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Abstract
Although there is a large consensus regarding the involvement of specific acoustic cues in

speech perception, the precise mechanisms underlying the transformation from continuous

acoustical properties into discrete perceptual units remains undetermined. This gap in knowl-

edge is partially due to the lack of a turnkey solution for isolating critical speech cues from

natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the

Auditory Classification Image technique that allows experimenters to estimate the relative

importance of time-frequency regions in categorizing natural speech utterances in noise. Im-

portantly, this technique enables the testing of hypotheses on the listening strategies of par-

ticipants at the group level. We exemplify this approach by identifying the acoustic cues

involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Au-

ditory Classification Images to our group of 16 participants revealed significant critical re-

gions on the second and third formant onsets, as predicted by the literature, as well as an

unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric

test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of

the classification strategies between different utterances of the same phoneme.

Introduction
In speech perception, we unconsciously process a continuous auditory stream with a complex
time-frequency structure that does not contain fixed, highly reproducible, or evident bound-
aries between the different perceptual elements that we detect in the stream of speech. Pho-
nemes [1] or syllables [2], the building-blocks of speech, are sophisticated perceptual entities.
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Through a long evolutionary process, human brains have learned to extract certain auditory
primitives from the speech signal and associate them with different perceptual categories. For
example, we perceive the sounds /d/ or /g/ as discrete and distinct elements, without being
aware of the underlying perceptual construction causing their distinction [3,4]. Which acoustic
features are extracted and used to perceive speech remains unknown, largely because of the
lack of an experimental method enabling the direct visualization of auditory cue extraction.
The aim of this paper is to propose and demonstrate the validity of adapting the classification
image framework to directly visualize auditory functional cues actually used by individual lis-
teners that are processing speech.

Acoustic cues for speech perception
Speech is a continuous waveform comprising an alternation of harmonic and non-harmonic
acoustic segments. Periodic sounds are caused by vibrations of the vocal folds and are shaped
by resonances of the vocal tract to produce formants in the acoustic signal [5]. Thus, formants
correspond to local energy maxima inside the spectral envelope of the signal and are present
for vocalic sounds (e.g., vowels such as /a/ or /u/) or voiced consonants (e.g., /v/, /d/, or /g/).
The number of formants is typically 4 to 5, depending on the phoneme considered. Formants
cover a frequency range from approximately 150 Hz to 4 to 6 kHz, with approximately one for-
mant per kHz, and last approximately 100 ms. Each vowel appears to be loosely tied to a specif-
ic formantic structure (essentially determined by the height of the first two formants, F1 and
F2). Perturbations of the acoustic flux created by the rapid occlusion or release of the air flow
generate silences, hisses, bursts or explosions that constitute the core of consonantal sounds
(e.g., consonants such as /t/, /p/ or /sh/). Their presence transitorily inflects the formant trajec-
tories, thus creating brief formantic transitions. The formantic structure and formant dynamics
are examples of spectrotemporal acoustic cues that could be exploited at the acoustic/phonetic
interface [6]. By studying coarticulated utterances of /alda/, /alga/, /arda/, and /arga/, [7] deter-
mined that (1) the identity of the first consonant affected the spectral content of the second syl-
lable, and vice-versa, and that (2) listeners were able to compensate for this coarticulation
during perception. Although the first effect is clearly due to the partial overlapping of articula-
tory commands between adjacent phonemes, the exact nature of the compensation phenome-
non remains undetermined [8–11]. Coarticulation introduces internal variations into the
system referred to as allophonic variations: a range of different formantic structures will be per-
ceived as the same phoneme. This phenomenon makes the system more resistant to intra- and
inter-speaker variations, but it also makes the problem of learning to associate acoustic cues to
phonemic percepts more difficult and the reverse engineering problem of designing automatic
speech recognition and automatic speech comprehension systems largely unresolved [12].

Identifying auditory primitives for speech perception
The precise mechanism underlying the transformation from continuous acoustical properties
into the presence or absence of some acoustic cues and finally into a discrete perceptual unit re-
mains undetermined. The acoustic-phonetic interface has been studied extensively since 1950.
Many studies on this topic have been conducted under experimental conditions, which have
involved stimuli that were degraded in a controlled fashion in order to narrow the problem to a
small number of possible cues. Among the most well-known attempts is the series of papers
published by the Haskins Laboratories on the relationship between second formant transition
and stop consonant perception using synthetic speech [13,14]. However, their conclusions are
inherently limited by the non-naturalness of the synthesized stimuli: the variations of synthetic
stimuli are restricted to a small number of cues, and thus they may not be processed in the
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same manner as natural stimuli. Furthermore, participants exposed to this type of stimuli often
report them as “unnatural” and typically achieve lower recognition performances, a clear sign
that the natural cues are poorly represented in synthesized speech. More recent work has also
relied on drastic spectral and/or temporal impoverishment of the speech signal [15,16]. How-
ever, in a “real-life” situation, listeners are not typically required to address filtered speech but
have access to the entire spectrum. As before, the question remains: Are the evidenced acoustic
cues with synthetic speech identical to those for natural speech? The resistance of speech in-
telligibility to drastic signal reductions, such as those noted above, could rely on secondary per-
ceptual cues not used in natural listening situations. Scientists seeking to address this problem
will ultimately be required to use natural speech production as stimuli.

In this context, a recent solution demonstrates the merits of using a masking noise on natu-
ral speech utterances to isolate the regions of the spectrogram crucial for identifying a particu-
lar phoneme. The technique initially proposed by [17] involves masking natural speech
utterances with noise at various signal-to-noise ratios (SNRs). By analyzing the patterns of con-
fusion in a participant’s responses with respect to the noise level, researchers were able to iden-
tify the point at which noise masks the crucial acoustic cue, thus corresponding to a drop of
correct identifications [18,19].

Alternative approaches for determining the mapping of sounds to mental representations of
acoustic cues have been enabled by recent statistical developments in neuroimaging, including
advances in the multivariate encoding/decoding models of neural activity. By reverse-engineer-
ing the processing of speech in the brain, it has become possible to reveal the encoding of sub-
phonological information in the auditory cortex [20,21]. One such solution has been to record
the firing rate modulations of individual auditory neurons in response to specific stimuli to de-
rive their spectrotemporal receptive-fields (STRFs), which are a linear approximation of the
time-frequency function of the neuron. This technique has been widely used in studying birds,
specifically when hearing conspecific birdsongs [22,23]. These studies have demonstrated that
auditory neurons are tuned to specific time-frequency regions, surrounded by one or more in-
hibitory regions. Spectrotemporal filters are assumed to be somewhat similar for human audi-
tory neurons. Electrocorticographical (ECoG) recordings have enabled the estimation of
average STRFs for small groups of human auditory neurons in epileptic patients [24], thereby
strengthening the idea that the basic auditory cues for humans are also composed of an excit-
atory region surrounded by inhibitory regions. As a next step, [20] gathered STRFs from clus-
ters of neurons that are functionally similar, e.g., auditory neurons responding preferentially to
particular phonemes. They obtained the first images of the encoding of acoustic cues for several
features, as well as the tuning of neurons to frequencies corresponding to formant values. Al-
though these results represent a major breakthrough in understanding how speech sounds are
primarily decoded along the primary auditory pathway, it is difficult to infer how this informa-
tion is combined to facilitate the identification of one phoneme rather than another phoneme.
Computational models have been proposed [25] that link the STRF with a multiresolution re-
presentation of speech sounds in the auditory cortex. This approach could provide a unified
model of the transformation of a speech input from the cochlea to the midbrain. However, this
account currently remains theoretical, because of the lack of a method allowing the observation
of the use of acoustic cues in normal participants and other non-epileptic patients and large-
group studies or studies on the individual variations of these processes.

The auditory classification image approach
In a previous paper [26], we demonstrated the feasibility of addressing this gap in the auditory
domain by adapting a method designed to identify the primitives of simple perceptual tasks,
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the classification image technique. Inspired from an auditory tone-in-noise detection experi-
ment by Ahumada and Lovell [27], classification images have then been developed in the visual
domain and successfully used to study Vernier acuity [28], perceptual learning [29,30], the in-
terpolation of illusory contours [31], the detection of luminance [32] and chromatic [33] mod-
ulations, and recently face pareidolia [34]. We developed the Auditory Classification Image
(ACI) technique by transposing this experimental and statistical framework to an auditory cat-
egorization task between two target speech sounds (/aba/ and /ada/). The two signals were pre-
sented in an additive Gaussian noise, and participants were asked to indicate whether the
target was /aba/ or /ada/. Each participant’s response was then linked to the specific noise con-
figuration in the corresponding trial with a Generalized Linear Model (GLM) with smoothness
priors. The rationale underlying this technique is that if the time-frequency coordinates at
which the noise interferes with the decision of the observer are known, then the regions on
which the observer focuses to perform the task would also be known. By fitting the decision
weights corresponding to every pixel of the representation, it became possible to draw a time-
frequency map of the categorization strategy and directly visualize which parts of the stimulus
are crucial for the decision.

In the first report on ACIs, we only reported individual data on three volunteers and used
two speech productions as targets, thus leaving the question of the specificity of the obtained
ACIs to these particular utterances unanswered. In the present study, we aimed to 1) further de-
velop the method and complete a first group study to extend the feasibility of the method to
group studies; 2) apply statistical tests permitting the evaluation of statistical significance inside
or between classification images and 3) explore the specificity of the ACI to the utterances used
as targets. To this end, we acquired auditory classification images from a group of 16 partici-
pants performing 10,000 categorizations of the four /alga/, /alda/, /a

R
ga/, /a

R
da/ speech sounds.

Materials and Methods

Participants
Seventeen native speakers of French with no background knowledge of phonetics and phonolo-
gy participated in this study. All participants had normal hearing, as confirmed by a standard
pure-tone audiometric test (<20 dB HL, 125–8,000 Hz), and reported no history of neurologi-
cal or developmental disorders. Additionally, participants were administered a series of tests
on nonverbal intelligence (Raven’s Standard Progressive Matrices) and phonological and read-
ing skills (ECLA-16+). They obtained scores within normal ranges on all tests (S1 Table). The
study was approved by the Comité d'évaluation éthique de l'Inserm / Institutional Review
Board (IORG0003254, FWA00005831, IRB00003888). Participants provided written informed
consent before participating in the experiment, and they received financial compensation
(€100) for their participation. One participant’s data were excluded from further analyses due
to extremely poor performances that suggested the participant had misunderstood the instruc-
tions. Thus, the analyses are based on the answers of 16 participants (12 females; mean age:
22.6 years ± 4.6 years S.D).

Stimuli
Four speech samples, i.e., /alda/, /alga/, /a

R
da/, and /a

R
ga/, were recorded from one male

speaker in a soundproof chamber at a sample rate of 48 kHz. The 4 stimuli were obtained by re-
moving the silent gap between the two syllables to align the onset of the second syllable at the
same temporal position and then equating the 4 sounds in root mean square and in duration
(680 ms). The resulting speech signals (hereafter denoted t) sounded perfectly natural and
were perfectly intelligible in a quiet setting.

Auditory Classification Images
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Each stimulus s in this experiment consisted of one target signal t embedded in an additive
Gaussian noise n at a given SNR using Equation (1).

si ¼ ai � t ki þ ni ð1Þ

where i is the trial number; ki the signal number associated with this trial; and αi a factor deter-

mining the SNR during the course of the experiment (ai ¼ 10
SNRi
20 , for ni and t ki both normal-

ized in power and SNR in dB). The sampling rate of the stimuli was set to 48 kHz for the
original sounds. All stimuli were root-mean-square normalized and were then preceded by 75
ms of Gaussian-noise with a Gaussian fade-in to avoid abrupt attacks. The cochleograms of the
4 stimuli are shown in Fig. 1.

Experimental procedure
Participants were seated in a sound booth in front of a computer monitor and wore Sennhei-
ser’s HD 448 headphones. They completed a set of 10,000 trials consisting of 2,500 noisy pre-
sentations of each of the 4 speech signals, presented in random order. For each trial, they were
asked to listen carefully and then to indicate, by a button press, whether the final syllable was
‘da’ or ‘ga’. The response to trial i is denoted ri(= 0 for ‘da’ and 1 for ‘ga’), and the correct an-
swer (corresponding to the target actually presented) is denoted c. Participants were allowed to

Fig 1. Cochleograms of the four stimuli involved in the experiment. Parameters for spectral and
temporal resolution are identical to those used to derive the ACIs (see details in the main text).

doi:10.1371/journal.pone.0118009.g001
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replay the stimulus before entering their response. For each trial, the participant’s response,
his/her response time, the SNR level, and the time-frequency configuration of noise ni were re-
corded for offline analysis.

Given the long duration of the experiment (approximately 4 h), we divided it into 20 ses-
sions of 500 trials completed over 4 days to avoid mental and auditory fatigue. Sessions were
separated by minimum breaks of 3 min. In addition, there was a short practice block before the
beginning of the experiment that was similar to the test phase, except that the correct answers
were displayed after each trial. Over the course of the experiment, the SNR was adapted from
trial-to-trial based on the participant’s responses by a 3-down 1-up staircase procedure [35],
thereby allowing us to constantly target the 79% correct point on the psychometric function.
The SNR was increased by one step after each incorrect response and decreased by one step
after three consecutive correct responses from the last change in stimulus intensity. At the be-
ginning of each session, the step size was set to 2 dB to accelerate convergence and then de-
creased 10% by each step until a step size of 0.2 dB was attained. The initial SNR level was -11
dB, and each session began with the final SNR of the previous session.

Generating Auditory Classification Images
The method used for deriving ACIs has been previously detailed [26]. A summary is provided
below, with a focus on several improvements that have been introduced since the publication
of the first version.

Cochleograms
The same preprocessing was applied to all noise and speech sounds before analysis. Cochleo-
grams were generated from the waveforms using Lyon’s Cochlea Model [36], implemented in
the classic Matlab Auditory Toolbox by Malcom Slaney (https://engineering.purdue.edu/~
malcolm/interval/1998-010/). This algorithm involves a bank of simulated auditory filters of
constant quality factor (Q = 8), spaced quasi-logarithmically and overlapping by 40% (this step
factor was chosen to be slightly greater than the default parameter proposed by Slaney to en-
sure sufficient spectral resolution). The vertical axis of the cochleogram represents the center
frequencies of each auditory filter. Two additional processing levels are implemented in this
function to mimic the non-linear behavior of the hair cells: a half-wave rectifier followed by an
Automatic Gain Control modeling the neural adaptation mechanism and a difference between
adjacent filters to improve the frequency response. Finally, the output of the model is decimat-
ed in time to a sample rate of 64.1 Hz, with a time step of 15.6 ms. The cochleograms of our 4
stimuli are presented in Fig. 1. The cochleogram of the noise sound at each trial i was calculated
and will be hereafter denoted by Xi in its vectorized form.

Generalized Linear Model
For each participant, several ACIs were derived from the responses to all or part of the 10,000
trials using a GLM. This statistical model links the probability that the participant responded
with 1, P(ri = 1), with the specific configuration of the noise through the following equation:

Pðri ¼ 1Þ ¼ FðXi
T � b þ bciÞ: ð2Þ

where F a psychometric function (here, the inverse of the logit function); b the decision tem-
plate; and b a two-level factor reflecting the influence of the target actually presented on the re-
sponse. Phoneme categorization is regarded in this context as a simple template-matching
process between the input sound and two mental representations of the targets stored in
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memory. The decision template corresponds to a particular linear weighting of the noise profile
and is specific to the two targets involved in the task. The output of the dot-product Xi

T � b is
added to the factor b to yield a linear predictor that is eventually transformed nonlinearly
through the psychometric function into a probability ranging between 0 and 1. It is important
to note that the GLM does not simulate the internal processing of the human speech perception
system. However, it is useful for determining which variations of the stimulus affect human

perception. Thus, our main goal was to approach the decision template b with an estimator b̂ ,
the ACI.

Smoothness priors
Rather than directly estimating the model parameters y ¼ fb; bg with a simple maximization
of the log-likelihood LðyÞ ¼ logðPðr jy; c;XÞÞ, we introduced a smoothness prior during the

optimization of the GLM. This statistical development, named “Penalized Likelihood,” or
“Generalized Additive Model” (GAM), has been widely used for estimating receptive fields at
the neuron level [22,37] and then adapted to the Classification Images method [38,39]. The
main concept is to place constraints on the parameter values during the estimation process.
This method has been shown to be efficient for preventing the overfitting problem inherent in
maximum likelihood estimation when processing a large number of parameters. In the present
case, overfitting would generate a noisy ACI, which would thus describe mainly random noise,
not the underlying mechanism involved in the classification. The direct consequence would be
that this model would closely fit the data on which it is trained but would not be able to predict
responses to novel stimuli.

The introduction of a smoothness prior allows us to reduce noise in the classification image
method by applying low-pass smoothing in a principled manner and therefore to minimize
overfitting [40,41]. We characterize the smoothness of the ACI with the quadratic form

QðyÞ ¼ QðbÞ ¼ bTLb, where L is the Laplacian matrix, encoding the adjacency between the

pixels of the spectrotemporal representation [37,42]. This function assumes higher values
when neighboring weights in the ACI markedly differ. The smoothness is assumed to be equal
over the two dimensions of the ACI (time and frequency). Note that this assumption can be
more or less plausible depending on the sampling rates of the time and frequency axes. We can
address the issue by using two separate smoothing priors. However, doing so would dramati-
cally increase the computational cost in our case.

Rather than maximizing the log-likelihood, we maximize the log-posterior, thereby yielding
a maximum a posteriori (MAP) estimate:

ŷMAP ¼ argmax
y

½Lðy Þ þ l � QðyÞ� ð3Þ

In this context, l � QðyÞ is called the “Regularizer” and corresponds to our a priori beliefs re-
garding the model parameters. In this equation, it acts as a penalty term, assigning a high cost
for strong deviations between neighboring parameters and thus enforcing smoother estimates.
λ is called the “hyperparameter” as it does not appear in the model Equation (2) but affects the
final estimate. It controls the tradeoff between fitting the data well and obtaining a smooth ACI
by determining the degree to which roughness should be penalized (higher penalty for increas-
ing values of λ; for λ = 0, we recover the non-penalized maximum likelihood estimate). Given

c, X , and r , it is possible to estimate the model parameters ŷMAP associated with a given hyper-

parameter value λ using the function glmfitqp developed by Mineault in his MATLAB
toolbox fitglmqp. Examples of such λ-dependent ACIs are shown in Fig. 2.

Auditory Classification Images
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Lambda optimization
However, consistent with the literature on STRF and CI estimations using penalized likelihood
[37,38,40], we do not want to presume an a priori value for λ. Instead, we aim to determine
how much smoothing is appropriate based on our data. Because we aim for the ACIs to be gen-
eralizable to an independent dataset, models corresponding to different smoothing values are

Fig 2. CV deviance of the penalized GLM for participant #17 as a function of regularization parameter λ. The minimum value of the CVD function is
indicated with a blue circle, and the optimal lambda l

~
is indicated with a red circle. Examples of ACIs obtained with different values for this participant are

shown below.

doi:10.1371/journal.pone.0118009.g002
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evaluated with a cross-validation approach, and we determine an optimal regularization pa-

rameter, denoted ~l, according to this criterion.
Individual optimization. For example, in our previous paper [26], we computed a 10-fold

cross-validation for a wide range of λ values by randomly partitioning the dataset each time be-
tween a “training” set and “test” set, thereby estimating the model parameters on the training
set (9,000 trials) through MAP for all considered λ values, as explained previously, and then
comparing the predicted responses on the test set (1,000 trials) to the actual responses of the
participant. The same procedure was followed in the present study, except that the match be-
tween predicted and observed responses was assessed by computing the deviance of each fitted
model applied to the test set. This deviance is a more natural measure of goodness-of-fit in the
case of GLMs [41]. In this manner, each λ value is associated with a corresponding cross-
validated deviance CVD(λ), which is the mean deviance for the 10 cross-validations (see Fig. 2
for an example of one participant). For small values of λ, the estimate is overfitted and unreli-
able for predicting unseen data, thus generating a high CVD. As λ increases, the true estimate
emerges (with a subsequent decrease in CVD) and is finally smoothed out for high λ values.
This final step generally corresponds to a slow increase in CVD.

Thus, an optimal hyperparameter could be found by selecting the model that yields a mini-
mum CVD value, that is to say, the degree of smoothness of the ACI that allows the most accu-
rate predictions of unseen data. However, the increase of this function for high lambda values
is sometimes relatively small, thus causing an oversmoothing of the estimate. Thus, we rather
selected the smallest λ value at which the CVD becomes smaller than the minimum plus one

standard deviation, denoted ~l. A similar criterion, the “one-standard-error” rule, is presented
in [43] and is implemented with the MATLAB function lassoglm.

Conjoint optimization. Gathering data from N participants enables the selection of the
lambda values conjointly. Rather than estimating N distinct optimal hyperparameters, we can

select a single value ~l to apply to all models. Considering the sum of the individual CVDs en-
ables the derivation of two optimal lambda values for the group identically as performed above
(with the standard deviation estimated over the group of participants’ CVDs). The resulting
models may not predict the answers of the participants as well as the individual models; howev-
er, a major advantage of this method is that it provides increased stability of the hyperpara-
meter selection, even with a limited number of trials. Furthermore, a common degree of
smoothing may be required to gather different images in a group analysis. The convergence
and stability of the lambda optimization will be investigated below.

Statistical tests
Because the ACI estimate is intrinsically noisy, certain quantitative measures are required to
distinguish random or non-significant effects in the images from actual functional cues. In pre-
vious works, we performed a bootstrap test to identify significant observations at the individual
ACI level. In practice, experimenters will typically be more interested in formulating generaliz-
able conclusions about a population of subjects rather than a simple sum of remarks on the be-
havior of several single subjects. Group analyses provide a method of testing hypotheses on the
probability distribution of weights from which the individual ACIs are drawn. Hence, they will
allow us to make generalizations about a population from a sample. Statistical tests were con-
ducted at the group level for two purposes: 1) to identify the significant differences between
ACIs calculated under two conditions and 2) to assess the significance of the weights for one
condition. Statistical tests were performed on the z-scored individual ACIs. In both cases, the
tests involved as many comparisons as there are parameters in one ACI (4,374 in our case);
therefore, it is important to correct for multiple comparisons [44].
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When comparing ACIs between two conditions, we used a cluster-based non-parametric
test. This statistical procedure, originally developed to analyze neuroimaging data [45–47], al-
lows the correlation inherent to the natural images to be taken into account (i.e., each pixel de-
pending on the values of the adjacent pixels). Statistical analyses were conducted using
FieldTrip, an open-source MATLAB toolbox developed for processing electrophysiological
data [48]. The test is performed at two statistical levels. First, a running paired t-test is per-
formed on all participants and compares weights at each time-frequency bin between the two
conditions of interest. Second, the result is corrected for multiple comparisons by thresholding
the output of the (two-tailed) t-test at p<0.01 and clustering adjacent significant samples in
the time-frequency space. The statistic used to describe these clusters is Tsum, the sum of all t-
values inside the cluster. A permutation-test is performed by randomly re-assigning the ACI of
each individual between the two conditions (5,000 iterations in our case) to obtain an estimate
of the distribution of Tsum under the null hypothesis. It is then possible to compare the experi-
mental value of Tsum with this calculated distribution to decide whether to reject the null hy-
pothesis given a specified alpha value.

Because this procedure applies only to comparisons between conditions, the significance of
weights in one ACI was corrected using a simple false discovery rate (FDR) correction. As a
cluster-based non-parametric test, this statistical technique has been widely used for addressing
the problem of multiple comparisons in neuroimaging studies [49]. More precisely, in this
case, a t-value was calculated for each pixel corresponding to the hypothesis that the corre-
sponding weight is significantly different from zero across participants. This result was then
corrected by keeping the probability of type I error below a threshold of FDR<.01.

Results

Behavioral results
Due to the extreme length of the experiment, particular care was taken to ensure comfortable
listening at all times for the participants. They reported no perceived effect of excessive mental
fatigue over the course of the experiment, although some participants admitted experiencing
occasional and brief attention loss. As expected, participants obtained a mean correct response
rate of 78.8%, as determined by the adaptive SNR algorithm. Moreover, it was possible to deter-
mine their individual performances by observing the SNR levels (given in Fig. 3A.): except for
one low performer, the SNR distributions of all participants were approximately -12 dB
(mean = -11.8 ± 0.9 dB), although the individual variations were quite large, with standard de-
viations ranging from 1.32 to 2.47 dB. Participant 24 did not achieve a stable 79% point and
was therefore excluded from analysis, as noted earlier. To characterize the participants’ perfor-
mances more precisely, we estimated their individual psychometric functions (the rate of cor-
rect responses as a function of the SNR) by fitting a cumulative normal distribution of
unknown threshold and slope [50,51]. The results are shown in Fig. 3B. The similarity between
psychometric functions suggests that all participants included in the analysis formed a homo-
geneous group of listeners, at least in terms of the SNR level at which they correctly categorize
79% of all stimuli.

A slight but significant bias of all participants toward response ‘ga’ can be observed from the
mean rate of ‘ga’ responses (Fig. 3C, p<10-4). An analysis of variance (ANOVA) was con-
ducted, with proportions of ‘ga’ responses as the dependent variable and context (Al- or Ar-)
and the SNR level (high or low SNR) as the within-subject factors, thus revealing a significant
main effect of context (F(1,15) = 78.65, p<10-10): the proportions of ‘ga’ responses were higher
in context Ar- (61.2%) than in context Al- (50.3%). Similarly, we obtained a below-significance
trend of SNR level (F(1,15) = 2.97, p = 0.09), with a low SNR generating a lower bias (54.7%)
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compared with a high SNR (56.8%). There was no significant interaction effect between these
two factors (p = 0.62). The bias toward response ‘ga’ is linked to the participants’ scores, with a
higher percentage of correct answers linked to stimulus ‘Arga’ (89.4%) compared with stimulus
‘Arda’ (67.2%), whereas the percentages are extremely similar between stimuli ‘Alda’ (79.1%)
and ‘Alga’ (79.4%).

Additionally, the characteristics and distributions of responses are not time-stationary but
evolved over the course of the experiment. Thus, a clear progressive facilitation effect was ob-
served in terms of both the reaction time (decreasing from 1.53 s in the first session to 1.17 s in
the final session, p<10-5) and SNR level (from -10.0 to -12.4 dB, p<10-5) (see Fig. 3D). Thus,
at the end of the experiment, each listener was performing the task more rapidly and more effi-
ciently. Similarly, the mean bias tends to disappear over the course of the experiment, from

Fig 3. Overview of performance across all participants. A. Distribution of SNR levels for all participants (N = 17), with the mean SNR indicated with
crosses. The width of each histogram is proportional to the number of trials ran at the corresponding SNR. B. Psychometric functions for participants included
in the analysis (N = 16). C. Participants’ bias towards response ‘ga’ (N = 16) over the entirety of the experiment (“global”) and in conditions Al- and Ar-.
Conditions with a significant bias (i.e., rate of ‘ga’ responses differing significantly from the level of 0.5 based on a random distribution, blue line) are indicated
by asterisks. D. Evolution of the SNR and response time over the course of the experiment for sessions of 500 trials. Mean for the participants collectively
(N = 16) with s.e.m.

doi:10.1371/journal.pone.0118009.g003
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60.2% of ‘ga’ responses in the first session to 50.6% in the final session (p<10-6). However, this
effect can be considered a direct consequence of the decreasing SNR, as low SNR levels have
been shown to be associated with lower biases.

Obtained auditory classification images
Seven ACIs were derived for each of the 16 participants: in addition to the “global” statistical
model that considered all responses from one participant (10,000 trials), we estimated the
model parameters from different subsets of the data (each of 5,000 trials) to attempt to disen-
tangle the effects of several factors on the ACI. Six conditions were defined according to the
context (target beginning with Al- or Ar-), the trial number (the first 5,000 trials or the last
5,000 trials), and the SNR (the 5,000 highest SNRs or the 5,000 lowest SNRs). In the “global”

condition, one individual hyperparameter ~l was selected to fit the model parameters (b and
the ACI b). For proper averaging of the ACIs of multiple participants, we also selected a con-

joint hyperparameter (~l = 1,191), as explained in the Materials and Methods section. These
values and goodness of fit (the minimum of the CVD curve) are systematically reported in the
corresponding figures. To enable comparison between participants and conditions, in each
ACI the weights are divided by their maximum absolute value.

The “global” ACIs for each participant are shown in Fig. 4A. As expected, there were slight

differences in smoothness due to the variation of the regularization parameter,~l. The difference
in terms of contrast is also notable, with some ACIs exhibiting a large number of maxima (as
for participant #6), whereas others appear to be more focused (e.g., participant #19). Neverthe-
less, all participants exhibit a similar pattern of weights in a small region of times ranging from
300 to 470 ms and frequencies ranging from 1,300 to 2,800 Hz. This pattern becomes clearer
for the mean ACI over all participants (Fig. 4B.). A statistical analysis revealed that the seven
most distinct acoustic cues were all composed of positive or negative weights significantly dif-
ferent from zero (corrected t-test, FDR = 0.01). The significant weights are shown in Fig. 4C.

To further explore this result, we dissociated the effects of the context by estimating the
model parameters separately on the 5,000 responses to targets beginning with /al/ (‘Alda’ or
‘Alga’) and on the 5,000 responses to targets beginning with /a

R
/ (‘Arda’ or ‘Arga’), with the

same value of ~l = 1,191 as before. Differences between the two resulting ACIs are considered
to reflect the non-linearities of the auditory system [52]. The “signal-specific” ACIs are shown
in Fig. 5A. Notably, the distribution of weights differs slightly between both conditions.

A cluster-based nonparametric test was performed on the difference between the two ACIs
to confirm this result (see Fig. 5B a paired t-test with cluster based correction, p<0.05). Indeed,
one cluster appears to be significant, corresponding to a difference in the weighting of the main
positive cue (p = 0.045, Tsum = 139.9).

Conversely, a similar comparison between the first 5,000 trials (condition “firsttrials”) and
the last 5,000 trials (condition “lasttrials”) elicited no significant difference (Fig. 5, p>0.3, |
Tsum| = 50.2). No differences were found between the 5,000 trials with the highest SNR (con-
dition “highSNR”) and the 5,000 trials with the lowest SNR (condition “lowSNR”) (Fig. 5,
p>0.15, |Tsum|<77.7).

Discussion
In the present experiment, we used a psychoacoustic imaging method to isolate acoustic cues
from the natural stimuli in a speech-in-noise categorization task. Participants were asked to
perform 10,000 classifications in the presence of Gaussian noise. During each trial, they an-
swered whether they heard /da/ or /ga/, independently of the preceding context. The accuracy
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rate of 78.8% for 16 participants for a SNR range of approximately -11.8 dB and their similar
psychometric functions confirmed that they all successfully performed the task. Moreover, all
participants included in the study demonstrated a performance improvement over time in
terms of both the SNR and response time. Finally, when dissociating the participants’ answers

Fig 4. Global ACIs. A. Individual ACI estimated on 10,000 trials for all 16 participants. l
~
and CVD are

indicated below each image. B. Mean ACI for the participants collectively (estimated with l = 1,191). C. Same
ACI, with non-significant weights set to 0 (corrected t-test, FDR<0.01) and formant trajectories
superimposed. In each ACI, weights are divided by their maximum absolute value.

doi:10.1371/journal.pone.0118009.g004
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with respect to the presented stimulus, the rate of “ga” responses was higher in context “Ar”
than in context “Al”. This result may seem contradictory to that of Mann [7]. Using a continu-
um of synthetic “da” and “ga” varying only in the height of F3 onset, preceded by a synthetic
context “Al” or “Ar”, she demonstrated that participants were more likely to answer “ga” in
context “Al” and “da” in context “Ar.” This effect was interpreted as direct evidence of “com-
pensation for coarticulation” and was reproduced in several studies. However, in the present
experiment using natural stimuli, our particular utterance of “Arga”may simply be produced
more distinctly and may therefore be more robust to noise than “Arda”, as suggested by the
lower percentage of correct answers for the latter. This difference would account for a lower
rate of “ga” responses in context “Al”. Nevertheless, this slight response bias was not an issue,
as a sufficient number of responses were obtained for both types for the ACI estimation.

The calculation of ACI at the group level exhibited well-defined clusters of weights on the
onsets of the F2 and F3 transitions. As has been suggested in previous studies [7,53,54], the

Fig 5. ACIs estimated on subsets of the data. A. Mean ACI for the 16 participants collectively, for conditions Al-, Ar-, high SNR, low SNR, firsttrials and
lasttrials. Each individual ACI was estimated on 5,000 trials, with l

~
= 1.191. In each ACI, the weights are divided by their maximum absolute value, and the

formant trajectories are superimposed (same legend as in Fig. 6). B. Position of significant (orange) and non-significant clusters for each comparison (cluster-
based non parametric test, p<0.05).

doi:10.1371/journal.pone.0118009.g005
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main acoustic cues involved in this categorization task are the onsets of these two formants.
Here, when there is a large amount of noise in the central negative cluster (approximately 0.4s
and 2,000 Hz) corresponding to the junction between the two formants in the syllable ‘ga,’ the
F2 and F3 onsets are perceived as closer than they actually are, and the target is more likely to
be categorized as ‘ga.’ Conversely, when the noise is mainly distributed above or below this
cluster, the target is more likely to be categorized as ‘da.’ This result also confirmed that partici-
pants were categorizing stimuli as speech sounds, not by relying on non-phonetic cues, such as
prosody or intonation. As the auditory system detects variations in acoustic energy rather than
absolute values, all 3 “main” acoustic cues are preceded by an inverse, smaller cue lasting ap-
proximately 0.35s, thus demonstrating an effect of temporal masking: perception of stimulus
energy in a cochlear band is relative to energy at the previous time instant.

One objective of this study was to examine the specificity of an ACI to the particular utter-
ances used in the categorization: do the positions and weightings of the acoustic cues depend
on the production of speech used as targets? This question was not answered in the previous
experiment involving only one recording each of “aba” and “ada.” In the present experiment,
we used two productions of each target phoneme instead. To ensure that these two utterances
of the same phoneme were acoustically different in a predictable manner, they were produced
and presented in a situation of coarticulation, i.e., preceded by two different contexts /al/ and
/a
R
/. Indeed, the production of a stop consonant is influenced by the position of the preceding

context. As evidenced by the cochleograms of the 4 stimuli (Fig. 1), the two couples of allo-
phones, although sharing a similar pattern, exhibit slight differences in the relative power and
precise position of their formants (e.g., relative onset times between the two ‘da,’ F3 onset fre-
quency between the two ‘ga’). Additionally, the perception of a phoneme can be biased by the
preceding context [7,55,56]. One question that arose was the following: are those differences re-
flected in the ACIs? When splitting the ACIs according to the first syllable, we could reveal sig-
nificant differences between the ACI in context Al- and in context Ar-. These differences are
typically interpreted as nonlinearities in the auditory/speech perception system, with the pro-
cessing applied to the input signal depending on the signal [52]. More specifically, the signifi-
cant cluster corresponds to a difference in the weighting of the main cues: in context Ar-,
participants relied less heavily on the main positive cue. The cause of this dissimilarity could
not be determined with certainty because our comparison involves differences in both the tar-
gets and their contexts. A possible explanation may be that this imbalance between the positive
cue and adjacent negative cue in context Ar- could correspond to a mechanism of compensa-
tion for coarticulation, as both Ar- contexts have F2 and F3 at the frequencies corresponding
to those of the positive cues. Thus, the participants could perceptually mask the positive cues at
the same frequency, compared with the central negative cue, by a simple spectral contrast effect
[9,57].

Two other conditions were tested in addition to the Al- /Ar- contexts. The absence of signif-
icant differences between the ACIs calculated on the first and last 5,000 trials (conditions “first-
trials” and “lasttrials”) suggests that participants’ performance improvement over the course of
the experiment did not rely on a modification of the listening strategy. A possible alternative
mechanism would be a diminution of internal noise: listeners are more likely to provide the
same answer when presented with the same stimulus twice at the end of the experiment than at
the beginning. Unfortunately, the estimation of internal noise requires a two-pass experiment
[58,59], which was impossible to implement here given the large number of trials.

Finally, the non-significant comparison between conditions highSNR and lowSNR suggests
that the listening strategy did not depend crucially on the level of noise during the experiment.
Rather, it may rely on the same acoustic cues, regardless of whether the background noise was
important. Across a series of studies, Allen and colleagues carefully studied the confusion
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patterns in a phoneme-recognition task as a function of SNR while linking discontinuities in
the probabilities of a given answer and the robustness of the critical acoustic cues [17–19]. It
may appear surprising that similar noise-dependent cues were not observed in our study. How-
ever, in our case, the range of SNR values was considerably smaller: overall, 90% of the trials
were between -8.0 and -14.6 dB, whereas in the experiment conducted by Allen and colleagues,
the SNR value varied from 12 to -22 dB. One may assume that no critical acoustic cues are
masked in our lowSNR condition compared with the highSNR condition, as confirmed by the
representations of the four signals in noise at -8.0 and -14.6 dB (Fig. 6).

In the next sections, we discuss the assumptions underlying the ACI method and
possible improvements.

Cochleogram representation
The use of a GLM does not require the noise samples in Xi to be normally distributed, thus al-
lowing us to select from most auditory models to represent the sounds. In their 2013 article,
Varnet and colleagues chose to derive their ACIs from the spectrogram of the noise. However,
the spectrogram is not the most suitable representation for studying speech perception because
it does not consider the specificities of processing in the outer and middle ear, such as the spac-
ing and bandwidth of the auditory filters. Thus, we decided to use a more biologically inspired
representation of speech, the cochleogram, thereby yielding a “higher-level” representation of
the functional acoustic cues. Because of the quasi-logarithmic frequency axis, mimicking the
resolution of the auditory system, the acoustic cues in different frequency bands should be sim-
ilar in size. This similarity is important for applying the smoothness prior, which acts here as a
low-pass filter. Indeed, spatial smoothing would make it impossible to detect cues of large and
small sizes simultaneously, as will be discussed further below.

Fig 6. Cochleograms of the 4 signals in noise, with SNR = -8.0 dB or -14.6 dB. The parameters used for the cochleograms are described in paragraph
Materials and Methods.

doi:10.1371/journal.pone.0118009.g006
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Nonetheless, other representations could be used. A promising approach would be to com-
bine the ACI technique with the multiresolution model developed by Chi and colleagues [25].
This combination would yield a 3-dimensional matrix of weights reflecting the importance of
different regions of the time-frequency space for the phonemic categorization.

Are smoothness priors well adapted?
The introduction of a smoothness prior in the GLM estimation provides a means of selecting
the amount of filtering to be applied to the ACI by minimizing the error predicting new data
rather than applying an arbitrary degree of smoothing. This powerful tool is highly useful
when estimating a matrix of parameters with unknown smoothness from a series of noisy mea-
surements. However, the determination of the optimal spatial smoothing in a principled man-
ner is not immune to other filtering problems, such as those described in [60]. One limitation
is that if patterns of multiple scales are present, then the filtering can make the detection of
both patterns simultaneously nearly impossible. In other words, our smoothness optimization
introduces one assumption in the estimation process: that all relevant acoustic cues must be of
similar sizes. However, the bandwidth of the auditory filters varies with their center frequen-
cies. The cochleogram representation considers, at least partially, this differential sensitivity
along the basilar membrane. Nevertheless, acoustic cues covering several auditory filters may
have different sizes.

Indeed, when dividing our frequency axis into three bands with equal numbers of parame-
ters (low frequencies: 90–1,100 Hz; middle frequencies: 1,100–3,100 Hz; high frequencies:
3,100–8,000 Hz) and estimating three separate ACIs for each participant, we obtained different
degrees of smoothing for the three frequency bands. The same acoustic cues were obtained in
the middle frequency band, and no significant weight was found in the high-frequency band.
Unexpectedly, a clear acoustic cue appeared in the low-frequency band, with a much lower de-
gree of smoothing different than in the middle frequency band (Fig. 7). This small-sized low-
frequency cue was not predicted by the previous studies on this task, as they focused solely on
the F2-F3 transition. Thus, our band-limited ACI indicates that this simple categorization task
involves the processing of several spectral and temporal cues. One possible interpretation may
be found in [13]. This synthetic speech study suggests that the identity of the consonant may
be affected by the synchronicity between the F1 onset and the locus of the transition. Thus, a
temporal translation of the first formant might change the consonant percept, thereby explain-
ing the presence of a temporal cue on the onset of the first formant in our ACI. This low-
frequency cue was not detected during the “global” ACI estimation because the middle-
frequency cues, which are of different size, more accurately predict the participants’ responses.
Therefore, the CVD curve attains its minimum for the lambda value corresponding to the
smoothness of the main cues, a value that is too high to render a good resolution of the
secondary cues.

The presence of multiple resolutions clearly shows a limitation of the smoothness prior:
cues of multiple sizes cannot be found simultaneously in a single estimate. One solution in our
case would be to implement the constraint on not the smoothness but the number of cues to be
detected. This adjustment could be enabled by the “sparse prior on a smooth basis” described
in the work by Mineault et al. [39]. Using the same GLM, this penalization would seek to im-
prove the accuracy of the prediction of the participants’ answers by placing a restricted number
of Gaussian-shaped patterns of weights of various scales on the ACI. Moreover, in their visual
experiment, Mineault and colleagues demonstrated that the sparse prior offers a more accurate
prediction than the smoothness prior for a given number of trials in terms of CV deviance.
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Number of trials required
One crucial question for the application of the ACI method relates to the length of the experi-
ment. We examined separately how the number of trials influences the hyperparameter selec-
tion and the quality of the estimated templates.

Number of trials required for lambda optimization. Fig. 8A. depicts the optimal lambda

values obtained with different numbers of trials (in red). By definition, ~l, the point at which
the CVD becomes smaller than the minimum plus one standard deviation, is smaller than the
lambda value corresponding to the minimum of the CVD curve (in blue). Both points appear
to be biased toward higher values when the number of trials is insufficient to provide a reliable
ACI (approximately with less than 5,000 trials). Indeed, in this case, the CVD curve does not
attain a minimum but plateaus after an abrupt decrease. The participants’ response bias toward
‘ga,’ a bias that has been shown to be stronger in the first sessions of this experiment, may also

affect the overestimation of ~l. Nevertheless, the lambda selection appears to be relatively ro-
bust, even with as few as 1,000 trials. Comparatively, a selection based on the minimum of the
CVD curve would perform less well in terms of both the bias and variability
across participants.

Number of trials required for reliable ACI estimation. As a second step, we investigated
the number of trials necessary to ensure a reliable estimation of the underlying template. The

Fig 7. Band-limited ACIs, in low-frequency (90–1,100 Hz, l
~
= 36, middle frequency (1,100–3,100 Hz,

l
~
= 144) and high frequency (3,100–8,000 Hz, l

~
= 144) bands. In each band, weights are divided by their

maximum absolute value and formant trajectories are superimposed (same legend as in Fig. 6). Non-
significant weights are set to 0 (corrected t-test, FDR<0.01).

doi:10.1371/journal.pone.0118009.g007
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accuracy of one ACI was evaluated by examining its correlation with the final ACI calculated

on 10,000 trials. All ACIs were estimated with λ = 1,191 (~l for 10,000 trials). The results of the
individual and mean ACIs are presented in Fig. 8B. Whereas the accuracy of individual esti-
mates decreases steadily with a decreasing number of trials involved in the estimation, the
mean ACI for all 16 participants in total remains high (r>0.75) until approximately 3,000 trials
(the estimation noise being reduced by the averaging).

Overall, the data collected from 16 participants enable the number of trials required from
each participant to be reduced to approximately 3,000 by selecting the lambda value conjointly
and considering the mean image for all participants. More importantly, this multi-participants
study offers the opportunity to apply statistical tests at the group level rather than at the
individual level.

Future directions. Here we have described a new methodology to investigate the way in
which the human speech perception system achieves fast and efficient categorization of pho-
nemes in noise. An appealing application would be to combine the ACI approach with
electrophysiological measurements, such as EEG recordings or intracranial recordings. This
would offer a direct way to identify the neural correlates of acoustic cue detection during
speech perception. Furthermore the similarities with statistical methods employed in time-
frequency analyses of electrophysiological data [22,48] would make it possible to draw parallel
analyses of neural and behavioral responses. For the time being however, the duration of the
experiment would constitute a major impediment.

Two plausible solutions to overcome this problem should be considered in future studies.
At present we can obtain a good level of precision for individual images using 5000 trials, as
mentioned above. A solution to further reduce this number of trials would be to introduce
some additional a priori knowledge about the acoustic cues to be sought. For example, if we as-
sume that the cues could be well represented by a limited number of Gaussian bumps we can
use a GLM with sparse priors on a smooth basis, which is far more powerful, as done by

Fig 8. Effect of the number of trials involved in the estimation. A. Evolution of ~l~ for a different number of trials. Red circles indicate the result of the
conjoint optimization, and red error bars indicate the standard deviation of the individual lambdas. Blue circles and blue error bars indicate the position of the
minimum value of the CVD function for groups and individuals, respectively. B. Correlation between ACIs estimated on n trials, and final ACI (λ = 1,191).
Dotted line: mean and standard deviation of the correlation for individual ACIs; thick line: correlation for the mean ACI for the participants collectively.

doi:10.1371/journal.pone.0118009.g008
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Mineault et al. [39]. Alternatively, future studies investigating the neural signatures of speech
categorization using the ACI approach could explore the recording of Speech Auditory Brain-
stem Response (ABR) [61,62]. This type of experiment typically requires a few thousand pre-
sentations of speech stimuli. In this context, one could derive the ACI directly from the ABR
instead of the behavioral response of the participant.

Conclusion
We demonstrated how the GLM with smoothness prior approach, combined with a cluster-
based test, provides a reliable approach for investigating the acoustic cues involved in a specific
phoneme categorization task. Through the example of a da/ga categorization in the contexts of
Ar- and Al-, we confirmed that listeners relied on the F2 and F3 onsets. We also demonstrated
that the perceived timing of F1influences the categorization. Finally, the method was proven
precise enough to track fine modifications in the weighting of the different cues depending on
the specific utterance presented. Three constraints of the ACI technique and possible solutions
were discussed: the dependency on the sound representation, the choice of the prior, and the
number of trials required. Despite these limitations, such a psychoacoustic method, which in-
volves no prior knowledge of the spectrotemporal locations of the acoustic cues being sought,
offers a valuable insight into the mechanisms of speech perception. Additionally, the ACI tech-
nique can be combined with statistical tests at a group level, thus making it a powerful tool to
investigate hypotheses on human speech recognition.
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