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Abstract: This paper presents an adaptive version of the Hill estimator
based on Lespki’s model selection method. This simple data-driven index
selection method is shown to satisfy an oracle inequality and is checked to
achieve the lower bound recently derived by Carpentier and Kim. In order
to establish the oracle inequality, we derive non-asymptotic variance bounds
and concentration inequalities for Hill estimators. These concentration in-
equalities are derived from Talagrand’s concentration inequality for smooth
functions of independent exponentially distributed random variables com-
bined with three tools of Extreme Value Theory: the quantile transform,
Karamata’s representation of slowly varying functions, and Rényi’s charac-
terisation of the order statistics of exponential samples. The performance
of this computationally and conceptually simple method is illustrated using
Monte-Carlo simulations.

60E15, 60G70, 62G30, 60G32.
Keywords and phrases: Hill estimator, adaptivity, Lepskis method, con-
centration inequalities, order statistics.

1. Introduction

The basic questions faced by Extreme Value Analysis consist in estimating the
probability of exceeding a threshold that is larger than the sample maximum and
estimating a quantile of an order that is larger than 1 minus the reciprocal of the
sample size, that is making inferences on regions that lie outside the support of
the empirical distribution. In order to face these challenges in a sensible frame-
work, Extreme Value Theory (EVT) assumes that the sampling distribution F
satisfies a regularity condition. Indeed, in heavy-tail analysis, the tail function
F = 1−F is supposed to be regularly varying that is, limτ→∞ F (τx)/F (τ) exists
for all x > 0. This amounts to assume the existence of some γ > 0 such that the
limit is x−1/γ for all x. In other words, if we define the excess distribution above
the threshold τ by its survival function: x 7→ F τ (x) = F (x)/F (τ) for x ≥ τ ,
then F is regularly varying if and only if Fτ converges weakly towards a Pareto
distribution. The sampling distribution F is then said to belong to the max-
domain of attraction of a Fréchet distribution with index γ > 0 (abbreviated in
F ∈ MDA(γ)) and γ is called the extreme value index.

The main impediment to large exceedance and large quantile estimation prob-
lems alluded above turns out to be the estimation of the extreme value index.
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S. Boucheron and M. Thomas/Adaptive Hill estimation 2

Since the inception of Extreme Value Analysis, many estimators have been de-
fined, analysed and implemented into software. Hill [1975] introduced a simple,
yet remarkable, collection of estimators: for k < n,

γ̂(k) =
1

k

k∑
i=1

ln
X(i)

X(k+1)
=

1

k

k∑
i=1

i ln
X(i)

X(i+1)

where X(1) ≥ . . . ≥ X(n) are the order statistics of the sample X1, . . . , Xn (the
non-increasing rearrangement of the sample).

An integer sequence (kn)n is said to be intermediate if limn→∞ kn =∞ while
limn→∞ kn/n = 0. It is well known that F belongs to MDA(γ) for some γ > 0 if
and only if, for all intermediate sequences (kn)n, γ̂(kn) converges in probability
towards γ [de Haan and Ferreira, 2006, Mason, 1982]. Under mildly stronger
conditions, it can be shown that

√
kn(γ̂(kn)−Eγ̂(kn)) is asymptotically Gaussian

with variance γ2. This suggests that, in order to minimise the quadratic risk
E[(γ̂(kn) − γ)2] or the absolute risk E |γ̂(kn)− γ|, an appropriate choice for kn
has to be made. If kn is too large, the Hill estimator γ̂(kn) suffers a large bias
and, if kn is too small, γ̂(kn) suffers erratic fluctuations. As all estimators of
the extreme value index face this dilemma [See Beirlant et al., 2004, de Haan
and Ferreira, 2006, Resnick, 2007, and references therein], during the last three
decades, a variety of data-driven selection methods for kn has been proposed in
the literature (See Hall and Weissman [1997], Hall and Welsh [1985], Danielsson
et al. [2001], Draisma et al. [1999], Drees and Kaufmann [1998], Drees et al.
[2000], Grama and Spokoiny [2008], Carpentier and Kim [2014a] to name a few).
A related but distinct problem is considered by Carpentier and Kim [2014b]:
constructing uniform and adaptive confidence intervals for the extreme value
index.

The rationale for investigating adaptive Hill estimation stems from compu-
tational simplicity and variance optimality of properly chosen Hill estimators
[Beirlant et al., 2006].

In this paper, we combine Talagrand’s concentration inequality for smooth
functions of independent exponentially distributed random variables (Theorem
2.15) with three traditional tools of EVT: the quantile transform, Karamata’s
representation for slowly varying functions, and Rényi’s characterisation of the
joint distribution of order statistics of exponential samples. This allows us to
establish concentration inequalities for the Hill process (

√
k(γ̂(k) − Eγ̂(k))k)

(Theorem 3.3, Propositions 3.9, 3.10 and Corollary 3.13) in Section 3.2. Then
in Section 3.3, we build on these concentration inequalities to analyse the per-
formance of a variant of Lepki’s rule defined in Sections 2.3 and 3.3: Theorem
3.14 describes an oracle inequality and Corollary 3.18 assesses the performance
of this simple selection rule under the assumption that∣∣∣F (x)x1/γ − C

∣∣∣ ≤ C ′xρ/γ
for some ρ < 0 and C,C ′ > 0. It reveals that the performance of Hill estimators
selected by Lepski’s method matches known lower bounds. Proofs are given in
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Section 4. Finally, in Section 5, we examine the performance of this resulting
adaptive Hill estimator for finite sample sizes using Monte-Carlo simulations.

2. Background, notations and tools

2.1. The Hill estimator as a smooth tail statistics

Even though it is possible and natural to characterise the fact that a distribution
function F belongs to the max-domain of attraction of a Fréchet distribution
with index γ > 0 by the regular variation property of F (limτ→∞ F (τx)/F (τ) =
x−1/γ), we will repeatedly use an equivalent characterisation based on the reg-
ular variation property of the associated quantile function. We first recall some
classical definitions.

If f is a non-decreasing function from (a, b) (where a and b may be infinite)
to (c, d), its generalised inverse f← : (c, d)→ (a, b) is defined by f←(y) = inf{x :
a < x < b, f(x) ≥ y} . The quantile function F← is the generalised inverse of
the distribution function F . The tail quantile function of F is a non-decreasing
function defined on (1,∞) by U = (1/(1− F ))←, or

U(t) = inf{x : F (x) ≥ 1− 1/t} = F←(1− 1/t) .

Quantile function plays a prominent role in stochastic analysis thanks to the
fact that if Z is uniformly distributed over [0, 1], F←(Z) is distributed according
to F . In this text, we use a variation of the quantile transform that fits EVT:
if E is exponentially distributed, then U(exp(E)) is distributed according to F .
Moreover, by the same argument, the order statistics X(1) ≥ . . . ≥ X(n) are
distributed as a monotone transformation of the order statistics Y(1) ≥ . . . Y(n)

of a sample of n independent standard exponential random variables,

(X(1), . . . , X(n))
d
=
(
U(eY(1)), . . . , U(eY(n))

)
.

Thanks to Rényi’s representation for order statistics of exponential samples,
agreeing on Y(n+1) = 0, the rescaled exponential spacings Y(1)−Y(2), . . . , i(Y(i)−
Y(i+1)), (n − 1)(Y(n−1) − Y(n)), nY(n) are independent and exponentially dis-
tributed.

The quantile transform and Rényi’s representation are complemented by
Karamata’s representation for slowly varying functions. Recall that a function
L is slowly varying at infinity if for all x > 0, limt→∞ L(tx)/L(t) = x0 = 1.
The von Mises condition specifies the form of Karamata’s representation [See
Resnick, 2007, Corollary 2.1] of the slowly varying component of U(t) (t−γU(t)).

Definition 2.1 (von Mises condition). A distribution function F belonging
to MDA(γ), γ > 0, satisfies the von Mises condition if there exist a constant
t0 ≥ 1, a measurable function η on (1,∞) and a constant c = U(t0)t−γ0 such
that for t ≥ t0

U(t) = ctγ exp

(∫ t

t0

η(s)

s
ds

)
with lims→∞ η(s) = 0. The function η is called the von Mises function.
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In the sequel, we assume that the sampling distribution F ∈ MDA(γ), γ > 0,
satisfies the von Mises condition with t0 = 1, von Mises function η and define
the non-increasing function η from [1,∞) to [0,∞) by η(t) = sups≥t |η(s)|.

Combining the quantile transformation, Rényi’s and Karamata’s representa-
tions, it is straightforward that under the von Mises condition, the sequence of
Hill estimators satisfies a distributional identity. It is distributed as a function
of the largest order statistics of a standard exponential sample. The next propo-
sition follows easily from the definition of the Hill estimator as a weighted sum
of log-spacings, as advocated in [Beirlant et al., 2004].

Proposition 2.2. The vector of Hill estimators (γ̂(k))k<n is distributed as the
random vector (

1

k

k∑
i=1

∫ Ei

0

(
γ + η(e

u
i +Y(i+1))

)
du

)
k<n

(2.3)

where (E1, . . . , En) are independent standard exponential random variables while,
for i ≤ n, Y(i) =

∑n
j=iEj/j is distributed like the ith order statistic of an n-

sample of the exponential distribution.

For a fixed k < n, a second distributional representation is available,

γ̂(k)
d
=

1

k

k∑
i=1

∫ Ei

0

(
γ + η(eu+Y(k+1))

)
du (2.4)

where (E1, . . . , Ek) and Y(k+1) are defined as in Proposition 2.2.
This second, simpler, distributional representation stresses the fact that, con-

ditionally on Y(k+1), γ̂(k) is distributed as a mixture of sums of independent
identically distributed random variables. Moreover, these independent random
variables are close to exponential random variables with scale γ. This distribu-
tional identity suggests that the variance of γ̂(k) scales like γ2/k, an intuition
that is corroborated by analysis, see Section 3.1.

The bias of γ̂(k) is connected with the von Mises function η by the next
formula

Eγ̂(k)− γ = E

[∫ ∞
0

e−vη
(
eY(k+1)ev

)
dv

]
= E

[∫ ∞
1

η
(
eY(k+1)v

)
v2

dv

]
.

Henceforth, let b be defined for t > 1 by

b(t) =

∫ ∞
1

η (tv)

v2
dv = t

∫ ∞
t

η (v)

v2
dv . (2.5)

The quantity b(t) is the bias of the Hill estimator γ̂(k) given F (X(k+1)) = 1/t.
The second expression for b shows that b is differentiable with respect to t (even
though η might be nowhere differentiable), and that

b′(t) =
b(t)− η(t)

t
.
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The von Mises function governs both the rate of convergence of U(tx)/U(t)
towards xγ , or equivalently of F (tx)/F (t) towards x−1/γ , and the rate of con-
vergence of |Eγ̂(k)− γ| towards 0.

In the sequel, we work on the probability space where the independent stan-
dard exponential random variables Ei, 1 ≤ i ≤ n are all defined, and therefore
consider the Hill estimators defined by Representation (2.3).

2.2. Frameworks

The difficulty in extreme value index estimation stems from the fact that, for any
collection of estimators, for any intermediate sequence (kn)n, and for any γ > 0,
there is a distribution function F ∈ MDA(γ) such that the bias |Eγ̂(kn) − γ|
decays at an arbitrarily slow rate. This has led authors to put conditions on the
rate of convergence of U(tx)/U(t) towards xγ as t tends to infinity while x > 0,
or equivalently on the rate of convergence of F (tx)/F (t) towards x−1/γ . These
conditions have then to be translated into conditions on the rate of decay of
the bias of estimators. As we focus on Hill estimators, the connection between
the rate of convergence of U(tx)/U(t) towards xγ and the rate of decay of the
bias is transparent and well-understood [Segers, 2002]: the theory of O-regular
variation provides an adequate setting for describing both rates of convergence
[Bingham et al., 1987]. In words, if a positive function g defined over [1,∞) is
such that for some α ∈ R, for all Λ > 1, lim supt supx∈[1,Λ] g(tx)/g(t) < ∞, g
is said to have bounded increase. If g has bounded increase, the class OΠg is
the class of measurable functions f on some interval [a,∞), a > 0, such that as
t→∞, f(tx)− f(t) = O(g(t)) for all x ≥ 1.

For example, the analysis carried out by Carpentier and Kim [2014a] rests
on the condition that, if F ∈ MDA(γ), for some C > 0, D 6= 0 and ρ < 0,∣∣∣∣ F (x)

x−1/γ
− C

∣∣∣∣ ≤ Dxρ/γ . (2.6)

This condition implies that ln(t−γU(t)) ∈ OΠg with g(t) = tρ [Segers, 2002,
p. 473]. Thus under the von Mises condition, Condition (2.6) implies that the
function

∫∞
t

(η(s)/s)ds belongs to OΠg with g(t) = tρ. Moreover, the Abelian

and Tauberian Theorems from [Segers, 2002] assert that
∣∣∫∞
t

(η(s)/s)ds
∣∣ ∈ OΠg

if and only if |Eγ̂(kn)− γ| = O(g(n/kn)) for any intermediate sequence (kn)n.
In this text, we are ready to assume that if F ∈ MDA(γ), then for some C > 0

and ρ < 0,

|Eγ̂(kn)− γ| ≤ C
(
n

kn

)ρ
.

However, we do not want to assume that U (or equivalently F ) satisfies a
so-called second-order regular variation property (t 7→ |x−γU(tx)/U(t) − 1| is
asymptotically equivalent to a ρ-regularly varying function where ρ < 0). By
[Segers, 2002], this would be equivalent to assuming that t 7→ |b(t)| is ρ-regularly
varying.

imsart-generic ver. 2011/11/15 file: adaptHill.tex date: March 18, 2015



S. Boucheron and M. Thomas/Adaptive Hill estimation 6

Indeed, assuming as in [Hall and Welsh, 1985] and several subsequent papers
that F satisfies

F (x) = Cx−1/γ
(

1 +Dxρ/γ + o(xρ/γ)
)

(2.7)

where C > 0, D 6= 0 are constants and ρ < 0, or equivalently [Csörgő, Deheuvels,
and Mason, 1985, Drees and Kaufmann, 1998] that U satisfies

U(t)=Cγtγ (1 + γDCρtρ + o(tρ))

makes the problem of extreme value index estimation easier (but not easy).
These conditions entail that, for any intermediate sequence (kn), the ratio
|E[γ̂(kn)−γ]|/(n/kn)ρ converges towards a finite limit as n tends to∞ [Beirlant
et al., 2004, de Haan and Ferreira, 2006, Segers, 2002], this makes the estima-
tion of the second-order parameter a very natural intermediate objective [See
for example Drees and Kaufmann, 1998].

2.3. Lepski’s method and adaptive tail index estimation

The necessity of developing data-driven index selection methods is illustrated
in Figure 1, which displays the estimated standardised root mean squared error
(rmse) of Hill estimators

E

[(
γ̂(k)

γ
− 1

)2
]1/2

as a function of k for four related sampling distributions which all satisfy the
second-order condition (2.7).

Under this second-order condition (2.7), Hall and Welsh proved that the
asymptotic mean squared error of the Hill estimator is minimal for sequences
(k∗n)n satisfying

k∗n ∼
(
C2|ρ|(1 + |ρ|)2

2D2|ρ|3

)1/(1+2|ρ|)

n2|ρ|/(1+2|ρ|) .

Since, C > 0, D 6= 0 and the second-order parameter ρ < 0 are usually unknown,
many authors have been interested in the construction of data-driven selection
procedure for kn under conditions such as (2.7), a great deal of ingenuity has
been dedicated to the estimation of the second-order parameters and to the use
of such estimates when estimating first order parameters.

As we do not want to assume a second-order condition such as (2.7), we resort
to Lepski’s method which is a general attempt to balance bias and variance.

Since its introduction [Lepski, 1991], this general method for model selec-
tion that has been proved to achieve adaptivity and provide one with oracle
inequalities in a variety of inferential contexts ranging from density estimation
to inverse problems and classification [Lepski, 1990, 1991, 1992, Lepski and
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Fig 1. Estimated standardised rmse as a function of k for samples of size 10000 from Stu-
dent’s distributions with different degrees of freedom ν = 1, 2, 4, 10. All four distributions
satisfy condition (2.7) with |ρ| = 2/ν. The increasing parts of the lines reflect the values of
ρ. rmse is estimated by averaging over 5000 Monte-Carlo simulations.

Tsybakov, 2000]. Very readable introductions to Lepski’s method and its con-
nections with penalised contrast methods can be found in [Birgé, 2001, Mathé,
2006]. In Extreme Value Theory, we are aware of three papers that explicitly
rely on this methodology: [Drees and Kaufmann, 1998], [Grama and Spokoiny,
2008] and [Carpentier and Kim, 2014a].

The selection rule analysed in the present paper (see Section 3.3 for a precise
definition) is a variant of the preliminary selection rule introduced in [Drees and
Kaufmann, 1998]

κn(rn) = min

{
k ∈ {2, . . . , n} : max

2≤i≤k

√
i|γ̂(i)− γ̂(k)| > rn

}
(2.8)

where (rn)n is a sequence of thresholds such that
√

ln lnn = o(rn) and rn =
o(
√
n), and γ̂(i) is the Hill estimator computed from the (i + 1) largest order

statistics. The definition of this “stopping time” is motivated by Lemma 1 from
[Drees and Kaufmann, 1998] which asserts that, under the von Mises condition,

max
2≤i≤kn

√
i|γ̂(i)− E [γ̂(i)] | = OP

(√
log log n

)
.

In words, this selection rule almost picks out the largest index k such that, for
all i smaller than k, γ̂(k) differs from γ̂(i) by a quantity that is not much larger
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than the typical fluctuations of γ̂(i). This index selection rule can be performed
graphically by interpreting an alternative Hill plot as shown on Figure 2 [See
Drees et al., 2000, Resnick, 2007, for a discussion on the merits of alt-Hill plots].

Under mild conditions on the sampling distribution, κn(rn) should be asymp-
totically equivalent to the deterministic sequence

κ̃n(rn) = min

{
k ∈ {2, . . . , n} : max

2≤i≤k

√
i |E [γ̂(i)− γ̂(k)]| > rn

}
.

1

101.5 102 102.5 103 103.5

k

H
ill

 e
st

im
at

es

Fig 2. Lepski’s method illustrated on a alt-Hill plot. The plain line describes the sequence
of Hill estimates as a function of index k computed on a pseudo-random sample of size
n = 10000 from Student distribution with 1 degree of freedom (Cauchy distribution). Hill
estimators are computed from the positive order statistics. The grey ribbon around the plain
line provides a graphic illustration of Lepski’s method. For a given value of i, the width of the
ribbon is 2rnγ̂(i)/

√
i. A point (k, γ̂(k)) on the plain line corresponds to an eligible index if

the horizontal segment between this point and the vertical axis lies inside the ribbon that is, if
for all i, 30 ≤ i < k, |γ̂(k)− γ̂(i)| ≤ rnγ̂(i)/

√
i. If rn were replaced by an appropriate quantile

of the Gaussian distribution, the grey ribbon would just represent the confidence tube that is
usually added on Hill plots. The triangle represents the selected index with rn =

√
2.1 ln lnn.

The cross represents the oracle index estimated from Monte-Carlo simulations, see Table 2.

The intuition behind the definition of κn(rn) is the following: if the bias is
increasing with index i, and if the bias suffered by γ̂(k) is smaller than the
typical fluctuations of γ̂(k), then the index k should be eligible that is, should
pass all the pairwise tests with high probability.

The goal of Drees and Kaufmann [1998] was not to investigate the perfor-
mance of the preliminary selection rule defined in Display (2.8) but to design

imsart-generic ver. 2011/11/15 file: adaptHill.tex date: March 18, 2015



S. Boucheron and M. Thomas/Adaptive Hill estimation 9

a selection rule κ̂n(rn), based on κn(rn), that would, under second-order con-
ditions, asymptotically mimic the optimal selection rule k∗n. Some of their in-
termediate results shed light on the behaviour of kn(rn) for a wide variety of
choices for rn. As they are relevant to our work, we will briefly review them.

Drees and Kaufmann [1998] characterise the asymptotic behaviours of κ̃n(rn)
and κ̂n(rn) when (rn) grows sufficiently fast that is,

√
ln lnn = o(rn) and rn =

o(
√
n). Indeed, Corollary 1 asserts that if |b(t)| ∼ Ctρ, then the sequence κ̃n(rn)

satisfies
κ̃n(rn)

k∗n
∼ cρr2/(1+2|ρ|)

n

where cρ is a constant depending on ρ, and that

κ̂n(rn)

κ̃n(rn)
−→
n→∞

1 in probability

so that

r−2/(1+2|ρ|)
n

κ̂n(rn)

k∗n
−→
n→∞

cρ in probability.

This suggests that using κ̂n(rn) instead of k∗n has a price of the order r
2/(1+2|ρ|)
n .

Not too surprisingly, Corollary 1 from [Drees and Kaufmann, 1998] implies
that the preliminary selection rule tends to favor smaller variance over reduced
bias.

Our goal, as in [Carpentier and Kim, 2014a, Grama and Spokoiny, 2008], is
to derive non-asymptotic risk bounds. We briefly review their approaches. Both
papers consider sequences of estimators γ̂(1), . . . , γ̂(k), . . . defined by thresholds
τ1 ≤ . . . ≤ τk ≤ . . .. For each i, the estimator γ̂(i) is computed from sample
points that exceed τi if there are any. For example, in [Carpentier and Kim,
2014a], τk = θk for some θ > 1 and 1/γ̂(k) = lnFn(τk) − lnFn(τk+1). Given
a sample, an estimator γ̂(k) is considered eligible, if for all i ≥ k such that
F (τi) is not too small, |γ̂(i)− γ̂(k)| is smaller than a random quantity that

is supposed to bound the typical fluctuations of γ̂(i). The selected index k̂
is the largest eligible index. In both papers, the rationale for working with
some special collection of estimators seems to be the ability to derive non-
asymptotic deviation inequalities for γ̂(k) either from exponential inequalities
for log-likelihood ratio statistics or from simple binomial tail inequalities such
as Bernstein’s inequality [See Boucheron et al., 2013, Section 2.8].

In models satisfying Condition (2.7), the estimators from [Grama and Spokoiny,
2008] achieve the optimal rate up to a log(n) factor. Carpentier and Kim [2014a]
prove that the risk of their data-driven estimator decays at the optimal rate

n|ρ|/(1+2|ρ|) up to a factor r
2|ρ|/(1+2|ρ|)
n = (ln lnn)|ρ|/(1+2|ρ|) in models satisfying

Condition (2.6).
We aim at achieving optimal risk bounds under Condition (2.6), using a

simple estimation method requiring almost no calibration effort and based on
mainstream extreme value index estimators. Before describing the keystone of
our approach in Section 2.5, we recall the recent lower risk bound for adaptive
extreme value index estimation.
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2.4. Lower bound

One of key results in [Carpentier and Kim, 2014a] is a lower bound on the accu-
racy of adaptive tail index estimation. This lower bound reveals that, just as for
estimating a density at a point [Lepski, 1991, 1992], as far as tail index estima-
tion is concerned, adaptivity has a price. Using Fano’s Lemma, and a Bayesian
game that extends cleanly in the frameworks of [Grama and Spokoiny, 2008]
and [Novak, 2014], Carpentier and Kim were able to prove the next minimax
lower bound.

Theorem 2.9. Let ρ0 < −1, and 0 ≤ v ≤ e/(1 + 2e). Then, for any tail index
estimator γ̂ and any sample size n such that M = blnnc > e/v, there exists a
probability distribution P such that

i) P ∈ MDA(γ) with γ > 0,
ii) P meets the von Mises condition with von Mises function η satisfying

η(t) ≤ γtρ

for some ρ0 ≤ ρ < 0,
iii)

P

{
|γ̂ − γ| ≥ Cρ

4
γ

(
v ln lnn

n

)|ρ|/(1+2|ρ|)
}
≥ 1

1 + 2e

and

EP

[
|γ̂ − γ|
γ

]
≥ Cρ

4(1 + 2e)

(
v ln lnn

n

)|ρ|/(1+2|ρ|)

,

with Cρ = 1− exp
(
− 1

2(1+2|ρ|)2

)
.

Using Birgé’s Lemma instead of Fano’s Lemma, we provide a simpler, shorter
proof of this theorem (Appendix D).

The lower rate of convergence provided by Theorem 2.9 is another incentive
to revisit the preliminary tail index estimator from [Drees and Kaufmann, 1998],
but, instead of using a sequence (rn)n of order larger than

√
ln lnn in order to

calibrate pairwise tests and ultimately to design estimators of the second-order
parameter (if there are any), it is worth investigating a minimal sequence where
rn is of order

√
ln lnn, and check whether the corresponding adaptive estimator

achieves the Carpentier-Kim lower bound (Theorem 2.9).
In this paper, we focus on rn of the order

√
ln lnn. The rationale for imposing

rn of the order
√

ln lnn can be understood by the fact that if lim sup rn/(γ
√

2 ln lnn) <
1, even if the sampling distribution is a pure Pareto distribution with shape pa-
rameter γ (F (x) = (x/τ)−1/γ for x ≥ τ > 0), the preliminary selection rule will,
with high probability, select a small value of k and thus pick out a suboptimal
estimator. This can be justified using results from [Darling and Erdös, 1956]
(See Appendix A for details).

Such an endeavour requires sharp probabilistic tools. They are the topic of
the next section.

imsart-generic ver. 2011/11/15 file: adaptHill.tex date: March 18, 2015



S. Boucheron and M. Thomas/Adaptive Hill estimation 11

2.5. Talagrand’s concentration phenomenon for products of
exponential distributions

Before introducing Talagrand’s Theorem, which will be the key tool of our in-
vestigation, we comment and motivate the use of concentration arguments in
Extreme Value Theory. Talagrand’s concentration phenomenon for products of
exponential distributions is one instance of a general phenomenon: concentra-
tion of measure in product spaces [Ledoux, 2001, Ledoux and Talagrand, 1991].
The phenomenon may be summarised in a simple quote: functions of indepen-
dent random variables that do not depend too much on any of them are almost
constant [Talagrand, 1996a].

This quote raises a first question: in which way are tail functionals (as used
in Extreme Value Theory) smooth functions of independent random variables?
We do not attempt here to revisit the asymptotic approach described by [Drees,
1998b] which equates smoothness with Hadamard differentiability. Our approach
is non-asymptotic and our conception of smoothness somewhat circular, smooth
functionals are these functionals for which we can obtain good concentration
inequalities.

The concentration approach helps to split the investigation in two steps: the
first step consists in bounding the fluctuations of the random variable under con-
cern around its median or its expectation, while the second step focuses on the
expectation. This approach has serioulsy simplified the investigation of suprema
of empirical processes and made the life of many statisticians easier [Koltchin-
skii, 2008, Massart, 2007, Talagrand, 1996b, 2005]. Up to our knowledge, the
impact of the concentration of measure phenomenon in Extreme Value Theory
has received little attention. To point out the potential uses of concentration in-
equalities in the field of Extreme Value Theory is one purpose of this paper. In
statistics, concentration inequalities have proved very useful when dealing with
adaptivity issues: sharp, non-asymptotic tail bounds can be combined with sim-
ple union bounds in order to obtain uniform guarantees of the risk of collection
of estimators. Using concentration inequalities to investigate adaptive choice of
the number of order statistics to be used in tail index estimation is a natural
thing to do.

Deriving authentic concentration inequalities for Hill estimators is not straight-
forward. Fortunately, the construction of such inequalities turns out to be pos-
sible thanks to general functional inequalities that hold for functions of inde-
pendent exponentially distributed random variables. We recall these inequalities
(Proposition 2.10 and Theorem 2.15) that have been largely overlooked in statis-
tics. A thorough and readable presentation of these inequalities can be found in
[Ledoux, 2001]. We start by the easiest result, a variance bound that pertains
to the family of Poincaré inequalities.

Proposition 2.10 (Poincaré inequality for exponentials, [Bobkov and Ledoux,
1997]). If f is a differentiable function over Rn, and Z = f(E1, . . . , En) where
E1, . . . , En are independent standard exponential random variables, then

Var(Z) ≤ 4E
[
‖∇f‖2

]
.

imsart-generic ver. 2011/11/15 file: adaptHill.tex date: March 18, 2015



S. Boucheron and M. Thomas/Adaptive Hill estimation 12

Remark 2.11. The constant 4 can not be improved.

The next corollary is stated in order to point the relevance of this Poincaré
inequality to the analysis of general order statistics and their functionals. Recall
that the hazard rate of an absolutely continuous probability distribution with
distribution F is: h = f/F where f and F = 1 − F are the density and the
survival function associated with F , respectively.

Corollary 2.12. Assume the distribution of X has a positive density, then the
kth order statistic X(k) satisfies

Var(X(k)) ≤ C
n∑
i=k

1

i2
E

[
1

h(X(k))2

]
≤ C

k

(
1 +

1

k

)
E

[
1

h(X(k))2

]
where C can be chosen as 4.

Remark 2.13. By Smirnov’s Lemma [de Haan and Ferreira, 2006], C can not be
smaller than 1. If the distribution of X has a non-decreasing hazard rate, the
factor of 4 can be improved into a factor 2 [Boucheron and Thomas, 2012].

Bobkov and Ledoux [1997], Maurey [1991], Talagrand [1991] show that smooth
functions of independent exponential random variables satisfy Bernstein type
concentration inequalities. The next result is extracted from the derivation of
Talagrand’s concentration phenomenon for product of exponential random vari-
ables in [Bobkov and Ledoux, 1997].

The definition of sub-gamma random variables will be used in the formulation
of the theorem and in many arguments.

Definition 2.14. A real-valued centered random variable X is said to be sub-
gamma on the right tail with variance factor v and scale parameter c if

ln EeλX ≤ λ2v

2(1− cλ)
for every λ such that 0 < λ < 1/c .

We denote the collection of such random variables by Γ+(v, c). Similarly, X is
said to be sub-gamma on the left tail with variance factor v and scale parameter
c if −X is sub-gamma on the right tail with variance factor v and tail parameter
c. We denote the collection of such random variables by Γ−(v, c).

If X − EX ∈ Γ+(v, c), then for all δ ∈ (0, 1), then with probability larger
than 1− δ,

X ≤ EX +
√

2v ln (1/δ) + c ln (1/δ) .

Theorem 2.15. If f is a differentiable function on Rn with maxi |∂if | <∞, and
Z = f(E1, . . . , En) where E1, . . . , En are n independent standard exponential
random variables. Let c < 1, then for all λ such that 0 ≤ λmaxi |∂if | ≤ c,

Ent
[
eλ(Z−EZ)

]
≤ 2λ2

1− c
E
[
eλ(Z−EZ)‖∇f‖2

]
.

Let v be the essential supremum of ‖∇f‖2, then Z is sub-gamma on both tails
with variance factor 4v and scale factor maxi |∂if |.
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Again, we illustrate the relevance of these versatile tools to the analysis of
general order statistics. This general theorem implies that if the sampling dis-
tribution has non-decreasing hazard rate, then the order statistics X(k) satisfy
Bernstein type inequalities [see Boucheron et al., 2013, Section 2.8] with variance
factor 4/kE

[
1/h(X(k))

2
]

(the Poincaré estimate of variance), and scale param-
eter (supx 1/h(x))/k. Starting back from the Efron-Stein-Steele inequality, the
authors derived a somewhat sharper inequality [Boucheron and Thomas, 2012].

Corollary 2.16. Assume the distribution function F has non-decreasing haz-
ard rate h that is, U ◦ exp is C1 and concave. Let Z = f(E1, . . . , En) =
(U ◦ exp) (

∑n
i=k Ei/i) be distributed as the kth order statistic of a sample dis-

tributed according to F .
Then Z is sub-gamma on both tails with variance factor

4/k (1 + 1/k) E[1/h(Z)2] and scale factor 1/(k infx h(x)).

This corollary describes in which way central, intermediate and extreme or-
der statistics can be portrayed as smooth functions of independent exponential
random variables. This possibility should not be taken for granted as it is non
trivial to capture in a non-asymptotic way the tail behaviour of maxima of in-
dependent Gaussians [Boucheron and Thomas, 2012, Chatterjee, 2014, Ledoux,
2001]. In the next section, we show in which way the Hill estimator can fit into
this picture.

3. Main results

In this section, the sampling distribution F is assumed to belong to MDA(γ)
with γ > 0 and to satisfy the von Mises condition (Definition 2.1) with von
Mises function η.

3.1. Bounding the variance of the Hill estimator

It is well known, that under the von Mises condition, if (kn)n is an intermediate
sequence, the sequence

√
kn (γ̂(kn)− Eγ̂(kn)) converges in distribution towards

N (0, γ2) suggesting that the variance of γ̂(kn) scales like γ2/kn [See Beirlant
et al., 2004, de Haan and Ferreira, 2006, Geluk et al., 1997, Resnick, 2007].

In this subsection, we will use the representation (2.4):

γ̂(k)
d
=

1

k

k∑
i=1

∫ Ei

0

(
γ + η(eu+Y(k+1))

)
du

Proposition 3.1 provides us with a handy upper bound on Var[γ̂(k)] − γ2/k
using the von Mises function.

Proposition 3.1. Let γ̂(k) be the Hill estimator computed from the (k + 1)
largest order statistics of an n-sample from F . Then,

−2γ

k
E
[
η
(
eY(k+1)

)]
≤ Var[γ̂(k)]− γ2

k
≤ 2γ

k
E
[
η
(
eY(k+1)

)]
+

5

k
E
[
η
(
eY(k+1)

)2]
.
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The next Abelian result might help in appreciating these variance bounds.

Proposition 3.2. Assuming that η is ρ-regular varying with ρ < 0, then for
any intermediate sequence (kn)n,

lim
n→∞

kn Var(γ̂(kn))− γ2

η(n/kn)
=

2γ

(1− ρ)2
.

We may now move to genuine concentration inequalities for the Hill estimator.

3.2. Concentration inequalities for the Hill estimators

The exponential representation (2.3) suggests that the Hill estimator γ̂(k) should
be approximately distributed according to a gamma(k, γ) distribution where k
is the shape parameter and γ the scale parameter. We expect the Hill estimators
to satisfy Bernstein type concentration inequalities that is, to be sub-gamma on
both tails with variance factors connected to the tail index γ and to the von
Mises function. Representation (2.3) actually suggests more. Following [Drees
and Kaufmann, 1998], we actually expect the sequence

√
k(γ̂(k) − Eγ̂(k)) to

behave like normalized partial sums of independent square integrable random
variables that is, we believe max2≤k≤n

√
k(γ̂(k) − Eγ̂(k)) to scale like

√
ln lnn

and to be sub-gamma on both tails. The purpose of this section is to meet these
expectations in a non-asymptotic way.

Proofs use the Markov property of order statistics: conditionally on the (J +
1)th order statistic, the first largest J order statistics are distributed as the
order statistics of a sample of size J of the excess distribution. They consist of
appropriate invokations of Talagrand’s concentration inequality (Theorem 2.15).
However, this theorem generally requires a uniform bound on the gradient of the
relevant function. When Hill estimators are analysed as functions of independent
exponential random variables, the partial derivatives depend on the points at
which the von Mises function is evaluated. In order to get interesting bounds,
it is worth conditioning on an intermediate order statistic.

Throughout this subsection, let ` be an integer larger than
√

ln log2 n and
J an integer not larger than n. As we use the exponential representation of
order statistics, besides Hill estimators, the random variables that appear in
the main statements are order statistics of exponential samples, Y(k) will denote
the kth order statistic of a standard exponential sample of size n (we agree on
Y(n+1) = 0).

Theorem 3.3, Propositions 3.9 and 3.10 complement each other in the fol-
lowing way. Theorem 3.3 is concerned with the supremum of the Hill process√
i
∣∣γ̂(i)− E

[
γ̂(i) | Y(k+1)

]∣∣ for ` ≤ i ≤ k. Note the use of random centering.
The components of this process are shown to be sub-gamma using Talagrand’s
inequality, and then chaining is used to control the maximum of the process.
Propositions 3.9 and 3.10 are concerned with conditional bias fluctuations, they
state that the fluctuations of conditional expectations |E[γ̂(i) | Y(k+1)]| are small
and even negligible with respect to the fluctuation of γ̂(i).
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The first theorem provides an exponential refinement of the variance bound
stated in Proposition 3.1. However, as announced, there is a price to pay, state-
ments hold conditionally on some order statistic.

In the sequel, let
ξn = c1

√
ln log2 n+ c′1,

where c1 may be chosen not larger than 4 and c′1 not larger than 16.

Theorem 3.3. Let T be a shorthand for exp(Y(J+1)). For some k, ` ≤ k ≤ J ,
let

Z = max
`≤i≤k

√
i
∣∣γ̂(i)− E

[
γ̂(i) | Y(k+1)

]∣∣ .
Then, conditionally on T ,

i) For ` ≤ i ≤ k, the random variable

√
i (γ̂(i)− E[γ̂(i) | T ])

is sub-gamma on both tails with variance factor 4 (γ + 2η (T ))
2

and scale
factor (γ + η (T )) /

√
i.

ii) The random variable Z is sub-gamma on both tails with variance factor
4(γ + 2η(T ))2 and scale factor (γ + 2η(T ))/` and

E [Z | T ] ≤ ξn (γ + 2η(T )) . (3.4)

Remark 3.5. If F is a pure Pareto distribution with shape parameter γ >
0, then kγ̂(k)/γ is distributed according to a gamma distribution with shape
parameter k and scale parameter 1. Tight and well-known tail bounds for gamma
distributed random variables assert that

P

{
|γ̂(k)− E [γ̂(k)]| ≥ γ√

k

(√
2 ln (2/δ) +

ln (2/δ)√
k

)}
≤ 2δ .

Remark 3.6. If we choose J = n, all three statements hold unconditionally,
but the variance factor may substantially exceed the upper bounds described in
Proposition 3.1. Lemma 1 from [Drees and Kaufmann, 1998] reads as follows

max
2≤i≤n

√
i |γ̂(i)− Eγ̂(i)| = OP

(√
ln lnn

)
.

The second and third statements in Theorem 3.3 provide a non-asymptotic
counterpart to this lemma:

E

[
max

2≤i≤n

√
i |γ̂(i)− Eγ̂(i)|

]
≤
(
c1
√

2 ln log2 n+ c′1

)
(γ + 2η(1)) ,

while the random variable in the expectation is sub-gamma.

Remark 3.7. Thanks to the Markov property, Statement i) reads as

P

{
|Z − E[Z | T ]| ≥ (γ + 2η(T ))

(√
8 ln (2/δ) +

ln (2/δ)

`

)}
≤ δ
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where 0 < δ < 1/2. Combining Statements ii) and iii), we also get

P

{
Z ≥ (γ + 2η(T ))

(
ξn +

√
8 ln (2/δ) +

ln (2/δ)

`

)}
≤ δ .

Remark 3.8. The reader may wonder whether resorting to the exponential rep-
resentation and usual Chernoff bounding would not provide a simpler argument.
The straightforward approach leads to the following conditional bound on the
logarithmic moment generating function,

ln E
[
exp

(
λ
(
γ̂(k)− E[γ̂(k) | Y(k+1)]

))
| Y(k+1)

]
≤

(
γ + η(eY(k+1))

)2
2k
(
1− λ(γ + η(eY(k+1)))

) + λ
(
η(eY(k+1))− b

(
eY(k+1)

))
.

A similar statement holds for the lower tail. This leads to exponential bounds
for deviation of the Hill estimator above E[γ̂(k) | Y(k+1)]+η(eY(k+1))−b

(
eY(k+1)

)
that is, to control deviations of the Hill estimator above its expectation plus a
term that may be of the order of magnitude of the bias.

Attempts to rewrite γ̂(k)−E[γ̂(k) | Y(k+1)] as a sum of martingale increments
E[γ̂(k) | Y(i)] − E[γ̂(k) | Y(i+1)] for 1 ≤ i ≤ k and to exhibit an exponential
supermartingale met the same impediments.

At the expense of inflating the variance factor, Theorem 2.15 provides a
genuine (conditional) concentration inequality for Hill estimators. As we will
deal with values of k for which bias exceeds the typical order of magnitudes of
fluctations, this is relevant to our purpose.

The next propositions are concerned with the fluctuations of the conditional
bias of Hill estimators. In both propositions, J satisfies ` ≤ k ≤ J ≤ n, and
again T = exp

(
Y(J+1)

)
.

Proposition 3.9. For all 1 ≤ i ≤ k, conditionally on T ,

E[γ̂(i) | Y(k+1)]− E[γ̂(i)]

is sub-gamma on both tails with variance factor at most 16η(T )2/k and scale
factor 2η(T )/k.

The last proposition deals with the maximum of centered conditional biases.
The collection of centered conditional biases does not behave like partial sums.

Proposition 3.10. Let the random variable Z be defined by

Z = max
`≤i≤k

∣∣E[γ̂(i) | Y(k+1)]− E[γ̂(i)]
∣∣ .

Then,

i) Conditionally on T , Z is sub-gamma with variance factor 16η(T )2/k and
scale factor 2η(T )/k.
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ii)

EZ ≤ 4

√
E [η(T )2]

k
.

Remark 3.11. Statements i) and ii) in Proposition 3.10 can be summarized by
the following inequality. For any 0 < δ < 1/2,

P

{
Z ≥ 4η(1)√

k

(
1 +

√
2 ln (2/δ) +

ln (2/δ)

2
√
k

)}
≤ δ . (3.12)

Combining Theorem 3.3, Propositions 3.9 and 3.10 leads to another non-
asymptotic perspective on Lemma 1 from [Drees and Kaufmann, 1998].

Corollary 3.13. Let k be such that ` ≤ k ≤ n and let T = exp(Y(k+1)), then

E

[
max
`≤i≤k

√
i |γ̂(i)− Eγ̂(i)|

]
≤ ξn (γ + 2Eη (T )) + 4

√
E
[
η (T )

2
]
.

For 0 < δ < 1/3, with probability larger than 1− 3δ,

max
`≤i≤k

√
i |γ̂(i)− Eγ̂(i)|

≤ ξn(γ + 2η(n/k′)) + 4
√

E [η(T )2]

+2 (γ + 2η(n/k′) + 2η(1))
√

2 ln (2/δ)

+

(
(γ + 2η(n/k′))

`
+

2η(1)√
k

)
ln (2/δ)

where k′ = k + ln(1/δ)
2 .

3.3. Adaptive Hill estimation

We are now able to investigate the variant of the selection rule defined by (2.8)
[Drees and Kaufmann, 1998] with rn = c2

√
ln lnn where c2 is a constant not

smaller than
√

2.
The deterministic sequence of indices (k̃n(rn)) is defined by:

k̃n(rn) = min

{
k ∈ {c3 lnn, . . . , n} : |E[γ̂(k)− γ]| > γrn√

k

}
− 1 .

and the sequence (k̃n(1))n is defined by

k̃n(1) = min

{
k ∈ {c3 lnn, . . . , n} : |E[γ̂(k)− γ]| > γ√

k

}
− 1 .

Let 0 < δ < 1/2. The index k̂n is selected according to the following rule:

k̂n = min

{
k ∈ {c3 lnn, . . . , n} and ∃i ∈ {`, . . . , k} , |γ̂(i)− γ̂(k)| > rn(δ)γ̂(i)√

i

}
−1
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where c3 is a constant larger than 60 and rn(δ) = 8
√

2 ln ((2/δ) log2 n). The tail

index estimator is γ̂(k̂n).
Note that

k̃n(rn) = min

{
k ∈ {c3 lnn, . . . , n} : max

c3 lnn≤i≤k

√
i
|E[γ̂(i)− γ]|

γ
> rn

}
− 1 .

while

k̃n(rn) = min

{
k ∈ {c3 lnn, . . . , n} : max

c3 lnn≤i≤k

√
i
|E[γ̂(i)− γ]|

γ
> 1

}
− 1 .

Thus, k̂n is an empirical version of k̃n(rn).
As tail adaptivity has a price (see Theorem 2.9), the ratio between the risk

of the would-be adaptive estimator γ̂(k̂n) and the risk of γ̂(k̃n(1)) cannot be
upper bounded by a constant factor, let alone by a factor close to 1. This is why
in the next theorem, we compare the risk of γ̂(k̂n) with the risk of γ̂(k̃n).

In the sequel, k̃n stands for k̃n(rn). If the context is not clear, we specify

k̃n(1) or k̃n(rn). Recall that

ξn = c1
√

ln log2 n+ c′1 with c1 ≤ 4 and c′1 ≤ 16.

The next theorem describes a non-asymptotic risk bound for γ̂(k̂n).

Theorem 3.14. Assume the sampling distribution F ∈ MDA(γ), γ > 0 satisfies
the von Mises condition with von Mises function η, and η(t) = sups≥t |η(s)|.

Assume that n is large enough so that

i) η(1) < ξnγ,

ii) η

(
n

k̃n+
ln(1/δ)

2

)
< γ/4,

With probability larger than 1− 3δ,∣∣∣γ − γ̂(k̂n)
∣∣∣ ≤ ∣∣∣γ − γ̂(k̃n)

∣∣∣ (1 + rn(δ)√
k̃n

)
+ rn(δ)√

k̃n
γ .

With probability larger than 1− 4δ,∣∣∣γ̂(k̂n)− γ
∣∣∣ ≤ 2rn(δ)√

k̃n
γ (1 + α(δ, n)) , (3.15)

where

α(δ, n) ≤ 3

16
√

2

√
ln (2/δ)

ln (2/δ log2 n)
+

3

16
√

2c3

ln (2/δ)√
lnn

√
ln (2/δ log2 n)

+
3

2
√

2c3

√
ln (2/δ)

lnn
+

3

2c3

ln (2/δ)

lnn
.
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Remark 3.16. For 0 < δ < 1/2,

α(δ, n) = o(1) as n→∞ .

Remark 3.17. If we assume that the bias b is ρ-regularly varying, then elab-
orating on Proposition 1 from [Drees and Kaufmann, 1998], the oracle index

sequence (k∗n)n and the sequence (k̃n(1))n are connected by

lim
n

k̃n(1)

k∗n
= (2|ρ|)1/(1+2|ρ|)

and their quadratic risk are related by

lim
n

E[(γ − γ̂(k̃n(1)))2]

E[(γ − γ̂(k∗n))2]
=

2

2|ρ|+ 1
(2|ρ|)2|ρ|/(1+2|ρ|) .

Thus if the bias is ρ-regularly varying, Theorem 3.14 provides us with a connec-
tion between the performance of the simple selection rule and the performance
of the (asymptotically) optimal choice.

The next corollary upper bounds the risk of the preliminary estimator when
we just have an upper bound on the bias.

Corollary 3.18. Assume that for some C > 0 and ρ < 0, for all n, k,∣∣∣γ − Eγ̂(k)
∣∣∣ ≤ C (n

k

)ρ
,

then, there exists a constant κδ,ρ depending on δ and ρ such that, with probability
larger than 1− 4δ,

∣∣∣γ̂(k̂n)− γ
∣∣∣ ≤ κδ,ρ

(
γ2 ln ((2/δ) lnn)

n

)|ρ|/(1+2|ρ|)

(1 + α(δ, n)) .

Under the assumption that the bias of the Hill estimators is upper bounded
by a power function, the performance of the data-driven estimator γ̂(k̂n) meets
the information-theoretic lower bound of Theorem 2.9.

4. Proofs

4.1. Proof of Proposition 2.2

This proposition is a straightforward consequence of Rényi’s representation of
order statistics of standard exponential samples.

As F belongs to MDA(γ) and meets the von Mises condition, there exists a
function η on (1,∞) with limx→∞ η(x) = 0 such that

U(x) = cxγ exp

(∫ x

1

η(s)

s
ds

)
,
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and

U(ey) = c exp

(∫ y

0

(γ + η(eu))du

)
.

Then,

γ̂(k)
d
=

1

k

k∑
i=1

i
logU

(
eY(i)

)
logU

(
eY(i+1)

)
d
=

1

k

k∑
i=1

i

∫ Y(i)

Y(i+1)

(γ + η(eu))du

d
=

1

k

k∑
i=1

i

∫ Ei/i

0

(γ + η(eu+Y(i+1)))du

d
=

1

k

k∑
i=1

∫ Ei

0

(γ + η(e
u
i +Y(i+1)))du .

4.2. Proof of Proposition 3.1

Let Z = kγ̂(k). By the Pythagorean relation,

Var(Z) = E
[
Var

(
Z | Y(k+1)

)]
+ Var

(
E[Z | Y(k+1)]

)
.

Representation (2.4) asserts that, conditionally on Y(k+1), Z is distributed as a
sum of independent, exponentially distributed random variables. Let E be an
exponentially distributed random variable.

Var
(
Z | Y(k+1) = y

)
= kVar

(
γE +

∫ E

0

η(eu+y)du

)
= kγ2 + 2kγ Cov

(
E,

∫ E

0

η(eu+y)du

)
+ Var

(∫ E

0

η(eu+y)du

)
≤ kγ2 + 2kγη(ey) + k (η (ey))

2
,

where we have used the Cauchy-Schwarz inequality and Var
(∫ E

0
η(ey+u)du

)
≤

η(ey)2. Taking expectation with respect to Y(k+1) leads to

E
[
Var

(
Z | Y(k+1)

)]
≤ kγ2 + 2kγE

[
η
(
eY(k+1)

)]
+ kE

[
η
(
eY(k+1)

)2]
.

The last term in the Pythagorean decomposition is also handled using elemen-
tary arguments.

E[Z | Y(k+1)]− EZ = k

∫ ∞
0

e−u
(
η
(
eu+Y(k+1)

)
− E

[
η
(
eu+Y(k+1)

)])
du .
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As Y(k+1) is a function of independent exponential random variables (Y(k+1) =∑n
i=k+1Ei/i), the variance of E[Z | Y(k+1)] may be upper bounded using Poincaré

inequality (Proposition 2.10)

Var
(
E[Z | Y(k+1)]

)
≤ 4kE

[
η
(
eY(k+1)

)2]
.

In order to derive the lower bound, we first observe that

Var(Z) ≥ E
[
Var

(
Z | Y(k+1)

)]
.

Now, using Cauchy-Schwarz inequality again

Var
(
Z | Y(k+1) = y

)
≥ kγ2 − 2kγ

∣∣∣∣Cov
(
E,

∫ E

0

η(eu+y)du
)∣∣∣∣

≥ kγ2 − 2kγ

(
Var

(∫ E

0

η(eu+y)du

))1/2

≥ kγ2 − 2kγη(ey) .

4.3. Proof of Theorem 3.3

In the proofs of Theorem 3.3 and Propositon 3.10, we will use the next maximal
inequality.

Proposition 4.1. [Boucheron et al., 2013, Corollary 2.6] Let Z1, . . . , ZN be
real-valued random variables belonging to Γ+(v, c). Then

E

[
max

i=1,...,N
Zi

]
≤
√

2v logN + c logN .

Proofs follow a common pattern. In order to check that some random vari-
able is sub-gamma, we rely on its representation as a function of independent
exponential variables and compute partial derivatives, derive convenient upper
bounds on the squared Euclidean norm and the supremum norm of the gradient
and then invoke Theorem 2.15.

At some point, we will use the next corollary of Theorem 2.15.

Corollary 4.2. If f is an almost everywhere differentiable function on R with
uniformly bounded derivative f ′, then f(Y(k+1)) is sub-gamma with variance
factor 4‖f ′‖2∞/k and scale factor ‖f ′‖∞/k.

Proof of Theorem 3.3. We start from the exponential representation of Hill es-
timators (Proposition 2.2) and represent all γ̂(i) as functions of independent
random variables E1, . . . , Ek, Y(k+1) where the Ej , 1 ≤ j ≤ k are standard ex-
ponentially distributed and Y(k+1) is distributed like the (k+ 1)th largest order
statistic of an n-sample of the standard exponential distribution.
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iγ̂(i) =

i∑
j=1

∫ Ej

0

(
γ + η(e

u
j +Y(j+1))

)
du

=

i∑
j=1

∫ Ej

0

(
γ + η(e

u
j +
∑k

m=j+1

Em
m +Y(k+1))

)
du .

Let i′ be such that 0 ≤ i′ < i, agree on γ̂(0) = 0. Then,

iγ̂(i)− i′γ̂(i′) =

i∑
j=i′+1

∫ Ej

0

(γ + η(e
u
j +
∑k

m=j+1

Em
m +Y(k+1)))du .

Letting

g(xi′+1, . . . , xk) =

i∑
j=i′+1

∫ xj

0

(γ + η(e
u
j +
∑k

m=j+1

xm
m +Y(k+1)))du ,

a few lines of computations lead to

∂jg =


0 for j ≤ i′

γ + 1
j

∑j
m=i′+1 η(eY(m)) for i′ < j ≤ i

1
j

∑i
m=i′+1 η(eY(m)) for i < j ≤ k

which entails that

|∂jg| ≤

{
γ + η(eY(J+1)) for i′ < j ≤ i
i−i′
j η(eY(J+1)) for i < j ≤ k .

Recalling that T = exp
(
Y(J+1)

)
, this can be summarised by∣∣∣∣ ∂g∂xj
∣∣∣∣ ≤ γ + η(T )

and

k∑
j=1

∣∣∣∣ ∂g∂xj
∣∣∣∣2 ≤ (i− i′) (γ + 2η(T ))

2
.

Theorem 2.15 now allows us to establish that, conditionally on T , the centered
version of iγ̂(i) − i′γ̂(i′) is sub-gamma on both tails with variance factor 4|i −
i′|(γ + 2η(T ))2 and scale factor (γ + η(T )). Using Theorem 2.15 conditionally
on T , and choosing i′ = 0,

P

{
|γ̂(i)− E [γ̂(i) | T ]| ≥ γ + 2η (T )√

i

(√
8s+

s√
i

)
| T
}
≤ 2e−s .
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Taking expectation on both sides, this implies that

P

{
|γ̂(i)− E [γ̂(i) | T ]| ≥ γ + 2η (T )√

i

(√
8s+

s√
i

)}
≤ 2e−s .

The proof of the upper bound on E[Z | T ] in Statement ii) from Theorem 3.3
relies on standard chaining techniques from the theory of empirical processes
and uses repeatedly the concentration Theorem 2.15 for smooth functions of
independent exponential random variables and the maximal inequality for sub-
gamma random variables (Proposition 4.1).

Recall that
Z = max

`≤i≤k

√
i
∣∣γ̂(i)− E

[
γ̂(i) | Y(k+1)

]∣∣ .
As it is commonplace in the analysis of normalized empirical processes [See
Giné and Koltchinskii, 2006, Massart, 2007, van de Geer, 2000, and references
therein], we peel the index set over which the maximum is computed.

Let Ln = {blog2(`)c, . . . , blog2(k)c}. For all j ∈ Ln, let Sj = {` ∨ 2j , . . . , k ∧
2j+1 − 1} and define Zj as

Zj = max
i∈Sj

√
i
∣∣γ̂(i)− E

[
γ̂(i) | Y(k+1)

]∣∣ .
Then,

E[Z | Y(k+1)] = E[max
j∈Ln

Zj | Y(k+1)]]

≤ E[max
j∈Ln

(Zj − E[Zj | Y(k+1)]) | Y(k+1)]] + max
j∈Ln

E[Zj | Y(k+1)]] .

We now derive upper bounds on both summands by resorting to the maximum
inequality for sub-gamma random variables (Proposition 4.1). We first bound
E[Zj | Y(k+1)] for j ∈ Ln.

Fix j ∈ Ln,

max
i∈Sj

√
i
∣∣γ̂(i)− E[γ̂(i) | Y(k+1)]

∣∣ ≤ 1

2j/2
max
i∈Sj

i
∣∣γ̂(i)− E[γ̂(i) | Y(k+1)]

∣∣ .
In order to alleviate notation, let W (i) = i

(
γ̂(i)− E[γ̂(i) | Y(k+1)]

)
for i ∈ Sj .

For i ∈ Sj , let

i = 2j +

i∑
m=1

bm2j−m where bm ∈ {0, 1}

be the binary expansion of i. Then, for h ∈ {0, . . . , j}, let πh(i) be defined by

πh(i) = 2j +

h∑
m=1

bm2j−m

so that πj(i) = i, π0(i) = 2j and 0 ≤ πh+1(i)− πh(i) ≤ 2j−h−1.
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Using that W (π0(i)) does not depend on i and that E
[
W (π0(i)) | Y(k+1)

]
= 0,

E

[
max
i∈Sj

i
(
γ̂(i)− E

[
γ̂(i) | Y(k+1)

])
| Y(k+1)

]
= E

[
max
i∈Sj

W (i) | Y(k+1)

]
= E

[
max
i∈Sj

W (πj(i))−W (π0(i)) | Y(k+1)

]
= E

[
max
i∈Sj

j−1∑
h=0

(W (πh+1(i))−W (πh(i))) | Y(k+1)

]

≤
j−1∑
h=0

E

[
max
i∈Sj

(W (πh+1(i))−W (πh(i))) | Y(k+1)

]
.

Now for each h ∈ {0, . . . , j−1}, the maximum is taken over 2h random variables
which are sub-gamma with variance factor 4 × 2j−h−1(γ + 2η(T ))2 and scale
factor (γ + η(T )). By Proposition 4.1,

E

[
max
i∈Sj

i
(
γ̂(i)− E

[
γ̂(i) | Y(k+1)

])
| Y(k+1)

]
≤

j−1∑
h=0

(
(γ + 2η(T ))

√
8h2(j−h−1) ln 2 + (γ + η(T ))h ln 2

)
≤ 8 (γ + 2η(T ))2j/2 .

So that for all j ∈ Ln,

E

[
max
i∈Sj

√
i(γ̂(i)− E

[
γ̂(i) | Y(k+1)

]
) | Y(k+1)

]
≤ 8(γ + 2η(T ))

and
E[Zj | Y(k+1)] ≤ 16(γ + 2η(T )) .

In order to prove Statement iii), we check that for each j ∈ Ln, Zj is sub-

gamma on the right-tail with variance factor at most 4 (γ + 2η(T ))
2

and scale
factor not larger than (γ + 2η(T )) /`. Under the von Mises Condition (2.1),
the sampling distribution is absolutely continuous with respect to Lebesgue
measure. For almost every sample, the maximum defining Zj is attained at a
single index i ∈ Sj . Starting again from the exponential representation, and
repeating the computation of partial derivatives, we obtain the desired bounds.

By Proposition 4.1,

E

[
max
j∈Ln

(Zj − E[Zj | Y(k+1)]) | Y(k+1)

]
≤

(√
8 ln |Ln|+

ln |Ln|
`

)
(γ + 2η(T ))

≤ 6(
√

ln |Ln| (γ + 2η(T )) .

Combining the different bounds leads to Inequality (3.4).
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4.4. Proof of Proposition 3.9

Adopting again the exponential representation, E
[
γ̂(i) | Y(k+1)

]
is an Y(k+1)-

measurable random variable, say f(Y(k+1)).

As a function f of Y(k+1) = y, the conditional expectation E
[
γ̂(i) | Y(k+1)

]
reads as

f(y) =
1

i

i∑
j=1

∫
· · ·
∫

[0,∞)

e
−
∑k

m=j
umη

(
e
y+
∑k

m=j

um
m

)
duj . . . duk .

Its derivative with respect to y is readily computed, and after integration by
parts and handling a telescoping sum, it reads as

f ′(y)

=
1

i

i∑
j=1

∫
· · ·
∫

[0,∞)

e
−
∑k

m=j
um

(
η

(
e
y+
∑k

m=j

um
m

)

−η
(

e
y+
∑k

m=j+1

um
m

))
duj . . . duk .

A conservative upper-bound on |f ′(y)| is 2η(eY(k+1)) which is upper bounded by
2η(T ). The statement of the proposition then follows from Proposition 4.2.

A byproduct of the proof is the next variance bound, for i ≤ k,

Var
(
E[γ̂(i) | Y(k+1)] | T

)
≤ 16

k
E
[
η
(
eY(k+1)

)2 | T] .
4.5. Proof of Proposition 3.10

In the proof, ∆i denotes the spacing Y(i) − Y(k+1), E∆i
the expectation with

respect to ∆i, Y
′
(k+1) an independent copy of Y(k+1), and E′ the expectation

with respect to Y ′(k+1). We will also use the next lemma.

Lemma 4.3. Let X be a non-negative random variable, and a, b ∈ [0,∞], then

E

[
eX

∣∣∣∣∣
∫ eX+b

eX+a

η(v)

v2
dv

∣∣∣∣∣
]
≤ η

(
ea∧b

) ∣∣e−a − e−b
∣∣ .

Let
Z = max

`≤i≤k

∣∣E[γ̂(i) | Y(k+1)]− E[γ̂(i)]
∣∣
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and recall that b(t) = t
∫∞
t
η(v)/v2dv. Then∣∣E[γ̂(i) | Y(k+1)]− E[γ̂(i)]

∣∣
=

∣∣E[b
(
eY(i+1)

)
| Y(k+1)]− E[b

(
eY(i+1)

)
]
∣∣

=

∣∣∣∣eY(k+1)E∆i

[
e∆i

∫ ∞
e
∆i+Y(k+1)

η(v)
v2 dv

]
−E′

[
eY
′
(k+1)E∆i

[
e∆i

∫ ∞
e
∆i+Y

′
(k+1)

η(v)
v2 dv

]]∣∣∣∣
≤

∣∣∣∣E′ [(eY(k+1) − eY
′
(k+1)

)
E∆i

[
e∆i

∫ ∞
e
∆i+Y(k+1)

η(v)
v2 dv

]]∣∣∣∣
+

∣∣∣∣∣∣E′
eY

′
(k+1)E∆i

e∆i

∫ e
∆i+Y

′
(k+1)

e
∆i+Y(k+1)

η(v)
v2 dv

∣∣∣∣∣∣ .
The expectation of Z is thus upper bounded by the following sum

EZ ≤ E

[
max
`≤i≤k

∣∣∣∣E′ [(eY(k+1) − eY
′
(k+1)

)
E∆i

[
e∆i

∫ ∞
e
∆i+Y(k+1)

η(v)
v2 dv

]]∣∣∣∣]︸ ︷︷ ︸
:=(i)

+ E

max
`≤i≤k

∣∣∣∣∣∣E′
eY

′
(k+1)E∆i

e∆i

∫ e
∆i+Y

′
(k+1)

e
∆i+Y(k+1)

η(v)
v2 dv

∣∣∣∣∣∣


︸ ︷︷ ︸
:=(ii)

.

In the sequel, we use twice the next upper bound

E

[(
1− eY

′
(k+1)−Y(k+1)

)2
]
≤ 3

k
. (4.4)

By Lemma 4.3,

(i) ≤ E

[
max
`≤i≤k

E′
[∣∣∣eY(k+1) − eY

′
(k+1)

∣∣∣E∆i

[∣∣∣∣e∆i

∫ ∞
e
∆i+Y(k+1)

η(v)
v2 dv

∣∣∣∣]]]
≤ E

[
max
`≤i≤k

E′
[∣∣∣eY(k+1) − eY

′
(k+1)

∣∣∣× η (eY(k+1)
)

e−Y(k+1)

]]
= E

[
η(eY(k+1))

∣∣∣1− eY
′
(k+1)−Y(k+1)

∣∣∣]
≤

√
E
[
η(eY(k+1))2

]√
E

[∣∣∣1− e
Y ′

(k+1)
−Y(k+1)

∣∣∣2]
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and

(ii) ≤ E

max
`≤i≤k

E′

eY
′
(k+1)E∆i

∣∣∣∣∣∣e∆i

∫ e
∆i+Y

′
(k+1)

e
∆i+Y(k+1)

η(v)
v2 dv

∣∣∣∣∣∣


≤ E
[
eY
′
(k+1)η(eY(k+1)∧Y ′(k+1))

∣∣∣e−Y(k+1) − e−Y
′
(k+1)

∣∣∣]
= E

[
η(eY(k+1)∧Y ′(k+1))

∣∣∣eY ′(k+1)−Y(k+1) − 1
∣∣∣]

≤
√

E
[
η(eY(k+1))2

]√
E

[∣∣∣1− e
Y ′

(k+1)
−Y(k+1)

∣∣∣2] .
Finally, thanks to Inequality (4.4),

EZ ≤
2C

√
E
[
η(e

Y(k+1)∧Y ′(k+1))2
]

√
k

where the constant C can be chosen not larger than 3.

4.6. Proof of Corollary 3.13

We first check that, with probability larger than 1 − δ, Y(k+1) ≥ n/k′ where
k′ = k + ln(δ)/2. Starting from the proof of Proposition 4.3 from [Boucheron
and Thomas, 2012] and recalling that arsinh(x) = ln(x+

√
1 + x2), a few lines of

computation yields that, with probability larger than 1−δ, for ln 2 ≤ z ≤ ln
(
n
k

)
,

P
{

exp
(
Y(k+1)

)
≥ n

k
e−z
}
≥ 1− exp

(
−k(ez − 1)2

2ez

)
.

Solving

δ = exp

(
−k(ez − 1)2

2ez

)
leads to

z = 2 arsinh

(√
ln (1/δ)

2k

)
= 2 ln

(√
ln (1/δ)

2k
+

√
1 +

ln(1/δ)

2k

)
,

so that

ez ≤ 1 +
ln (1/δ)

2k
.

Now,

max
`≤i≤k

√
i |γ̂(i)− Eγ̂(i)|

≤ max
`≤i≤k

√
i
∣∣γ̂(i)− E[γ̂(i) | Y(k+1)]

∣∣+ max
`≤i≤k

√
i
∣∣E[γ̂(i)]− E[γ̂(i) | Y(k+1)]

∣∣ .
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By Theorem 3.3, with probability 1− 2δ,

max
`≤i≤k

√
i
∣∣γ̂(i)− E[γ̂(i) | Y(k+1)]

∣∣ ≤ (γ+2η(n/k′))

(
ξn +

√
8 ln (2/δ) +

ln (2/δ)

`

)
.

Then, by Proposition 3.10, with probability larger than 1− δ,

max
`≤i≤k

√
i
∣∣E[γ̂(i)]− E[γ̂(i) | Y(k+1)]

∣∣ ≤ 4
√

E
[
η(eY(k+1))2

]
+2η(1)

(
2
√

2 ln (2/δ) +
ln (2/δ)√

k

)
.

Combining all tail bounds leads to

max
`≤i≤k

√
i |γ̂(i)− Eγ̂(i)|

≤ (γ + 2η(n/k′))

(
ξn +

√
8 ln (2/δ) +

ln (2/δ)

`

)
+4
√

E
[
η(eY(k+1))2

]
+ +2η(1)

(
2
√

2 ln (2/δ) +
ln (2/δ)√

k

)
≤ ξn(γ + 2η(n/k′)) + 4

√
E
[
η(eY(k+1))2

]
+ 2(γ + 2η(n/k′) + 2η(1))

√
2 ln (2/δ)

+

(
(γ + 2η(n/k′))

`
+
η(1)√
k

)
ln (2/δ)

with probability larger than 1− 3δ.

4.7. Proof of Theorem 3.14

Throughout this proof, let

Tn = exp
(
Y

(̃kn+1)

)
ξn = c1

√
ln log2 n+ c′1 with c1 ≤ 4 and c′1 ≤ 16,

zδ = ξn +
√

8 ln (2/δ) +
ln (2/δ)

c3 lnn

yδ = 1 +
√

2 ln (2/δ) +
ln (2/δ)

2
√
c3 lnn

.

Let us consider the event E1 ∩ E2 ∩ E3 as

E1 =
{
c3 lnn ≤ i ≤ k̃n,

√
i |γ̂(i)− E[γ̂(i) | Tn]| ≤ (γ + 2η (Tn)) zδ

}
,

E2 =
{
c3 lnn ≤ i ≤ k,

√
k |E[γ̂(i)− γ̂(k) | Tn]− E[γ̂(i)− γ̂(k)]| ≤ 8η(1)yδ

}
,

E3 =
{
Tn ≥ n/

(
k̃n + ln (1/δ)/2

)}
.

E1∩E2∩E3 has probability at least 1−3δ. Indeed, by Theorem 3.3, P(E1) ≥ 1−δ,
by Theorem 3.10, P(E2) ≥ 1 − δ and thanks to the beginning of the proof of
Corollary 3.13, P(E3) ≥ 1− δ.
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Clearly, E1 = E1(δ, n), E2 = E2(δ, n), and E3 = E3(δ, n). However, since δ
and n are fixed, we simply denote them E1, E2 and E3 to alleviate the notations.

We check that under E1 ∩E2 ∩E3, the selected index is not smaller than k̃n.
This amounts to check that for all k ≤ k̃n − 1, and for all i ∈ {dc3 lnne, . . . , k},

√
i |γ̂(i)− γ̂(k)| ≤ rn(δ)γ̂(i) .

Now, under E1∩E3, η(Tn) ≤ γ/4 and conditionally on Tn, the process (|γ̂(i)− E[γ̂(i) | Tn]|)i
can be controlled: for all i ∈ {dc3 lnne, . . . , k}

|γ̂(i)− E[γ̂(i) | Tn]| ≤ (γ + 2η(Tn))√
i

zδ ≤
3γ

2
√
i
zδ . (4.5)

For all i ∈ {dc3 lnne, . . . , k̃n} ,

γ − γ̂(i) ≤ |γ − E[γ̂(i) | Tn]|+ |γ̂(i)− E[γ̂(i) | Tn]|

≤ η(Tn) +
3γ

2
√
i
zδ

≤ γ

4
+

3γ

2
√
i
zδ

so that
γ̂(i)

γ
≥ 3

4

(
1− 2zδ√

i

)
.

Meanwhile, for all k ≤ k̃n − 1 and for all i ∈ {dc3 lnne, . . . , k},

|γ̂(i)− γ̂(k)|

≤
∣∣∣γ̂(i)− E[γ̂(i) | Tn]

∣∣∣︸ ︷︷ ︸
(i)

+ |E[γ̂(i)− γ̂(k) | Tn]|︸ ︷︷ ︸
(ii)

+ |γ̂(k)− E[γ̂(k) | Tn]|︸ ︷︷ ︸
(iii)

.

Using again (4.5), under E1 ∩ E3,

(i) + (iii) ≤ 3γ

2
zδ

(
1√
i

+
1√
k

)
≤ 3γ√

i
zδ .

Now, under E2, thanks to Assumption i) in the theorem statement,

(ii)

≤ |E[γ̂(i)− γ̂(k) | Tn]− E[γ̂(i)− γ̂(k)]|+ |E[γ̂(i)− γ]|+ |E[γ − γ̂(k)]|

≤ 8η(1)√
k
yδ + γrn

(
1√
i

+
1√
k

)
≤ 8ξnγ√

k
yδ +

2rnγ√
i
.
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Plugging upper bounds on (i), (ii) and (iii), it comes that under Eδ, for all

k ≤ k̃n − 1 and for all i ∈ {dc3 lnne, . . . , k},
√
i
|γ̂(i)− γ̂(k)|

γ
≤ 3zδ + 8ξnyδ + 2rn

≤ 3

(
ξn +

√
8 ln (2/δ) +

ln (2/δ)

c3 lnn

)
+ 8ξnyδ + 2rn

≤ ξn (3 + 8yδ) + 2rn + 3
√

8 ln (2/δ) +
3 ln (2/δ)

c3 lnn
.

In order to warrant that under E1 ∩E2 ∩E3, for all k ≤ k̃n − 1 and for all i
such that c3 lnn ≤ i ≤ k,

√
i |γ̂(i)− γ̂(k)| ≤ rn(δ)γ̂(i), it is enough to have

rn(δ)

(
1− 2zδ√

c3 lnn

)
≤ 4

3

(
ξn (3 + 8yδ) + 2rn + 3

√
8 ln (2/δ) +

3 ln (2/δ)

c3 lnn

)
which holds by definition of rn(δ).

We now check that the risk of γ̂(k̂n) is not much larger than the risk of γ̂(k̃n).∣∣∣γ − γ̂(k̂n)
∣∣∣ ≤ ∣∣∣γ − γ̂(k̃n)

∣∣∣+
∣∣∣γ̂(k̃n)− γ̂(k̂n)

∣∣∣
≤

∣∣∣γ − γ̂(k̃n)
∣∣∣+ rn(δ)γ̂(̃kn)√

k̃n

≤
∣∣∣γ − γ̂(k̃n)

∣∣∣ (1 + rn(δ)√
k̃n

)
+ rn(δ)γ√

k̃n
.

Therefore, with probability larger than 1− 3δ,∣∣∣γ − γ̂(k̂n)
∣∣∣ ≤ ∣∣∣γ − γ̂(k̃n)

∣∣∣ (1 + rn(δ)√
k̃n

)
+ rn(δ)γ√

k̃n
. (4.6)

Now, consider the event E1 ∩ E2 ∩ E3 ∩ E4 with E1, E2 and, E3 defined as
in the beginning of the proof and

E4 =
{√

k̃n

∣∣∣γ̂(k̃n)− E[γ̂(k̃n) | Tn]
∣∣∣ ≤ (γ + 2η(Tn))

(√
8 ln (2/δ) +

ln (2/δ)√
k̃n

)}
.

Since, P(E4) ≥ 1 − δ thanks to Statement i) from Theorem 3.3, the event
E1 ∩ E2 ∩ E3 ∩ E4 has probability at least 1− 4δ.

Then, by definition of k̃n, |γ − Eγ̂(k̃n)| ≤ γrn/
√
k̃n, under E3 ∩ E4,∣∣∣γ̂(k̃n)− γ

∣∣∣ ≤ |γ − Eγ̂(k̃n)|+ |γ̂(k̃n)− Eγ̂(k̃n)|

≤ 1√
k̃n

γrn + (γ + 2η(Tn))

√8 ln (2/δ) +
ln (2/δ)√

k̃n


≤ γ√

k̃n

rn +
3

2

√
8 ln (2/δ) +

3 ln (2/δ)

2

√
k̃n

 .
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Therefore, plugging this bound into (4.6), with probability larger than 1− 4δ,

∣∣∣γ̂(k̂n)− γ
∣∣∣ ≤ γ√

k̃n

rn +
3

2

√
8 ln (2/δ) +

3 ln (2/δ)

2

√
k̃n

(1 + rn(δ)√
k̃n

)
+ rn(δ)

 .

4.8. Proof of Corollary 3.18

If, for some C > 0 and ρ < 0,∣∣∣γ − Eγ̂(k)
∣∣∣ ≤ C (n

k

)ρ
,

then
γrn√
k̃n + 1

≤ C
(

n

k̃n + 1

)ρ
,

that is, √
k̃n + 1 ≥

(γrn
C

)1/(1+2|ρ|)
n|ρ|/(1+2|ρ|) .

Thus, there exists a constant c such that√
k̃n ≥

(γrn
c

)1/(1+2|ρ|)
n|ρ|/(1+2|ρ|) .

Starting from Equation (3.15) of Theorem 3.14, with probability 1− 4δ,

∣∣∣γ̂(k̂n)− γ
∣∣∣ ≤ 16γ

√
2 ln(2/δ lnn)

k̃n
(1 + α(δ, n)) ,

and, there exists a constant κδ,ρ, depending on δ and ρ, such that√
ln(2/δ lnn)

k̃n
≤ κδ,ργ−1/(1+2|ρ|)

(
ln(2/δ lnn)

n

)|ρ|/(1+2|ρ|)

.

Hence, with probability larger than 1− 4δ,

∣∣∣γ̂(k̂n)− γ
∣∣∣ ≤ κδ,ρ

(
γ2 ln(2/δ lnn)

n

)|ρ|/(1+2|ρ|)

(1 + α(δ, n)) .

5. Simulations

Risk bounds like Theorem 3.14 and Corollary 3.18 are conservative. For all prac-
tical purposes, they are just meant to be reassuring guidelines. In this numerical
section, we intend to shed some light on the following issues:
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1. Is there a reasonable way to calibrate the threshold rn(δ) used in the

definition of k̂n? How does the method perform if we choose rn(δ) close
to
√

2 ln ln(n)?

2. How large is the ratio between the risk of γ̂(k̂n) and the risk of γ̂(k∗n) for
moderate sample sizes?

The finite-sample performance of the data-driven index selection method de-
scribed and analysed in Section 3.3 has been assessed by Monte-Carlo simula-
tions. Computations have been carried out in R using packages ggplot2, knitr,
foreach, iterators, xtable and dplyr [See Wickham, 2014, for a modern
account of the R environment]. To get into the details, we investigated the
performance of index selection methods on samples of sizes 10000, 20000 and
100000 from the collection of distributions listed in Table 1. The list comprises
the following distributions.

i) Fréchet distributions Fγ(x) = exp(x−1/γ) for x > 0 and γ ∈ {1, 0.5, 0.2}.
ii) Student distributions tν with ν ∈ {1, 2, 4, 10} degrees of freedom.
iii) log-gamma distribution with density proportional to (ln(x))2−1x−3−1, which

means γ = 1/3 and ρ = 0.

iv) The Lévy distribution with density
√

1/(2π) e
− 1

2x

x3/2 , γ = 2 and ρ = −1 (this
is the distribution of 1/X2 when X ∼ N (0, 1)).

v) The H distribution is defined by γ = 1/2 and von Mises function equal
to η(s) = (2/s) ln 1/s. This distribution satisfies the second-order regular
variation condition with ρ = −1 but does not fit into Model (2.7).

vi) Two Pareto change point distributions with distribution functions

F (x) = x−1/γ′1{1≤x≤τ} + τ−1/γ′(x/τ)−1/γ1{x≥τ}

and γ ∈ {1.5, 1.25}, γ′ = 1, and thresholds τ adjusted in such a way that
they respectively correspond to quantiles of order 1− 1/15 and 1− 1/25.

Fréchet, Student, log-gamma distributions were used as benchmarks by [Drees
and Kaufmann, 1998], [Danielsson et al., 2001] and [Carpentier and Kim, 2014a].

Table 1, which is complemented by Figure 3, describes the difficulty of tail
index estimation from samples of the different distributions. Monte-Carlo esti-
mates of the standardised root mean square error (rmse) of Hill estimators

E
[
(γ̂(k)/γ − 1)

2
]1/2

are represented as functions of the number of order statistics k for samples of size
10000 from the sampling distributions. All curves exhibit a common pattern:
for small values of k, the rmse is dominated by the variance term and scales
like 1/

√
k. Above a threshold that depends on the sampling distribution but

that is not completely characterised by the second-order regular variation in-
dex, the rmse grows at a rate that may reflect the second-order regular variation
property of the distribution. Not too surprisingly, the three Fréchet distributions
exhibit the same risk profile. The three curves are almost undistinguishable. The
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Student distributions illustrate the impact of the second-order parameter on the
difficulty of the index selection problem. For sample size n = 10000, the optimal
index for t10 is smaller than 30, it is smaller than the usual recommendations
and for such moderate sample sizes seems as hard to handle as the log-gamma
distribution which usually fits in the Horror Hill Plot gallery. The 1/2-stable
Lévy distribution and the H-distribution behave very differently. Even though
they both have second-order parameter ρ equal to −1, the H distribution seems
almost as challenging as the t4 distribution while the Lévy distribution looks
much easier than the Fréchet distributions. The Pareto change point distribu-
tions exhibit an abrupt transition.

Table 1
Estimated oracle index k∗n and standardised rmse E[(γ − γ̂(k∗n))2]1/2/γ for benchmark

distributions. Estimates were computed from 5000 replicated experiments on samples of size
10000.

d.f. γ ρ k∗n RMSE

F0.2 0.2 1.0 1132 3.7e-02
F0.5 0.5 1.0 1145 3.6e-02
F1 1.0 1.0 1155 3.6e-02
t1 1.0 2.0 1161 3.3e-02
t2 0.5 1.0 341 6.5e-02
t4 0.2 0.5 77 1.6e-01
t10 0.1 0.2 15 5.3e-01
H 0.5 1.0 130 1.1e-01
log-gamma 0.3 0.0 213 1.6e-01
Stable 2.0 1.0 3172 2.0e-02
Pcp 1.5 0.3 943 3.3e-02
Pcp (bis) 1.2 0.2 593 4.2e-02

Index k̂n(rn) was computed according to the following rule

k̂n(rn) = min

{
k : 30 ≤ k ≤ n and ∃i ∈ {30, . . . , k} ,

∣∣γ̂(i)− γ̂(k)
∣∣ > rnγ̂(i)

√
i

}
− 1 (5.1)

with rn =
√
c ln lnn where c = 2.1 unless otherwise specified.

The Fréchet, Student, H and stable distributions all fit into the framework
considered by [Drees and Kaufmann, 1998]. They provide a favorable ground for
comparing the performance of the optimal index selection method described by
Drees and Kaufmann [1998] which attempts to take advantage of the second-
order regular variation property and the performance of the simple selection
rule described in this paper.

Index γ̂(k̂dkn ) was computed following the recommandations from Theorem 1
and discussion in [Drees and Kaufmann, 1998]:

k̂dkn = (2|ρ̂|+ 1)−1/|ρ̂| (2ρ̂γ̂)
1/(1+2|ρ̂|)

(
k̂n(rζn)

(k̂n(rn))ζ

)1/(1−ζ)

(5.2)

where ρ̂ should belong to a consistent family of estimators of ρ (under a second-
order regular variation assumption), γ̂ should be a preliminary estimator of γ
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Fig 3. Monte-Carlo estimates of the standardised root mean square error (rmse) of Hill
estimators as a function of the number of order statistics k for samples of size 10000 from
the sampling distributions.

such as γ̂(
√
n), ζ = .7, and rn = 2n1/4. Following the advice from [Drees and

Kaufmann, 1998], we replaced |ρ̂| by 1. Note that the method for computing

k̂dkn depends on a variety of tunable parameters.

Comparison between performances of γ̂(k̂n(rn)) and γ̂(k̂dkn ) are reported
in Tables 2 and 3. For each distribution from Table 1, for sample sizes n =
10000, 20000, and 1000000, 5000 experiments were replicated. As pointed out
in [Drees and Kaufmann, 1998], on the sampling distributions that satisfy a

second-order regular variation property, carefully tuned k̂dkn is able to take ad-
vantage of it. Despite its computational and conceptual simplicity, despite the
fact that it is almost parameter free, the estimator γ̂(k̂n(rn)) only suffers a mod-
erate loss with respect to the oracle. When |ρ| = 1, the observed ratios are of the

same order as (2 ln lnn)1/3 ≈ 1.65. Moreover, wheres γ̂(k̂dkn ) behaves erratically

when facing Pareto change point distributions, γ̂(k̂n(rn)) behaves consistently.
Figure 4 concisely describes the behaviour of the two index selection meth-

ods on samples from the Pareto change point distribution with parameters
γ = 1.5, γ′ = 1 and threshold τ corresponding to the 1 − 1/15 quantile. The
plain line represents the standardised rmse of Hill estimators as a function
of selected index. This figure contains the superposition of two density plots
corresponding to k̂dkn and k̂(rn). The density plots were generated from 5000

points with coordinates (k̂(rn), |γ̂(k̂(rn))/γ − 1|) and 5000 points with coordi-
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Table 2
Ratios between median selected indexes k̂n(rn) (Lepski), k̂dkn (Drees-Kaufmann) and

estimated oracle index k∗n.

d.f. γ
k̂dkn /k∗n k̂n(rn)/k∗n

n = 1000 20000 10000 10000 20000 100000

F0.2 0.2 0.61 0.67 0.94 2.94 2.97 3.47
F0.5 0.5 1.12 1.18 1.45 2.90 2.87 2.91
F1 1 1.76 2.05 2.32 2.90 3.10 2.93
t1 1 1.33 1.55 1.98 2.03 2.16 2.16
t2 0.5 1.00 0.99 0.91 3.05 3.06 2.96
t4 0.25 1.27 1.28 1.18 5.62 5.50 5.30
t10 0.1 2.00 1.54 2.28 13.87 10.92 14.12
H 0.5 0.41 0.35 0.30 5.14 4.97 4.96
Stable 2 0.97 0.95 1.04 1.43 1.41 1.55
Pcp 1.5 1.85 0.45 0.15 1.32 1.21 1.10
Pcp (bis) 1.25 3.29 3.03 2.45 1.83 1.50 1.22
log-gamma 0.33 5.13 7.71 12.41 10.50 12.99 12.40

Table 3
Ratios between median rmse of and median optimal rmse.

d.f. γ
rmse(γ̂(k̂dkn ))/rmse(γ̂(k∗n)) rmse(γ̂(k̂n(rn)))/rmse(γ̂(k∗n))

n = 1000 20000 10000 10000 20000 100000

F0.2 0.2 1.12 1.12 1.02 2.06 2.26 2.69
F0.5 0.5 1.03 1.03 1.14 2.12 2.23 2.70
F1 1 1.22 1.31 1.59 2.07 2.23 2.64
t1 1 1.26 1.34 1.74 2.31 2.39 3.11
t2 0.5 1.11 1.08 1.05 2.06 2.09 2.20
t4 0.25 1.10 1.07 1.04 1.85 1.81 1.84
t10 0.1 1.10 1.09 1.08 1.76 1.72 1.64
H 0.5 1.28 1.37 1.48 2.15 2.18 2.12
Stable 2 1.01 0.99 0.98 1.99 2.52 3.60
Pcp 1.5 4.25 1.66 2.52 2.50 2.68 3.63
Pcp (bis) 1.25 3.38 4.47 7.45 2.43 2.56 3.10
log-gamma 0.33 1.23 1.28 1.39 1.45 1.43 1.37

nates (k̂dkn , |γ̂(k̂dkn )/γ − 1|). The contoured and well-concentrated density plot

corresponds to the performance of γ̂(k̂n). The diffuse tiled density plot corre-

sponds to the performance of k̂dkn . Facing Pareto change point samples, the two
selection methods behave differently. Lepski’s rule detects correctly an abrupt
change at some point and selects an index slightly above that point. As the con-
ditional bias varies sharply around the change point, this slight over estimation
of the correct index still results in a significant loss as far as rmse is concerned.
The Drees-Kaufmann rule, fed with an a priori estimate of the second-order
parameter, picks out a much smaller index, and suffers a larger excess risk.
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Fig 4. Risk plot for samples of size 10000 from the Pareto change point distribution with
parameters γ = 1.5, γ′ = 1 and threshold τ corresponding to the 1 − 1/15 quantile. The

concentrated density plot corresponds to points (k̂(rn), |γ̂(k̂(rn))/γ − 1|).
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Appendix A: Calibration of the preliminary selection rule

Darling and Erdös [1956] establish (among other things) that letting Zn denote

supk≤n
∑k
i=1(Ei−1)/

√
k, where Ei’s are independent exponentially distributed

random variables, the sequence
√

2 ln lnn
(
Zn −

√
2 ln lnn− ln ln ln(n)

)
con-

verges in distribution towards a non degenerate distribution which is closely
related to the Gumbel distribution. In other words, asymptotically, Zn behaves
almost like the maximum of lnn independent standard Gaussian random vari-
ables.

Appendix B: Proof of Corollary 2.16

Let Z = f(E1, . . . , En) = (U ◦ exp)
(∑k

i=1Ei/i
)

. Then,

|∂if | ≤
1

i
sup
x

1

h(x)
, for i ≥ k

and

‖∇f‖2 =

n∑
i=k

1

i2
1

(h ◦ f)2
.

Let c < 1, then for all λ, 0 ≤ λ ≤ c (k infx h(x)),

log Eeλ(Z−EZ) ≤ 4/k (1 + 1/k) E[1/h(Z)2]λ2

2(1− c)
.

Now, start from the first statement in Theorem 2.15,

Ent
[
eλ(Z−EZ)

]
≤ 2λ2

1− c
E
[
eλ(Z−EZ)‖∇f‖2

]
=

4λ2

2(1− c)
1

k

(
1 +

1

k

)
E

[
eλ(Z−EZ)

h(Z)2

]
≤ 4λ2

2(1− c)
1

k

(
1 +

1

k

)
E
[
eλ(Z−EZ)

]
E

[
1

h(Z)2

]
where the last inequality follows from Chebychev negative association inequality.
Hence,

d log Eeλ(Z−EZ)

dλ
=

Ent
[
eλ(Z−EZ)

]
λ2E

[
eλ(Z−EZ)

] ≤ 1

2(1− c)
4

k

(
1 +

1

k

)
E

[
1

h(Z)2

]
.

This differential inequality is readily solved and leads to the corollary.
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Appendix C: Proof of Abelian Proposition 3.2

The proof proceeds by classical arguments. In the sequel, we use the almost
sure representation argument. Without loss of generality, we assume that all
the random variables live on the same probability space, and that for any in-
termediate sequence (kn)n,

√
kn(Y(kn+1) − ln(n/kn)) converges almost surely

towards a standard Gaussian random variable. Complemented with dominated
convergence arguments, the next lemma will be the key element of the proof.

Lemma C.1. Let η ∈ RVρ, ρ ≤ 0 and Y(kn+1) be the (kn + 1)th largest order
statistic of a standard exponential sample, then for any intermediate sequence
(kn)n and for all u > 0,

lim
n→∞

η(eu+Y(kn+1))

η(n/kn)
= eρu p.s .

Proof. Note that

η(eu+Y(kn+1))

η(n/kn)
=

η((n/kn)eu+Y(kn+1)−log(n/kn))

η(n/kn)
.

Then, the result follows since Y(kn+1) − log(n/kn)
p.s−→ 0 and the convergence

η(tx)/η(t)→ xρ is locally uniform on (0,∞).

In order to secure dominated convergence arguments, we will use Drees’s
improvement of Potter’s inequality [See de Haan and Ferreira, 2006, page 369].
For every ε, δ > 0, there exists t0 = t0(ε, δ) such that for t, tx ≥ t0,

|η(tx)/η(t)− xρ| ≤ xρεmax(xδ, x−δ) . (C.2)

To prove Proposition 3.2, we start from Representation (2.4):

γ̂(kn) =
1

kn

kn∑
i=1

∫ Ei

0

(
γ + η

(
eu+Y(kn+1)

))
du .

By the Pythagorean relation,

Var(γ̂(kn)) = Var
(
E[γ̂(kn) | Y(kn+1)]

)
+ E

[
Var

(
γ̂(kn) | Y(kn+1)

)]
,

so that

kn Var(γ̂(kn))− γ2

η (n/kn)

=
kn Var

(
E[γ̂(kn) | Y(kn+1)]

)
η(n/kn)

+ knE

[
Var

(
γ̂(kn) | Y(kn+1)

)
− γ2

kn

η(n/kn)

]
.
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The second summand can be further decomposed using (2.4),

kn Var(γ̂(kn))− γ2

η (n/kn)

=
kn Var

(
E[γ̂(kn) | Y(kn+1)]

)
η(n/kn)︸ ︷︷ ︸

(i)

+ η( nkn )E

[
Var

[∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]
︸ ︷︷ ︸

(ii)

+ 2γE

[
Cov

[
E,

∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]
︸ ︷︷ ︸

(iii)

.

We check that (i) and (ii) tend to 0 and then that (iii) converges towards a
finite limit.

Fix ε, δ > 0 and define M = sup{η(t), t ≤ t0}.
Let An denote the event {Y(kn+1) > ln t0(ε, δ)}. For n such that ln(n/kn) ≤
2 ln t0, as Y(kn+1) sub-gamma with variance factor 1/kn,

P{Acn} ≤ exp
(
−kn(ln(n/kn))2/8

)
.

We first check that (ii) tends to 0. Let n be such that n/kn ≥ t0 and Wn

denote the random variable Y(kn+1) − ln (n/kn). Note that for 0 ≤ λ ≤ kn/2,

Eeλ|Wn| ≤ 2e
λ2

kn .

Using Jensen’s inequality and Fubini’s Theorem,

E

[
Var

[∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]
≤ E

[
E

[
E

∫ E

0

(
η(eu+Y(kn+1))

η(n/kn)

)2

du | Y(kn+1)

]]

=

∫ ∞
0

e−vv

∫ v

0

E

[(
η(eu+Y(kn+1))

η(n/kn)

)2
]

dudv

=

∫ ∞
0

e−vv

∫ v

0

E

[(
η(eu+Wnn/kn)

η(n/kn)

)2
]

dudv

We now apply Potter’s inequality (C.2) on the event An with t = n/kn > t0
and tx = eu+Y(kn+1) > t0, u > 0 :

E

[
Var

[∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]

≤
∫ ∞

0

e−vv

∫ v

0

E

[
1Ane2ρ(u+Wn)

(
1 + εeδ(u+|Wn|)

)2

+ 1Acn
M2

η(n/kn)2

]
dudv

≤
∫ ∞

0

e−vv

∫ v

0

E
[
e2ρWn2

(
1 + ε2e2δ(u+|Wn|)

)]
dudv +

2M2

η(n/kn)2
E1Acn .
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The first summand has a finite limit thanks to Lemma C.1. The second summand
converges to 0 as E1Acn tends to 0 exponentially fast while 1/η(n/kn)2 tends to
infinity algebraically fast.

Bounds on (i) are easily obtained, using Jensen’s Inequality and Poincaré
Inequality.

kn Var
(
E[γ̂(kn) | Y(kn+1)]

)
η(n/kn)

=
kn Var

(∫∞
0
η
(
eu+Y(kn+1)

)
e−udu

)
η(n/kn)

≤ 4η(n/kn)E

(∫ ∞
0

η
(
eu+Y(kn+1)

)
η(n/kn)

e−udu

)2


≤ 4η(n/kn)E

∫ ∞
0

(
η
(
eu+Y(kn+1)

)
η(n/kn)

)2

e−udu

 .
Using the line of arguments as for handling the limit of (ii), we establish that
(i) converges to 0.

We now check that (iii) converges towards a finite limit. Note that

E

[
Cov

[
E,

∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]
= E

[
(E − 1)

∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du

]
.

By Lemma C.1, for almost every u > 0,

(E − 1)
η(eu+Wnn/kn)

η(n/kn)
−→
n→∞

(E − 1)eρu ,

and

|E−1|
∫ E

0

∣∣∣∣η(eu+Wnn/kn)

η(n/kn)

∣∣∣∣du ≤ |E−1|
∫ E

0

eρ(u+Wn)
(

1 + εeδ(u+|Wn|)
)

du+1AcnE|E−1| M

|η(n/kn)|
.

The first term is finite as the integral of a continuous function on a compact.
Thus,

(E − 1)

∫ E

0

η(eu+Wnn/kn)

η(n/kn)
du→n (E − 1)

∫ E

0

eρudu = (E − 1)
eρE − 1

ρ
.

The expected value of the last random variable is 1/(1− ρ)2.
We check that for sufficiently large n,

E

[
|E − 1|

∫ E

0

|η(eu+Wnn/kn)|
|η(n/kn)|

du

]

≤ E

[
|E − 1|

∫ E

0

eρ(u+Wn)
(

1 + εeδ(u+|Wn|)
)

+ 1Acn |E − 1| M

|η(n/kn)|
du

]

≤ E

[
eρWn

(
2 +

ε

δ(1− δ)2
eδ|Wn|

)]
+

M

|η(n/kn)|
E1Acn

≤ 4e
ρ2

kn +
2ε

δ(1− δ)2
e

(δ−ρ)2
kn +

M

|η(n/kn)|
E1Acn .
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We now way conclude by dominated convergence that

(iii) −→
n→∞

2γ

(1− ρ)2
.

Appendix D: Revisiting the lower bound on adaptive estimation
error

Lower bounds on tail index estimation error [Carpentier and Kim, 2014a, Drees,
1998a, 2001, Novak, 2014] are usually constructed by defining sequences of local
models around a pure Pareto distribution with shape parameter γ0. When de-
riving lower bounds for the estimation error under constraints like η is regularly
varying, the elements of the local model for sample size n may be defined by

Un,h(t) = tγ0+dnh(0) exp

∫ t

1

dn
h(cn/s)− h(0)

s
ds

where h is square integrable over [0, 1], dn → 0, nd2
n/cn → 1 [Drees, 2001].

The sequences dn and cn are chosen in such a way that dn |h(cn/s)− h(0)| =
|η(s)| satisfies the required constraint. If the local alternatives are Pareto change
point distributions as in [Novak, 2014] and [Carpentier and Kim, 2014a], h(x) =

1{x≤1}, cn = τ
1/γ0
n . Drees [2001] explores a richer collection of local alternatives

in order to fit into the theory of weak convergence of local experiments.
In order to explore adaptivity as in [Carpentier and Kim, 2014a], it is neces-

sary to handle simultaneously a collection of sequences (dn, cn)n corresponding
to different rates of decay of the von Mises function. The difficulty of estimation
is connected with the difficulty of distinguishing alternatives with different tail
indexes that is, with the hardness of a multiple hypotheses testing problem.
In order to lower bound the testing error, Carpentier and Kim chose to use
Fano’s Lemma [Cover and Thomas, 1991, See]. Using Fano’s Lemma requires
bounding the Kullback-Leibler divergence between the different local alterna-
tives which is not as easy as bounding the divergence between a Pareto change
point distribution and a pure Pareto distribution.

The next lemma is from [Birgé, 2005]. It can be used in the derivation of risk
lower bounds instead of the classical Fano Lemma. Just as Fano’s Lemma, it
states a lower bound on the error in multiple hypothesis testing. But as it only
requires computing the Kullback-Leibler divergence to the localisation center,
in the present setting, it significantly alleviates computations and makes the
proof more concise and more transparent.

Lemma D.1. (Birgé-Fano) Let P0, . . . , PN be a collection of probability distri-
butions on some space, and let A0, . . . , AM be a collection of pairwise disjoint
events, then the following holds

min
i
Pi{Ai} ≤

2e

1 + 2e
∨

1
M

∑M
i=1K(Pi, P0)

ln(M + 1)
.

imsart-generic ver. 2011/11/15 file: adaptHill.tex date: March 18, 2015



S. Boucheron and M. Thomas/Adaptive Hill estimation 44

In order to take advantage of Lemma D.1, we use the Bayesian game designed
in [Carpentier and Kim, 2014a].

Theorem D.2. Let γ > 0, ρ < −1, and 0 ≤ v ≤ e/(1 + 2e). Then, for any
tail index estimator γ̂ and any sample size n such that M = blnnc > e/v, there
exists a collection (Pi)i≤M of probability distributions such that

i) Pi ∈ MDA(γi) with γi > γ,
ii) Pi meets the von Mises condition with von Mises function ηi satisfying

ηi(t) ≤ γtρi

where ρi = ρ+ i/M < 0,
iii)

max
i≤M

P⊗ni

{
|γ̂ − γi| ≥

Cρ
4
γi

(
v ln lnn

n

)|ρi|/(1+2|ρi|)
}
≥ 1

1 + 2e

and

max
i≤M

EP⊗n
i

[
|γ̂ − γi|
γi

]
≥ Cρ

4(1 + 2e)

(
v ln lnn

n

)|ρ|/(1+2|ρ|)

,

with Cρ = 1− exp
(
− 1

2(1+2|ρ|)2

)
.

Proof of Theorem D.2. Choose v so that 0 ≤ v ≤ 2e/(1 + 2e). The number of
alternative hypotheses M is chosen in such a way that ln (n/(v lnM)) ≤ M . If
blnnc ≥ e/v, M = blnnc will do.

The center of localisation P0 is the pure Pareto distribution with shape pa-
rameter γ > 0 (P0{(τ,∞)} = τ−1/γ). The local alternatives P1, . . . , PM are
Pareto change point distributions. Each Pi is defined by a breakpoint τi > 1
and an ultimate Pareto index γi. If Fi denotes the distribution function of Pi,

F i(x) = x−1/γ1{1≤x≤τi} + τ
−1/γ
i (x/τi)

−1/γi1{x≥τi} .

Karamata’s representation of (1/F i)
← is

Ui(t) = tγi exp

(∫ t

1

ηi(s)

s

)
ds

with ηi(s) = (γ − γi)1{s≤τ1/γ
i
} .

The Kullback-Leibler divergence between Pi and P0 is readily calculated,

K(Pi, P0) = F i(τi)

(
γi
γ
− 1− ln

γi
γ

)
= τ

−1/γ
i

(
γi
γ
− 1− ln

γi
γ

)
.

If γi > γ, the next upper bound holds,

K(Pi, P0) ≤ τ
−1/γ
i

2

(
γi
γ
− 1

)2

.
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The breakpoints and tail indices are chosen in such a way that all upper bounds

are equal (namely nτ
−1/γ
i (γi/γ − 1)2 does not depend on i),

τi = (n/(v lnM))
γ/(1+2|ρi|)

γi = γ + γ (n/(v lnM))
ρi/(1+2|ρi|) ,

so that K(P⊗ni , P⊗n0 ) = nK(Pi, P0) ≤ v lnM for all 1 ≤ i ≤M .
Note that for all t > 1,

|ηi(t)| = |γ − γi|1{t≤τ1/γ
i
} ≤ γτ

ρi/γ
i 1{t≤τ1/γ

i
} ≤ γt

ρi

the upper bound being achieved at t = τi.
Now, let γ̂ be any tail index estimator. Define region Ai, as the set of samples

such that γi minimises |γ̂ − γj | for 1 ≤ j ≤ M . Then, if the event Ai is not
realised,

|γ̂ − γi| ≥
1

2
min

1≤j≤M,j 6=i
|γj − γi| .

By Birgé’s Lemma,

max
i≤M

P⊗ni

{
|γ̂ − γi| ≥

1

2
min

1≤j≤M,j 6=i
|γj − γi|

}
≥ 1

1 + 2e
.

In order to make the whole construction useful, it remains to choose the “second-
order parameters” ρi’s (the true second-order parameter of each Pi is infinite!).
We will need an upper bound on γi/γ (but we already have γi/γ ≤ 2), as well

as a lower bound on |γj − γi|/γ for j 6= i that scales like (n/ln lnn)
ρi/(1+2|ρi|).

Following Carpentier and Kim [2014a], we finally choose ρi as ρi = ρ+ i/M
for 1 ≤ i ≤ M . Then, for j < i, using that ln(n/(v lnM)) ≤ M and ρi − ρj =
(i− j)/M ,

|γj − γi|
γi

≥ |γj − γi|
2γ

≥ 1

2

( n

v lnM

)ρi/(1+2|ρi|)
∣∣∣∣1− ( n

v lnM

)ρj/(1+2|ρj |)−ρi/(1+2|ρi|)
∣∣∣∣

≥ 1

2

( n

v lnM

)ρi/(1+2|ρi|)
[
1− exp

(
i− j

M(1 + 2|ρi|)(1 + 2|ρj |)
ln
( n

v lnM

))]
≥ 1

2

( n

v lnM

)ρi/(1+2|ρi|)
[
1− exp

(
i− j

M(1 + 2|ρi|)(1 + 2|ρj |)

)]
≥ Cρ

2

( n

v lnM

)ρi/(1+2|ρi|)

where Cρ may be chosen as 1− exp
(
− 1

2(1+2|ρ|)2

)
.
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