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Abstract
Local sentences and the formal languages they define were introduced by Ressayre in [Res88].
We prove that locally finite ω-languages and effective analytic sets have the same topological
complexity: the Borel and Wadge hierarchies of the class of locally finite ω-languages are
equal to the Borel and Wadge hierarchies of the class of effective analytic sets. In particular,
for each non-null recursive ordinal α < ωCK

1 there exist some Σ0
α-complete and some Π0

α-
complete locally finite ω-languages, and the supremum of the set of Borel ranks of locally
finite ω-languages is the ordinal γ1

2 , which is strictly greater than the first non-recursive ordinal
ωCK

1 . This gives an answer to the question of the topological complexity of locally finite ω-
languages, which was asked by Simonnet [Sim92] and also by Duparc, Finkel, and Ressayre
in [DFR01]. Moreover we show that the topological complexity of a locally finite ω-language
defined by a local sentence ϕ may depend on the models of the Zermelo-Fraenkel axiomatic
system ZFC. Using similar constructions as in the proof of the above results we also show that
the equivalence, the inclusion, and the universality problems for locally finite ω-languages are
Π1

2-complete, hence highly undecidable.

Keywords: Local sentences; logic in computer science; formal languages; locally finite languages; infinite
words; ω-languages; topological complexity; Borel hierarchy; Wadge hierarchy; models of set theory;
decision problems.

1 Introduction
Local sentences were introduced by Ressayre who proved in [Res88] some remarkable stretching theorems
which established some links between the finite and the infinite model theory of these sentences. These
theorems show that the existence of some well ordered models of a local sentence ϕ (a binary relation
symbol is here assumed to belong to the signature of ϕ and to be interpreted by a linear order in every
model of ϕ) is equivalent to the existence of some finite model of ϕ, generated by some particular kind of
indiscernibles, like special, remarkable or monotonic ones. In particular, a local sentence ϕ has a model
of order type ω if and only if it has a finite model generated by Nϕ special indiscernibles (where Nϕ is a
positive integer depending on ϕ), and a similar result establishes a connection between the existence of a
model of order type α (where α is an ordinal < ωω) and the existence of a finite model (of another local
sentence ϕα) generated by semi-monotonic indiscernibles [FR96].

These theorems provide some decision algorithms which show the decidability of the following prob-
lem: “For a given local sentence ϕ and an ordinal α < ωω , has ϕ a model of order type α ?”

These results look like Büchi’s one about the decidability of the monadic second order theory of one
successor over the integers [Büc62], and even more like its extension: the decidability of the monadic
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second order theory of the structure (α,<) for a countable ordinal α. In order to prove this result, Büchi
studied in the sixties the class of ω-languages accepted by finite automata with what is now called Büchi
acceptance condition. He showed that an ω-language, i.e. a set of words of length ω over a finite alphabet, is
accepted by a finite automaton with the Büchi acceptance condition if and only if it is defined by a monadic
second order sentence [Büc62, Tho90]. The equivalence between definability by monadic second order
sentences and acceptance by finite automata, which is also true for languages of finite words, has then been
extended to α-languages, i.e. languages of words of length α, where α is a countable ordinal ≥ ω [BS73].
This led to decision algorithms showing that the monadic second order theory of the structure (α,<) is
decidable.

A way to compare the power of the above decidability results concerning local or monadic sentences
is to compare the expressive power of monadic sentences and of local sentences, and then to consider lan-
guages defined by these sentences. Ressayre introduced locally finite languages which are defined by local
sentences. Local sentences are first order, but they define locally finite languages via existential quantifica-
tions over relations and functions which appear in the local sentence. These second order quantifications are
more general than the monadic ones. When finite words are considered, each regular language is locally fi-
nite, [Res88], and many context-free as well as non-context-free languages are locally finite [Fin01]. More-
over it was proved in [Fin89, Fin01] that the class LOCα of locally finite α-languages, for ω ≤ α < ωω , is
a strict extension of the class REGα of regular α-languages (defined by monadic second order sentences).
Then the following question naturally arises:

“How large is the extension of REGα by LOCα ?”

We have begun to attack this problem by comparing the topological complexity of ω-languages in each
of these classes, and firstly to locate them with regard to the Borel and projective hierarchies. On one
side it is well known that all ω-regular languages are boolean combinations of Σ0

2-sets hence ∆0
3-sets,

[Tho90, PP04]. On the other side we proved in [Fin08] that locally finite ω-languages extend far beyond
regular ω-languages: the class LOCω meets all finite levels of the Borel hierarchy, contains some Borel sets
of infinite rank and even some analytic but non-Borel sets.

Notice that the question of the topological complexity of locally finite ω-languages is also motivated by
the general project of studying the logical definability of classes of formal languages of (finite or) infinite
words, (or of relational structures like graphs); see [Pin96, Tho97] for a survey about this field of research
called “descriptive complexity”.

In [Fin06] we proved that the Borel and Wadge hierarchies of the class of ω-languages accepted by
real-time 1-counter Büchi automata are equal to the Borel and Wadge hierarchies of the class of effective
analytic sets accepted by Büchi Turing machines.

Using this previous result, we prove in this paper that locally finite ω-languages and effective analytic
sets have the same topological complexity: the Borel and Wadge hierarchies of the class of locally finite ω-
languages are equal to the Borel and Wadge hierarchies of the class of effective analytic sets. In particular,
for each non-null recursive ordinal α < ωCK

1 there exist some Σ0
α-complete and some Π0

α-complete locally
finite ω-languages, and the supremum of the set of Borel ranks of locally finite ω-languages is the ordinal
γ1

2 , (see [KMS89] for more precision), which is strictly greater than the first non-recursive ordinal ωCK
1 .

This gives an answer to the question of the topological complexity of locally finite ω-languages, which
was asked by Simonnet [Sim92] and also by Duparc, Finkel, and Ressayre in [DFR01].

Moreover we show that the topological complexity of a locally finite ω-language defined by a local
sentence ϕ may depend on the models of the Zermelo-Fraenkel axiomatic system ZFC.

Using similar constructions as in the proof of the above results, we also show that the equivalence,
the inclusion, and the universality problems for locally finite ω-languages are Π1

2-complete, hence highly
undecidable.

The paper is organized as follows. In section 2 we review the definitions and some properties of local
sentences and locally finite (omega) languages. Then we give some examples of locally finite ω-languages.
In section 3 we recall notions of topology, and in particular the Borel and Wadge hierarchies on a Cantor
space. In section 4 we study topological properties of locally finite ω-languages.
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2 Review of local sentences and languages

2.1 Definitions and properties of local sentences
In this paper the (first order) signatures are finite, always contain one binary predicate symbol = for equality,
and can contain both functional and relational symbols. The terms, open formulas and formulas are built in
the usual way.

When M is a structure in a signature Λ and X ⊆ |M |, we define:
cl1(X,M) = X ∪

⋃
{f n−ary function of Λ } f

M (Xn) ∪
⋃
{a constant of Λ } a

M

cln+1(X,M) = cl1(cln(X,M),M) for an integer n ≥ 1
and cl(X,M) =

⋃
n≥1 cl

n(X,M) is the closure of X in M .

Let us now define local sentences. We shall denote S(ϕ) the signature of a first order sentence ϕ, i.e.
the set of non-logical symbols appearing in ϕ.

Definition 2.1 A first order sentence ϕ is local if and only if:

a) M |= ϕ and X ⊆ |M | imply cl(X,M) |= ϕ

b) ∃n ∈ N such that ∀M , if M |= ϕ and X ⊆ |M |, then cl(X,M) = cln(X,M), (closure in models
of ϕ takes at most n steps).

Notation. For a local sentence ϕ, let nϕ be the smallest integer n ≥ 1 verifying b) of the above definition.

Remark 2.2 Because of a) of Definition 2.1, a local sentence ϕ is always equivalent to a universal sentence,
so we may assume that ϕ is universal.

Let us now state first properties of local sentences.

Theorem 2.3 (Ressayre, see [Fin01])

(a) The set of local sentences is recursively enumerable.

(b) It is undecidable whether an arbitrary sentence ϕ is a local one.

Per contra to these negative results, there exists a “recursive presentation” up to logical equivalence of all
local sentences.

Theorem 2.4 (Ressayre, see [Fin01]) There exist a recursive set L of local sentences and a recursive func-
tion F such that:

1) ψ local←→ ∃ψ′ ∈ L such that ψ ≡ ψ′.
2) ψ′ ∈ L −→ nψ′ = F(ψ′).

The elements of L are the ψ ∧ Cn, where ψ run over the universal formulas and Cn run over the universal
formulas in the signature S(ψ) which express that closure in a model takes at most n steps.
ψ ∧ Cn is local and nψ∧Cn ≤ n. Then we can compute nψ∧Cn , considering only finite models of cardinal
≤ m, where m is an integer depending on n. And each local sentence ψ is equivalent to a universal formula
θ, hence ψ ≡ θ ∧ Cnψ .

We shall restrict in the sequel our attention to local sentences with a binary predicate< in their signature
which is interpreted by a linear ordering in all of their models.

A fundamental result about local sentences is the stretching theorem, see [FR96] which shows the
existence of remarkable connections between the finite and the infinite model theory of local sentences.
The stretching theorem implies the existence of decision procedures for several problems. Notice that the
set of local sentences is not recursive but we can consider that the algorithms given by the following theorem
are applied to local sentences in the recursive set L given by Proposition 2.4. In particular ϕ is given with
the integer nϕ.
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Theorem 2.5 ([FR96]) It is decidable, for a given local sentence ϕ, whether

(1) ϕ has arbitrarily large finite models.

(2) ϕ has an infinite model.

(3) ϕ has an infinite well ordered model.

(4) ϕ has a model of order type ω.

(5) ϕ has well ordered models of unbounded order types in the ordinals.

On the other side Büchi showed that one can decide whether a monadic second order formula of S1S is
true in the structure (ω,<). But for a formula of size n his procedure might run in time

22.
.2
n︸ ︷︷ ︸

O(n)

see [Büc62] for more details. Moreover it has been proved by Meyer that one cannot essentially improve
this result: the monadic second order theory of the structure (ω,<) is not elementary recursive, [Mey75].
Notice that the complexity of Büchi’s algorithm for monadic sentences is in terms of the length of the
formula and the complexity of the algorithms for local sentences is in terms of the length of a local sentence
ϕ and the corresponding integer Nϕ. But, as explained in [Fin08], the algorithms for local sentences
given by Theorem 2.5 are of much lower complexity than the algorithm for decidability of S1S. This is
remarkable because the expressive power of local sentences is also greater than the expressive power of
monadic second order sentences, as shown in [Fin08] and in this paper.

2.2 Definitions and first properties of local languages
Let us now introduce notations for words. Let Σ be a finite alphabet whose elements are called letters. A
finite non-empty word over Σ is a finite sequence of letters: x = a1a2 · · · an where ∀i ∈ [1;n] ai ∈ Σ. We
shall denote x(i) = ai the ith letter of x and x[i] = x(1) · · ·x(i) for i ≤ n. The length of x is |x| = n. The
empty word will be denoted by λ and has 0 letters. Its length is 0. The set of finite words over Σ is denoted
Σ?. Σ+ = Σ? − {λ} is the set of non-empty words over Σ. A (finitary) language L over Σ is a subset of
Σ?. Its complement (in Σ?) is L− = Σ? − L. The usual concatenation product of u and v will be denoted
by u · v or just uv. For V ⊆ Σ?, we denote V ? = {v1 · · · vn | n ∈ N and ∀i ∈ [1;n] vi ∈ V }.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1a2 · · · an · · ·, where ∀i ≥ 1 ai ∈
Σ. When σ is an ω-word over Σ, we write σ = σ(1)σ(2) · · ·σ(n) · · · and σ[n] = σ(1)σ(2) · · ·σ(n) the
finite word of length n, prefix of σ. The set of ω-words over the alphabet Σ is denoted by Σω . An ω-
language over an alphabet Σ is a subset of Σω . For V ⊆ Σ?, V ω = {σ = u1 · · ·un · · · ∈ Σω | ∀i ≥ 1 ui ∈
V } is the ω-power of V . For a subset A ⊆ Σω , the complement of A (in Σω) is Σω − A denoted A−. The
concatenation product is extended to the product of a finite word u and an ω-word v: the infinite word u · v
is then the ω-word such that: (u · v)(k) = u(k) if k ≤ |u| , and (u · v)(k) = v(k − |u|) if k > |u|.

The prefix relation is denoted v: the finite word u is a prefix of the finite word v (respectively, the
infinite word v), denoted u v v, if and only if there exists a finite word w (respectively, an infinite word w),
such that v = u · w.

A word over Σ may be considered as a structure in the following usual manner: Let Σ be a finite
alphabet. We denote Pa a unary predicate for each letter a ∈ Σ and ΛΣ the signature {<, (Pa)a∈Σ}. Let σ
be a finite word over the alphabet Σ, |σ| is the length of the word σ. We may write that |σ| = {1, 2, . . . , |σ|}.
σ is identified with the structure (|σ|, <σ, (Pσa )a∈Σ) of signature ΛΣ where
Pσa = {1 ≤ i ≤ |σ| | the ith letter of σ is an a}.
In a similar manner if σ is an ω-word over the alphabet Σ, then ω is the length of the word σ and we may
write |σ| = {1, 2, 3, . . .}. σ is identified to the structure (|σ|, <σ, (Pσa )a∈Σ) of signature ΛΣ where
Pσa = {1 ≤ i < ω | the ith letter of σ is an a}.
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Definition 2.6 Let Σ be a finite alphabet and L ⊆ Σ? be a language of finite words (respectively, L ⊆ Σω

be a language of infinite words) over the alphabet Σ. Then L is a locally finite language (respectively,
ω-language) ←→ there exists a local sentence ϕ in a signature Λ ⊇ ΛΣ such that σ ∈ L iff ∃ finite M ,
(respectively, ∃M of order type ω) M |= ϕ and M |ΛΣ = σ (where M |ΛΣ is the reduction of M to the
signature ΛΣ).
We then denote L = LΣ(ϕ) (respectively, L = LΣ

ω (ϕ)), and to simplify, when there is no ambiguity,
L = L(ϕ) (respectively, L = Lω(ϕ)) the locally finite language (respectively, ω-language) defined by ϕ.
The class of locally finite languages will be denoted LOC.
The class of locally finite ω-languages will be denoted LOCω .

The empty word λ has 0 letters. It is represented by the empty structure. Recall that if L(ϕ) is a locally
finite language then L(ϕ)− {λ} and L(ϕ) ∪ {λ} are also locally finite [Fin01].

Remark 2.7 The notion of locally finite language is very different from the usual notion of local language
which represents a subclass of the class of rational languages. But from now on, as in [Fin01], things being
well defined and made precise, we shall call simply local languages the locally finite languages.

Let us state the following decidability results.

Theorem 2.8 It is decidable, for a local sentence ϕ, given with the integer nϕ, and an alphabet Σ, whether

(1) The local language LΣ(ϕ) is empty.

(2) The local language LΣ(ϕ) is infinite.

(3) The local ω-language LΣ
ω (ϕ) is empty.

Remark 2.9 Item (3) states that the emptiness problem for local ω-languages is decidable. It relies on
a remarkable analogue to the property: “a regular ω-language is non-empty iff it contains an ultimately
periodic word, i.e. an ω-word in the form u · vω where u and v are finite words”.
When local ω-languages are considered, this property becomes: “a local ω-language is non-empty iff it
contains an ω-word which is the reduction, to the signature of words, of an ω-model generated by special
indiscernibles”, see [Res88, FR96].

2.3 Examples of local languages
We first recall the following result which shows that the class of local (finitary) languages extends the class
of regular ones.

Theorem 2.10 (Ressayre, see [Res88]) The class of local (finitary) languages is closed under finite union,
concatenation product, and star operation. This implies that each regular (finitary) language is local.

We now give some examples of local ω-languages.

Example 2.11 ([Fin04]) The ω-language which contains only the word σ = abab2ab3ab4 . . . is a local
ω-language over the alphabet {a, b}. Notice that this ω-language is not regular since its single ω-word is
not ultimately periodic.

Recall that for any family L of finitary languages, the ω-Kleene closure of L, is:

ω−KC(L) = {
⋃

1≤i≤n

Ui · V ωi | ∀i ∈ [1, n] Ui, Vi ∈ L}

It is well known that the class REGω of regular ω-languages (respectively, the class CFω of context free
ω-languages) is the ω-Kleene closure of the family REG of regular finitary languages (respectively, of the
family CF of context free finitary languages), [Tho90, Sta97].

We showed that a similar characterization does not hold for local languages.
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Theorem 2.12 ([Fin04]) The ω-Kleene closure of the class LOC of finitary local languages is strictly
included in the class LOCω of local ω-languages.

Then we easily derive the following example because every regular finitary language is local [Res88].

Example 2.13 ([Fin01]) Every regular ω-language is a local ω-language, i.e. REGω ⊆ LOCω .

Since numerous context free languages are local [Fin01], CFω = ω−KC(CF ) implies that many context
free ω-languages are local. The problem whether every context free ω-language is local is still open but by
Theorem 2.12, CF ⊆ LOC would imply that CFω ⊆ LOCω .

Example 2.14 The ω-languages Uω and U.aω , where U = {an2

bn
2

cn
2 | n ≥ 1} is a local finitary

language over the alphabet {a, b, c}, are examples of local but non context free ω-languages, [Fin01].

Recall that a substitution f is defined by a mapping Σ → P (Γ?), where Σ = {a1, ..., an} and Γ are
two finite alphabets, f : ai → Li where ∀i ∈ [1;n], Li is a finitary language over the alphabet Γ. The
substitution is said to be λ-free if ∀i ∈ [1;n], Li does not contain the empty word λ. It is a (λ-free)
morphism when every language Li contains only one (non-empty) word. Now this mapping is extended
in the usual manner to finite words and to finitary languages: for some letters x(1), x(2), . . . , x(n) in Σ,
f(x(1)x(2) · · ·x(n)) = {u1u2 · · ·un | ∀i ∈ [0;n] ui ∈ f(x(i))}, and for L ⊆ Σ?, f(L) = ∪x∈Lf(x).
If the substitution f is λ-free, we can extend this to ω-words and ω-languages: f(x(1)x(2) · · ·x(n) · · ·) =
{u1u2 · · ·un · · · | ∀i ≥ 0 ui ∈ f(x(i))} and for L ⊆ Σω , f(L) = ∪x∈Lf(x).

We now recall some closure properties of the class LOCω which allow us to generate many other local
ω-languages from the known ones.

Theorem 2.15 ([Fin04]) The class LOCω is closed under union, left concatenation with local (finitary)
languages, λ-free substitution of local (finitary) languages, λ-free morphism.

3 Topology

3.1 Borel hierarchy and analytic sets

We assume the reader to be familiar with basic notions of topology which may be found in [Mos80,
LT94, Sta97, PP04]. There is a natural metric on the set Σω of infinite words over a finite alphabet Σ
containing at least two letters which is called the prefix metric and is defined as follows. For u, v ∈ Σω and
u 6= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer n such that the (n + 1)st letter of u is
different from the (n + 1)st letter of v. This metric induces on Σω the usual Cantor topology in which the
open subsets of Σω are of the form W · Σω , for W ⊆ Σ?. A set L ⊆ Σω is a closed set iff its complement
Σω − L is an open set.

Define now the Borel Hierarchy of subsets of Σω:

Definition 3.1 For a non-null countable ordinal α, the classes Σ0
α and Π0

α of the Borel Hierarchy on the
topological space Σω are defined as follows:
Σ0

1 is the class of open subsets of Σω , Π0
1 is the class of closed subsets of Σω ,

and for any countable ordinal α ≥ 2:
Σ0
α is the class of countable unions of subsets of Σω in

⋃
γ<α Π0

γ .
Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α Σ0

γ .

The class of Borel sets is ∆1
1 :=

⋃
ξ<ω1

Σ0
ξ =

⋃
ξ<ω1

Π0
ξ , where ω1 is the first uncountable ordinal. There

are also some subsets of Σω which are not Borel. In particular the class of Borel subsets of Σω is strictly
included into the class Σ1

1 of analytic sets which are obtained by projection of Borel sets.
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Definition 3.2 A subset A of Σω is in the class Σ1
1 of analytic sets iff there exists another finite set Y and a

Borel subset B of (Σ× Y )ω such that x ∈ A↔ ∃y ∈ Y ω such that (x, y) ∈ B, where (x, y) is the infinite
word over the alphabet Σ× Y such that (x, y)(i) = (x(i), y(i)) for each integer i ≥ 1.

We now define completeness with regard to reduction by continuous functions. For a countable ordinal
α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively, Π0
α, Σ1

1)-complete set iff for any set E ⊆ Y ω

(with Y a finite alphabet): E ∈ Σ0
α (respectively, E ∈ Π0

α, E ∈ Σ1
1) iff there exists a continuous function

f : Y ω → Σω such that E = f−1(F ).

Let us now recall the definition of the arithmetical hierarchy of ω-languages, see for example [Sta97,
Mos80]. Let Σ be a finite alphabet. An ω-language L ⊆ Σω belongs to the class Σn if and only if there
exists a recursive relation RL ⊆ (N)n−1 × Σ? such that

L = {σ ∈ Σω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}

where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An ω-language L ⊆ Σω

belongs to the class Πn if and only if its complement Σω − L belongs to the class Σn. The inclusion
relations that hold between the classes Σn and Πn are the same as for the corresponding classes of the
Borel hierarchy and the classes Σn and Πn are strictly included in the respective classes Σ0

n and Π0
n of the

Borel hierarchy.

As in the case of the Borel hierarchy, projections of arithmetical sets (of the second Π-class) lead
beyond the arithmetical hierarchy, to the analytical hierarchy of ω-languages. The first class of the analytical
hierarchy of ω-languages is the (lightface) class Σ1

1 of effective analytic sets. An ω-language L ⊆ Σω

belongs to the class Σ1
1 if and only if there exists a recursive relation RL ⊆ (N)× {0, 1}? × Σ? such that:

L = {σ ∈ Σω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}

Thus an ω-language L ⊆ Σω is in the class Σ1
1 iff it is the projection of an ω-language over the alphabet

{0, 1} × Σ which is in the class Π2 of the arithmetical hierarchy.

We recall the following result which gives a first upper bound on the complexity of local ω-languages.

Theorem 3.3 ([Fin08]) The class LOCω is strictly included in the class Σ1
1.

By Suslin’s Theorem [Kec95, page 226], an analytic subset of Σω is either countable or has the continuum
power. Then we can infer the following:

Corollary 3.4 Let Σ be a finite alphabet. Every local ω-language LΣ
ω (ϕ) over the alphabet Σ is either

countable or has the continuum power.

Kechris, Marker and Sami proved in [KMS89] that the supremum of the set of Borel ranks of (lightface)
Π1

1, so also of (lightface) Σ1
1, sets is the ordinal γ1

2 . This ordinal is precisely defined in [KMS89]. Kechris,
Marker and Sami proved that the ordinal γ1

2 is strictly greater than the ordinal δ1
2 which is the first non ∆1

2

ordinal. Thus in particular it holds that ωCK
1 < γ1

2 , where ωCK
1 is the first non-recursive ordinal, usually

called the Chruch-Kleene ordinal. The exact value of the ordinal γ1
2 may depend on axioms of set theory

[KMS89]. It is consistent with the axiomatic system ZFC that γ1
2 is equal to the ordinal δ1

3 which is the
first non ∆1

3 ordinal (because γ1
2 = δ1

3 in ZFC + (V=L)). On the other hand the axiom of Π1
1-determinacy

implies that γ1
2 < δ1

3 . For more details, the reader is referred to [KMS89] and to a textbook of set theory
like [Jec02].

Notice however that it seems still unknown whether every non null ordinal γ < γ1
2 is the Borel rank of

a (lightface) Π1
1 (or Σ1

1) set. On the other hand it is known that every ordinal γ < ωCK
1 is the Borel rank of

a (lightface) ∆1
1-set, since for every ordinal γ < ωCK

1 there exist some Σ0
γ-complete and Π0

γ-complete sets
in the class ∆1

1.
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3.2 Wadge hierarchy
We now introduce the Wadge hierarchy, which is a great refinement of the Borel hierarchy defined via
reductions by continuous functions, [Dup01, Wad83].

Definition 3.5 (Wadge [Wad83]) Let X , Y be two finite alphabets. For L ⊆ Xω and L′ ⊆ Y ω , L is said
to be Wadge reducible to L′ (L ≤W L′) iff there exists a continuous function f : Xω → Y ω , such that
L = f−1(L′).
L and L′ are Wadge equivalent iff L ≤W L′ and L′ ≤W L. This will be denoted by L ≡W L′. And we
shall say that L <W L′ iff L ≤W L′ but not L′ ≤W L.
A set L ⊆ Xω is said to be self dual iff L ≡W L−, and otherwise it is said to be non self dual.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
The equivalence classes of ≡W are called Wadge degrees.
The Wadge hierarchy WH is the class of Borel subsets of a set Xω , where X is a finite set, equipped with
≤W and with ≡W .
For L ⊆ Xω and L′ ⊆ Y ω , if L ≤W L′ and L = f−1(L′) where f is a continuous function from Xω

into Y ω , then f is called a continuous reduction of L to L′. Intuitively it means that L is less complicated
than L′ because to check whether x ∈ L it suffices to check whether f(x) ∈ L′ where f is a continuous
function. Hence the Wadge degree of an ω-language is a measure of its topological complexity.
Notice that in the above definition, we consider that a subset L ⊆ Xω is given together with the alphabet
X .
We can now define the Wadge class of a set L:

Definition 3.6 Let L be a subset of Xω . The Wadge class of L is :

[L] = {L′ | L′ ⊆ Y ω for a finite alphabet Y and L′ ≤W L}.

Recall that each Borel class Σ0
α and Π0

α is a Wadge class. A set L ⊆ Xω is a Σ0
α (respectively Π0

α)-
complete set iff for any set L′ ⊆ Y ω , L′ is in Σ0

α (respectively Π0
α) iff L′ ≤W L .

There is a close relationship between Wadge reducibility and games which we now introduce.

Definition 3.7 Let L ⊆ Xω and L′ ⊆ Y ω . The Wadge game W (L,L′) is a game with perfect information
between two players, player 1 who is in charge of L and player 2 who is in charge of L′.
Player 1 first writes a letter a1 ∈ X , then player 2 writes a letter b1 ∈ Y , then player 1 writes a letter
a2 ∈ X , and so on.
The two players alternatively write letters an of X for player 1 and bn of Y for player 2.
After ω steps, the player 1 has written an ω-word a ∈ Xω and the player 2 has written an ω-word b ∈ Y ω .
The player 2 is allowed to skip, even infinitely often, provided he really writes an ω-word in ω steps.
The player 2 wins the play iff [a ∈ L↔ b ∈ L′], i.e. iff :

[(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ and b is infinite)].

Recall that a strategy for player 1 is a function σ : (Y ∪ {s})? → X . And a strategy for player 2 is a
function f : X+ → Y ∪ {s}.
σ is a winning stategy for player 1 iff he always wins a play when he uses the strategy σ, i.e. when the
nth letter he writes is given by an = σ(b1 · · · bn−1), where bi is the letter written by player 2 at step i and
bi = s if player 2 skips at step i.
A winning strategy for player 2 is defined in a similar manner.

Martin’s Theorem states that every Gale-Stewart Game G(X) (see [Kec95]), with X a Borel set, is
determined and this implies the following :

Theorem 3.8 (Wadge) Let L ⊆ Xω and L′ ⊆ Y ω be two Borel sets, where X and Y are finite alphabets.
Then the Wadge game W (L,L′) is determined : one of the two players has a winning strategy. And
L ≤W L′ iff the player 2 has a winning strategy in the game W (L,L′).
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Theorem 3.9 (Wadge) Up to the complement and≡W , the class of Borel subsets ofXω , for a finite alpha-
bet X having at least two letters, is a well ordered hierarchy. There is an ordinal |WH|, called the length
of the hierarchy, and a map d0

W from WH onto |WH| − {0}, such that for all L,L′ ⊆ Xω:
d0
WL < d0

WL
′ ↔ L <W L′ and

d0
WL = d0

WL
′ ↔ [L ≡W L′ or L ≡W L′−].

The Wadge hierarchy of Borel sets of finite rank has length 1ε0 where 1ε0 is the limit of the ordinals αn
defined by α1 = ω1 and αn+1 = ωαn1 for n a non negative integer, ω1 being the first non countable ordinal.
Then 1ε0 is the first fixed point of the ordinal exponentiation of base ω1. The length of the Wadge hierarchy
of Borel sets in ∆0

ω = Σ0
ω ∩Π0

ω is the ωth1 fixed point of the ordinal exponentiation of base ω1, which is a
much larger ordinal. The length of the whole Wadge hierarchy of Borel sets is a huge ordinal, with regard
to the ωth1 fixed point of the ordinal exponentiation of base ω1. It is described in [Wad83, Dup01] by the
use of the Veblen functions.

4 Topological complexity of local ω-languages
We now firstly recall the notion of real-time 1-counter Büchi automaton which will be useful in the sequel.

A 1-counter machine has one counter containing a non-negative integer. The machine can test whether
the content of the counter is zero or not. And transitions depend on the letter read by the machine, the
current state of the finite control, and the tests about the values of the counter. Notice that in this model
some λ-transitions are allowed.

Formally a 1-counter machine is a 4-tupleM=(K,Σ, ∆, q0), where K is a finite set of states, Σ is a
finite input alphabet, q0 ∈ K is the initial state, and ∆ ⊆ K × (Σ ∪ {λ}) × {0, 1} × K × {0, 1,−1} is
the transition relation. The 1-counter machineM is said to be real time iff: ∆ ⊆ K × Σ × {0, 1} ×K ×
{0, 1,−1}, i.e. iff there are no λ-transitions.

If the machineM is in state q and c ∈ N is the content of the counter then the configuration (or global
state) ofM is the pair (q, c).

For a ∈ Σ ∪ {λ}, q, q′ ∈ K and c ∈ N, if (q, a, i, q′, j) ∈ ∆ where i = 0 if c = 0 and i = 1 if c > 0,
then we write:

a : (q, c) 7→M (q′, c+ j).
Thus the transition relation must obviously satisfy:

if (q, a, i, q′, j) ∈ ∆ and i = 0 then j = 0 or j = 1 (but j may not be equal to −1).
Let σ = a1a2 · · · an · · · be an ω-word over Σ. An ω-sequence of configurations r = (qi, ci)i≥1 is

called a run ofM on σ, iff:
(1) (q1, c1) = (q0, 0)
(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, ci) 7→M (qi+1, ci+1) and such that

a1a2 · · · an · · · = b1b2 · · · bn · · ·
For every such run r, In(r) is the set of all states entered infinitely often during r.

Definition 4.1 A Büchi 1-counter automaton is a 5-tupleM=(K,Σ,∆, q0, F ), whereM′=(K,Σ,∆, q0)
is a 1-counter machine and F ⊆ K is the set of accepting states. The ω-language accepted byM is:

L(M)= {σ ∈ Σω | there exists a run r ofM on σ such that In(r) ∩ F 6= ∅}

The class of ω-languages accepted by Büchi 1-counter automata is denoted BCL(1)ω . The class of
ω-languages accepted by real time Büchi 1-counter automata will be denoted r-BCL(1)ω .

The class BCL(1)ω is a strict subclass of the classCFω of context free ω-languages accepted by Büchi
pushdown automata.

If we omit the counter of a real-time Büchi 1-counter automaton, then we simply get the notion of
Büchi automaton. The class of ω-languages accepted by Büchi automata is the class of regular ω-languages,
denoted REGω .
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Recall that a Büchi Turing machine is just a Turing machine working on infinite inputs with a Büchi-
like acceptance condition, and that the class of ω-languages accepted by Büchi Turing machines is the class
Σ1

1 of effective analytic sets [CG78, Sta97].
Using this essential property and the fact that Turing machines can be simulated by (non real-time)

2-counter automata, we proved the following result.

Theorem 4.2 ([Fin06]) The Wadge hierarchy of the class r-BCL(1)ω is the Wadge hierarchy of the class
Σ1

1 of ω-languages accepted by Turing machines with a Büchi acceptance condition.

We are going to use this result from [Fin06] to prove our main result about local ω-languages.
We first define a coding of ω-words over a finite alphabet Σ by ω-words over the alphabet Σ∪{A,B, 0}

where A, B and 0 are new letters not in Σ.
We shall code an ω-word x ∈ Σω by the ω-word h(x) defined by

h(x) = A0x(1)B02A02x(2)B03A03x(3)B · · ·B0nA0nx(n)B · · ·

This coding defines a mapping h : Σω → (Σ ∪ {A,B, 0})ω . The function h is continuous because for all
ω-words x, y ∈ Σω and each positive integer n, it holds that δ(x, y) < 2−n → δ(h(x), h(y)) < 2−n.

Recall that we denote h(Σω)− = (Σ∪{A,B, 0})ω−h(Σω). We are going to prove that ifL(A)⊆ Σω is
accepted by a real time 1-counter automaton A with a Büchi acceptance condition then h(L(A))∪h(Σω)−

is a local ω-language. Moreover this ω-language will have the same Wadge degree as the initial language
L(A), except for some very simple cases.

We firstly prove the following lemma.

Lemma 4.3 Let Σ be a finite alphabet and h be the coding of ω-words over Σ defined as above. Then
h(Σω)− is a local ω-language.

Proof. We can easily see that h(Σω)− is the set of ω-words in (Σ∪{A,B, 0})ω which belong to one of the
following ω-languages.

• D1 is the set of ω-words over the alphabet Σ ∪ {A,B, 0} which have not any initial segment in
A · 0 · Σ ·B. It is easy to see that D1 is in fact a regular ω-language, hence also a local ω-language.

• D2 is the complement of (A·0+ ·Σ·B ·0+)ω in (Σ∪{A,B, 0})ω . The ω-language (A·0+ ·Σ·B ·0+)ω

is regular thus its complement D2 is also a regular ω-language, and thus a local ω-language.

• D3 is the set of ω-words over the alphabet Σ ∪ {A,B, 0} which contain a segment of the form
B · 0n · A · 0m · Σ for some positive integers n 6= m. It is easy to see (using only a unary function
symbol, see for instance methods used in [Fin01]) that the finitary language containing words of
the form B.0n.A.0m.Σ for some positive integers n 6= m is a local finitary language. Thus the
ω-language D3 is a local ω-language.

• D4 is the set of ω-words over the alphabet Σ∪{A,B, 0}which contain a segment inA·0n·Σ·B·0m·A
for some positive integers n and m with m 6= n + 1. Again the finitary language containing words
of the form A · 0n · Σ · B · 0m · A with m 6= n + 1 is easily seen to be local. Thus the ω-language
D4 is a local ω-language.

The class LOCω is closed under finite union. On the other hand it holds that h(Σω)− =
⋃

1≤i≤4Di thus
h(Σω)− is a local ω-language. �

We would like now to prove that if L(A)⊆ Σω is accepted by a real time 1-counter automaton A
with a Büchi acceptance condition then h(L(A)) is a local ω-language. We have not been able to show
this, so we are firstly going to define another ω-language L(A) which will be a local ω-language (and will
be also accepted by another 1-counter Büchi automaton) and we shall prove that h(L(A))∪h(Σω)− =
L(A)∪h(Σω)−.
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Let then A= (K,Σ,∆, q0, F ) be a real-time 1-counter Büchi automaton accepting the ω-language
L(A)⊆ Σω . The ω-language L(A) is the set of ω-words over the alphabet Σ ∪ {A,B, 0} of the form

Au1v1x1Bw1z1Au2v2x2Bw2z2A · · ·AunvnxnBwnznA · · ·

where, for all integers i ≥ 1, vi, wi, ui, zi ∈ 0?, xi ∈ Σ, |u1| = 1, |ui+1| = |zi| and there is a sequence
(qi)i≥0 of states of K and integers ji ∈ {−1; 0; 1}, for i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, |vi|) 7→A (qi, |vi|+ ji)

and
|wi| = |vi|+ ji

Moreover some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.
Notice that the state q0 of the sequence (qi)i≥0 is also the initial state of A.

Lemma 4.4 Let A be a real time 1-counter Büchi automaton accepting ω-words over the alphabet Σ and
L(A)⊆ (Σ ∪ {A,B, 0})ω be defined as above. Then L(A) is a local ω-language.

Proof. LetA be a real time 1-counter Büchi automaton accepting ω-words over the alphabet Σ and L(A)⊆
(Σ ∪ {A,B, 0})ω be defined as above.

We first define the following finitary languages, for q, q′ ∈ K.

T(q,q′) = {vxBw | v, w ∈ 0? and x ∈ Σ and x : (q, |v|) 7→A (q′, |w|)}

It holds that
T(q,q′) = T 0

(q,q′) ∪ T
1
(q,q′)

where
T 0

(q,q′) = {xBw | w ∈ 0? and x ∈ Σ and x : (q, 0) 7→A (q′, |w|)}

and

T 1
(q,q′) = {vxBw | v ∈ 0+, w ∈ 0?, and x ∈ Σ and x : (q, 1) 7→A (q′, 1 + ε) and |w| = |v|+ ε}

We firstly notice that the finitary language T 0
(q,q′) is finite since if xBw ∈ T 0

(q,q′) for some x ∈ Σ and
w ∈ 0? then |w| = 0 or |w| = 1. Thus the languages T 0

(q,q′) are local because every finite language is
rational and local.

On the other hand we now recall that a linear context free language L(G), over a finite alphabet Σ, is
generated by a linear grammar G whose production rules are of the form: Ai → uiBivi for 1 ≤ i ≤ n, and
Ci → wi for 1 ≤ i ≤ k, where ∀i ui, vi, wi ∈ Σ?. The variables Ai, Bi, Ci not necessarily are distinct,
but are variables taken in a finite set given by G. It was proved in [Fin01] that every linear context free
language is a local language.

It is now easy to see that each language T 1
(q,q′) is a finite union of linear languages and thus is a local

language since the class LOC is closed under finite union. Moreover this implies also that the languages
T(q,q′), for q, q′ ∈ K, are also local.

Let now X be the finite alphabet containing letters t(q,q′), for q, q′ ∈ K, and also the letters 0 and A
and a letter A0. And let L ⊆ Xω be the ω-language over X containing the ω-words of the form:

A0 · 0 · t(q0,q′0) ·A · t(q1,q′1) ·A · t(q2,q′2) ·A · t(q3,q′3) · · ·

where q0 is the initial state of the automaton A, and for each integer i ≥ 0, qi, q′i ∈ K and q′i = qi+1 and
for which there is an accepting state qf ∈ F and infinitely many integers i ≥ 0 such that qi = qf . It is easy
to see that the ω-language L ⊆ Xω is regular and thus local.

Consider now the following substitution f : X → P((Σ ∪ {A,B, 0})?) given by t(q,q′) → T(q,q′) for
every q, q′ ∈ K, and A→ {zAu | z, u ∈ 0? and |z| = |u|}, and A0 → A.

11



By the definition of the ω-language L(A), it is straightforward to check that f(L) = L(A). But by
Theorem 2.15 the class of local ω-languages is closed under λ-free substitution by local finitary languages.
Thus the ω-language L(A) is local. �

We can now infer the following proposition from Lemmas 4.3 and 4.4 and from the closure of the class
of local ω-languages under finite union.

Proposition 4.5 Let L(A)⊆ Σω be an ω-language accepted by a real time 1-counter automaton A with
a Büchi acceptance condition, and let h and L(A) be defined as above. Then L(A)∪h(Σω)− is a local
ω-language.

We now state the following lemma which will imply that h(L(A))∪h(Σω)− = L(A)∪h(Σω)−.

Lemma 4.6 Let A be a real time 1-counter Büchi automaton accepting ω-words over the alphabet Σ and
L(A)⊆ (Σ∪{A,B, 0})ω be defined as above. Then L(A) = h−1(L(A)), i.e. ∀x ∈ Σω h(x) ∈ L(A)←→
x ∈ L(A).

Proof. LetA be a real time 1-counter Büchi automaton accepting ω-words over the alphabet Σ and L(A)⊆
(Σ ∪ {A,B, 0})ω be defined as above. Let x ∈ Σω be an ω-word such that h(x) ∈ L(A). So h(x) may be
written

h(x) = A0x(1)B02A02x(2)B03A03x(3)B · · ·B0nA0nx(n)B · · ·

and also
h(x) = Au1v1x1Bw1z1Au2v2x2Bw2z2A · · ·AunvnxnBwnznA · · ·

where, for all integers i ≥ 1, vi, wi, ui, zi ∈ 0?, xi = x(i) ∈ Σ, |u1| = 1, |ui+1| = |zi| and there is a
sequence (qi)i≥0 of states of K and integers ji ∈ {−1; 0; 1}, for i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, |vi|) 7→A (qi, |vi|+ ji)

and
|wi| = |vi|+ ji

some state qf ∈ F occurring infinitely often in the sequence (qi)i≥0.
In particular, u1 = 0 and u1 · v1 = 0 thus |v1| = 0. We are going to prove by induction on the integer i ≥ 1
that, for all integers i ≥ 1, |wi| = |vi+1|. Moreover, setting ci = |vi|, we are going to prove that for each
integer i ≥ 1 it holds that

xi : (qi−1, ci) 7→A (qi, ci+1)

We have already seen that |v1| = 0. By hypothesis there is a state q1 ∈ K and an integer j1 ∈ {−1; 0; 1}
such that x1 : (q0, |v1|) 7→A (q1, |v1|+ j1), i.e. x1 : (q0, 0) 7→A (q1, j1). Then |w1| = |v1|+ j1 = j1.
We have now |w1 · z1| = |u2 · v2| = 02 and |u2| = |z1| thus |v2| = |w1| = j1. Setting c1 = 0 and
c2 = j1 = |v2|, it holds that x1 : (q0, c1) 7→A (q1, c2).
Assume now that, for all integers i, 1 ≤ i ≤ n − 1, it holds that |wi| = |vi+1| and xi : (qi−1, ci) 7→A
(qi, ci+1) where ci = |vi|.
We know that there is a state qn ∈ K and an integer jn ∈ {−1; 0; 1} such that xn : (qn−1, |vn|) 7→A
(qn, |vn|+ jn), i.e. xn : (qn−1, cn) 7→A (qn, cn + jn) and |wn| = |vn|+ jn.
On the other hand |wn · zn| = |un+1 · vn+1| = 0n+1 and |un+1| = |zn| thus |vn+1| = |wn| = cn + jn. By
setting cn+1 = |vn+1| we have xn : (qn−1, cn) 7→A (qn, cn+1).

Finally we have proved by induction the announced claim. If for all integers i ≥ 1, we set ci = |vi|
then it holds that

xi : (qi−1, ci) 7→A (qi, ci+1)

But there is some state qf ∈ K which occurs infinitely often in the sequence (qi)i≥1. This implies that
(qi−1, ci)i≥1 is a successful run of A on x thus x ∈ L(A).
Conversely it is easy to see that if x ∈ L(A) then h(x) ∈ L(A). This ends the proof of Lemma 4.6. �

12



Remark 4.7 Let A be a real time 1-counter Büchi automaton accepting ω-words over the alphabet Σ and
L(A)⊆ (Σ∪{A,B, 0})ω be defined as above. Then L(A) is accepted by another real-time 1-counter Büchi
automaton .

We are now going to prove the following result.

Theorem 4.8 The Wadge hierarchy of the class r-BCL(1)ω is equal to the Wadge hierarchy of the class
LOCω .

To prove this result we firstly consider non self dual Borel sets. We recall the definition of Wadge
degrees introduced by Duparc in [Dup01] and which is a slight modification of the previous one.

Definition 4.9

(a) dw(∅) = dw(∅−) = 1

(b) dw(L) = sup{dw(L′) + 1 | L′ non self dual and L′ <W L}
(for either L self dual or not, L >W ∅).

Wadge and Duparc used the operation of sum of sets of infinite words which has as counterpart the ordinal
addition over Wadge degrees.

Definition 4.10 (Wadge, see [Wad83, Dup01]) Assume that X ⊆ Y are two finite alphabets, Y − X
containing at least two elements, and that {X+, X−} is a partition of Y − X in two non empty sets. Let
L ⊆ Xω and L′ ⊆ Y ω , then

L′ + L =df L ∪ {u · a · β | u ∈ X?, (a ∈ X+ and β ∈ L′) or (a ∈ X− and β ∈ L′−)}

This operation is closely related to the ordinal sum as it is stated in the following:

Theorem 4.11 (Wadge, see [Wad83, Dup01]) Let X ⊆ Y , Y −X containing at least two elements, L ⊆
Xω and L′ ⊆ Y ω be non self dual Borel sets. Then (L+L′) is a non self dual Borel set and dw(L′+L) =
dw(L′) + dw(L).

A player in charge of a set L′ + L in a Wadge game is like a player in charge of the set L but who can, at
any step of the play, erase his previous play and choose to be this time in charge of L′ or of L′−. Notice
that he can do this only one time during a play.

The following lemma was proved in [Fin06]. Notice that below the emptyset is considered as an ω-
language over an alphabet Γ such that Γ− Σ contains at least two elements.

Lemma 4.12 LetL ⊆ Σω be a non self dual Borel set such that dw(L) ≥ ω. Then it holds thatL ≡W ∅+L.

We can now prove the following lemma.

Lemma 4.13 Let L ⊆ Σω be a non self dual Borel set acccepted by a real time 1-counter Büchi automaton
A. Then there is a local ω-language L′ such that L ≡W L′.

Proof. Recall first that there are regular ω-languages of every finite Wadge degree, [Sta97, Sel98]. These
regular ω-languages are Boolean combinations of open sets, and they are local since every regular ω-
language is local.

So we have only to consider the case of non self dual Borel sets of Wadge degrees greater than or equal
to ω.

Let then L = L(A) ⊆ Σω be a non self dual Borel set, acccepted by a real time 1-counter Büchi
automaton A, such that dw(L) ≥ ω. We have seen that h(L(A))∪h(Σω)− = L(A)∪h(Σω)− is a local
ω-language, where the mapping h : Σω → (Σ ∪ {A,B, 0})ω is defined, for x ∈ Σω , by:

h(x) = A0x(1)B02A02x(2)B03A03x(3)B · · ·B0nA0nx(n)B · · ·
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We set L′ = h(L(A)) ∪ h(Σω)− and we now prove that L′ ≡W L.

Firstly, it is easy to see that L ≤W L′. In order to prove this we can consider the Wadge game
W (L,L′). It is easy to see that Player 2 has a winning strategy in this game which consists in essen-
tially copying the play of Player 1, except that Player 2 actually writes a beginning of the code given by
h of what has been written by Player 1. This is achieved in such a way that Player 2 has written the ini-
tial word A0x(1)B02A02x(2)B03A03x(3)B · · ·B0nA0nx(n) while Player 1 has written the initial word
x(1)x(2)x(3)x(4) · · ·x(n). Notice that one can admit that a player writes a finite word at each step of the
play instead of a single letter. This does not change the winner of a Wadge game. At the end of a play if
Player 1 has written the ω-word x then Player 2 has written h(x) and thus x ∈ L(A) ⇐⇒ h(x) ∈ L′ and
Player 2 wins the play.

To prove that L′ ≤W L, it suffices to prove that L′ ≤W ∅ + L because Lemma 4.12 states that
∅+ L ≡W L. Consider the Wadge game W (L′, ∅+ L). Player 2 has a winning strategy in this play which
we now describes.

As long as Player 1 remains in the closed set h(Σω) (this means that the word written by Player 1 is a
prefix of some infinite word in h(Σω)) Player 2 essentially copies the play of player 1 except that Player 2
skips when player 1 writes a letter not in Σ. He continues forever with this strategy if the word written by
player 1 is always a prefix of some ω-word of h(Σω). Then after ω steps Player 1 has written an ω-word
h(x) for some x ∈ Σω , and Player 2 has written x. So in that case h(x) ∈ L′ iff x ∈ L(A) iff x ∈ ∅+ L.

But if at some step of the play, Player 1 “goes out of” the closed set h(Σω) because the word he has
now written is not a prefix of any ω-word of h(Σω), then its final word will be surely outside h(Σω) hence
also inside L′ = h(L(A)) ∪ h(Σω)−. Player 2 can now writes a letter of Γ − Σ in such a way that he is
now like a player in charge of the wholeset and he can now writes an ω-word u so that his final ω-word will
be inside ∅+ L. Thus Player 2 wins this play too.

Finally we have proved that L ≤W L′ ≤W L thus it holds that L′ ≡W L. This ends the proof. �

End of Proof of Theorem 4.8.
Let L ⊆ Σω be a Borel set acccepted by a real time 1-counter Büchi automatonA. If the Wadge degree

of L is finite, it is well known that it is Wadge equivalent to a regular ω-language, hence also to a local
ω-language. If L is non self dual and its Wadge degree is greater than or equal to ω, then we know from
Lemma 4.13 that there is a local ω-language L′ such that L ≡W L′.

It remains to consider the case of self dual Borel sets. The alphabet Σ being finite, a self dual Borel set
L is always Wadge equivalent to a Borel set in the form Σ1 ·L1∪Σ2 ·L2, where (Σ1,Σ2) form a partition of
Σ, and L1, L2 ⊆ Σω are non self dual Borel sets such that L1 ≡W L−2 . Moreover L1 and L2 can be taken
in the form L(u1) = u1 ·Σω∩L and L(u2) = u2 ·Σω∩L for some u1, u2 ∈ Σ?, see [Dup03]. So if L ⊆ Σω

is a self dual Borel set accepted by a real time 1-counter Büchi automaton then L ≡W Σ1 · L1 ∪ Σ2 · L2,
where (Σ1,Σ2) form a partition of Σ, and L1, L2 ⊆ Σω are non self dual Borel sets accepted by real time
1-counter Büchi automata. We have already proved that there is a local ω-language L′1 such that L′1 ≡W L1

and a local ω-language L′2 such that L′−2 ≡W L2. Thus L ≡W Σ1 · L1 ∪ Σ2 · L2 ≡W Σ1 · L′1 ∪ Σ2 · L′2
and Σ1 · L′1 ∪ Σ2 · L′2 is a local ω-language.

We have only considered above the Wadge hierarchy of Borel sets. If we assume the axiom of Σ1
1-

determinacy, then Theorem 4.8 can be extended by considering the class of analytic sets instead of the class
of Borel sets. In that case any set which is analytic but not Borel is Σ1

1-complete, see [Kec95], and thus
there is only one more Wadge degree containing Σ1

1-complete sets. It was proved in [Fin03] that there is
a Σ1

1-complete set accepted by a real-time 1-counter Büchi automaton, and it was proved in [Fin08] that
there is a local ω-language which is Σ1

1-complete.
If we do not assume the axiom of Σ1

1-determinacy, we can still prove that for every Σ1
1-set L accepted

by a real-time 1-counter Büchi automaton there exists a local ω-language L′ such that L ≡W L′. Indeed By
Lemma 4.7 of [Fin13] the conclusion of the above Lemma 4.12 is also true if L is assumed to be an analytic
but non-Borel set, and thus the proof of Lemma 4.13 can be adapted if L is an analytic but non-Borel set.
Notice also that in the same way the proofs of [Fin06] can be adapted to this case, using [Fin13, Lemma 4.7]
instead of the above Lemma 4.12. This way we easily see that for every effective analytic but non-Borel set
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L ⊆ Σω , where Σ is a finite alphabet, there exists an ω-language L′ in r-BCL(1)ω such that L′ ≡W L. �

We can finally summarize our results by the following theorem.

Theorem 4.14 The Wadge hierarchy of the class LOCω is the Wadge hierarchy of the class r-BCL(1)ω
and also of the class Σ1

1 of effective analytic sets.

From this result, from the fact that for each non-null countable ordinal α the Σ0
α-complete sets (respec-

tively, the Π0
α-complete sets) form a single Wadge degree, and from the results of [KMS89], we can infer

the following result.

Corollary 4.15 For each non-null recursive ordinal α < ωCK
1 there exist some Σ0

α-complete and some
Π0
α-complete local ω-languages. And the supremum of the set of Borel ranks of local ω-languages is the

ordinal γ1
2 , which is precisely defined in [KMS89].

We can now also show that the topological complexity of a local ω-language may depend on the models
of set theory. We first recall the following result, proved in [Fin09a]. We refer the reader to [Fin09a] and to
a book on set theory like [Jec02] for more details about the notions appearing here.

Theorem 4.16 ([Fin09a]) There is a real-time 1-counter Büchi automatonA which can be effectively con-
structed and for which the topological complexity of the ω-language L(A) is not determined by the ax-
iomatic system ZFC. Indeed it holds that :

1. (ZFC + V=L). The ω-language L(A) is an analytic but non-Borel set.

2. (ZFC + ωL
1 < ω1). The ω-language L(A) is a Π0

2-set.

Notice that, from a real time 1-counter Büchi automatonA reading words over the alphabet Σ, one can
effectively construct a local sentence ϕ such that LΣ

ω (ϕ) = h(L(A)) ∪ h(Σω)−, where h is the mapping
defined above. Moreover it follows from the previous proofs that if L(A) is a Π0

2-set then the local ω-
language LΣ

ω (ϕ) is also a Π0
2-set and that if L(A) is an analytic but non-Borel set then the local ω-language

LΣ
ω (ϕ) is also an analytic but non-Borel set. Thus we can now state the following result.

Theorem 4.17 There is a local sentence ϕ which can be effectively constructed and a finite alphabet Σ,
such that the topological complexity of the ω-language LΣ

ω (ϕ) is not determined by the axiomatic system
ZFC. Indeed it holds that :

1. (ZFC + V=L). The ω-language LΣ
ω (ϕ) is an analytic but non-Borel set.

2. (ZFC + ωL
1 < ω1). The ω-language LΣ

ω (ϕ) is a Π0
2-set.

As a complement we now add some high undecidability results which can be obtained from the previous
constructions and from results of [Fin09b] which we now recall. As in [Fin09b], we denote below Az the
real time 1-counter Büchi automaton of index z reading words over a fixed finite alphabet Σ having at least
two letters. We refer the reader to a textbook like [Odi89, Odi99] for more background about the analytical
hierarchy of subsets of the set N of natural numbers.

Theorem 4.18 ([Fin09b]) The universality, the equivalence and the inclusion problems for ω-languages
accepted by real time 1-counter Büchi automata are Π1

2-complete, i.e.:

1. {z ∈ N | L(Az) = Σω} is Π1
2-complete

2. {(z, z′) ∈ N | L(Az) = L(A′z)} is Π1
2-complete

3. {(z, z′) ∈ N | L(Az) ⊆ L(A′z)} is Π1
2-complete

Notice that we can associate in a recursive manner an index z to each local sentence in the recursive set
L of local sentences given by Theorem 2.4. Then we can denote ϕz the local sentence of index z in the set
L. Using the previous constructions we can now easily show the following results.
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Theorem 4.19 The universality, the equivalence and the inclusion problems for local ω-languages are
Π1

2-complete.

1. {z ∈ N | Lω(ϕz) = Γω} is Π1
2-complete

2. {(z, z′) ∈ N | Lω(ϕz) = Lω(ϕ′z)} is Π1
2-complete

3. {(z, z′) ∈ N | Lω(ϕz) ⊆ Lω(ϕ′z)} is Π1
2-complete

Proof. Firstly, it is easy to see that each of these decision problems is in the class Π1
2, using the fact that, for

a local sentence ϕ and an ω-word x ∈ Σω , the sentence “x ∈ LΣ
ω (ϕ)” can be expressed by a Σ1

1-sentence,
see [Fin08, Theorem 3.6].

Secondly, we have seen that, from a real time 1-counter Büchi automaton Az reading words over the
alphabet Σ, one can effectively construct a local sentence ϕ such that Lω(ϕ) = h(L(A))∪ h(Σω)−, where
h is the mapping defined above. Thus there is a recursive mapping g : N → N such that the local sen-
tence ϕg(z) is associated to Az , i.e. such that Lω(ϕg(z)) = h(L(Az)) ∪ h(Σω)−. In order to prove the
completeness part of the theorem it suffices now to remark that the universality probem (respectively, the
equivalence problem, the inclusion problem) for ω-languages accepted by real time 1-counter Büchi au-
tomata is reduced to the universality probem (respectively, the equivalence problem, the inclusion problem)
for local ω-languages. This follows from the following equivalences, where Γ = Σ∪{A,B, 0} (notice that,
using a standard coding, it is straighforward to prove the result for any alphabet having at least two letters):

1. L(Az) = Σω ⇐⇒ LΓ
ω(ϕg(z)) = Γω

2. L(Az) = L(A′z)⇐⇒ LΓ
ω(ϕg(z)) = LΓ

ω(ϕg(z′))

3. L(Az) ⊆ L(A′z)⇐⇒ LΓ
ω(ϕg(z)) ⊆ LΓ

ω(ϕg(z′))

�

5 Concluding remarks
We have given a solution to the problem of the topological complexity of local ω-languages, by consider-
ing the Wadge hierarchy which is a great refinement of the Borel hierarchy. Local ω-languages have the
same topological complexity as effective analytic sets; but they are “more effective” in the sense that the
emptiness problem for local ω-languages is decidable while it is Σ1

1-complete for ω-languages of Turing
machines, see [CC89].

We have also shown that the topological complexity of a local ω-language may depend on the models of
set theory. Moreover we have given the high complexity of natural decision problems for local ω-languages,
like the universality, the equivalence and the inclusion problems. Notice that other problems can be shown
to be Π1

2-complete, like the cofiniteness problem, using again the previous constructions and results from
[Fin09b].

Acknowledgements. We thank the anonymous referee for useful comments on a preliminary version of
this paper.
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