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ABSTRACT
Our efforts are mostly concentrated on improving the convergence rate of the numerical procedures
both from the viewpoint of cost-efficiency and accuracy by handling the parametrization of the shape
to be optimized. We employ nested parameterization supports of either shape, or shape deformation,
and the classical process of degree elevation resulting in exact geometrical data transfer from coarse to
fine representations. The algorithms mimick classical multigrid strategies and are found very effective
in terms of convergence acceleration. In this paper, we analyse and demonstrate the efficiency of the
two-level correction algorithm which is the basic block of a more general miltilevel strategy.
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1. Introduction
Our developments focus on the definition, mathematical analysis and experimentation of numerical methods
for shape optimization for applications in which the cost functional evaluation relies on the prior solution of a
complex set of partial-differential equations (PDEs), such as those governing compressible aerodynamics (e.g. the
Euler equations), or related coupled disciplines such as structural mechanics (e.g. elasticity), or electromagnetics
(e.g. the Maxwell equations). These PDEs are very commonly solved by Finite Element or Volume Methods, by
techniques that, although becoming increasingly standard, are still very costly when the accuracy requirement is
high.The important development of multigrid methods in recent years has demonstrated that such techniques not
only permit to accelerate the iterative convergence of solution procedures, but also have the more general merit
of a better control on grid dependency and convergence.

This contribution is a sequel of [1]-[5] in which we are mostly concentrated on improving the convergence
rate of numerical procedures both from the viewpoint of cost-efficiency and accuracy, with the perspective of
reducing the design cost, but also of mastering the election and control of the design parameters, geometrical
ones in particular, in a more rational way, perhaps supported by error estimates.

We present in this paper a model problem for shape optimization for purpose of the analysis of the two-level
correction algorithm which is the basic block of a more general miltilevel strategy. we first consider the shape
recontruction problem based on Bézier parametrization. Then, we analyse and show the efficiency of three
two-level correction algorithms for a linear and a nonlinear case. We finally conclude with some perspectives.

2. Coarse-level correction algorithms for a linear problem

We use an intrinsic formulation of shape-recontruction or shape-inverse problem, initially introduced in [6]:

min
γ

J (γ) :=
∫

γ

1
2
[y(x)− y(x)]2 dx (1)
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where γ is the unknown shape analytically represented by y(x); y(x) is the analogous analytical representation of
a given target curve γ(x), subsequently assumed, without great loss of generality, to be a Bézier curve of degree
n and support X . This problem is transformed into a parametric optimization by assuming Bézier representation
of the curves over the support X :

min
Y∈Rn+1

jn(Y ) :=
∫ 1

0

1
2
[
Bn(t)T (Y −Y )

]2
nBn−1(t)T

∆Xdt, (2)

where Bn(t)T = (B0
n(t),B

1
n(t), . . . ,B

n
n(t)) is the 1× (n+ 1) vector of Bernstein polynomials and the symbol ∆

represents the forward-difference operator that appears when differentiating Bernstein polynomials.
For the uniform case, we know that x0(t)′ = nBn−1(t)T ∆X0 = 1, so we only need to care about

jn(Y ) =
∫ 1

0

1
2
(Bn(t)T (Y − Ȳ ))2dt . (3)

Since the functional is quadratic, the parametric gradient is linear (in Y ):

j′n(Y ) = AY −b (4)

where

A =
∫ 1

0
Bn(t)Bn(t)T nBn−1(t)T

∆Xdt (5)

and

b =
∫ 1

0
Bn(t)Bn(t)TY nBn−1(t)T

∆Xdt (6)

In particular, for a uniform support X , the matrix A reduces to the simple form :

A =
∫ 1

0
Bn(t)Bn(t)T dt = Ai j (7)

in which the coefficients Ai j are obtained by a simple calculation :

Ai j =
1

2n+1
Ci

nC j
n

Ci+ j
2n

, (8)

and the right side known vector

b = AȲ . (9)

For this shape-inverse problem, the optimization problem (2) is equivalent to solving the linear system:

AY = b (10)

With the usual multigrid terminology, we define a two-level correction algorithm in two steps as follow:

1. In the fine level, we use the classical steepest-decent iteration as relaxation method:

Y j+1 = Y j−ρ(AY j−b) , (11)

For K sweeps of descent method (1≤ j ≤ K), we obtain an approximate optimum shape corresponding to
the design vector Y K of Bézier parametrization of degree n.

2. In the coarse level, the unknown is defined to be a correction vector to be prolongated, here by the degree
elevation operator En

n′ , and added to the freshest update of the unknown vector coming from the fine level
iteration, here Y k. We note that n′(n′ < n) is the dimension of the coarse level space and En

n′ is the matrix
associated with the linear process of n−n′ degree elevations.
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2.1 Coarse-level correction: Y method
The first approach consists to solve completely the optimization problem:

min
Y ′∈Rn′+1

J(Y ′) := jn(En
n′Y
′+Yk) (12)

Let Y = En
n′Y
′+Yk, it’s obvious to prove that

∂J(Y ′)
∂Y ′

=
∂Y
∂Y ′

∂J(Y ′)
∂Y

, (13)

∂Y
∂Y ′

= (En
n′)

T , (14)

and
∂J(Y ′)

∂Y
= A(En

n′Y
′+Yk− Ȳ . (15)

Thus by equations (13), (14) and (15), we obtain

∂J(Y ′)
∂Y ′

=
∂Y
∂Y ′

∂J(Y ′)
∂Y

(16)

= (En
n′)

T A(En
n′Y
′+Yk− Ȳ ) = 0 .

In other words, the problem (12) is equivalent to the linear system:

AcyY ′ = bcy , (17)

here the cofficient matrix

Acy = (En
n′)

T AEn
n′ , (18)

and the right side vector

bcy = (En
n′)

T A(−Yk + Ȳ ) = (En
n′)

T (b−AYk) . (19)

We can solve the following iteration on the coarse level for correction by using:

Y ′ j+1 = Y ′ j−ρ(AcyY ′ j−bcy) (Y ′0 = 0), (20)

then we can update by Y K +En
n′Y
′ on the fine level. Iterations on the fine level (11) and corrections on the coarse

level (20) complete a two-level correction-type ideal algorithm for the linear model problem. However, it takes
many iterations (hundreds for this model problem) to achieve a complete convergence. To speed up the rate of
convergence, we can use a Tchebychev iterations [7] on the fine level, i.e., it has three steps for each cycle:

Y j1 = Y j0 − τ1(AY j0 −b) ,

Y j2 = Y j1 − τ2(AY j1 −b) ,

Y j3 = Y j2 − τ3(AY j2 −b) ,

here τi (i = 1,2,3) are multiplicative inverses of the three roots of the half frequent (HF) Tchebychev polynomial
for the matrix A. When we can solve coarse corrections exactly on the coarse level, we can combine the
Tchebychev iterations (21) with coarse corrections on the coarse level in the matrix form [7]:

Gy = Gh(I−En
n′((E

n
n′)

T AEn
n′)
−1(En

n′)
T A)Gh , (21)

here Gh = (I− τ3A)(I− τ2A)(I− τ1A). In other works, the complete cycle in the form of matrix G is given by

Y j+1
g = GyY j

g +bgy , (22)

here

bgy = Gh(bh−En
n′((E

n
n′)

T AEn
n′)
−1(En

n′)
T (Abh−b))+bh , (23)

and

bh = ((I− τ3A)(I− τ2A)τ1 +(I− τ3A)τ2 + τ3I)b . (24)
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2.2 Coarse level correction: Z Method
The matrix A is real-symmetric definite positive and can thus be diagonalized by an orthogonal transformation:

A = ΩnΛnΩ
T
n , (25)

The diagonal matrix Λn has real positive eigenvalues, arranged in increasing order, and the colomn-vectors of the
orthogonal matrix Ωn are the associated eigenvectors

ΩnΩ
T
n = Ω

T
n Ωn = I . (26)

By using this decomposition of the matrix A, the second approach use the following scheme:

min
Z′∈Rn′+1

J(Z′) := jn(Yk +Q0En
n′Z
′) (27)

where Q0 = ΩnPnΩT
n and Pn is the (n+1)× (n+1) matrix associated with the permulation:

{0,1, . . . ,n−1,n} −→ {n,n−1, . . . ,1,0} (28)

The idea of the Z method is to reverse pairing between eigenvalues and eigenvectors by multiplying by the matrix
Q0. Hence, the classical modal-analysis concept of multigrid can be applied straithforwardly. See [8][9] for more
details about the compatibility of the cooarse level iteration with the eigensystem analysis.
Let Z = (Q0En

n′)Z
′+Yk, it’s easy to prove that

∂J(Z′)
∂Z′

=
∂Z
∂Z′

∂J(Z′)
∂Z

, (29)

∂Z
∂Z′

= (Q0En
n′)

T = (En
n′)

T Q0 , (30)

and

∂J(Z′)
∂Z

= A(Yk +Q0En
n′Y
′− Ȳ ) . (31)

Thus by equations (29), (30) and (31), we obtain

∂J(Z′)
∂Z′

=
∂Z
∂Z′

∂J(Z′)
∂Z

(32)

= (En
n′)

T Q0A(Yk +Q0En
n′Z
′− Ȳ ) = 0 .

In other words, the second approach is equivalent to the linear system:

AczZ′ = bcz , (33)

here the matrix

Acz = (En
n′)

T Q0AQ0En
n′ = (En

n′)
T A1En

n′ , (34)

and the vector

bcz = (En
n′)

T Q0(b−AYk) , (35)

Equivalently, we can solve the following iteration on the coarse level for correction by initializing Z′0 = 0:

Z′ j+1 = Z′ j−ρ(AczZ′ j−bcz) (Z′0 = 0), (36)

then, we can update the obtained vector design by Y K +Q0En
n′Z
′ and speed up the convergence rate by using

Tchebychev iterations.
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2.3 Coarse Level Correction: L Method
L or ∆ Method uses the idea of the Z Method to reverse pairing between eigenvalues and eigenvectors by a simple
matrix ∆ instead of computing the complicated matrix Q0. The matrix ∆ is given by:

∆ =



1 0 0 · · · 0

0 −1 0
...

0
. . . . . . . . . 0

... 0 (−1)n−1 0
0 · · · 0 0 (−1)n


(n+1)×(n+1)

,

Let L = (∆En
n′)L

′+Yk. As the previous section, we can prove easily that:

AclL′ = bcl , (37)

here the matrix

Acl = (En
n′)

T
∆A∆En

n′ = (En
n′)

T
∆A∆En

n′ , (38)

and the vector

bcl = (En
n′)

T
∆(b−AYk) , (39)

This system can be solved by the following iteration on the coarse level for correction by initializing L′0 = 0:

L′ j+1 = L′ j−ρ(AclL′ j−bcl) , (40)

then, we can update by Y K +∆En
n′L
′ on the fine level and we can use Tchebychev iterations [7] to speed up the

rate of convergence.

2.4 Numerical experiments
We take,

Ȳ (x) =
n

∑
k=1

1
k2 sin(kπx) (41)

so that the solutions can have all the frequencies, which makes computational results and our analysis more
generally. When we analyse our numerical experiments, the error is defined as the difference between the
approximation Y j obtained by different methods and the true solution Ȳ . We use Tchebychev iterations on the
fine level to speed up the convergence rate and solve analytically on the coarse level, then we plot errors versus
the number of iterations in Fig. 1, and frequency versus the number of iterations in Fig. 2. In Fig. 1, we still
randomly generate initial errors, (a), (b), (c) and (d) show errors obtained by Y , L and Z methods after ten, fifty,
one hundred and two hundred G cycles respectively. It is obvious that the results obtained by Z method is the
best. And from these figures, we can see that before the first 50 iterations, results obtained by L method doesn’t
look better than those obtained by Y method, but in (c) and (d), it shows that L method is better than Y method.
From the corresponding frequency space (Fig. 2 (c) and (d)), we can see that L method also can reduce low
frequency on the fine level, however it takes more iterations to converge, the reason is that L method introduces
some errors by the transformation matrix ∆ and it needs more iterations on the fine level to remove some errors
introduced by the coarse corrections.

3. Nonlinear Model Problem
In this section, we extend the concept of coarse level coorection for the nonlinear problem. We consider the
nonlinear model problem or the inverse shape problem:

minJ = J (y(t)) =
pα

A
, (42)
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Figure 1. Nodal components. (a), (b), (c) and (d) show errors obtained by Y , L and Z methods after ten, fifty,
one hundred and two hundred G cycles respectively.

in which x(t) is given, smooth and monotone-increasing,

p =
∫ 1

0

√
x′(t)2 + y′(t)2ω(t) dt , A =

∫ 1

0
x′(t)y(t)ω(t) dt , (43)

are, for specified ω(t)> 0 and α > 1, the pseudo-length of the arc, and the pseudo-area below the arc. Essentially
all smouth unimodal graphs can be retrieved by this formulation [10]. In the following experiments, algorithms
are tested for α = 2 and ω(t) = 1 for each t. In this case, the minimum value for this problem is J = 2π .
For this nonlinear problem, we define a two-level correction algorithm in two steps as follow:

1. In the fine level, we use the classical steepest-decent iteration as relaxation method:

Y j+1 = Y j−ρJ ′(Y j) , (44)

where J ′(Y j) is the Jacobian matrix denoted by AJ ′ .
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Figure 2. Frequency components. (a), (b), (c) and (d) show frequency obtained by Y , L and Z methods after
ten, fifty, one hundred and two hundred G cycles respectively.

For K sweeps of descent method (1≤ j ≤ k), we obtain an approximate optimum shape corresponding to
the design vector Y K of Bézier parametrization of degree n.

2. In the coarse level, the unknown is defined to be a correction vector to be prolongated, here by the degree
elevation operator En

n′ , and added to the freshest update of the unknown vector coming from the fine level
iteration, here Y k.

In the following, we discuss a various algorithms of coarse level corrections.

3.1 Coarse Level Correction: Y Method
For the Y method, we set

Y = Y K +En
n′Y
′ , (45)

here Y K is the value obtained on the fine level, and Y ′ is the coarse level correction we are looking for.
By using coarse level correction (45) in the original nonlinear problem (42), we can easily obtain the following
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relations for the Y ′ correction:

J ′(Y ′) = En
n′

T ·J ′(Y ) = A′J ′Y ′−b′J ′ , (46)

here A′J ′ stands for the coarse level Jacobian matrix, its value can be obtained by

A′J ′ = En
n′

T AJ ′En
n′ , (47)

and the constant vector b′J ′

b′J ′ = En
n′

T (bJ ′ −AJ ′Y K) , (48)

AJ ′ is the Jacobian matrix on the fine level. Thus we can again employ classical steepest-descent iterations on
the coarse level for correction by initializing Y ′0 = 0:

Y ′←− Y ′−ρJ ′(Y ′) , (49)

then we can update by Y K +En
n′Y
′ on the fine level. Iterations on the fine level (44) and corrections on the coarse

level (49) complete a two-level correction-type idea algorithm for the nonlinear model problem. However it takes
many iterations (hundreds for this model problem) to achieve complete convergence. To speed up the rate of
convergence, we can use a better technique – Tchebychev iterations [7] on the fine level, i.e., it has three steps
for each cycle:

Y j1 = Y j0 − τ1J
′(Y j0) ,

Y j2 = Y j1 − τ2J
′(Y j1) ,

Y j3 = Y j2 − τ3J
′(Y j2) ,

here τi (i = 1,2,3) are multiplicative inverses of the three roots of the half frequent (HF) Tchebychev polynomial
for the matrix AJ ′ . Note that the matrix AJ ′ is corresponding to Y j0 , so we can only use Tchebychev iterations
when Y j0 is already close to target values otherwise this method will diverge.

3.2 Coarse Level Correction: Z Method
The Z method of coarse level corrections for the nonlinear model is given as follows:

Y = Y K +Q0En
n′Z
′ , (50)

here Y K is the value obtained on the fine level, Z′ is the coarse level correction we are looking for, Q0 = ΩnPnΩT
n ,

and Pn is the same permutation matrix as we used for linear problem. The idea of the Z Method is to reverse
pairing between eigenvalues and eigenvectors by multiplying the matrix Q0 so that larger eigenvalues pair with
higher frequency on the coarse level and relaxations can remove high frequent errors efficiently [6].

By using coarse level correction (50) in the original nonlinear problem (42), we can easily obtain the following
relations for the Z′ correction by chain rules:

J ′(Z′) = En
n′

T ·Q0 ·J ′(Y ) = A′J ′Z′−b′J ′ , (51)

here A′J ′ stands for the coarse level Jacobian matrix of the Z method (we share the same notation with Y method
for simplicity), its value can be obtained by

A′J ′ = En
n′

T Q0AJ ′Q0En
n′ , (52)

and the constant vector b′J ′

b′J ′ = En
n′

T Q0(bJ ′ −AJ ′Y K) . (53)

Thus we can again employ classical steepest-descent iterations on the coarse level for correction by initializing
Z′0 = 0:

Z′←− Z′−ρJ ′(Z′) , (54)

then we can update by Y K +Q0En
n′Z
′ on the fine level. Iterations on the fine level (44) and corrections on the

coarse level (54) complete another two-level correction-type ideal algorithm for the nonlinear model problem. To
speed up the rate of convergence, we can use Tchebychev iterations [7] on the fine level.
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3.3 Coarse Level Correction: L Method
L Method uses the idea of the Z Method to reverse pairing between eigenvalues and eigenvectors by a simple
matrix ∆, given the previous section, instead of computing the complicated matrix Q0. Thus the two methods
are almost similar except replacing matrix Q0 by matrix ∆ in the Z Method, i.e., the L method of coarse level
corrections:

Y = Y K +∆En
n′L
′ , (55)

here Y K is the value obtained on the fine level, L′ is the coarse level correction we are looking for.
By using coarse level correction (50) in the original nonlinear problem (42), we can easily obtain the following

relations for the L′ correction by:

J ′(L′) = En
n′

T ·∆ ·J ′(Y ) = A′J ′L′−b′J ′ , (56)

here A′J ′ stands for the coarse level Jacobian matrix of the L′ method, its value can be obtained by

A′J ′ = En
n′

T
∆AJ ′∆En

n′ , (57)

and the constant vector b′J ′

b′J ′ = En
n′

T
∆(bJ ′ −AJ ′Y K) . (58)

Thus we can again employ the classical steepest-descent iterations on the coarse level for correction by initializing
L′0 = 0:

L′←− L′−ρJ ′(L′) , (59)

then we can update by Y K +∆En
n′L
′ on the fine level. Iterations on the fine level (44) and corrections on the

coarse level (59) complete another two-level correction-type ideal algorithm for the nonlinear model problem. To
speed up the rate of convergence, we can use Tchebychev iterations [7] on the fine level.

3.4 Numerical Experiments
In all the experiments, we take the following initial guess and we elevate their degrees by using the degree
elevation matrix En

n′ (n = 8, n′ = 4):

X0 0 0 0.077 0.409 1.0
Y 0 0 0.01 0.01 0.01 0

To analyse our numerical experiences, we define the ”error” as the difference between the approximation
J (Y ) obtained by different methods concerned in our work and the exact solution.

For the first numerical experience, we employ 15 iterations on the fine level, and solve the problem com-
pletely on the coarse level for both Y and Z methods, then go back to the fine level to update values, finally
do another 10 iterations. We plot errors versus the number of iterations in Fig. 3, we can observe that Y
method is the most efficient in term of error reduction, and after corrections the Y method converges slowly (it
still needs hundreds of iterations to fully converge), while Z and L methods get their full convergence for this case.

We define one two-level process as: first employ 35 iterations on the fine level, then do 5 iterations on the
coarse level and update values on the fine level. ρ’s in these iterations on both levels are taken as multiplicative
inverses of maximum eigenvalues of these iteration matrices. In our second experience, we repeat the two-level
process three times and at the end of it do another 60 iterations on the fine level. We plot errors versus the number
of iterations in Fig. 4. We can see that for coarse corrections of Y method does nothing good, while coarse
corrections of Z and L methods are efficient. At the first beginning, it may appear contradictions with the linear
model problem since errors obtained by L method are smaller than those obtained by Y method for this nonlinear
model problem. Note that for the linear case we can only obtain the exact Jacobian matrix AJ ′ and Q0 for Z
method, which is not the case for nonlinear ones. Thus, it is no wonder that results obtained by the L method is
the best among all considered methods for nonlinear model problems.
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From the last experience, we can see that it takes too many iterations to achieve full convergence. To speed up
the rate of convergence, we use Tchebychev iterations (HF) on the fine level (n = 8) in our third experience. First
we employ 5 iterations (ρ’s are chosen as multiplicative inverses of maximum eigenvalues of Jacobian matrices)
on the fine level (so that solutions are close to exact ones in some sense, which makes sure that Tchebychev
iterations converge , since initial values are very bad), then we can employ 6 Tchebychev iterations (HF) on the
fine level, and solve them on coarse level (n′ = 4) ”exactly”, finally go back to the fine level and do another 6
Tchebychev iterations. We put errors corresponding to the number of iterations in Fig. 5. It is obvious that Z′

and L′ methods converge much faster, while corrections of Y method doesn’t make any difference.

Figure 3. Comparaison between the results for Y , Z and L methods for the nonlinear model problem; First
experiment: we employ 15 iterations on the fine level (n = 8), and solve completely on coarse level, then go back
the fine level to update values, finally do another 10 iterations
.

Through our numerical experiences, we find some other interesting results:

1. In two-level ideal algorithms, if we compute the same number of iterations on the fine level (n = 8) and
solve ”exactly” on the coarse level, the results are better for the coarse level corresponding to n′ = 4 than
n′ = 2. As far as the cost of operations is concerned, the case n′ = 2 uses less operations on the coarse
level than n′ = 4. Thus, there is not an obvious winner for this nonlinear problem.

2. In three-level ideal algorithms of Z and L methods (n′′ = 2, n′ = 4, and n = 8), we don’t need to employ
the transformation matrices Q0 or ∆ on the coarse level to repair eigenvalues and eigenvectors.

3. On the bottom of V cycle, we can also use Newton iterations to solve for coarse corrections instead of
solving them ”exactly”.

4. In Z′ method, we find that the algorithms converges faster when we use the Jacobian matrix of the linear
model problem to compute the matrix Q0.

4. Conclusion
In this paper, a number of variants of two-level correction algorithm has been presented for a linear and nonlinear
problem. We have demonstrated that the method (Z and L) based on the classical modal-analysis concept is the
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Figure 4. Comparaison between the results for Y , Z and L methods for the nonlinear model problem; Second
experiment: we employ 35 iterations on the fine level, then do 5 iterations on the coarse level and update values
on the fine level. ρ’s in these iterations on both levels are taken as multiplicative inverses of maximum eigenvalues
of these iteration matrices.

most efficient. For the both cases, we use a model problem which consists to minimize a quadratic functional
using the steepest descent algorithms; the optimizer could be viewed as the classical point-Jacobi iteration applied
to a certain matrix.

It is well known that there are two major multigrid methods [11][12] to deal with nonlinear problems:
Newton-multigrid and Full Approximation Scheme (FAS). The algorithm used in this paper could be viewed as
the Newton-multigrid. As perspective, we propose applying the Full Approximation Scheme for the nonlinear
model problem A(Y ) = f as follow:

1. on the fine level n, relax the nonlinear problem AY j = f by initializing Y 0, and use Y K as the values on the
fine level after relaxations;

2. on the coarse level correction, we need to solve the following residual equation:

A′(Y ′) = A′(Rn′
n Y )+Rn′

n ( f −A(Y K)) , (60)

where Y ′ is the approximation on the coarse level, that is the reason how the name of this algorithm FAS
comes from, A′ stands for the nonlinear operator on the coarse level n′ and Rn′

n is used here as the restriction
operator which projects from the fine level n to the coarse level n′;

3. back to the fine level n, update the values Y K by Y K +En
n′(Y

′−Rn′
n Y K), here En

n′ is the degree elevation
operator.

In the two level ideal algorithm of our nonlinear model problem, the linearized approach is identical with the
algorithm of FAS when the coarse level is solved ”exactly”.

27



J. Zhao et al. / International Journal of Engineering and Mathematical Modelling

Figure 5. Comparaison between the results for Y , Z and L methods for the nonlinear model problem; Third
experiment: we employ 5 iterations on the fine level, then we can employ 6 Tchebychev iterations (HF) on the
fine level, and solve on the coarse level ”exactly”, finally go back to the fine level and do another 6 Tchebychev
iterations.

Figure 6. Control polygon and Bézier profile for Y and Z methods.
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Figure 7. Comparaison between Z and L methods for the nonlinear model problem; we use three levels (fine
level n = 8, intermediate level n′ = 4, and coarse level n′′ = 2).
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