulder flexion (SF), internal 

rotation (SI) and abduction (SA) angle and angular velocity. BS and WS represent the between-subject 

variance components and Ratio represents their ratio. SE represents the standard error of estimated variance 

components. RE, VE and VEF represent “Real”, “Virtual” and “Virtual with force feedback” platforms and 

“fitter” and “non-fitter” determine the object type. 

Platform Object type angle BS SE WS SE Ratio 

RE Fitter SF 1.0e-3 4.0e-4 6.0e-4 5.5e-5 1.7 

  SI 1.5e-3 5.5e-4 3.2e-4 2.3e-5 4.7 

  SA 8.0e-4 3.0e-4 4.7e-4 4.2e-5 1.7 

 Non-Fitter SF 2.7e-3 9.9e-4 4.0e-4 3.7e-5 6.7 

  SI 1.4e-3 5.3e-4 2.9e-4 2.7e-5 4.8 

  SA 1.2e-3 4.6e-4 3.3e-4 3.0e-5 3.6 

VE Fitter SF 1.6e-4 5.9e-5 9.9e-5 9.0e-6 1.6 

  SI 4.6e-4 1.7e-4 9.5e-5 8.7e-6 4.8 

  SA 7.6e-5 2.9e-5 6.3e-5 5.8e-6 1.2 

 Non-Fitter SF 2.6e-4 1.0e-4 2.2e-4 2.0e-5 1.2 

  SI 7.4e-4 2.7e-4 9.7e-5 8.8e-6 7.6 

  SA 1.9e-4 7.4e-5 8.9e-5 8.2e-6 2.1 

VEF Fitter SF 1.2e-4 5.7e-5 1.8e-5 2.1e-6 6.7 

  SI 6.9e-4 3.2e-4 3.4e-5 3.9e-6 20.3 

  SA 1.2e-4 5.6e-5 2.2e-5 2.5e-6 5.5 

 Non-Fitter SF 1.4e-4 7.0e-5 9.2e-5 1.0e-5 1.5 

  SI 9.0e-4 4.3e-4 1.2e-4 1.4e-5 7.5 

  SA 3.6e-5 1.9e-5 4.8e-5 5.5e-6 0.7 
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4. Discussion 

The kinematics of the shoulder joint and the spatial activity of the upper trapezius were 

assessed during performance of a simulated assembly task on virtual platforms with and 

without force feedback and compared with the corresponding biomechanical parameters 

in a real environment. The measurements included the kinematics of the shoulder joint in 

3D and the spatial pattern of the upper trapezius EMG activity. Further, the precision 

demand (“fitter” objects) generally resulted in increased kinematic maxima, lower EMG 

and lower inter and intra-subject similarity; however, this effect differed depending on 

the platforms. The CC and NMI were used as indices of similarity while RMS. Diff 

represented an index of variation of biomechanical responses which were used to 

compare the virtual platforms. 

4.1 Comparison of the Platforms 

Although movement performance could be described by assessment of changes at the 

endpoint level, the present study only focused on the shoulder girdle because of the high 

prevalence of musculoskeletal disorders in this body region [46]. 

The comparison of kinematic properties during performance of a real motor task and a 

similar virtual task has previously been carried out in terms of range of movement and 

maximum velocity [8]. A similar range of trunk movements has been reported for virtual 

and real platforms but higher maximum velocity has been found in real environments 

than virtual environments [8]. The present results are in accordance with Whitman and 

co-workers (2004) [8] even though the maximum angles in RE were also different from 

those in VE in terms of SF-Flx, SA-Abd, and SI-Ext (see Figure 3). 
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The observed differences in terms of maximum angles are also in agreement with Hu and 

co-workers (2011) [9], who found a smaller elbow angle within the VE platform 

compared with RE. For “fitter” objects the maximum angular velocities in VEF and RE 

were closer to each other compared with those in RE and VE except for SA-Vlc-Abd (see 

Figure 4). As a general finding, the maximum velocity in RE was higher than in VE and 

VEF even though this was not observed for SI-Vlc-Int and SI-Vlc-Ext.  

In this study CC and NMI were used as linear and nonlinear outcomes assessing inter-

subject similarity in RE and intra-subject similarity in VE and VEF. Conversely, RMS. 

Diff was used to quantify inter-subject variation in RE and intra-subject variation in VE 

and VEF. CC and NMI also resulted in detection of greater inter-subject similarity in RE 

compared with intra-subject similarity across the virtual platforms. RMS. Diff as an index 

of variation showed an opposite pattern as compared with the similarity indices as 

expected. This means that inter-subject variation in RE was lower compared with intra-

subject variation across the virtual platforms. Although the outcomes of CC, NMI and 

RMS. Diff were consistent, NMI was the only index detecting a difference between intra-

subject similarities in VE compared with VEF in terms of angular velocity of the 

shoulder joint. This emphasized that nonlinear measures like NMI are capable of 

depicting changes in the dynamics of the kinematics time series. However, the 

application of NMI to a non-rhythmic signal may cause computational instability due to a 

large estimation variance caused by poor representation of the probability distribution 

function in the collected sample. To account for such limitations and increase the size of 

the samples involved in the estimation of NMI, we concatenated the kinematic 

trajectories before the NMI was estimated between the kinematic trajectories, and to 



 28 

verify whether this approach caused a build-up in estimation variance, we performed a 

bootstrap resampling technique to arrive at an empirical estimation of the variance 

components between and within subjects. We found that the between subject variance 

component was larger than the within-subject component (table 2). This indicated that the 

adopted procedure did not result in an excessive estimation variance underlining that 

NMI can detect kinematic differences between RE and VE or VEF. 

Contrary to our hypothesis, we found that the kinematic trajectories were more similar 

between the participants performing the task in RE compared with the similarity of 

kinematic trajectories belonging to a single participant working in different platforms. 

This is an important finding since a reliable evaluation of the biomechanics in VR 

platforms requires that the intra-subject similarity of the biomechanical responses across 

platforms is comparable with the inter-subject similarity of the biomechanical responses 

of the real work platform. A similar approach has previously been applied in ergonomics 

studies where the ratio between inter- and intra-subject variability has been used to 

contrast different working conditions [22,47]. It seems unlikely that the gradual 

adaptation of the participants to the task would result in a systematic bias to our results at 

the within-subject level because the participants performed the task in a randomized 

balanced order across the platforms. Additionally, if the adaptation level is assumed to be 

different across subjects, the between-subject variance increases and, in turn, results in 

lower inter-subject similarity. This supports our interpretation even further. 

As another source of bias inherent to the current limitations of VR setups, the net external 

forces to the participant’s hand were not identical across the platforms. However, the 
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shoulder movement patterns are reported to be quite stable over a range of small hand-

loads (less than 2 kg) [11]. 

The similarity of the SI kinematic trajectories and velocity profiles between RE and VE 

was higher than the similarity between RE and VEF (Figure 5). This appears to be in 

contrast with the expectation that haptic and tactile feedback will improve the fidelity of 

high-end VR systems [9]. However, there are still some technical issues in terms of 

incorporating force feedback in the design of a VR platform [2]. The co-localization of 

the haptic device in the current VEF platform was challenging and definitely needs 

further technical improvement. As the haptic device as well as the flystick partially 

occluded the scene to the user, it was necessary to introduce a 5 cm offset (see Figure 1) 

between the virtual target and the real position of the end-effector of the device. It can be 

assumed that this offset could cause discrepancies between the kinematic trajectories 

across the real and virtual platforms. However, the offset was rather small and the same 

(see Section 2) applied to both VE and VEF conditions. Moreover, the coupling between 

the physical and the virtual positions of the device induced a perceptible delay (20-50 ms) 

between the real motion of the device and the displacement of the object on the scene. 

Further work is warranted to improve the standard control solution developed for the 

haptic device to enhance the interaction fidelity of the environment. Because of such 

limitations, the participants reported a higher rating of perceived exertion in VEF 

compared with the other two platforms. This difference can also be explained by the 

inexperience of the users since work experience interacts with the motor control of the 

shoulder girdle [35,50]. 
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We expected that the inter- and intra-subject similarity of the EMG would indicate a 

trend similar to the kinematic trajectories, but contrary to our hypothesis, we observed 

that the inter-subject similarity between the EMG activation maps in RE was lower 

(lower NMI) than intra-subject similarity in VE and VEF platforms (Figure 6). A similar 

contrast between EMG and kinematic pattern has previously been observed and explained 

by the notion of complexity trade-offs between the macroscopic (kinematics) and 

microscopic (EMG) levels of a control system [51]. 

The spatial pattern of muscular activity is of interest because it entails information such 

as the heterogeneity in the distribution of the muscle fibers recruited in performance of a 

task [52,53]. In accordance with our findings, high inter-subject variability has previously 

been reported in terms of spatial muscular activity [54]. Such participant-specific 

properties of the EMG maps could be partly related to changes in the spatial location of 

the recruited motor units depending on the level of exerted force, the adaptation to the 

task and the differences in muscular geometry. This study focused on the shoulder joint, 

and particularly the trapezius, not only because of its function during shoulder elevation, 

scapular rotation and arm elevation [55] but also because its typical anatomy and 

superficiality allowed application of HD-EMG. It is worth noting that investigation of 

muscle synergy [56] and its systematic changes across platforms is also relevant and 

feasible with the application of conventional bipolar EMG. However, the power of HD-

EMG lies in its ability to provide a better spatial representation of the whole muscle, i.e., 

inhomogeneity in muscle recruitment [4]. Therefore, the application of NMI to HD-EMG 

maps in this study revealed a smaller inter-subject similarity within RE compared with 

the intra-subject similarity across the virtual platforms. 
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4.2 Task Attributes 

Comparison of precision demands showed that the cycles with “fitter” objects were 

generally characterized by lower deviation of shoulder angles from the reference standing 

posture, higher angular velocity and lower inter- and intra-subject similarity than “non-

fitter” cycles. 

Different shoulder angles and velocities in the cycles with “non-fitter” objects can 

probably be explained by the physical positioning of the disposal shelf and the work 

panel, which was placed at a lower height with respect to the shelf. They could also be 

caused by the physical configuration of the working setup as the shoulder was kept 

elevated to deal with the “non-fitter” objects. It is worth noting that this was the only 

direct comparison between the “fitter” and “non-fitter” objects and the rest of the 

comparisons were made to compare the similarity (NMI) of the corresponding kinematic 

trajectories in RE, VE, and VEF which handled the “fitter” and “non-fitter” objects. 

Similar comparisons were also made for muscular activity patterns within the platforms. 

As mentioned above the different configuration of the work panel resulted in a more 

complex pattern of movement because of the higher precision demands dealing with 

“fitter” than “non-fitter” objects. Particularly, while the participants were passing the 

objects through the work panel, a relatively high level of precision was required. It is 

conceivable that the participants used a different motor strategy to perform this task, and 

the lower NMI or CC indicates higher inter- and intra-subject variability in terms of 

“fitter” objects. Further, longer cycle time was expected in VE and VEF than in RE 

because of the absence of reaction force from the rigid surface of the work panel in VE, 

the mechanical limitations of the haptic device in VEF and the lack of experience in 
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virtual environments. Interestingly, the shortest cycle time was observed in VE with 

“non-fitter” objects. This probably implies that novice users could compensate for their 

lack of experience (after familiarization) provided that the task has a low precision 

demand. All in all, the present study emphasized the interaction effect of the precision 

demand and the biomechanical response in VR environments.  

5. Conclusion 

A simulated assembly task was tested in RE, VE, and VEF. The biomechanical responses 

in VE and VEF environments were tested and compared with RE in terms of the spatial 

pattern of the trapezius activity and the 3D shoulder kinematics among novice users. The 

VE preserved the kinematic properties of the RE better than the VEF. Kinematic 

trajectories indicated a higher inter-subject similarity in RE compared with intra-subject 

similarity within the three platforms whereas the spatial pattern of the trapezius revealed 

an opposite pattern. The current study proposes a quantitative method to investigate VR 

platforms in terms of the biomechanics of a task. The proposed method does not provide 

an absolute criterion for the application or otherwise of VR platforms to ergonomics risk 

assessment. Nevertheless, the adopted approach offers a set of relative indices for 

assessing and comparing VR platforms with their real counterparts and provides a 

benchmark for evaluating modifications presented in VR platforms.  
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Appendix 

 

To compute NMI, the entropy H (average amount of information) of the observation was 

calculated. If X is a random variable, the entropy can be obtained from:  

 

       iXiX xpxpXH log      (1) 

where  xpX  represents probability distribution function of X estimated using the 

histogram method and  iX xp  is the i
th

 bin of the normalized histogram [23]. The next 

step is to calculate the MI as defined by: 

 

 
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    
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
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i j jYiX

jiXY

jiXYXY
ypxp

yxp
yxpMI

,
log,      (2) 

where  yxpXY ,  is the joint probability density function of X and Y. The upper bound of 

the MI calculated from (2) depends on the observation entropy. Therefore, MI varies 

between zero and minimum entropy of the signals. To establish a commensurable basis 

for comparison, a normalized version of the MI is presented as follows:  

 

    YHXH

MI
NMI XY

,min
      (3) 

where NMI varies between 0 and 1. Furthermore, NMI=1 if and only if X and Y carry 

identical information and zero when there is no shared information between X and Y 

[36]. This procedure can be generalized to two or more dimensional observations such as 

images. 
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