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Abstract. We study the survival probability associated with a semi-
classical matrix Schrödinger operator that models the predissociation of
a general molecule in the Born-Oppenheimer approximation. We show
that it is given by its usual time-dependent exponential contribution,
up to a reminder term that is exponentially small (in the semiclassical
parameter) with arbitrarily large rate of decay. The result applies in any
dimension, and in presence of a number of resonances that may tend to
infinity as the semiclassical parameter tends to 0.

Keywords: Resonances; Born-Oppenheimer approximation; eigenvalue cross-
ing; quantum evolution; survival probability.

Subject classifications: 35P15; 35C20; 35S99; 47A75.
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1. Introduction

The predissociation molecular is one of most well known quantum phenom-

ena giving rise to metastable states and resonances. This corresponds when

a bound state molecule dissociates to the continuum through tunneling see

e.g. [Kr, La, St, Ze]. The rigorous description of this phenomena goes back

to [Kl] with further developments in [DuMe] and, more recently, in [GrMa].

In the context of the Born-Oppenheimer approximation, the transition can

occur when a confining electronic curve near a given energy E (e.g. E is a

local minimum) crosses a dissociative electronic level (that is, a curve having

a limit smaller than E at infinity). Such a situation occurs for instance in

the SH molecule : see [LeSu].

After reduction to an effective Hamiltonian, this phenomena can be de-

scribed by a 2 × 2 matrix H of semiclassical pseudodifferential operators

(see, e.g., [KMSW, MaSo]), with small parameter h corresponding to the

square root of the inverse of the mass of the nuclei, and with principal part

that is diagonal and consists of two Schrödinger operators.

In this paper we consider predissociation resonances from a dynamical point

of view, i.e. in terms of exponential behavior in time of the quantum evolu-

tion e−itH associated with that system.

Our main motivation is the recent series of works around the case where

H = H0 + κV is the perturbation of an operator with an embedded eigen-

value: See, e.g., [CGH, CoSo, JeNe, Her, Hu2] and references therein. In all

of these papers, denoting by ϕ the corresponding eigenfunction of H0, the

survival probability 〈e−itHϕ,ϕ〉 is studied. Roughly speaking, they show

that the embedded eigenvalue gives rise to a resonance ρ, and the previous

quantity behaves like e−itρ‖ϕ‖2 with an error-term typically O(κ2). More-

over, inserting a cutoff in energy, the error-term has a polynomial decay in

time at infinity.

The starting point of our work is the following observation: in the case of

the molecular predissociation, H can be seen as a perturbation of a matrix

Schrödinger operator admitting embedded eigenvalues. Therefore, a similar

procedure can be done in order to study the quantum evolution. However,

in contrast with the case H = H0 + κV , the small parameter is involved
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in the unperturbed operator, too, making very delicate the extension of the

methods used for it. In order to overcome this difficulty, we use the definition

of resonances based of complex distortion (see, e.g., [Hu1]), and we replace

the arguments of regular perturbation theory (used, e.g., in [CGH]) by those

of semiclassical microlocal analysis.

In this way it appears that, in the presence of a cutoff in energy, the estimate

on the remainder term is exponentially small, with a rate arbitrarily large

(and thus much smaller than the resonance width). Namely, in the case of

an isolated resonance ρ, our result takes the form,

〈e−itHg(H)ϕ,ϕ〉 = e−itρb(ϕ, h) +O((1 + t)−νe−M/h),

whereM ≥ 1 is arbitrary, b(ϕ, h) is the residue at ρ of z 7→ 〈(z−H)−1ϕ,ϕ〉,

and ν ≥ 0 depends on the regularity of the energy cutoff g (see Theorem 4.1

for a more complete result with several resonances).

Our results must also be compared with that of [NSZ], where a polynomial

bound is obtained for the rest in the quantum evolution, in the case of a

scalar semiclassical Schrödinger operator.

Let us briefly describe the content of the paper. In the next section, we give

a precise description of the model and assumptions. Section 3 is devoted

to the definition of resonances by means of complex distortion theory. Our

main result is given in Section 4, whose proof is spread over Sections 5 to 9.

Section 10 contains the proof of a corollary where the energy cutoff has been

removed and we discuss in Section 11 the non-trapping case. Finally, some

examples of application are given in Section 12, and the Appendix contains

the proof of some technical results.

2. Assumptions

We consider the semiclassical 2× 2 matrix Schrödinger operator,

(2.1) H =

(
P1 0
0 P2

)
+ hW(x, hDx)

on the Hilbert space H := L2(Rn)⊕ L2(Rn), with,

Pj := −h2∆+ Vj(x) (j = 1, 2),



4 PHILIPPE BRIET & ANDRÉ MARTINEZ

where x = (x1, . . . , xn) is the current variable in R
n (n ≥ 1), h > 0 denotes

the semiclassical parameter, and

W(x, hDx) =

(
0 W
W ∗ 0

)

with W = w(x, hDx) is a first-order semiclassical pseudodifferential opera-

tors, in the sense that, for all α ∈ N
2n, ∂αw(x, ξ) = O(1 + |ξ|) uniformly on

R
2n.

This is typically the kind of operator one obtains in the Born-Oppenheimer

approximation, after reduction to an effective Hamiltonian (see [KMSW,

MaSo]).

We assume,

Assumption 1. The potentials V1 and V2 are smooth and bounded on R
n,

and satisfy,

The set U := {V1 ≤ 0} is bounded ;(2.2)

lim inf
|x|→∞

V1 > 0;(2.3)

V2 has a strictly negative limit − Γ as |x| → ∞;(2.4)

V2 > 0 on U.(2.5)

In particular, H with domain DH := H2(Rn)⊕H2(Rn) is selfadjoint.

Since we have to consider the resonances of H near the energy level E = 0,

we also assume,

Assumption 2. The potentials V1 and V2 extend to bounded holomorphic

functions near a complex sector of the form, SR0,δ := {x ∈ C
n ; |Re x| ≥

R0 , |Im x| ≤ δ|Re x|}, with R0, δ > 0. Moreover V2 tends to its limit at ∞

in this sector and Re V1 stays away from 0 in this sector.

Assumption 3. The symbol w(x, ξ) of W extends to a holomorphic func-

tions in (x, ξ) near,

S̃R0,δ := SR0,δ × {ξ ∈ C
n ; |Im ξ| ≤ δ〈Re x〉},

and, for real x, w is a smooth function of x with values in the set of holo-

morphic functions of ξ near {|Im ξ| ≤ δ}. Moreover, we assume that, for
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any α ∈ N
2n, it satisfies

(2.6) ∂αw(x, ξ) = O(〈Re ξ〉) uniformly on S̃R0,δ ∪ (Rn × {|Im ξ| ≤ δ}) .

Under the previous assumption we plan to study the quantum evolution of

the operator P given in (2.1), where W is defined as

W :=

(
0 OpLh (w)

OpRh (w) 0

)

where for any symbol a(x, ξ) we use the following quantizations,

OpLh (a)u(x) =
1

(2πh)n

∫
ei(x−y)ξ/ha(x, ξ)u(y)dydξ;

OpRh (a)u(x) =
1

(2πh)n

∫
ei(x−y)ξ/ha(y, ξ)u(y)dydξ.

Finally, we assume,

Assumption [V] (Virial condition)

2V2(x) + x∇V2(x) < 0 on {V2 ≤ 0},

or, more generally,

Assumption [NT]

E = 0 is a non-trapping energy for V2.

The fact that 0 is a non-trapping energy for V2 means that, for any (x, ξ) ∈

p−1
2 (0), one has | exp tHp2(x, ξ)| → +∞ as t → ∞, where p2(x, ξ) := ξ2 +

V2(x) is the symbol of P2, andHp2 := (∇ξp2,−∇xp2) is the Hamilton field of

p2. It is equivalent to the existence of a function G ∈ C∞(R2n;R) supported

near {p2 = 0} (where p2(x, ξ) := ξ2 + V2(x)), and satisfying,

(2.7) Hp2G(x, ξ) > 0 on {p2 = 0}.

Note that Assumption [V] is nothing but (2.7) with G(x, ξ) = x·ξ. Moreover,

thanks to Assumption 2, we see that this condition is automatically satisfied

for |x| large enough.

3. Resonances

In the previous situation, the essential spectrum of H is [−Γ,+∞). The

resonances ofH can be defined by using a complex distortion in the following

way: Let F (x) ∈ C∞(Rn,Rn) such that F (x) = 0 for |x| ≤ R0, F (x) = x for
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|x| large enough. For θ 6= 0 small enough, we define the distorted operator

Hθ as the value at ν = iθ of the extension to the complex of the operator

UνHU
−1
ν which is defined for ν real, and analytic in ν for ν small enough,

where we have set,

(3.1) Uνφ(x) := det(1 + νdF (x))1/2φ(x+ νF (x)).

Since we have a pseudodifferential operator R(x, hD) the fact that UνPU
−1
ν

is analytic in ν is not completely standard but can be done without problem

(thanks to Assumption 3). By using the Weyl Perturbation Theorem, one

can also see that there exists ε0 > 0 such that for any ±θ > 0 small enough,

the spectrum of Hθ is discrete in [−ε0, ε0] + i[−ε0θ,+∞), and contained

in {±Im z ≤ 0}. When θ is positive, the eigenvalues of Hθ are called the

resonances of H [Hu1, HeSj2, HeMa], they form a set denoted by Res(H)

(on the contrary, when θ < 0, the eigenvalues of Hθ are just the complex

conjugates of the resonances of H, and are called anti-resonances).

Let us observe that the resonances of H can also be viewed as the poles of

the meromorphic extension, from {Im z > 0}, of some matrix elements of

the resolvent R(z) := (H − z)−1 (see, e.g., [ReSi, HeMa]).

By adapting techniques of [HeSj1, HeSj2] (see also [Kl, GrMa]), one can

prove that, in our situation, the resonances of H near 0 are close to the

eigenvalues of the operator

(3.2) H̃ :=

(
−h2∆+ V1 0

0 −h2∆+ Ṽ2

)
+ hW(x, hDx),

where Ṽ2 ∈ C
∞(Rn;R) coincides with V2 in {V2 ≥ δ} (δ > 0 is fixed arbitrar-

ily small), and is such that inf Ṽ2 > 0. The precise statement is the following

one : Let I(h) be a closed interval included in (−ε0, ǫ0), and a(h) > 0 such

that a(h) → 0 as h→ 0+, and, for all ε > 0 there exists Cε > 0 satisfying,

(3.3) a(h) ≥
1

Cε
e−ε/h;

(3.4) σ(P1) ∩ ((I(h) + [−2a(h), 2a(h)])\I(h)) = ∅,

for all h > 0 small enough. Then, there exist two constants ε1, C0 > 0 and

a bijection,

β̃ : σ(H̃) ∩ I(h) → Res(H) ∩ Ω(h),

where we have set,

Ω(h) := (I(h) + [−a(h), a(h)) + i[−ε1, 0],
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such that,

β̃(λ)− λ = O(e−C0/h),

uniformly as h→ 0+.

In particular, since the eigenvalues of P̃ are real, one obtains that, for any

ε > 0, the resonances ρ in Ω(h) satisfy,

Im ρ = O(e−C0/h).

In what follows, we will show that, under an additional assumption, these

resonances are also closed to the eigenvalues of P1.

Remark 3.1. Actually, under an assumption of analyticity on W slightly

stronger that Assumption 3 (see [GrMa]), or if W has a simpler form (see

[Kl]), C0 can be taken arbitrarily close to 2d(U, {V2 ≤ 0}), where d stands for

the Agmon distance associated with the potential min(V2, V1), that is, the

pseudo-distance associated with the pseudo-metric max(0,min(V2, V1))dx
2 .

4. Main Result

For our purpose, we need to have a stronger gap between I(h) and the rest

of the spectrum of P1. Namely, we assume,

(4.1)
h2

a(h)
→ 0 as h→ 0+.

Then, we denote by u1, . . . , um an orthonormal basis of eigenfunctions of

P1 corresponding to its eigenvalues λ1, . . . , λm in I(h) (we recall that m =

m(h) = O(h−n)). For j = 1, . . . ,m, we also set,

φj :=

(
uj
0

)
∈ L2(Rn)⊕ L2(Rn),

so that φj is an eigenvector of,

H0 :=

(
−h2∆+ V1 0

0 −h2∆+ V2

)
,

with eigenvalue λj imbedded in its continuous spectrum [Γ,+∞).

Theorem 4.1. Suppose Assumptions 1-3, (3.4), (4.1), and Assumption [V]

or [NT]. Let g ∈ L∞(R) supported in (I(h) + (−2a(h), 2a(h))) with g = 1

on I(h) + [−a(h), a(h)], and such that, for some ν ≥ 0, one has,

(4.2)
g, g′, . . . , g(ν) ∈ L∞(R);

g(k) = O(a(h)−k) (k = 1, . . . , ν).
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Then, for all t ∈ R and ϕ ∈ Span{φ1, . . . , φm}, one has,

(4.3) 〈e−itHg(H)ϕ,ϕ〉 =
m∑

j=1

e−itρj bj(ϕ, h) + r(t, ϕ, h),

where ρ1, . . . , ρm are the resonances ofH lying in Ω(h) := I(h)+[−a(h), a(h)]−

i[0, ε1], and satisfy,

(4.4) ρj = λj +O(h2),

r(t, ϕ, h) is such that, for all M ≥ 1, one has,

(4.5) r(t, ϕ, h) = O
(
(1 + t)−νe−M/h‖ϕ‖2

)
,

uniformly with respect to h > 0 small enough, t ≥ 0, and ϕ ∈ Span(φ1, . . . φm).

Here bj(ϕ, h) is the residue at ρj of the meromorphic extension from {Im z >

0} of the function,

z 7→ 〈(z −H)−1ϕ,ϕ〉.

and satisfies: There exists a m×m matrix M(z) depending analytically on

z ∈ Ω(h), with

(4.6) ‖M(z)‖ = O(h2),

such that,

(4.7)
bj(ϕ, h) is the residue at ρj of the meromorphic function

z 7→ 〈(z − Λ +M(z))αϕ, αϕ〉Cm ,

where αϕ := (〈ϕ, φ1〉, . . . , 〈ϕ, φm〉) and Λ := diag(λ1, . . . , λm).

If in addition one assumes that λ1, . . . , λm are all simple, and the gap ã(h) :=

minj 6=k |λj − λk| is such that,

(4.8) h2/ã(h) → 0 as h→ 0+,

then, bj(ϕ, h) satisfies,

(4.9) bj(ϕ, h) = |〈ϕ, φj〉|
2 +O

(
(h2 + h4(aã)−1)‖ϕ‖2

)
,

uniformly with respect to h > 0 small enough and ϕ ∈ Span(φ1, . . . φm).

Remark 4.2. Actually, our proof also gives a generalization of a result

given in [CGH] for the case m = 1 : see Propositions 7.1 and 7.3.

Remark 4.3. In particular, for any C > 0, if t ∈ [0, Ch−1|Im ρj |
−1] (i.e.

t ∈ [0, Ch−1eC0/h]), then eitρj r(t, ϕ, h) tends to 0 as h → 0+, and thus,

for such values of t, the term
∑m

j=1 e
−itρj bj(ϕ, h) is dominant in (4.3). In

particular, this remains valid much beyond the life-time of the predissocation
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resonance, which is of order |Im ρj|
−1. This has to be compared with the

situation treated in [CGH], where the product t|Im ρ| must not be larger

than c| ln κ| for some c > 0 (i.e. t ∈ [0, c′| ln κ|κ−2, κ being the small

parameter perturbation), in order that the same thing happens.

Remark 4.4. Let us observe that, in the particular case where m = 1,

one obtains b1(ϕ, h) = |〈ϕ, φ1〉|
2 +O

(
(h2 + h4/a2)‖ϕ‖2

)
. Therefore, in the

situation of the Theorem with (4.8), the mere application of the previous

result for each λj would give bj(ϕ, h) = |〈ϕ, φj〉|
2 + O

(
(h2 + h4/ã2)‖ϕ‖2

)
,

and respect to (4.9) this is a weaker result if ã(h) << a(h).

As a corollary, for the case without energy cutoff, we also obtain,

Corollary 4.5. In the general situation of Theorem 4.1 (without the as-

sumption on the simplicity of the λj ’s), one has,

〈e−itHϕ,ϕ〉 =
m∑

j=1

e−itρj bj(ϕ, h) +O
(
(h2 + h4a(h)−2)‖ϕ‖2

)
.

In the sequels, we will concentrate on the detailed proof of Theorem 4.1

in the case of Assumption [V]. The more general case of Assumption [NT]

can be proved in a similar way by using the Helffer-Sjöstrand framework of

resonances theory [HeSj2], and will be outlined in Section 11.

5. Preliminaries

In order to prove Theorem 4.1, we start from the Spectral Theorem,

(5.1) 〈e−itHg(H)ϕ,ϕ〉 =
1

2iπ

∫

R

e−itλg(λ)〈(R(λ + i0)−R(λ− i0))ϕ,ϕ〉dλ,

where R(λ± i0) are the boundary values of the resolvent R(z) := (H − z)−1

given by the limiting absorption principle. In the sequels, we also denote by

Rθ(z) := (Hθ − z)−1 the distorted resolvent, and by ϕθ := Uiθϕ the distor-

tion of ϕ (observe that, thanks to the analyticity of V1 and the ellipticity

of P1, each function uj can be distorted without problem). In particu-

lar, by standard arguments (see, e.g., [ReSi, HeMa]), one has 〈R(z)ϕ,ϕ〉 =

〈Rθ(z)ϕθ , ϕ−θ〉. From now on, we fix θ > 0 small enough and, thanks to the

fact that g = 1 on I(h) + [−a(h), a(h)], we can slightly deform the contour
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of integration in this region, and rewrite (5.1) as,

(5.2)

〈e−itHg(H)ϕ,ϕ〉 =
1

2iπ

∫

γ+

e−itzg(Re z)〈Rθ(z)ϕθ, ϕ−θ〉dz

−
1

2iπ

∫

γ−

e−itzg(Re z)〈R−θ(z)ϕ−θ, ϕθ〉dz,

where the complex contour γ± can be parametrized by Re z, coincides with

R away from I(h)+(−a(h), a(h)), and is included in {±Im z > 0} on I(h)+

(−a(h), a(h)).

Here we anticipate by using (4.4) and, proceeding as in [CGH], we see that

(5.2) can be transformed into,

(5.3) 〈e−itHg(H)ϕ,ϕ〉 =
m∑

j=1

e−itρj bj(ϕ, h) + r(t, ϕ, h),

where bj(ϕ, h) is the residue at ρj of the meromorphic function

z 7→ −〈Rθ(z)ϕθ , ϕ−θ〉,

and r(t, ϕ, h) is given by,

(5.4)

r(t, ϕ, h) :=
1

2iπ

∫

γ−

e−itzg(Re z) (〈Rθ(z)ϕθ , ϕ−θ〉 − 〈R−θ(z)ϕ−θ , ϕθ〉) dz,

where γ− is chosen in such a way that it stays below the ρj’s. Thus, the

proof will consist in estimating both bj(ϕ, h) and r(t, ϕ, h).

6. The Grushin problems

From now on (up to Section 11), we suppose Assumption [V].

In order to have good enough estimates on the resolvent, and in particular to

compare it with that of P1, for z in Ω(h) := (I(h)+[−a(h), a(h)])+i[−ε1 , ε1],

we specify our choice of distorsion. In (3.1), we take F such that,

(6.1)

{
F (x) = x in a neighborhood of the sea {V2 ≤ 0};
F = 0 in a neighborhood of the well U = {V1 ≤ 0}.

With such a distorsion, it is well known (see, e.g., [BCD]) that, under As-

sumption [V], the distorted operator P θ
2 satifies,

(6.2) ‖(P θ
2 − z)−1‖L(L2(Rn)) = O(1),

uniformly with respect to h > 0 small enough and z ∈ Ω(h).
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We introduce the two following Grushin problems,

G(z) :=

(
Hθ − z L−

L+ 0

)
: DH ×C

m → H× C
m,

G0(z) :=

(
Hθ

0 − z L−

L+ 0

)
: DH × C

m → H× C
m,

where Hθ
0 stands for the distorted Hamiltonian obtained from H0, and L±

are defined as,

(6.3) L−(α1, . . . , αm) :=
m∑

j=1

αjφ
θ
j ;

(6.4) L+u := L∗
−u = (〈u, φ−θ

1 〉, . . . , 〈u, φ−θ
m 〉).

with φ±θ
j := U±iθφj.

It is elementary to check that G0(z) is invertible, with inverse given by,

G0(z)
−1 =

(
Π̂θR̂

θ
0(z)Π̂θ L−

L+ z − Λ

)
,

where Λ = diag(λ1, . . . , λm), Π̂θ := 1 − Πθ with Πθ the spectral projection

of Hθ
0 associated with the eigenvalues (λ1, . . . , λm), that is,

Πθu :=

m∑

j=1

〈u, φ−θ
j 〉φθj ,

and R̂θ
0(z) is the reduced resolvent of Hθ

0 i.e. the inverse of the restriction

of Hθ
0 − z to the range of Π̂θ.

In addition to (6.2), we have,

Lemma 6.1.

‖(P̂±θ
1 − z)−1‖L(L2(Rn)) = O(a(h)−1),

uniformly with respect to h > 0 small enough and z ∈ Ω(h).

Proof. See Appendix 1. �

In order to prove that G(z) is invertible, too, and to compare its inverse with

G0(z)
−1, we compute the product,

G(z)G0(z)
−1 =:

(
A11 A12

A21 A22

)
.
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Using that Hθ = Hθ
0 + hWθ (where Wθ stands for the distorted operator

obtained from W), we find,

A11 = 1 + hWθR̂
θ
0(z);

A12 = hWθL−;

A21 = 0;

A22 = ICm.

Then, we observe,

Π̂θ =

(
Π̂θ

1 0
0 1

)
,

and,

R̂θ
0(z) =

(
Π̂θ

1R̂
θ
1(z)Π̂

θ
1 0

0 Rθ
2(z)

)
,

where Rθ
2(z) is the resolvent of P θ

2 (the distorted operator obtained from

P2), and R̂θ
1(z) is the reduced resolvent of P θ

1 . Thus, denoting by Wθ the

distorted operator obtained from W = w(x, hDx), and W ∗
θ that obtained

from W ∗, we find,

hWθR̂
θ
0(z) =

(
0 hWθR

θ
2(z)

hW ∗
θ Π̂

θ
1R̂

θ
1(z)Π̂

θ
1 0

)
.

Here we must be aware that this operator is not O(h), since Π̂θ
1R̂

θ
1(z)Π̂

θ
1 is

O(a(h)−1) only. However, the other off-diagonal operator hWθR
θ
2(z) isO(h),

and this is enough, for instance, to invert 1 + hWθR̂
θ
0(z) without problem.

From now on, we set,

(6.5) Q1(z) := W ∗
θ Π̂

θ
1R̂

θ
1(z)Π̂

θ
1 = O(a(h)−1) ; Q2(z) :=WθR

θ
2(z) = O(1).

In particular,

(6.6) K(z) := h2Q1(z)Q2(z) = O(h2/a(h)),

and thus, by assumption (4.1), the operator 1 − K is invertible for h > 0

small enough. Then, a straightforward computation shows that G(z)G0(z)
−1

is invertible, with inverse given by,

F(z) :=

(
B1(z) B2(z)
0 ICm

)
,

where,

B1(z) :=

(
1 + h2Q2(1−K)−1Q1 −hQ2(1−K)−1

−h(1−K)−1Q1 (1−K)−1

)
,

and

(6.7) B2(z) := h2
(

0 Q2(1−K)−1

0 (1−K)−1

)
WθL−.
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(Here, we have also used the fact that the first component of Wθφj is iden-

tically 0.)

A similar computation shows that G0(z)
−1G(z) is invertible, too, and, as a

consequence, so is G(z), with inverse,

(6.8) G(z)−1 = G0(z)
−1F(z) =

(
E(z) E+(z)
E−(z) E−+(z)

)
,

where,

(6.9)

E(z) := Π̂θR̂
θ
0(z)Π̂θB1(z)

E+(z) := L− + Π̂θR̂
θ
0(z)B2(z)

E−(z) := L+B1

E−+(z) := z − Λ+ L+B2(z).

We set,

M(z) := L+B2(z) =M0(z) +M1(z),

with

M0(z) := h2L+

(
0 Q2(z)
0 1

)
WθL−,

and

(6.10) M1(z) := L+B2(z)−M0(z).

One can prove,

Lemma 6.2. One has,

‖M0(z)‖L(Cm) = O(h2);

‖M1(z)‖L(Cm) = O(h4/a(h)) = o(h2),

uniformly with respect to h > 0 small enough and z ∈ Ω(h).

Proof. See Appendix 2. �

In particular,

(6.11) ‖M(z)‖L(Cm) = O(h2),

uniformly with respect to z ∈ Ω(h) and h > 0 small enough. Since h2/a(h) →

0, by standard perturbation theory we deduce,

Sp(Λ +M(z)) = {λ1(z), . . . , λm(z)},

with,

λj(z) = λj +O(h2).
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As a consequence the solutions z ∈ Ω(h) of the problem,

0 ∈ σ(E−+(z)),

are all of the form,

z = λj +O(h2),

for some j. Deforming continuously (E−+(z)) into z − Λ (e.g., by setting

Λt(z) := z − Λ+ tM(z), 0 ≤ t ≤ 1), and following continuously the roots of

the determinant of Λt(z) as t varies from 0 to 1, we also see that all the values

of j are reached by such solutions. Since we also know that these solutions

are precisely the resonances of H in Ω(h) (see (7.4)), we have proved (4.4).

7. The reduced resolvent

In this section, we still consider the Grushin problem given by G(z), but we

will solve it in a different way, in order to obtain the inverse in terms of

the reduced resolvent R̂θ(z) of Hθ (instead of that of Hθ
0 ), as in the usual

Feshbach method.

Indeed, denoting by Ĥθ the restriction of Π̂θHθ to the range of Π̂θ, for all z

such that Im z > 0 we can define the reduced resolvent R̂θ(z) as the inverse

of Ĥθ − z, and it is straightforward to verify that, for such z, the inverse of

G(z) is given by,

G(z)−1 =

(
E(z) E+(z)
E−(z) E−+(z)

)
,

with,

(7.1)

E(z) := Π̂θR̂θ(z)Π̂θ

E+(z) := (1− hΠ̂θR̂θ(z)Π̂θWθ)L−

E−(z) := L+(1− hWθΠ̂θR̂θ(z)Π̂θ)

E−+(z) := z − Λ+ h2(〈WθΠ̂θR̂θ(z)Π̂θWθφ
θ
k, φ

−θ
j 〉)1≤j,k≤m.

Comparing with (6.9), we obtain in particular (still for Im z > 0, for which

the computations of the previous section remain valid),

(7.2) Π̂θR̂θ(z)Π̂θ = Π̂θR̂
θ
0(z)Π̂θB1(z).

Now, since both expressions are holomorphic in {Im z > 0}, and the right-

hand side extends analytically in Ω(h), we conclude that so does Π̂θR̂θ(z)Π̂θ,

and the identity remains valid in Ω(h).
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In addition, the expression 〈WθΠ̂θR̂θ(z)Π̂θWθφ
θ
k, φ

−θ
j 〉 is actually indepen-

dent of θ, and is nothing but the meromorphic extension to Ω(h) of the

function (holomorphic in {Im z > 0}),

(7.3) Fj,k(z) := 〈WΠ̂R̂(z)Π̂Wφk, φj〉

Finally, in order to estimates the residues appearing in (5.3), let us recall the

well known formula for the whole resolvent ofHθ. For z ∈ Ω(h)\{ρ1, . . . , ρm},

one has,

(7.4) Rθ(z) = E(z)− E+(z) (E−+(z))
−1E−(z).

In view of (7.1)-(7.2), we know that the operators E(z), E±(z) and E−+(z)

depend analytically on z in Ω(h). Therefore, in formula (7.4), the only

possible poles come from (E−+(z))
−1.

Therefore, we have proved,

Proposition 7.1. The distorted resolvent Rθ(z) of H is given by (7.4),

where the operators E(z), E±(z) and E−+(z) are given in (7.1). Moreover,

the resonances of H in Ω(h) are exactly the roots of the equation,

det(z − Λ+ h2F (z)) = 0,

where F (z) is the m × m matrix with coefficients Fj,k(z) (1 ≤ j, k ≤ m)

given by (7.3).

In the particular case wherem = 1, let us observe that, at first glance, F1,1(z)

can be estimated by O(a(h)−1), and its holomorphic derivative F ′
1,1(z) by

O(a(h)−2) (this is because of the presence of the reduced resolvent in F1,1(z)).

For the resonance, this leads to,

ρ1 = λ1 − h2F1,1(ρ1) = λ1 +O(h2/a(h)) = λ1 − h2F1,1(λ1) +O(h4/a(h)3),

which, compared to the result given in [CGH] seems much less interesting.

But actually, looking more precisely to the expression of F (z), one can prove,

Lemma 7.2. In the case m = 1, one has,

|F1,1(z)|+ |F ′
1,1(z)| = O(1),

uniformly with respect to h > 0 small enough and z ∈ Ω(h).
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Proof. Using (7.2), we have,

F1,1(z) = 〈WθΠ̂θR̂
θ
0(z)Π̂θB1(z)Wθφ

θ
1, φ

−θ
1 〉

= 〈B1(z)Wθφ
θ
1, Π̂−θR̂

−θ
0 (z)Π̂−θ(Wθ)

∗φ−θ
1 〉,

and since,

(Wθ)
∗φ−θ

1 =

(
0

W−θu
−θ
j ,

)

we have,

(7.5) Π̂−θR̂
−θ
0 (z)Π̂−θ(Wθ)

∗φ−θ
1 =

(
0

R−θ
2 (z)W−θu

−θ
j ,

)

Hence, ‖Π̂−θR̂
−θ
0 (z)Π̂−θ(Wθ)

∗φ−θ
1 ‖L2

G
= O(1), and since also ‖B1(z)‖L(L2

G
) =

O(1), we deduce,

F1,1(z) = O(1).

(Here, we have used the fact that ‖u±θ
j ‖L2

G
= O(1): see Appendix 1.)

On the other hand, taking the derivate with respect to z, we obtain,

F ′
1,1(z) = 〈WθΠ̂θR̂θ(z)

2Π̂θWθφ
θ
1, φ

−θ
1 〉

Then, applying (7.2) with θ replaced by −θ, and z replaced by z, and then

taking the adjoint, we obtain,

(7.6) Π̂θR̂θ(z)Π̂θ = B∗
1(z)Π̂θR̂

θ
0(z)Π̂θ,

with B∗(z) = I +O(h2/a) in L(L2
G). Using both (7.2) and (7.6), we are led

to,

F ′
1,1(z) = 〈B∗

1(z)Π̂θR̂
θ
0(z)Π̂θWθφ

θ
1, B1(z)

∗Π̂−θR̂
−θ
0 (z)Π̂−θ(Wθ)

∗φ−θ
1 〉.

Thus, we can conclude as before (see (7.5)) that F ′
1,1(z) = O(1). �

As a consequence, we obtained the following generalization of the result of

[CGH]:

Theorem 7.3. Suppose Assumptions 1-3, (3.4), (4.1), and m = 1. Then,

the resonance ρ1(h) of H that is the closest one to λ1(h) satisfies,

ρ1(h) = λ1(h) − h2F1,1(λ1(h)) +O(h4),

uniformly for h > 0 small enough. Here, F1,1(z) is defined in (7.3).
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8. Estimates on the residues

Going back to (5.3), and using (7.4), we deduce,

(8.1) bj(ϕ, h) = Residuez=ρj〈E+(z) (E−+(z))
−1E−(z)ϕθ , ϕ−θ〉.

Since ϕ ∈ Span(φ1, . . . , φm), it can be written as,

(8.2) ϕ =

m∑

j=1

αjφj ,

(αj ∈ C), and thus we see on (7.1) that we actually have,

E−(z)ϕθ = L+ϕθ = (α1, . . . , αm).

In a similar way, since Π̂∗
θ = Π̂−θ, we also find,

E+(z)
∗ϕ−θ = (α1, . . . , αm).

Inserting into (8.1), and setting,

αϕ := (α1, . . . , αm) ∈ C
m,

we obtain,

(8.3) bj(ϕ, h) = Residuez=ρj 〈E−+(z)
−1αϕ, αϕ〉Cm .

Therefore, using (6.9)-(6.11), we deduce (4.6)-(4.7).

Now, assuming that the λj’s are simple and that (4.8) is satisfied, we write,

(8.4) E−+(z) = (z − Λ+M0(z))
(
1 + (z − Λ +M0(z))

−1M1(z)
)
.

Moreover, using (8.3) and denoting by γj the oriented boundary of the disc

centered in λj of radius ã(h)/2, we have,

(8.5) bj(ϕ, h) =
1

2iπ

∫

γj

〈E−+(z)
−1αϕ, αϕ〉dz.

When z ∈ γj , we have ‖(z − Λ)−1‖ = O(ã−1) and thus, using (4.8),

‖(z − Λ +M0(z))
−1‖ = ‖(1 + (z − Λ)−1M0(z))

−1(z − Λ)−1‖ = O(ã−1).

Moreover, using (6.11), we have,

‖(z − Λ +M0(z))
−1M1(z)‖ = O(h4/(aã)) = o(1),

and thus, by (8.4), for z ∈ γj ,

E−+(z)
−1 =

(
1 +O(h4/(aã)

)
(z − Λ−M0(z))

−1

= (z − Λ+M0(z))
−1 +O(h4/(aã2)),
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and thus, since the length of γj is O(ã),

(8.6)∫

γj

〈E−+(z)
−1αϕ, αϕ〉dz =

∫

γj

〈(z−Λ+M0(z))
−1αϕ, αϕ〉dz+O

(
h4

aã

)
‖ϕ‖2.

On the other hand, we see on its definition that we have,

M0(z) = h2
(
〈WθR

θ
2(z)W

∗
θ u

θ
k, u

−θ
j 〉

)
1≤j,k≤m

,

and, introducing the operator P̃2 := −h2∆+ Ṽ2 where Ṽ2 is as in (3.2), the

exponential decay of u±θ
j away from U and Agmon estimates (see [HeSj2])

show that,

〈WθR
θ
2W

∗
θ u

θ
k, u

−θ
j 〉 = 〈WR̃2(z)W

∗uk, uj〉+O(e−δ/h),

for some constant δ > 0, and with R̃2(z) := (P̃2 − z)−1. Setting

M̃0(z) :=
(
〈WθR

θ
2W

∗
θ u

θ
k, u

−θ
j 〉 = 〈WR̃2(z)W

∗uk, uj〉
)
1≤j,k≤m

,

we deduce as before,

(8.7)∫

γj

〈E−+(z)
−1αϕ, αϕ〉dz =

∫

γj

〈(z−Λ+ M̃0(z))
−1αϕ, αϕ〉dz+O

(
h4

aã

)
‖ϕ‖2,

where the matrix M̃0(z) is O(h2), depends analytically on z ∈ Ω(h), and is

selfadjoint when z is real. As a consequence, thanks to the gap condition

on the λj ’s, we see that the matrix Λ − M̃0(z) can be diagonalized in a

basis (e1(z), . . . , em(z)) of Cm, that depends analytically on z ∈ Ω(h), is

orthonormal when z is real, and the corresponding change of basis is given

by a matrix A(z) satisfying,
tA(z)A(z) = ICm ;

A(z) = ICm +O(h2);

tA(z)(z − Λ + M̃0(z))
−1A(z) = diag

(
1

z − µ1(z)
, . . . ,

1

z − µm(z)

)
,

where the eigenvalues µ1(z), . . . , µm(z) of Λ− M̃0(z) satisfy,

µj(z) = λj + fj(z)

with fj(z) = O(h2). Note that fj are real on the real. Since

d

dz
M̃0(z) = O(h2),

we see by a standard Hellmann-Feynman argument that, in this situation,

we also have,

µ′j(z) = f ′j(z) = O(h2).



MOLECULAR DYNAMICS FOR PREDISSOCIATION 19

Moreover, the poles λ̃1, . . . , λ̃m of 〈(z−Λ−M̃0(z))
−1αϕ, αϕ〉 are the solutions

of an equation,

z = µj(z)

for some j = 1, . . . ,m. Thus, they are necessarily simple, and since µj(z) =

µj(z), they must be real. Finally, we obtain,

(8.8)
1

2iπ

∫

γj

〈(z − Λ− M̃0(z))
−1αϕ, αϕ〉dz = (1− f ′j(λ̃j))

−1|αj |
2 +O(h2‖ϕ‖2)

= |αj |
2 +O(h2‖ϕ‖2),

and (4.9) follows from (8.5), (8.7) and (8.8).

9. Estimates on the rest

In this section we will use a whole family of complex distortions, indexed

by a large parameter M > R0, and associated with a vector field FM ∈

C∞(Rn,Rn) such that,

(9.1) FM (x) = 0 for |x| ≤M ; FM (x) = x for |x| ≥ 2M.

Denoting by HM,θ the corresponding distorted operator, by standard results

(see, e.g., [HeMa]), it is well known that the spectrum of HM,θ in some fix

neighborhood [−ε0, ε0] + i[−ε1, ε1] of 0 does not depend on M ≥ R0, nor on

θ (as long as θ > ε0/ε1). Moreover, denoting by Rθ,M (z) the corresponding

distorted resolvent, and by ϕθ,M the distortion of ϕ, we can rewrite (5.4) as,

(9.2) r(t, ϕ, h) :=
1

2iπ

∫

γ−

e−itzg(Re z)Sθ,M (z)dz.

with,

(9.3) Sθ,M (z) := 〈Rθ,M (z)ϕθ,M , ϕ−θ,M 〉 − 〈R−θ,M(z)ϕ−θ,M , ϕθ,M 〉,

and where, setting Ĩ = [α, β] := I(h)+ [−a, a], we choose the contour γ− as,

γ− := (R\Ĩ) ∪ (α− i[0, a]) ∪ ([α, β] − ia) ∪ (β − i[0, a]).

However, with this kind of distorsion, the norm of (P θ
2 − z)−1 on L2(Rn) is

usually very large, unless we change the usual L2-norm to a suitable equiv-

alent one. This can be achieved as, e.g., in [Ma1], by using the (isometric)

FBI-transform T : L2(Rn) → L2(R2n) given by (see, e.g., [Ma2]),

(9.4) Tu(x, ξ) :=
1

2
n
2 (πh)

3n
4

∫
ei(x−y)ξ/h−(x−y)2/2hu(y)dy,
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and by taking on L2 the norm,

(9.5) ‖u‖L2
θG

(Rn) := ‖e−θG/hTu‖L2(R2n),

where G ∈ C∞
0 (Rn) is a convenient function, supported inside an arbitrarily

small neighborhood of {p2 = 0}, and chosen in such a way that, for any

θ > 0 small enough, one has,

|p±θ
2 (x, ξ) ∓ iθHp2G(x, ξ)| ≥

θ

C
〈ξ〉2

with C > 0 constant (here p±θ
2 is the principal symbol of P±θ

2 ). If we also

take,

θ = θ(h) := h ln
1

h
,

then one can prove ([Ma1], Proposition ),

(9.6) ‖(P±θ
2 − z)−1‖L(L2

±θG
(Rn)) = O(1/θ),

uniformly with respect to h > 0 small enough and z ∈ Ω(h). Moreover,

following the construction of [Ma1], we see that, with our choice of M -

dependent distortion, G can be chosen in such a way that,

(9.7) sup |G| = O(M),

uniformly for M ≥ R0.

Now, we write,

(9.8)

〈Rθ,M (z)ϕθ,M , ϕ−θ,M 〉 = 〈Rθ,M (z)1|x|≤Mϕθ,M ,1|x|≤Mϕ−θ,M 〉+ ωθ,M(z),

where 1|x|≤M is the characteristic function of {|x| ≤M}, and,

(9.9)

ωθ,M := 〈Rθ,M (z)1|x|≥Mϕθ,M ,1|x|≤Mϕ−θ,M 〉+〈Rθ,M (z)ϕθ,M ,1|x|≥Mϕ−θ,M 〉.

By Agmon inequalities on P±θ
1 , we know that there exists a constant c > 0

independent of θ such that,

(9.10) ‖1|x|≥Mϕ±θ‖L2 = O(e−2cM/h)‖ϕ‖.

Moreover, (9.6)-(9.7) imply the existence of C > 0 (still independent of θ),

such that,

(9.11) ‖(P±θ
2 − z)−1‖L(L2(Rn)) = O(θ−1eCθM/h),

and Lemma 6.1 remains valid with our new distortion. As a consequence,

using also (7.1), (7.2) and (7.4), we deduce that, for z ∈ γ−,

‖R±θ,M (z)‖ = O(a−1 + θ−1eCθM/h) = O(e2CθM/h).
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Therefore by (9.9)-(9.10), we have,

ωθ,M(z) = O(e2(Cθ−c)M/h),

and thus, for θ small enough (that is, for h small enough),

(9.12) ωθ,M(z) = O(e−cM/h).

On the other hand, since the distortion coincides with the identity on {|x| ≤

M}, we have,

〈Rθ,M (z)1|x|≤Mϕθ,M ,1|x|≤Mϕ−θ,M 〉 = 〈R(z)1|x|≤Mϕ,1|x|≤Mϕ〉,

and thus, by (9.8),

〈Rθ,M (z)ϕθ,M , ϕ−θ,M 〉 = 〈R(z)1|x|≤Mϕ,1|x|≤Mϕ〉+O(e−cM/h),

uniformly for z ∈ γ−. In the same way, we obtain,

〈R−θ,M (z)ϕ−θ,M , ϕθ,M 〉 = 〈R(z)1|x|≤Mϕ,1|x|≤Mϕ〉+O(e−cM/h),

and therefore,

Sθ,M(z) = O(e−cM/h).

Since M ≥ R0 is arbitrary, by (9.2) we have proved (4.5) for ν = 0. For the

case ν > 0, as in [CGH] we use the formula,

e−izt = (1 + t)−ν

(
1 + i

d

dz

)ν

e−izt,

and we make ν integrations by parts with respect to z. This makes ap-

pear the composition of a finite number of resolvents, and the proof can be

performed in a similar way.

10. Proof of Corollary 4.5

We first prove,

Lemma 10.1.
m∑

j=1

bj(ϕ, h) =
(
1 +O(h2 + h4/a2)

)
‖ϕ‖2.

Proof. We write,

(10.1) E−+(z) = (z − Λ+M0(z))
(
1 + (z − Λ+M0(z))

−1M1(z)
)
,
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and, using (8.3) and denoting by γ the oriented boundary of the rectangle

{z ∈ C ; Re z ∈ I(h) + [−a(h), a(h)], |Im z| ≤ ε1}, we have,

(10.2)

m∑

j=1

bj(ϕ, h) =
1

2iπ

∫

γ
〈E−+(z)

−1αϕ, αϕ〉dz.

We divide γ into its vertical part γv and its horizontal one γh.

When z ∈ γh, since z remains at a distance ε1 of R, we have ‖(z −Λ)−1‖ =

O(1) and thus,

‖(z − Λ+M0(z))
−1‖ = ‖(1 + (z − Λ)−1M0(z))

−1(z − Λ)−1‖ = O(1).

Moreover, still for z ∈ γh, we see on (6.6) that K(z) = O(h2), and thus, by

(6.7) and (6.10), ‖M1(z)‖ = O(h4). As a consequence

‖(z − Λ+M0(z))
−1M1(z)‖ = O(h4), (z ∈ γh).

Therefore, by (10.1), for such z we can write,

E−+(z)
−1 =

(
1 +O(h4)

)
(z − Λ−M0(z))

−1

= (z − Λ−M0(z))
−1 +O(h4),

and thus,

(10.3)∫

γh

〈E−+(z)
−1αϕ, αϕ〉dz =

∫

γh

〈(z − Λ−M0(z))
−1αϕ, αϕ〉dz +O(h4)‖ϕ‖2.

On the other hand, when z ∈ γv, we can write z = z1 + iz2 with z1, z2 ∈ R,

dist(z1, I(h)) = a(h), |z2| ≤ ε1. Therefore, for such z we have, ‖(z − Λ +

M0(z)))
−1‖ = O((a+ |z2|)

−1), ‖K(z)‖ = O(h2(a+ |z2|)
−1), and ‖M1(z)‖ =

O(h4(a+ |z2|)
−1). Proceeding as before, we deduce,

E−+(z)
−1 = (z − Λ−M0(z))

−1 +O(h4/(a+ |z2|)
3)‖ϕ‖2,

and thus, integrating in z2 on [−ε1, ε1],

(10.4)∫

γv

〈E−+(z)
−1αϕ, αϕ〉dz =

∫

γv

〈(z−Λ−M0(z))
−1αϕ, αϕ〉dz+O(h4/a(h)2)‖ϕ‖2.

We deduce from (10.3)-(10.4),

(10.5)∫

γ
〈E−+(z)

−1αϕ, αϕ〉dz =

∫

γ
〈(z−Λ−M0(z))

−1αϕ, αϕ〉dz+O(h4/a(h)2)‖ϕ‖2.

At this point, we make the key observation that, by definition,M0(z) extends

analytically in some h-independent complex neighborhood of I(h), where it

is O(h2) in norm. As a consequence, modifying the complex contour γ into
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another one that stays at some fix positive distance from I(h), we deduce

from (10.5),

(10.6)∫

γ
〈E−+(z)

−1αϕ, αϕ〉dz =

∫

γ
〈(z − Λ)−1αϕ, αϕ〉dz +O(h2 + h4/a(h)2)‖ϕ‖2.

Going back to (10.2), this gives,
m∑

j=1

bj(ϕ, h) =
m∑

j=1

|αj|
2+O(h2+h4/a(h)2)‖ϕ‖2 =

(
1 +O(h2 + h4/a2)

)
‖ϕ‖2,

and (4.9) is proved. �

Now, applying Theorem 4.1 with t = 0, we obtain,

〈g(H)ϕ,ϕ〉 =
m∑

j=1

bj(ϕ, h) +O(e−M/h)

and thus, by the previous lemma,

〈g(H)ϕ,ϕ〉 = ‖ϕ‖2 +O(h2 + h4/a2)‖ϕ‖2.

Hence,

(10.7) 〈(1− g(H))ϕ,ϕ〉 = O(h2 + h4/a2)‖ϕ‖2,

and we can chose g in such a way that 0 ≤ g ≤ 1. In that case, (10.7) can

be re-written as,

‖(1− g(H))
1

2ϕ‖2 = O(h2 + h4/a2)‖ϕ‖2,

and Corollary 4.5 follows by writing,

〈e−itHϕ,ϕ〉 = 〈e−itHg(H)ϕ,ϕ〉 + 〈e−itH(1− g(H))ϕ,ϕ〉

= 〈e−itHg(H)ϕ,ϕ〉 + 〈e−itH(1− g(H))
1

2ϕ, (1− g(H))
1

2ϕ〉

= 〈e−itHg(H)ϕ,ϕ〉 +O(‖(1 − g(H))
1

2ϕ‖2).

11. The non-trapping case

In the case when only Assumption [NT] is assumed (instead of Assumption

[V]), the strategy of the proof is the same. However, an important ingre-

dient for the estimates on the residues was the uniform boundedness of the

resolvent of P θ
2 . Therefore, in order to generalize this proof one needs a

framework where (P2 − z)−1 becomes bounded uniformly with respect to

h. This is provided by the theory of resonances developed by Helffer and

Sjöstrand in [HeSj2]. Without entering too much into details, let us just

recall that this theory consists in changing L2(Rn) into a space HθG, that
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contains C∞
0 (Rn), and that depends on a positive small enough parame-

ter θ and a function G ∈ C∞(R2n;R) supported near {p2 = 0} (where

p2(x, ξ) := ξ2 + V2(x)), and satisfying,

|p2(x, ξ) − iθHp2G(x, ξ)| ≥
θ

C
〈ξ〉2,

for some constant C > 0. Then, one has,

(11.1) ‖(P2 − z)−1‖L(HθG) = O(1/θ),

uniformly with respect to h > 0 small enough and z close to 0. Let us also

recall that pseudodifferential operators with analytic symbols on complex

sectors can act on HθG, and their representation involves the restriction of

their symbol to the complex Lagrangian manifold,

ΛθG := {(x+ iθ∂ξG(x, ξ), ξ − iθ∂xG(x, ξ)) ; (x, ξ) ∈ R
2n}.

Moreover, a whole symbolic calculus can be performed for such operators,

where only the restrictions to ΛθG of the symbols are involved. Finally, as

in the L2-case, an analog of Sobolev spaces can be introduced by inserting

a weight, and we denote by H2
θG the analog of H2(Rn) in this context. In

particular, we have,

P1 , P2 : H2
θG → HθG.

Then, setting DθG := H2
θG ×H2

θG and H̃θG := HθG ×HθG, we consider the

two Grushin problems G(z) and G0(z) as in Section 6, but this time without

distortion, as operators : DθG × C
m → H̃θG × C

m, and with the scalar

product replaced (in the definition of L+) by the duality-bracket between

H̃θG and H̃−θG.

Then the proof of the estimates on the residues proceeds in the same way,

in particular the fact that G is supported near {p2 = 0} (thus, away from

the well U) makes valid an analog of Lemma 6.1 in this context. Indeed, the

norm in HθG is equivalent to a weighted norm of the same type as in (9.5),

but this time with a weight G that is no more compactly supported (but

still supported in a neighborhood of {p2 = 0}): see [HeSj2], Formula (9.48).

For the same reason, the estimates of Lemma 6.2 on M0(z) and M1(z) can

be generalized, too, and all of Sections 8 and 10 remain valid.

Concerning the estimates on the rest (Section 9), let us observe that we

never used the estimate (11.1) in it, so the proof just remains unchanged.
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12. Examples

12.1. The one dimensional case. When n = 1, if we assume,

V ′
1 6= 0 on {V1 = 0},

then it is well known (see, e.g., HeRo) that the eigenvalues of P1 are all

simple and separated by a gap of order h. Then, we can take |I(h)| = O(h),

a = ã ∼ h , and we also have m = O(1). Moreover, in this case Assumption

[NT] on V2 is equivalent to,

V ′
2 6= 0 on {V2 = 0}, and {V2 ≤ 0} has no

bounded connected component.

For instance V2(x) = −Γ + α(1 + x2)−1, (with α > 0 sufficiently large, so

that V2 > 0 on {V1 ≤ 0}) satisfies all the assumptions (including Assumption

[V]).

In such a situation, (4.9) becomes,

(12.1) bj(ϕ, h) = |〈ϕ, φj〉|
2 +O(h2)‖ϕ‖2,

and, with Corollary 4.5, this gives,

(12.2) 〈e−itHϕ,ϕ〉 =
m∑

j=1

e−itρj |〈ϕ, φj〉|
2 +O(h2)‖ϕ‖2.

12.2. The non-degenerate point-well. In addition to Assumption 1, let

us suppose,

U = {0}, HessV1(0) > 0.

Then, it is well nown (see [HeSj1, Si]) that the spectrum of P1 near 0 consists

of eigenvalues admitting asymptotic expansions as h→ 0+, of the form,

λj(h) ∼
∑

k≥0

λj,kh
1+ k

2 ,

where λj,0 is the j-th eigenvalue of the harmonic oscillator −∆+1
2〈Hess V1(0)x, x〉.

As for V2, one can take V2(x) = −Γ + α(1 + x2)−1 with α,Γ > 0 arbitrary.

Then Assumption [V] is satisfied, and choosing I(h) = [0, Ch] with C /∈

{λj,0 ; j ≥ 1}, we see that the general assumptions of Theorem 4.1 are

satisfied with a(h) ∼ h. Thus, (12.1) remains valid in this case.

Moreover, in the case n = 1, all the λj,0’s are simple, and thus so are the

λj’s, with a gap ã ∼ h, and (12.2) is valid, too.
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When n ≥ 2, some λj,0 may have some multiplicity. This is for instance the

case if we take n = 2 and V1(x1, x2) = x21 + 4x22 + x21x2 +O(|x|4) uniformly

near 0. Then (see [HeSj1], end of Section 3), the asymptotic of the first

eigenvalues of P1 can be computed, and one finds,

λ1(h) = 3h+O(h2);

λ2(h) = 5h+O(h
3

2 );

λ3(h) = 7h− αh
3

2 +O(h2);

λ4(h) = 7h+ αh
3

2 +O(h2);

λ5(h) = 9h+O(h
3

2 ),

with α :=
∫
y21y2v1(y1)w2(y2)v3(y1)w1(y2)dy1dy2 > 0, where vj stands for

the normalized j-th eigenfunction of −d2y1 + y21 , and wj for the normalized

j-th eigenfunction of −d2y2 + 4y22 .

Thus, we can apply Theorem 4.1 with I(h) = [0, 8h], a(h) = h/2, and

ã(h) = 2αh
3

2 .

13. Appendix

13.1. Appendix 1: Proof of Lemma 6.1. We do it for P θ
1 only, since the

sign of θ is not involved in the proof. Let η, ψ, χ ∈ C∞
0 (Rn) be such that,

inf
Rn

(V1 + η) > 0;

ψ = 1 in a neighborhood of Supp η;

χ = 1 in a neighborhood of Suppψ;

Suppχ ⊂ R
n\SuppF.

We denote by,

P̃ θ
1 := P θ

1 + η

the perturbation of P θ
1 where the well U has been filled with η (the so-called

“filled-well” operator). By analogy with a technique used in [HeSj2], Section

9 (in particular Formula (9.22)), we consider the operator,

X(z) := χ(P̂ θ
1 − z)−1ψ + (P̃ θ

1 − z)−1(1− ψ).

By a straightforward computation, we have,

(13.1) (P θ
1 − z)Π̂θ

1X(z)Π̂θ
1 = Π̂θ

1 + Y (z),
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with,

Y (z) := Π̂θ
1

(
−χΠθ

1ψ + [P θ
1 , χ](P̂

θ
1 − z)−1ψ − η(P̃ θ

1 − z)−1(1− ψ)
)
Π̂θ

1.

Then, denoting by d1 the Agmon distance associated with V1, one observes

that both d1(Supp∇χ,Suppψ) and d1(Supp η,Supp (1 − ψ) are positive

numbers. Therefore, one can apply e.g. the Propositions 9.3 and 9.4 in

[HeSj2] (or, more directly, Agmon estimates on P θ
1 , uniformly with respect

to θ) to deduce the existence of some δ1 > 0, independent of θ, such that,

(13.2) ‖[P θ
1 , χ](P̂

θ
1 − z)−1ψ − η(P̃ θ

1 − z)−1(1− ψ)‖L(L2) = O(e−2δ1/h).

Moreover, since Π̂θ
1Π

θ
1 = Πθ

1Π̂
θ
1 = 0, we have,

Π̂θ
1

(
χΠθ

1ψ)
)
Π̂θ

1 = Π̂θ
1

(
(χ− 1)Πθ

1(ψ − 1))
)
Π̂θ

1,

and Agmon estimates on P θ
1 show the existence of δ2 > 0, still independent

of θ, such that, for all j = 1, . . . ,m, one has,

‖(1− ψ)uθj‖L2 = O(e−2δ2/h),

and therefore, since m(h) = O(h−n),

(13.3) ‖Π̂θ
1

(
χΠθ

1ψ)
)
Π̂θ

1‖L(L2) = O(e−δ2/h).

From (13.2)-(13.3), we obtain,

‖Y (z)‖L(L2) = O(e−δ3/h),

for some constant δ3 > 0. Going back to (13.1), we deduce,

(13.4) (P̂ θ
1 − z)−1 = Π̂θ

1X(z)Π̂θ
1(1 +O(e−δ3/h)).

On the other hand, since the distortion coincides with the identity on the

supports of χ and of ψ, we have,

X(z) := χ(P̂1 − z)−1ψ + (P̃ θ
1 − z)−1(1− ψ),

and by construction ‖(P̃ θ
1 − z)−1‖ = O(1) and ‖(P̂1 − z)−1‖ = O(1/a).

Hence, by (13.4), Lemma 6.1 follows.

13.2. Appendix 2: Proof of Lemma 6.2. In view of (6.5), (6.6), it is

enough to prove that, if A is a bounded operator on L2(Rn), then the matrix

MA := (〈Auθk, u
−θ
j 〉L2(Rn))1≤j,k≤m satisfies,

(13.5) ‖MA‖L(Cm) = O(‖A‖L(L2)),
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uniformly with respect to h > 0 small enough. In order to prove (13.5), we

take α = (α1, . . . , αm) ∈ C
m, and we write,

‖MAα‖
2 =

m∑

j=1

|
m∑

k=1

αk〈Au
θ
k, u

−θ
j 〉L2(Rn)|

2 =
m∑

j=1

|〈Aα̃, u−θ
j 〉L2(Rn)|

2,

where α̃ :=
∑m

k=1 αku
θ
k. Then, we denote by D ⊂ R

n and open set such that

U ⊂ D ⊂ R
n\SuppF,

In particular, on D we have u±θ
k = uk, and, by Agmon estimates, we know

that the norms ‖u±θ
k ‖L2(Rn\D) are exponentially small, uniformly with re-

spect to θ. Therefore, since m = O(h−n), we can write,

(13.6) ‖MAα‖
2 =

m∑

j=1

|〈Aα̃, uj〉L2(D)|
2 +O(e−c/h)‖Aα̃‖2L2 ,

where c > 0 is independent of α, θ, and h. Then, we use the fact that, for

the same reason (and since 〈uθk, u
−θ
j 〉L2 = δj,k), we have,

(13.7) 〈uk, uj〉L2(D) = δj,k +O(e−c/h),

where the positive constant c may be different from the previous one. This

permits us to show (e.g., by diagonalizing the family (uk)1≤k≤m in L2(D)

by means of a matrix B = I +O(e−δ/h)) that one has,

m∑

j=1

|〈Aα̃, Tuj〉L2(D)|
2 = O(‖Aα̃‖2L2(D)),

uniformly with respect to h and α. Hence, inserting in (13.6), we find,

‖MAα‖
2 = O(‖Aα̃‖2L2(D) + e−c/h‖Aα̃‖2L2),

and thus,

‖MAα‖
2 = O(‖Aα̃‖2L2) = O(‖A‖2 · ‖α̃‖2L2),

and the result follows by observing that (using the decay properties of the

u±θ
k ’s and (13.7) again),

‖α̃‖L2 = O(‖α̃‖L2(D) + e−c/h‖α‖Cm) = O(‖α‖Cm).
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1994.

[GrMa] Grigis, A., Martinez, A. Resonance widths for the molecular predissociation, Anal-
ysis & PDE 7-5 (2014), 1027–1055. DOI 10.2140/apde.2014.7.1027

[HeMa] Helffer, B., Martinez, A., Comparaison entre les diverses notions de résonances,
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Henri Poincaré 4, 739-756 (2002), Erratum: Ann. Henri Poincaré 8 (2007), 1425-1431
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