
HAL Id: hal-01132831
https://hal.science/hal-01132831v9

Submitted on 12 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IMP with exceptions over decorated logic
Burak Ekici

To cite this version:
Burak Ekici. IMP with exceptions over decorated logic. Discrete Mathematics and Theoretical Com-
puter Science, 2018, vol. 20 no. 2, �10.23638/DMTCS-20-2-11�. �hal-01132831v9�

https://hal.science/hal-01132831v9
https://hal.archives-ouvertes.fr

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 20:2, 2018, #11

IMP with exceptions over decorated logic

Burak Ekici

University of Innsbruck, Department of Computer Science, Innsbruck, Austria

received 18th Apr. 2017, revised 23rd Feb. 2018, 21st Sep. 2018, accepted 5th Oct. 2018.

In this paper, we facilitate the reasoning about impure programming languages, by annotating terms with “decorations”
that describe what computational (side) effect evaluation of a term may involve. In a point-free categorical language,
called the “decorated logic”, we formalize the mutable state and the exception effects first separately, exploiting
a nice duality between them, and then combined. The combined decorated logic serves as the target language for
the denotational semantics of the IMP+Exc imperative programming language, and allows us to prove equivalences
between programs written in IMP+Exc. The combined logic is encoded in Coq, and this encoding is used to certify
some program equivalence proofs.

Keywords: Computational effects, state, exceptions, program equivalence proofs, decorated logic, Coq.

1 Introduction
In programming languages theory, a program is said to have computational effects if, besides a return
value, it has observable interactions with the outside world. For instance, using/modifying the program
state, raising/recovering exceptions, reading/writing data from/to some file, etc. In order to formally reason
about behaviors of a program with computational effects, one has to take into account these interactions.
One difficulty in such a reasoning is the mismatch between the syntax of operations with effects and their
interpretation. Typically, an operation in an effectful language with arguments in X that returns a value in
Y is not interpreted as a function from X to Y , due to the effects, unless the operation is pure.

The best known algebraic approach to formalize computational effects was initiated by Moggi (1991) in
his seminal paper. He showed that the effectful operations of an impure language can be interpreted as
arrows of a Kleisli category for an appropriate monad (T,η ,µ) over a base category C with finite products.
For instance, in Moggi’s computational metalanguage, an operation in an impure language with arguments
in X that returns a value in Y is now interpreted as an arrow from JXK to T JY K in C where JXK is the
object of values of type X and T JY K is the object of computations that return values of type Y . The use
of monads to formalize effects (such as state, exceptions, input/output and non-deterministic choice) was
popularized by Wadler (1992), and implemented in the programming languages Haskell and F]. Using
monad transformers, as in Jaskelioff (2009), it is usually possible to “combine” different effects formalized
by monads. Moggi’s computational metalanguage was extended into the basic effect calculus with a notion
of computation type by Filinski (1996) in his effect PCF and by Levy (1999) in his call-by-push-value
(CBPV). Egger et al. (2014) defined their effect calculus, named extended effect calculus as a canonical
calculus incorporating the ideas of Moggi, Filinski and Levy. Following Moggi, they included a type

ISSN 1365–8050 c© 2018 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/3272

2 Burak Ekici

constructor for computations. Following Filinski and Levy, they classified types into value types and
computation types.

Being dual to monads, comonads have been used to formalize context-dependent computations. Intu-
itively, an effect which observes features may arise from a comonad, while an effect which constructs
features may arise from a monad (Jacobs and Rutten (2011)). Uustalu and Vene (2008) have structured
stream computations, Orchard et al. (2010) array computations and Tzevelekos (2008) game semantics
via the use of comonads. Petricek et al. proposed a unified calculus for tracking context dependence
in functional languages together with a categorical semantics based on indexed comonads. In (Orchard
(2012)), there is a quite nice discussion on how to choose between a monad or comonad when either can be
used to capture a particular notion of computation. Also, Brookes and Van Stone (1993) discussed that
a computation may be interpreted by distributive laws of a comonad over a monad when it is seen as a
composition of context-dependence and effectfulness. This approach has been applied to clocked causal
data-flow computation, combining causal data-flow and exceptions by Uustalu and Vene (2005).

Moggi’s approach, using monads in effect modeling, has been extended to Lawvere theories which first
appeared in Lawvere (1963)’s PhD dissertation. Then, Linton (1966, 1969) first showed that every Lawvere
theory induces a monad on the category of sets, and then on any category satisfying some condition
called the “local representability”. Therefore, Moggi’s seminal idea, formalizing computational effects by
monads, made it possible for monadic effects to be formalized through Lawvere theories. To this extend,
Plotkin and Power (2002) have shown that effects such as the global and the local state could be formalized
by signatures of effectful terms and an equational theory explaining the interactions between them. Melliès
(2010) has refined this equational theory showing that some of the equations modeling the mutable global
state can be omitted. Hyland et al. (2006, 2007) studied the combination of computational effects in terms
of Lawvere theories.

Plotkin and Pretnar (2009, 2013) extended Moggi’s classification of terms (values and computations)
with a third level called handlers for the computational effects that can be represented by an algebraic theory
(algebraic effects). Initially, they introduce an handler for the exception handling, and then account for its
generalization to the other handlers to cope with other algebraic effects such as stream redirection, explicit
non-determinism, CCS, parameter passing, timeout and rollback (Plotkin and Pretnar, 2013, §3). For each
algebraic effect, handling constructs are used to apply handlers to effectful computations where effectful
computations can be interpreted as algebraic operations while handling constructs as homomorphisms from
free algebras. This use of handling constructs is inspired from Benton and Kennedy (2001)’s work where a
single construct specialized to handle exceptions is introduced. Moreover, Jacobs (2001) formalized the
exception effect from the dual, namely co-algebraic, viewpoint. Exception handling is also used to build a
Hoare logic for exceptions by Schröder and Mossakowski (2004).

There is an older formal way of modeling computational effects called the effect systems by Lucassen
and Gifford (1988). They presented an approach to programming languages for parallel computers. The
key idea was to use an effect system to discover expression scheduling constraints. There, every expression
comes with three components: types to represent the kinds of the return values, effects to summarize the
observable interactions of expressions and regions to highlight the areas of the memory where expressions
may have effects. To this extend, one can simply reason that if two expressions do not have overlapping
effects, then they can obviously be scheduled in parallel. The reasoning is done by some inference rules for
types and effects based on the second order typed λ -calculus.

Domínguez and Duval (2010) proposed yet another paradigm to formalize computational effects by
mixing effect systems and algebraic theories, named the decorated logic. The key point of this paradigm is

IMP with exceptions over decorated logic 3

that every term comes with a decoration which exposes its features with respect to a single computational
effect or to several ones keeping their interpretations close to syntax in reasoning with effects. In addition,
an equational theory highlights the interactions among terms with two sorts of equations: weak equations
relate terms with respect only to their results while strong equations relate them with respect both to their
results and effects. By and large, decorated logic provides an equational reasoning in between programs
written in imperative languages after being used as a target language for a denotational semantics of the
studied language.

In a decorated logic, a term has three different decorations: pure, accessor and modifier/catcher. The
first two decorations can correspond to Moggi’s values and computations, and the third level can be seen
as Plotkin and Pretnar’s handlers. An handler operates recursively by its nature, and handles also the
continuation. However, a catcher does not. It returns the continuation unhandled which should then be
handled explicitly. Thus, catchers are non-recursive handlers, so called shallow handlers introduced by
Kammar et al. (2013).

1.1 On the use of decorated logic
In this paper, we use Duval’s decorated logic to formalize computational effects. The advantages of
using decorated logic in effect formalization is mainly two-folded: (1) effects of terms are hidden by
the decorations, so that it is possible to preserve the syntax of term signatures. Thereafter, the provided
equational reasoning would be valid for different algebraic models of the same effect. (2) The equational
theory is based on decorated equivalence relations proposing different reasoning capabilities: one on
effects and returned results and the other one only on returned results. However, for the time being, it
might be inconvenient to use decorated logic to prove more general properties of algorithms. That is to
say, we can prove equivalences between programs that admits particular specifications as initializing and
describing final values stored in variables. The total correctness of a theory in a decorated logic, that
guaranties that the theory is not using too many axioms to become the maximal theory, is based on a
syntactic completeness property called relative Hilbert-Post completeness. Section 7.3 details mentioned
property, and its application to the specific case that this paper covers.

1.2 Organization and contributions
In general terms, in this paper, we extend Moggi’s original approach using the classifications of expressions,
provided by the Kleisli category of the monad of exception and the comonad of the state thanks to the
duality between states and exceptions proven by Dumas et al. (2012). The definitions and the results are
presented in terms of equational theories so that one does not need to know the details about the monad of
exceptions nor the comonad of the state. In more specific terms, this paper designs the decorated logic
for the global state and the exception effects, and then combines them to serve as a target language for
denotational semantics of imperative programming languages mixing mentioned effects. It is organized
as follows: in Section 2, we introduce an imperative programming language that mixes the state and the
exception effects by defining its small-step operational semantics. The language we study there is called
IMP+Exc which extends the IMP (or while) with a mechanism to raise and handle exceptions. In Section 3,
we introduce the decorated logic as a generic framework extending Moggi’s monadic equational logic.
Then, we formally specialize the decorated logic for the state and the exception effects in Sections 4 and 5,
respectively. In Section 6, we combine these logics. Finally, Section 7 details the use of the combined
decorated logic as the target language for the IMP+Exc denotational semantics. This provides a rigorous
formalism for an equational reasoning between termination-guaranteed IMP+Exc programs. I.e., proving

4 Burak Ekici

two different looking programs are in fact doing the same job with respect to the state and exception effects.
In Section 7.1, we presents three proof examples. Also, we certify such proofs with the Coq Proof Assistant.
See the entire Coq implementation here (i), and the approach of the paper in Figure 1.

Decorated logic
implementation

,,

equational reasoning between IMP+Exc programs
��

Coq
certi f ied equational reasoning��

IMP+Exc Programs

denotational semantics

OO

22

Figure 1: The approach

This paper builds upon several papers by Domínguez and Duval (2010), Dumas et al. (2014a), Dumas
et al. (2015), Dumas et al. (2014b), Dumas et al. (2012) and Dumas et al. (2014c) . The novel points
presented here can be itemized as follows:

• a combined decorated logic for the states (Dumas et al. (2014a)) and exceptions (Dumas et al.
(2014b)) effects (this paper explains both logics again but for the details please refer to the citations),

• Coq formalization of the combined logic,

• a denotational semantics for the IMP+Exc (IMP with exceptions) over the combined logic,

• Coq formalization of the IMP+Exc denotational semantics,

• some equivalence proofs of programs written in IMP+Exc and their verifications in Coq.

A preliminary version of this paper has been presented in TFP (Trends in Functional Programming) 2015
but did not appear in the final proceedings. Find the mentioned paper here(ii).

2 IMP with exceptions
IMP is a standard Turing complete imperative programming language natively providing global variables
of integer (Z), Boolean (B) and unit (U) data types, standard integer and Boolean arithmetic enriched with a
set of commands that is made of do-nothing, assignment, sequence, conditionals and looping operations.
Below, we detail its syntax where n represents a constant integer term while x is an integer global variable.
Note also that abbreviations aexp and bexp respectively denote arithmetic and Boolean expressions as
well as cmd stands for the commands.

aexp: a1 a2 ::= n | x | a1+a2 | a1−a2 | a1×a2

bexp: b1 b2 ::= true | false | a1
?
= a2 | a1

?
6= a2 | a1

?
> a2 | a1

?
< a2 | b1∧b2 | b1∨b2 | ¬b1

cmd: c1 c2 ::= SKIP | x, a1 | c1; c2 | if b then c1 else c2 | while b do c1
Figure 2: Standard IMP syntax

(i) https://github.com/ekiciburak/impex-on-decorated-logic
(ii) ftp://ftp-sop.inria.fr/indes/TFP15/TFP2015_submission_6.pdf

https://github.com/ekiciburak/impex-on-decorated-logic
ftp://ftp-sop.inria.fr/indes/TFP15/TFP2015_submission_6.pdf

IMP with exceptions over decorated logic 5

Neither arithmetic nor Boolean expressions are allowed to modify the state: they are either pure or
read-only. We present, in Figure 3, the big-step semantics for evaluation of arithmetic expressions in IMP
where we use a big-step transition function→a : aexp×S→ Z. This function computes an integer value
out of an input arithmetic expression and the current program state (denoted s) which includes contents
of variables at a given time. The symbol op represents the operation symbols (+, − or ×) given by the

(aconst)
(n, s)→a n

(var)
(x, s)→a s(x)

(op−sym)
(a1, s)→a n1 (a2, s)→a n2

(a1 op a2,s)→a n1 opZ n2

Figure 3: Big-step operational semantics for arithmetic expressions

standard syntax in Figure 3, while opZ : Z→ Z→ Z denotes the corresponding binary operations in Z.
Similarly, in Figure 4, we present the big-step semantics for evaluation of Boolean expressions in IMP
where we use a big-step transition function→b : bexp×S→ B. This function simply computes a Boolean
value out of an input Boolean expression and the current program state. The constant symbols true and

(true)
(true, s)→b true

(false)
(false, s)→b f alse

(op1)
(b1, s)→b v1 (b2, s)→b v2

(b1 opb b2,s)→b v1 opbB v2
(op2)

(b1, s)→b v1

(¬ b1,s)→b neg v1

Figure 4: Big-step operational semantics for Boolean expressions

false are Boolean operation symbols given by the standard syntax in Figure 2, while true and false are
Boolean constructors. Similarly, opb represents the binary operation symbols, while opbB : B→ B→ B
denotes the corresponding Boolean operations, and neg : B→ B is the Boolean negation.

The small-step operational semantics for evaluation of commands are given in Figure 5 where we use
a small-step transition function : S×cmd→ S×cmd which is interpreted as at the state s, one step
execution of the command c changes the state into s′ and the command c′ is now in further execution.

(sequence)
s,c1 s′,c′1

s,(c1;c2) s′,(c′1;c2)
(skip)

s, (SKIP;c) s,c

(assign)
(a, s)→a n

s, (x := a) s[x← n],SKIP

(cond1)
(b, s)→b true

s, (if b then c1 else c2) s,c1
(cond2)

(b, s)→b f alse
s, (if b then c1 else c2) s,c2

(while1)
(b, s)→b true

s, (while b do c) s,(c; while b do c)
(while2)

(b, s)→b f alse
s, (while b do c) s,SKIP

Figure 5: Small-step operational semantics for commands

We need to elucidate that a command c terminates at a state s′ if s, c ∗ s′, SKIP for some state s′,

6 Burak Ekici

where ∗ is the transitive closure of the transition function . Mind also that SKIP is allowed to execute
at any state s, and SKIP alone is used to indicate the final step of some command set.

2.1 A mechanism to handle exceptions

Extending the IMP language with a mechanism that allows raising exceptions and recovering from them,
we enrich the command set with THROW and TRY/CATCH blocks. In addition to the ones in Figure 2, we
also consider following commands in Figure 6 where e is an exception name coming from a finite set

cmd: c1 c2 ::= . . . | THROW e | TRY c1 CATCH e⇒ c2

Figure 6: Syntax for exceptional commands

EName which exists by assumption. There is also a type EVe of exceptional values (parameters) for each
exception name e. The small-step operational semantics for THROW and TRY/CATCH commands are shown
in Figure 7.

(throw)
e : EName

s, (THROW e;c) s, THROW e
(tskip)

s, TRY SKIP CATCH e⇒ c s,SKIP

(tstep)
s,c1 s′,c′1

s,TRY c1 CATCH e⇒ c2 s′, TRY c′1 CATCH e⇒ c2

(tc1)
e : EName

s,TRY (THROW e) CATCH e⇒ c s,c
(tc2)

e1 e2 : EName e1 6= e2

s,TRY (THROW e1) CATCH e2⇒ c s,THROW e1

Figure 7: Small-step operational semantics for additional commands

Exceptional commands are pure in terms of the state effect: they neither use nor modify the program
state. However, they introduce another sort of computational effect: the exception. In prior, we stated that
the command SKIP alone indicates the termination of a program. Now, we extend this by saying THROW e

is also an end but an abnormal end. Intuitively, if an exceptional value of name e is raised in the TRY block
and recovered immediately in the CATCH, the program then resumes with the provided continuation. An
exceptional value (of name e) gets propagated if another exceptional value with different name (say, of
name f, s.t. e 6= f) is being recovered in the CATCH.

In Section 7, we define denotational semantics of the IMP+Exc language using the decorated logic
(generic framework is given in Section 3) for the state and the exception effects as the target language. We
present this logic in Section 6 as a combination of the logics that we introduce in Sections 4 and 5.

3 Decorated Logic (Ldec)
The decorated logic, as a generic framework, is an extension to monadic equational logic Moggi (1991), that
we briefly discuss in Section 3.1, with the use of decorations on terms and equalities. It provides a rigorous
formalism to do equational reasoning between impure programs written in imperative programming
languages with side effects after being defined as a target language for their denotational semantics.

IMP with exceptions over decorated logic 7

3.1 Monadic Equational Logic (Lmeq)
The monadic equational logic (Lmeq) is the minimal logic that can be interpreted in a category with objects
as types, arrows as terms and equalities as equations. I.e., an object O in the category interprets the type
X in the logic, just as the usual Leibniz equality, f= g, interprets the equation f∼= g in the logic. The
keyword “monadic” has little to do with monads. It rather means that the operations of the logic are unary
(or mono-adic). Figure 8 presents the syntax of the logic Lmeq. There, every term has a source and a

Grammar for the monadic equational logic:
Types: t ::= X | Y | . . .
Terms: f, g ::= idt | a | b | · · · | g◦f
Equations: eq ::= f∼= g

Figure 8: Lmeq: syntax

target type, e.g., f : X→ Y. Every equation is formed by terms with the same source and target types, e.g.,
e : f∼= g where f, g : X→ Y. This syntax is accompanied by the rules shown in Figure 9.

congruence rules

(refl)
f

f∼= f
(sym)

f∼= g

g∼= f
(trans)

f∼= g g∼= h

f∼= h
(replsubs)

f1 ∼= f2 : X→ Y g1 ∼= g2 : Y→ Z

g1 ◦f1 ∼= g2 ◦f2
categorical rules

(id)
X

idX : X→ X
(comp)

f : X→ Y g : Y→ Z

(g◦f) : X→ Z
(ids)

f : X→ Y

f◦idX ∼= f
(idt)

f : X→ Y

idY ◦f∼= f

(assoc)
f : X→ Y g : Y→ Z h : Z→ U

h◦ (g◦f)∼= (h◦g)◦f
Figure 9: Lmeq: rules

The congruence rules say that the relation ‘∼=’ is a congruence meaning that it is an equivalence relation
(reflexive, symmetric and transitive) which obeys replacements and substitutions of compatible terms
with respect to the composition. The basic categorical rules indicate that there is an identity morphism
idX : X→ X for each type X, composition is an associative operation, and composing any term f with id is
f, up to ∼=, no matter the composition order.

3.2 The decorated logic
The decorated logic extends the monadic equational logic with a 3-tier effect system for terms and a
2-tier system for equations made of “up-to-effects” (weak) and “strong” equalities. Figure 10 presents its
syntax. Each term has a source and a target type as well as a decoration which describe what computational
side effects evaluation of that term may involve, and used as a superscript (0), (1) or (2): a pure term is
decorated with (0), an effect constructor with (1) and an effect modifier term comes with the decoration
(2). Each equation is formed by two terms with the same source and target as well as a decoration which
is denoted either by “∼” (weak) or by “≡” (strong). A weak equality between two terms relates them
according only to their results, while a strong equality relates terms according both to their result and the
side effect evaluations they involve with respect to the effect in question.

8 Burak Ekici

Grammar for the decorated logic:
Types: t ::= X | Y | . . .
Decoration for terms: (d) ::= (0) | (1) | (2)
Terms: f, g ::= a(d) | b(d) | · · · | g◦f(d) | (tpure •)(0)

Equations: eq ::= f≡ g | f∼ g

Figure 10: Ldec: syntax

The tpure is a special constructor used to introduce decorated pure terms into the logic Ldec. It inputs
a non-decorated pure term from a pure type system (i.e., Coq’s logic) and drops it in with the decoration
(0). For instance, the identity term id is defined using the tpure constructor, for all types X as follows:

id
(0)
X : X→ X := tpure (λ x : X.x : X).

In Figure 11, we present the inference rules associated to the syntax given in Figure 9.
Remark 3.1. In all of the figures presenting the rules of some decorated logic, through out the paper, the
decorations “d1, d2, d3, . . . ” are meant to be in the set {0,1,2} unless otherwise stated. For instance, in
the rule (wtos) below decorations d1 and d2 cannot take the value 2.

hierarchy rules

(0-to-1)
f(0)

f(1)
(1-to-2)

f(1)

f(2)
(stow)

f(d1) ≡ g(d2)

f(d1) ∼ g(d2)
(wtos)

f(d1) ∼ g(d2) d1,d2 ∈ {0,1}
f(d1) ≡ g(d2)

congruence rules

(refl)
f(d1)

f(d1) ≡ f(d1)
(sym)

f(d1) ≡ g(d2)

g(d2) ≡ f(d1)
(trans)

f(d1) ≡ g(d2) g(d2) ≡ h(d3)

f(d1) ≡ h(d3)

(wrefl)
f(d1)

f(d1) ∼ f(d1)
(wsym)

f(d1) ∼ g(d2)

g(d2) ∼ f(d1)
(wtrans)

f(d1) ∼ g(d2) g(d2) ∼ h(d3)

f(d1) ∼ h(d3)

(replsubs)
f
(d1)
1 ≡ f

(d2)
2 : X→ Y g

(d3)
1 ≡ g

(d4)
2 : Y→ Z

g
(d3)
1 ◦f(d1)1 ≡ g

(d4)
2 ◦f(d2)2

categorical rules

(comp)
f(d1) : X→ Y g(d1) : Y→ Z

(g◦f)(d1) : X→ Z
(assoc)

f(d1) : X→ Y g(d2) : Y→ Z h(d3) : Z→ U

h(d3) ◦ (g(d2) ◦f(d1))≡ (h(d3) ◦g(d2))◦f(d1)

(ids)
f(d1) : X→ Y

f(d1) ◦id(0)X ≡ f(d1)
(idt)

f(d1) : X→ Y

id
(0)
Y ◦f(d1) ≡ f(d1)

(tcomp)
f(p) : Y→ Z g(p) : X→ Y

(tpure f)(0) ◦ (tpure g)(0) ≡ (tpure (f ◦ g))(0)

Figure 11: Ldec: rules

Lemma 3.2. ∀f(d1) : X→ Y,g(d2) : Y→ Z, the annotation (g◦f)(max(d1,d2)) is admissible.

IMP with exceptions over decorated logic 9

Proof: Trivially follows from case analyses on d1 and d2, and the rules (0-to-1), (1-to-2) and (comp).

Hierarchically, a pure term can be seen as a constructor (0-to-1), and similarly a constructor term can be
seen as a modifier on demand (1-to-2).

It is obviously free to convert strong equations into weak ones (stow). However, one has to make sure
that the equated terms are not decorated with (2) in order to convert weak equations into strong ones with
no further evidence (wtos).

Both strong and weak equalities are defined to be equivalence relations with the assumption that they
are reflexive, transitive and symmetric. Strong equations form a congruence relation but weak equations do
not: we will see this in detail when we specialize the decorated logic for the global state and the exception
effects in Sections 4 and 5, respectively.

The categorical rules present properties of the term composition: the decoration of a composition
depends on the decoration of its components, always taking the larger. I.e., ∀f(0) : X→ Y and g(2) : Y→ Z,
g◦f : X→ Z takes the decoration (2) (Lemma 3.2). Composition is an associative operation (assoc). The
identity term disappears when to compose on the right (ids), and on the left (idt). The rule (tcomp) states
that the tpure constructor preserves the composition of pure terms up to the strong equality. Meaning that
one can first compose pure terms outside the decorated environment (in any pure type system) and use
the tpure constructor to translate them into the Ldec, or translate the terms into the Ldec first, and then
compose them there. Notice that the red colored composition symbol (◦), in the rule conclusion, stands for
the composition operation for pure terms. The decoration (p) of terms f and g is used just to denote the
pure terms outside decorated environment, thus it does not take part in the decorated logic syntax. Similar
case applies to the (tcomp) rule given in Figure 17.

4 The Decorated Logic for the state effect (Lst)
The use and modification of the memory state is the fundamental feature of imperative languages, and
considered as a sort of computational side effect. In this section, we present a proof system for the use of
the global state which involves access and modify operations, called the decorated logic for the state effect
(Lst). This logic is obtained by extending the generic framework presented in Section 3.2. In this case, the
decoration (0) is reserved for pure terms, while (1) is for read-only (accessor) and (2) is for read-write
(modifier) terms. Two terms are called strongly equal if they return the same result with the same state
manipulation; they are called weakly equal if they return the same result with different state manipulations.
Figure 12 shows the grammar of the Lst where 1 is the singleton type while Vi is the type of values that
can be stored in any location i. We assume that there is a set of locations called Loc. Given types X and Y,
we have X×Y representing type products.

Terms are closed under composition (◦) and pairing (〈_,_〉l). I.e., for all terms f : X→ Y and g : Y→ Z,
we have g◦f : X→ Z. Similarly, for all f : X→ Y and g : X→ Z, there is 〈f,g〉l : X→ Y×Z. Notice that the
pair subscript ‘l’ denotes the left pairs. One can define in a symmetric way the right pairs for terms f : X→ Y

and g : X→ Z as 〈f,g〉r := permut◦ 〈g,f〉l where permut := 〈π2,π1〉l. In the same way, one can respec-
tively obtain left and right products of terms f : X1→ Y1 and g : X2→ Y2 as f×l g := 〈f◦π1,g◦π2〉l and
f×r g := 〈f◦π1,g◦π2〉r. The term pairs/products are used to impose some order of term evaluation since
the evaluation result depends on the order that the mutable state is accessed/modified. I.e., the product of
two terms can be intuitively interpreted as they run on the global state in parallel, while sequential products,
put forward in (Dumas et al., 2014a, §2.3), enforce terms to use the state in sequence. The decoration of a
pair/product depends on the decoration of its components, always taking the larger. I.e., ∀f(0) : X→ Y and

10 Burak Ekici

Grammar of the decorated logic for the state: (i ∈ Loc)

Types: t, s ::= X | Y | · · · | t×s | 1 | Vi
Decorations for terms: (d1),(d2) ::= (0) | (1) | (2)
Terms: f, g ::= a(d) | b(d) | · · · | g◦f(d) |

〈f(d1) : X→ Y,g(d2) : X→ Z〉(max(d1,d2))l : X→ Y×Z |
lookup

(1)
i | update

(2)
i | (tpure •)(0)

Equations: eq ::= f(d) ≡ g(d) | f(d) ∼ g(d)

Figure 12: Lst : syntax

g(2) : X→ Z, the term 〈f,g〉l : X→ Y×Z takes the decoration (2). Note that in Lst , we do not necessarily
stick to the sequential products, even pairs/products of modifiers (intuitively parallel execution of modifiers)
are allowed to be constructed. However, they cannot be used in the provided equational reasoning, since
they may lead to conflicts on the returned result due to possible hazardous parallel modifications of the
global state. We can have equational reasoning only when the left component is at most an accessor. This
restriction is given by the rules (w_lpair_eq) and (s_lpair_eq) in Figure 13. In the Coq implementation of
this logic, as detailed in Section 4.2, we only allow the construction of pairs/products of modifiers under
contradictory assumptions. See the constructor is_pair of the inductive type is.

The interface terms are lookupi : 1× S→ Vi and updatei : Vi× S→ 1× S where S denotes the
distinguished object of states which never appears in the decorated setting. The use of decorations provides
a new schema where term signatures are constructed without any occurrence of the state object. For
instance, lookup(1)i : 1→ Vi is an accessor while update

(2)
i : Vi→ 1 is a modifier. This way, we keep

signatures close to their syntax and compose compatible terms as usual. The term lookup reads the value
stored in a given location while update modifies it. We can call them the unique sources of impurity, since
only the terms including lookup or update are impure; meaning those do not include them are pure with
respect to the state effect.

The identity term id, the canonical pair projections π1, π2, the empty pair 〈 〉 and constants are
translated from a pure type system with type products using the tpure constructor, for all types X and Y, as
follows:

id
(0)
X : X→ X := tpure (λ x : X.x : X)

π
(0)
1 : X×Y→ X := tpure fst

π
(0)
2 : X×Y→ Y := tpure snd

〈 〉(0)X : X→ 1 := tpure (λ x : X. void : 1)

constant
(0)
x : 1→ X := tpure (λ _. x : X)

where fst and snd are constructors of product types.
The intended model of the above grammar is built with respect to the set of states S where a pure term

p(0) : X→ Y is interpreted as a function p : X→ Y, an accessor a(1) : X→ Y as a function a : X×S→ Y, and
a modifier m(2) : X→ Y as a function m : X×S→ Y×S. The complete and detailed category theoretical

IMP with exceptions over decorated logic 11

model is given in (Ekici, 2015, §5.1). The syntax given in Figure 12 is enriched with two sets of rules

Rules of the decorated logic for the state:

(pwrepl)
f
(d1)
1 ∼ f

(d2)
2 : X→ Y g(0) : Y→ Z

g(0) ◦f(d1)1 ∼ g(0) ◦f(d2)2

(wsubs)
g(d3) : X→ Y f

(d1)
1 ∼ f

(d2)
2 : Y→ Z

f
(d1)
1 ◦g(d3) ∼ f

(d2)
2 ◦g(d3)

(replsubs)
f
(d1)
1 ≡ f

(d2)
2 : X→ Y g

(d3)
1 ≡ g

(d4)
2 : Y→ Z

g
(d3)
1 ◦f(d1)1 ≡ g

(d4)
2 ◦f(d2)2

(w_unit)
f(d1) : X→ 1

f(d1) ∼ 〈 〉(0)X

(ax1)
lookup

(1)
i ◦update

(2)
i ∼ idVi

(0)
(ax2)

∀i,j ∈ Loc, i 6= j

lookup
(1)
i ◦update

(2)
j ∼ lookup

(1)
i ◦ 〈 〉

(0)
V j

(effect)
f
(d1)
1 ,f

(d2)
2 : X→ Y f

(d1)
1 ∼ f

(d2)
2 〈 〉(0)Y ◦f

(d1)
1 ≡ 〈 〉(0)Y ◦f

(d2)
2

f
(d1)
1 ≡ f

(d2)
2

(local_global)
f
(d1)
1 ,f

(d2)
2 : X→ 1 ∀ i ∈ Loc, lookup(1)i ◦f

(d1)
1 ∼ lookup

(1)
i ◦f

(d2)
2

f
(d1)
1 ≡ f

(d2)
2

(w_lpair_eq)
f
(d1)
1 : X→ Y f

(d2)
2 : X→ Z d1 ∈ {0,1}

π
(0)
1 ◦ 〈f1,f2〉

(max(d1,d2))
l ∼ f

(d1)
1

(s_lpair_eq)
f
(d1)
1 : X→ Y f

(d2)
2 : X→ Z d1 ∈ {0,1}

π
(0)
2 ◦ 〈f1,f2〉

(max(d1,d2))
l ≡ f

(d2)
2

Figure 13: Lst : rules

presented in Figures 13 and 11. Weak equalities do not form a congruence: the term replacement cannot be
done unless the replaced term is pure. I.e., given an equation f

(d1)
1 ∼ f

(d2)
2 : X→ Y and a term g : Y→ Z,

it is possible to get the equation g◦f1 ∼ g◦f2 only when the term g is pure. At this stage, we have no
information about the modifications that f1 and f2 make on the memory state. Therefore, the post executed
impure term g would destroy this result equality, for instance by reading the location i on which f1 and f2
has performed different modifications (pwrepl). However, the term substitution can be done regardless of
the term decoration. I.e., given the equation f

(d1)
1 ∼ f

(d2)
2 : Y→ Z and a term g(d3) : X→ Y, it is possible to

get the equation f1 ◦g∼ f2 ◦g independent from the decoration of the term g. We already now that f1
and f2 return the same result, executing any term g in advance would not end them returning different
results (wsubs). Strong equalities form a congruence by allowing both term substitutions and replacements
independent from the term decorations (replsubs).

Any term f : X→ 1 with no result returned “void” (the unique inhabitant of 1 type) has an obvious
result equality with the canonical empty pair 〈 〉X (w_unit).

The fundamental equations are given with the rules (ax1) and (ax2). The former states that by updating
the location i with a value v and then observing the same location, one gets the value v. This outputs the
same value with the identity term idVi , if it takes v as an argument. However, notice that these two ways
of getting the value v have different state manipulations which makes them weakly equal. The latter, (ax2),
is to assume that updating the location j with a value v and then reading the content of a different location

12 Burak Ekici

i would return the same value with first throwing out the value v then observing the content of the location
i. They have different manipulations on the state so that they are weakly equal.

Two modifiers f(2)1 ,f
(2)
2 : X→ Ymodify the state in the same way if and only if 〈 〉Y ◦f1 ≡ 〈 〉Y ◦f2 : X→ 1,

where 〈 〉Y : Y→ 1 throws out the returned value. So that f(2)1 ,f
(2)
2 : X→ Y are strongly equal if and only

if f1 ∼ f2 and 〈 〉Y ◦f1 ≡ 〈 〉Y ◦f2 (effect). Notice that this rule is valid also for the other decorations of
terms f1 and f2.

Locally, the strong equality between two modifiers f(2)1 ,f
(2)
2 : X→ 1 can also be expressed as a pair of

weak equations: f1 ∼ f2 and ∀i :Loc,lookupi ◦f1 ∼ lookupi ◦f2. The latter intuitively means that f1
and f2 leaves the memory with the same values stored in all (finitely many) locations after being executed.
Given that both return “void” there is no explicitly need to check if f1 ∼ f2. It suffices to see whether
∀i :Loc,lookupi ◦f1 ∼ lookupi ◦f2 to end up with f1 ≡ f2 (local_global). The rule is valid also for the
other decorations of terms f1 and f2.

With (w_lpair_eq) and (w_rpair_eq) term pairs are characterized: the (left) pair structure 〈f1,f2〉l
cannot be used when f1 and f2, both are modifiers, since it may lead to a conflict on the returned result.
However, it can be used only when f1 is an accessor. We state by (w_lpair_eq) that 〈f1,f2〉(max(d1,d2))l has
only result equality with f

(d1)
1 and by (w_rpair_eq) that it has both result and effect equality with f

(d2)
2 .

These rules are designed to be sound with respect to a categorical model detailed in (Ekici, 2015, §5.2,
§5.3, §5.4, §5.5). However, their syntactic completeness is not immediate. Dumas et al. (2015) defines
a new syntactic completeness property, subsuming a consistency check, called the relative Hilbert-Post
completeness. In (Ekici, 2015, §5.4), it is proven that this set of rules is complete with due respect.

4.1 Decorated properties of the memory state
In (Plotkin and Power, 2002, §3), an equational representation of the mutable state has been introduced.
The decorated version of such representation is given as follows:

(1)d Annihilation lookup-update. Reading the content of a location i and then updating it with the
obtained value is just like doing nothing. ∀i ∈ Loc, update(2)i ◦lookup

(1)
i ≡ id

(0)
1

: 1→ 1.

(2)d Interaction lookup-lookup. Reading twice the same location i is the same as reading it once.
∀i ∈ Loc, lookup(1)i ◦ 〈 〉

(0)
Vi
◦lookup(1)i ≡ lookup

(1)
i : 1→ Vi.

(3)d Interaction update-update. Storing value the values x and y in a row to the same location i is just like
storing y in it. ∀i ∈ Loc, update

(2)
i ◦π

(0)
2 ◦ (update

(2)
i ×r id

(0)
Vi
)≡update(2)i ◦π

(0)
2 : Vi×Vi→ 1.

(4)d Interaction update-lookup. Storing the value x in a location i and then reading the content of i, one
gets the value x. ∀i ∈ Loc, lookup(1)i ◦update

(2)
i ∼ id

(0)
Vi

: Vi→ Vi.

(5)d Commutation lookup-lookup. The order of reading two different locations i and j does not matter.
∀i 6= j ∈ Loc, (id(0)Vi

×r lookup
(1)
j)◦π

−1(0)
1 ◦lookup(1)i ≡ permut

(0)
j,i ◦ (id

(0)
Vj
×r lookup

(1)
i)◦

π
−1(0)
1 ◦lookup(1)j : 1→ Vi×Vj where π

−1(0)
1 := 〈id,〈 〉〉(0)l .

(6)d Commutation update-update. The order of storing in two different locations i and j does not matter.
∀i 6= j ∈ Loc, update(2)j ◦π

(0)
2 ◦ (update

(2)
i ×r id

(0)
Vj
)≡update(2)i ◦π

(0)
1 ◦

(id
(0)
Vi
×l update

(2)
j) :Vi×Vj→ 1.

IMP with exceptions over decorated logic 13

(7)d Commutation update-lookup. The order of storing in a location i and reading another location j

does not matter. ∀i 6= j ∈ Loc, lookup(1)j ◦update
(2)
i ≡ π

(0)
2 ◦ (update

(2)
i ×r id

(0)
Vj
)◦

(id
(0)
Vi
×l lookup

(1)
j)◦π

−1(0)
1 : Vi→ Vj.

(8)d Commutation lookup-constant. Just after storing a constant c in a location i, observing the content
of i is the same as regenerating the constant c. ∀i ∈ Loc, ∀c ∈ Vi; lookup(1)i ◦update

(2)
i ◦

constantc(0) ≡ constantc(0) ◦update(2)i ◦constantc(0) : 1→ Vi.

These are the archetype properties that we have proved within the scope of the logic Lst . To see these
proofs, check out author’s PhD thesis (Ekici, 2015, §5.3). Besides, we have implemented the Lst in Coq to
certify mentioned proofs. Section 4.2 details this implementation.

4.2 Lst in Coq
In this section, we aim to highlight some crucial points of the Lst implementation in Coq. It mainly
consists of four steps: (1) implementing the terms, (2) assigning the decorations over terms, (3) stating the
rules, and (4) proving properties of the memory state referred in Section 4.1.

We represent the set of memory locations by a Coq parameter Loc : Type. Since memory locations may
contain different types of values, we also assume an arrow type Val : Loc→ Type that is the type of values
contained in each location. This fixes a type for every location. Note that the system thus does not support
reasoning about strong updates.

Parameters (Loc: Type) (Val: Loc → Type).

We define the terms of Lst using an inductive predicate called term. It establishes a new Coq Type out of
two input Types. The type term Y X is dependent. It depends on the Type instances X and Y, and represents
the arrow type X→ Y in the decorated framework. As opposed to a flat grammar with a typing predicate,
we prefer a dependently typed implementation for higher readability.

Inductive term: Type → Type → Type ,
| tpure: ∀ {X Y: Type}, (X → Y) → term Y X
| comp: ∀ {X Y Z: Type}, term X Y → term Y Z → term X Z
| pair: ∀ {X Y Z: Type}, term X Z → term Y Z → term (X*Y) Z
| lookup: ∀ i:Loc, term (Val i) unit
| update: ∀ i:Loc, term unit (Val i).

Infix "o" , comp (at level 70).

The constructor tpure takes a Coq side (pure) function and translates it into the decorated environment.
The comp constructor deals with the composition of two compatible terms. I.e., given a pair of terms
f : term X Y and g : term Y Z, then the composition f◦g would be an instance of the type term X Z.
For the sake of conciseness, infix ‘◦’ is used to denote the term composition. Similarly, the (left) pair
constructor is to constitute pairs of compatible terms. I.e., given f : term Y X and g : term Z X, we have pair
〈f,g〉l : term (Y×Z) X. Instead of the symbol 〈_,_〉l, we use the keyword pair in the implementation.
The terms lookup and update come as no surprise; just that the singleton type 1 and the type of values Vi
are respectively called unit and Val i in the code. The terms such as the identity, the pair projections, the
empty pair and the constant function can be derived from the native Coq functions with the use of tpure
constructor as follows:

14 Burak Ekici

Definition id {X: Type} : term X X , tpure id.
Definition pi1 {X Y: Type} : term X (X*Y) , tpure fst.
Definition pi2 {X Y: Type} : term Y (X*Y) , tpure snd.
Definition forget {X} : term unit X , tpure (fun _ ⇒ tt).
Definition constant {X: Type} (v: X): term X unit , tpure (fun _ ⇒ v).

Remark that id is overloaded: defined one (on the left) is the identity of the decorated logic while the other
one is the identity of Coq’s logic. The pair projections are named pi1 and pi2 while the unique mapping
〈 〉X from any type X to 1 is named forget in the implementation.

The decorations are enumerated under the new type called kind: pure (0), ro (1) and rw (2) and
inductively assigned to terms via the predicate called is. This predicate builds a proposition out of a term
and a decoration. I.e., ∀i : Loc, is ro (lookup i) is a Prop instance, ensuring that “lookup i” is an
accessor.

Notice that on the paper, we always mention the decoration of a term as a superscript. However, with
such a Coq implementation, we do not need to additionally carry that information with a term. Instead,
we inject it inside the rules as predicates, and check if a rule is applicable or not via this information. See
Remark 4.1.

Inductive kind , pure | ro | rw.
Inductive is: kind → ∀ X Y, term X Y → Prop ,
| is_tpure: ∀ X Y (f: X → Y), is pure (@tpure X Y f)
| is_comp: ∀ k X Y Z (f: term X Y) (g: term Y Z), is k f → is k g → is k (f o g)
| is_pair: ∀ k X Y Z (f: term X Z) (g: term Y Z), is ro f → is k f → is k g → is k (pair f g)
| is_lookup: ∀ i, is ro (lookup i)
| is_update: ∀ i, is rw (update i)
| is_pure_ro: ∀ X Y (f: term X Y), is pure f → is ro f
| is_ro_rw: ∀ X Y (f: term X Y), is ro f → is rw f.

Any term that is built by the tpure constructor is pure (is_tpure). The decoration of any term composition
depends on its components and always takes the upper decoration (pure < ro < rw). E.g., given a modifier
term and a read-only term, their composition will be a modifier, as well. This trivially follows from
(is_comp), (is_pure_ro) and (is_ro_rw): see Lemma 3.2, and the corresponding Coq proof here (iii).
The decoration of a (left) pair of terms also depends on its components always taking the upper with
the restriction that the first component can at most be an accessor. This is also trivial given (is_pair),
(is_pure_ro) and (is_ro_rw). See the Coq proof of this fact here (iv). We declare that the term lookup
is an accessor (is_lookup), and the term update is a modifier (is_update). The last two constructors
(is_pure_ro) and (is_ro_rw) define the decoration hierarchies.

It is easy to derive that any tpure built term is pure. I.e., the purity proof of the first pair projection:

Lemma is_pi1 X Y: is pure (@pi1 X Y).
Proof. apply is_tpure. Qed.

We now state the rules up to weak and strong equalities by defining them in a mutually inductive way:
mutuality here is used to enable the constructors including both weak and strong equalities. We use the

(iii) https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Decorations.v#
L76-L79

(iv) https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Decorations.v#
L81-L84

https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Decorations.v#L76-L79
https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Decorations.v#L76-L79
https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Decorations.v#L81-L84
https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Decorations.v#L81-L84

IMP with exceptions over decorated logic 15

notation == and ∼ to denote strong and weak equalities, respectively.

Definition idem X Y (x y: term X Y) , x = y.
Inductive strong: ∀ X Y, relation (term X Y) ,
| refl X Y: Reflexive (@strong X Y)
| sym: ∀ X Y, Symmetric (@strong X Y)
| trans: ∀ X Y, Transitive (@strong X Y)
| replsubs: ∀ X Y Z, Proper (@strong X Y =⇒ @strong Y Z =⇒ @strong X Z) comp
| ids: ∀ X Y (f: term X Y), f o id == f
| idt: ∀ X Y (f: term X Y), id o f == f
| assoc: ∀ X Y Z T (f: term X Y) (g: term Y Z) (h: term Z T), f o (g o h) == (f o g) o h
| wtos: ∀ X Y (f g: term X Y), is ro f → is ro g → f ~ g → f == g
| s_lpair_eq: ∀ X Y’ Y (f1: term Y X) (f2: term Y’ X), is ro f1 → pi2 o pair f1 f2 == f2
| effect: ∀ X Y (f g: term Y X), forget o f == forget o g → f ~ g → f == g
| local_global: ∀ X (f g: term unit X), (∀ i: Loc, lookup i o f ~ lookup i o g) → f == g
| tcomp: ∀ X Y Z (f: Z → Y) (g: Y → X), tpure (compose g f) == tpure g o tpure f
with weak: ∀ X Y, relation (term X Y) ,
| wsym: ∀ X Y, Symmetric (@weak X Y)
| wtrans: ∀ X Y, Transitive (@weak X Y)
| pwrepl: ∀ A B C (g: term C B), (is pure g) → Proper (@weak B A =⇒ @weak C A) (comp g)
| wsubs: ∀ A B C, Proper (@weak C B =⇒ @idem B A =⇒ @weak C A) comp
| stow: ∀ X Y (f g: term X Y), f == g → f ~ g
| w_lpair_eq: ∀ X Y’ Y (f1: term Y X) (f2: term Y’ X), is ro f1 → pi1 o pair f1 f2 ~ f1
| w_unit: ∀ X (f g: term unit X), f ~ g
| ax1: ∀ i, lookup i o update i ~ id
| ax2: ∀ i j, i 6= j → lookup j o update i ~ lookup j o forget

where "x == y" , (strong x y) and "x ~ y" , (weak x y).

The rule tcomp states that the tpure constructor preserves the composition of pure terms up to the strong
equality: one can first compose pure terms on Coq side (using higher order function compose) and then
apply tpure constructor to translate them into decorated settings or can translate the terms first and then
compose them in decorated settings.

Remark 4.1. In a decorated logic, it is crucial to verify the decorations of the terms in applying/rewriting a
rule. If the rule is applicable for all decorations, then it is not necessary to check the decorations of terms
which appear in that rule. Otherwise put, decoration checks are necessary only when the rule premise has
restrictions over term decorations. I.e., see the constructor w_lpair_eq above. We apply the same strategy
for the logics presented in Sections 5 and 6 when implementing them in Coq.

This framework allows us to express and prove, in Coq, the decorated versions of the properties
mentioned in Section 4.1. E.g., the statement commutation update-update looks like:

(** Commutation update update **)
Theorem CUU: ∀ i j: Loc, i 6=j → update j o (pi2 o (rprod (update i) (@id (Val j)))) ==

update i o (pi1 o (lprod (@id (Val i)) (update j))).

where

Definition permut {X Y}: term (X*Y) (Y*X) , pair pi2 pi1.
Definition rpair {X Y Z} (f: term Y X) (g: term Z X): term (Y*Z) X , permut o pair g f.
Definition lprod {X Y X’ Y’} (f: term X X’) (g: term Y Y’): term (X*Y) (X’*Y’) , pair (f o pi1) (g o pi2).
Definition rprod {X Y X’ Y’} (f: term X X’) (g: term Y Y’) , permut o pair (g o pi2) (f o pi1).

16 Burak Ekici

The full Coq proofs of such properties can be found here (v), and the entire implementation there (vi).

5 The Decorated Logic for the exception effect (Lexc)
Exception handling is provided by most modern programming languages to deal with anomalous or
exceptional events which require special processing. In this section, we present a proof system for
exceptions, which involves raising and handling operations, called the decorated logic for the exception
effect (Lexc). This logic is obtained by extending the generic framework presented in Section 3.2. In this
context, the decoration (0) is reserved for pure terms, while (1) is for propagators and (2) is for catchers.
A fundamental feature of the exceptions mechanism is the distinction between ordinary (non-exceptional)
values and exceptions (or exceptional values). Two terms are called strongly equal if they behave the same
on ordinary and exceptional values; they are called weakly equal if they behave the same on ordinary
values but differently on exceptional ones.

It has been shown by Dumas et al. (2012) that the core part of this proof system is dual to one for the
state (Lst). Based on this nice duality, we build the logic Lexc, and detail it in the following.

Grammar of the decorated logic for the exception: (e ∈ EName)

Types: t, s ::= X | Y | · · · | t+s |O | EVe
Decoration for terms: (d1),(d2) ::= (0) | (1) | (2)
Terms: f, g ::= a(d) | b(d) | · · · | g◦f(d) |

[f(d1) : X→ Y | g(d2) : Z→ Y]l
(max(d1,d2)) : X+Z→ Y |

tag
(1)
e | untag(2)e | (↓ f)(1) | (tpure •)(0)

Equations: eq ::= f(d) ≡ g(d) | f(d) ∼ g(d)

Figure 14: Lexc: syntax

Figure 14 shows the grammar of Lexc where O is the empty (uninhabited) type while EVe is the type
of parameters for each exception name e. We assume that there is a finite set of exception names called
EName. Given types X and Y, we have X+Y denoting co-product (disjoint union or sum) types. Terms
are closed under composition (◦) and co-pairing ([_ | _]l). I.e., for all terms f : X→ Y and g : Y→ Z, we
have g◦f : X→ Z. Similarly, for all f : X→ Y and g : Z→ Y, there is [f | g]l : X+Z→ Y. Notice that the
co-pair subscript ‘l’ denotes the left co-pairs. One can define in a symmetric way the right co-pairs
for terms f : X→ Y and g : Z→ Y as [f | g]r := [g,f]l ◦permut where permut := [in2 | in1]l. Similarly,
one can respectively obtain left and right co-products (sums) of terms f : X1→ Y1 and g : X2→ Y2 as
f+lg := [in1 ◦f | in2 ◦g]l and f+rg := [in1 ◦f | in2 ◦g]r. The decoration of a co-pair (co-product)
depends on the decoration of its components, always taking the larger. I.e., ∀f(0) : X→ Z and g(2) : Y→ Z,
[f | g]l : X+Y→ Z takes the decoration (2). Being dual to the pairs in Lst (which impose an evaluation
order), co-pairs in Lexc are used to have case distinction among terms. Co-pairs of catchers are allowed to
be constructed in the logic Lexc. However, they cannot be used in the provided equational reasoning as
they lead to ambiguous case distinctions over input exceptional arguments for the component terms. I.e., it
is not obvious to which input argument the recovery would apply when both are exceptional. The intended

(v) https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Proofs.v
(vi) https://github.com/ekiciburak/decorated-logic-for-states-effect

https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Proofs.v
https://github.com/ekiciburak/decorated-logic-for-states-effect

IMP with exceptions over decorated logic 17

equational reasoning can be done only when the left term is at most a propagator. The restriction is given
by the rules (w_lcopair_eq) and (s_lcopair_eq) in Figure 15.

The interface terms are tage : EVe→O+E and untage : O+E→ EVe+E where E denotes the dis-
tinguished object of exceptions which never appears in the decorated setting. The use of decorations
provides a new schema where term signatures are constructed without any occurrence of it. For instance,
tag

(1)
e : EVe→O is a thrower while untag(2)e : O→ EVe is a catcher. This way, we keep signatures close

to their syntax and compose compatible terms as usual. The term tage encapsulates an ordinary value with
an exception of name e while the term untage recovers the value from the exceptional case.

The ‘↓’ symbol denotes the downcast term that takes as input a term and prevents it from catching
exceptions. It is used when to define the try/catch block in this setting. See Definition 5.2.

The identity term id, the canonical co-pair inclusions in1 and in2, and the empty co-pair []X (used to
convert the type of input exceptional value into the given type; X in this case) are translated from a pure
type system with sum types using the tpure constructor, for all types X and Y, as follows:

id
(0)
X : X→ X := tpure (λ x : X.x : X)

in
(0)
1 : X→ X+Y := tpure inl

in
(0)
2 : Y→ X+Y := tpure inr

[]
(0)
X : O→ X := tpure (λ _ : O. x : X)

where inl and inr are constructors of sum types, and in the definition of []X, X is assumed to be inhabited.
The intended model of the grammar of the logic Lexc is built with respect to the set of exceptions

E where a pure term p(0) : X→ Y is interpreted as a function p : X→ Y, a propagator pp(1) : X→ Y as
a function pp : X→ Y+E, and a catcher c(2) : X→ Y as a function c : X+E→ Y+E. The complete and
detailed category theoretical model is given in (Ekici, 2015, §6.1).

Definition 5.1. For each type Y and exception name e, the propagator throw(1)Y,e is defined as:

throw
(1)
Y,e := []

(0)
Y ◦tag(1)e : EVe→ Y

Intuitively, raising an exception of name e is first tagging the given ordinary value with e and then coercing
the empty type into Y for the continuation issues.

Definition 5.2. For each propagators f(1) : X→ Y, g(1) : EVe→ Y and each exception name e, the propaga-
tor try(f)catch(e⇒ g)(1) is defined in three steps, as follows:

Catch(e⇒ g)(2) := [id
(0)
Y | g(1) ◦untag

(2)
e]l : Y+O→ Y

Try(f)Catch(e⇒ g)(2) := Catch(e⇒ g)(2) ◦in(0)1Y,O ◦f
(1) : X→ Y

try(f)catch(e⇒ g)(1) := ↓
(
Try(f)Catch(e⇒ g)(2)

)
: X→ Y

To handle an exception, the intermediate expressions Catch(e⇒ g) and Try(f)Catch(e⇒ g) are private
catchers and the expression try(f)catch(e⇒ g) is a public propagator: the downcast operator intuitively
used to prevent try(f)catch(e⇒ g) from catching exceptions with name e which might have been raised

18 Burak Ekici

before its execution. Below we depict the try(f)catch(e⇒ g) definition as a diagram:

Y

in1Y,O
��

idY

**↓
(
X

f // Y
in1Y,O // Y+O

[
idY

∣∣g ◦ untage] // Y
)

O

in2Y,O

OO

untage // EVe

g

99

This, inside the downcast, intuitively tells us that if the term f throws an exception, then within the Catch
block using the case distinction, provided by the copair, the exception is handled via the untag (unhandled
exception gets propagated) and the continuation is the execution of the term g. If f does not throw any
exception then no handling is performed, we have id term in execution. Note also that the term in1Y,O
used in the Definition 5.2 is the horizontal one in the above diagram, and implicitly means that Y and Y+O
isomorphic objects. The inclusions in1Y,O (the vertical in the above diagram) and in2Y,O play a role in the
equational reasoning, given in Figure 15, that we provide on the top of Lexc syntax.

The definition of try(f)catch(e⇒ g) corresponds to the Java mechanism for exceptions as in (Gosling
et al., 2005, §14) and in (Jacobs (2001)) with the following control flow (where exc? means “is this value
an exception?”): an abrupt termination returns an uncaught exception and a normal termination returns an
ordinary value.

��
exc?

Y
vv

N

**abrupt f(1)

��
exc?

Y
tt

N
**

untag
(2)
e

��

normal

exc?
Y
vv

N

**abrupt g(1)

��
normal or abrupt

Remark 5.3. The decorated terms throw(1) and throw/catch(1) stated in Definitions 5.1 and 5.2 will
serve, in Section 7 (see the translator function dCmd), as interpretations of the IMP+Exc commands THROW
and TRY/CATCH.

The syntax given in Figure 14 is enriched with two sets of rules presented in Figures 15 and 11. Weak
equalities do not form a congruence: the term substitution cannot be done unless the substituted term is
pure. I.e., given the equation f

(d1)
1 ∼ f

(d2)
2 : Y→ Z and a term g : X→ Y, it is possible to get the equation

IMP with exceptions over decorated logic 19

Rules of the decorated logic for the exception:

(pwsubs)
g(0) : X→ Y f

(d1)
1 ∼ f

(d2)
2 : Y→ Z

f
(d1)
1 ◦g(0) ∼ f

(d2)
2 ◦g(0)

(wrepl)
f
(d1)
1 ∼ f

(d2)
2 : X→ Y g(d3) : Y→ Z

g(d3) ◦f(d1)1 ∼ g(d3) ◦f(d2)2

(replsubs)
f
(d1)
1 ≡ f

(d2)
2 : X→ Y g

(d3)
1 ≡ g

(d4)
2 : Y→ Z

g
(d3)
1 ◦f(d1)1 ≡ g

(d4)
2 ◦f(d2)2

(w_empty)
f(d1) : O→ X

f(d1) ∼ []
(0)
X

(w_downcast)
f(2) : Y→ X

(↓ f)(1) ∼ f(2)

(eax1)
untag

(2)
e ◦tag(1)e ∼ id

(0)
EVe

(eax2)
∀e1,e2 ∈ EName, e1 6= e2

untag
(2)
e1 ◦tag

(1)
e2 ∼ []

(0)
EVe1
◦tag(1)e2

(eeffect)
f
(d1)
1 ,f

(d2)
2 : Y→ X f

(d1)
1 ∼ f

(d2)
2 f

(d1)
1 ◦ [](0)Y ≡ f

(d2)
2 ◦ [](0)Y

f
(d1)
1 ≡ f

(d2)
2

(elocal_global)
f
(d1)
1 ,f

(d2)
2 : O→ X ∀ e ∈ EName, f(d1)1 ◦tag(1)e ∼ f

(d2)
2 ◦tag(1)e

f
(d1)
1 ≡ f

(d2)
2

(w_lcopair_eq)
f
(d1)
1 : X→ Y f

(d2)
2 : Z→ Y d1 ∈ {0,1}

[f1 | f2](max(d1,d2)) ◦in1(0) ∼ f
(d1)
1

(s_lcopair_eq)
f
(d1)
1 : X→ Y f

(d2)
2 : Z→ Y d1 ∈ {0,1}

[f1 | f2](max(d1,d2)) ◦in2(0) ≡ f
(d2)
2

Figure 15: Lexc: rules

f1 ◦g∼ f2 ◦g only when the term g is pure. At this stage, we have no information about the behaviors
of f1 and f2 on exceptional values. Therefore, the pre-executed term g would destroy this result equality
unless being pure, for instance, by throwing an exception of name e for which f1 and f2 perform different
behaviors: say one is propagating, while the other is recovering from it (pwsubs). However, the term
replacement can be done regardless of the term decoration. I.e., given the equation f

(d1)
1 ∼ f

(d2)
2 : X→ Y

and a term g(d3) : Y→ Z, it is possible to get the equation g◦f1 ∼ g◦f2 independent from the decoration
of the term g. Since f1 and f2 behave the same on ordinary values, executing any term g after f1 and f2
would not end them behave different on ordinary values (wrepl). Strong equalities form a congruence by
allowing both term substitutions and replacements regardless of the term decorations (replsubs).

Any term f : O→ X with no input parameter has an equivalence on ordinary values with the empty
co-pair []X (w_empty). The rule (w_downcast) states that the term (↓ f) behaves as f, if the argument is
ordinary. The fundamental equations are given with the rules (eax1) and (eax2). The former states that
encapsulating an ordinary value with an exception of name e followed by an immediate recovery would
be equivalent to “doing nothing” in terms of ordinary values. Clearly, this is only a weak equation since
its sides behave different on exceptional values: left hand side may recover but right hand side definitely
propagates. The latter, (eax2), is to assume that encapsulating an ordinary value v with an exception of
name e2 and then trying to recover it from a different exception of name e1 would just lead e2 to be
propagated. Similarly, if the ordinary value v is encapsulated with e2 with no recovery attempt afterwards

20 Burak Ekici

would again lead e2 to be propagated. These two operations behave the same on ordinary values but
different on exceptional ones. For instance, left hand side recovers the input value (encapsulated with the
exception name e1) while right hand side propagates it.

Two catchers f(2)1 ,f
(2)
2 : X→ Y behave the same on exceptional values if and only if f1 ◦ []X ≡ f2 ◦ []X,

where []X : O→ X throws out exceptional values. So that f(2)1 ,f
(2)
2 : X→ Y are strongly equal if and only if

f1 ∼ f2 and f1 ◦ []X ≡ f2 ◦ []X (eeffect). The rule is valid also for the other decorations of terms f1 and f2.
Strong equality between two catchers f(2)1 ,f

(2)
2 : O→ X can also be expressed as a pair of weak equations:

f1 ∼ f2 and ∀e : ENname,f1 ◦tage ∼ f2 ◦tage.The latter intuitively means that f1 and f2 behaves the
same on all (finitely many) exceptional values when executed. Given that both behave the same on ordinary
arguments (due to (w_empty)), there is no explicitly need to check if f1 ∼ f2. It suffices to see whether
∀e : EName,f1 ◦tage ∼ f2 ◦tage to end up with f1 ≡ f2 (elocal_global). This rule is valid also for the
other decorations of terms f1 and f2.

With (w_lcopair_eq) and (w_rcopair_eq), term co-pairs (sums) are characterized: the (left) co-pair
structure [f1 | f2]l cannot be used when f1 and f2, both are catchers, since it may lead to a conflict on
exceptional values. When f1 is a propagator, with (w-copair-eq), we assume that ordinary values of type X
are treated by [f1 | f2](max(d1,d2))l as they would be by f

(d1)
1 and with (s-copair-eq) that ordinary values of

type Z and exceptional values are treated by [f1 | f2](max(d1,d2))l as they would be by f
(d2)
2 .

Similar to the ones of the logic Lst , the rules of the logic Lexc also designed to be sound with respect to
a categorical model which is detailed in (Ekici, 2015, §6.2, §6.3, §6.4, §6.5). In (Dumas et al. (2015)), we
prove that this set of rules is complete with respect to the notion of relative Hilbert-Post completeness.

5.1 Decorated properties of the exception effect

Similar to the one for the state effect presented in Section 4.1, we propose an equational representation of
the exception effect with the following decorated equations:

(1)d Annihilation tag-untag. Untagging an exception of name e and then raising it again is just like doing
nothing. ∀e ∈ EName, tag(1)e ◦untag(2)e ≡ id

(0)
O : O→O.

(2)d Commutation untag-untag. Untagging two distinct exception names can be done in any order.
∀e 6= r ∈ EName, (untage+r idEVr)

(2) ◦in(0)2 ◦untag
(2)
r ≡

(idEVe +l untagr)
(2) ◦in(0)1 ◦untag

(2)
e : O→ EVe+EVr.

(3)d Propagator-propagates. A propagator term always propagates the exception.
∀e ∈ EName, a(1) : X→ Y, a(1) ◦ [](0)X ◦tag

(1)
e ≡ []

(0)
Y ◦tag

(1)
e : EVe→ Y.

(4)d Recovery. The parameter used for throwing an exception may be recovered.(
∀f(1), g(1) : X→O, []

(0)
Y ◦f(1) ≡ []

(0)
Y ◦g(1) =⇒ f(1) ≡ g(1)

)
=⇒(

∀e ∈ EName, u(0)1 ,u
(0)
2 : X→ EVe,

(
throw

(1)
e ◦u(0)1 ≡ throw

(1)
e ◦u(0)2

)
=⇒ u

(0)
1 ≡ u

(0)
2 : X→ EVe

)
.

(5)d Try. The strong equation is compatible with try/catch.
∀e ∈ EName, a(1)1 , a

(1)
2 : X→ Y, b(1) : EVe→ Y, a

(1)
1 ≡ a

(1)
2 =⇒

try(a1)catch(e⇒ b)(1) ≡ try(a2)catch(e⇒ b)(1) : X→ Y.

IMP with exceptions over decorated logic 21

(6)d Try0. Pure code inside try never triggers the code inside catch.
∀e ∈ EName, u(0) : X→ Y, b(1) : EVe→ Y,try(u)catch(e⇒ b)(1) ≡ u(0) : X→ Y.

(7)d Try1. The code inside catch is executed as soon as an exception is thrown inside try.
∀e ∈ EName, u(0) : X→ EVe, b

(1) : EVe→ Y,try(throwe ◦u)catch(e⇒ b)(1) ≡ b(1) ◦u(0) : X→ Y.

(8)d Try2. An exception gets propagated, if the exception name is not pattern matched in catch.
∀ (e 6= f) ∈ EName, u(0) : X→ EVf, b

(1) : EVe→ Y,

try(throwf ◦u)catch(e⇒ b)(1) ≡ throw
(1)
f ◦u(0) : X→ Y.

These are the archetype properties that we have proved within the scope of the Lexc. To see these proofs,
check out (Ekici, 2015, §6.7). Besides, we have implemented the Lexc in Coq to certify mentioned proofs.
Section 5.2 briefly discusses this implementation. Notice that the premise of the property (4)d is a very
specific mono requirement. It intuitively says that if there is a strong equality between two propagators
(i.e., f(1) and g(1)) after removing the exceptional values they may propagate, then they are strongly equal.
In the absence of this requirement the property is not valid.

5.2 Lexc in Coq
Coq implementation of Lexc follows the same approach with the one for Lst as summarized in Sec-
tion 4.2. We represent the set of exception names by a Coq parameter EName : Type. An arrow type
EVal : EName→ Type is assumed as the type of values (parameters) for each exception name. We then
inductively define terms and assign decorations over them. There, we respectively use keywords epure,
ppg and ctc instead of (0), (1) and (2). The rules up to weak and strong equalities are stated in a mutually
inductive way to allow constructors including both types of equalities, similar to the approach presented in
Section 4.2. We choose not to replay the entire Coq encoding here, but at least give Coq formalizations of
Definitions 5.1 and 5.2:

Definition throw (X: Type) (e: EName) , (@empty X) o tag e.
Definition try_catch (X Y: Type) (e: EName) (f: term Y X) (g: term Y (Val e)) ,

downcast (copair (@id Y) (g o untag e) o in1 o f).

The encodings of other terms are contained in this file (vii).
We can conclude that such a framework allows us to express and prove, in Coq, the decorated versions

of the properties mentioned in Section 5.1. E.g., the statement propagator-propagates looks like:

(** Propagator propagates **)
Lemma PPT: ∀ X Y (e: EName) (a: term Y X), is ppg a → a o ((@empty X) o tag e) == (@empty Y) o tag e.

The full Coq proofs of such properties can be found here (viii), and the entire implementation there(ix).

6 Combining Lst and Lexc
In order to formally cope with different computational effects, one needs to compose the related formal
models. For instance, using monad transformers (Jaskelioff (2009)), it is usually possible to combine
(vii) https://github.com/ekiciburak/decorated-logics-for-exceptions-effect/blob/master/Terms.v
(viii) https://github.com/ekiciburak/decorated-logics-for-exceptions-effect/blob/master/Proofs.v
(ix) https://github.com/ekiciburak/decorated-logics-for-exceptions-effect

https://github.com/ekiciburak/decorated-logics-for-exceptions-effect/blob/master/Terms.v
https://github.com/ekiciburak/decorated-logics-for-exceptions-effect/blob/master/Proofs.v
https://github.com/ekiciburak/decorated-logics-for-exceptions-effect

22 Burak Ekici

effects formalized by monads, as encoded in Haskell. Handler compositions allow combining effects
modeled by algebraic handlers, as implemented in Eff by Bauer and Pretnar (2015, 2014); Pretnar (2014)
and in Idris by Brady (2013). To combine effects formalized in decorated settings, we just need to compose
the related logics. In this section, we formally study the combination of the state and the exception effects
using the logics Lst and Lexc. We call the newly born logic the decorated logic for the state and the
exception, and denote it Lst+exc. To start with, we give the syntax of Lst+exc below in Figure 16.

Grammar of the decorated logic for the state and the exception: (i ∈ Loc) (e ∈ EName)

Types: t, s ::= X | Y | · · · | t×s | t+s | 1 |O | Vi | EVe
Decoration for terms: (d1,d2),(d3,d4) ::= (0,0) | (0,1) | (0,2) | (1,0) | (1,1) |

(1,2) | (2,0) | (2,1) | (2,2)
Terms: f, g ::= a(d1,d2) | b(d1,d2) | · · · | g◦f(d1,d2) |

〈f(d1,d2),g(d3,d4)〉(max(d1,d3),max(d2,d4))l |
[f(d1,d2) | g(d3,d4)](max(d1,d3),max(d2,d4))l |
lookup

(1,0)
i | update(2,0)i | tag(0,1)e | untag(0,2)e |

(↓ f)(0,1) | (tpure •)(0,0)

Equations: eq ::= f(d1,d2) ≡≡ g(d1,d2) | f(d1,d2) ≡∼ g(d1,d2) |
f(d1,d2) ∼≡ g(d1,d2) | f(d1,d2) ∼∼ g(d1,d2)

Figure 16: Lst+exc: syntax

The decorations are paired off to cover all possible combinations: the decoration symbol on the left
is given in terms of the state effect while the one on the right is of the exception. I.e., f(1,2) says that f
may access to the state alongside catching exceptions. The decoration of a (co)-pair/(co)-product or a
composition depends on the decorations of its components, always taking the larger. I.e., ∀f(1,2) : X→ Y

and g(2,1) : Y→ Z, g◦f : X→ Z takes the decoration (2,2). The pairs/products of compatible terms f(2,2)1 ,
g
(2,2)
1 , and similarly the co-pair/co-products of compatible terms f(2,2)2 , g(2,2)2 can be constructed within

the scope of Lst+exc but cannot be used in the provided equational reasoning. This is because, f(2,2)1 and
g
(2,2)
1 , as two modifiers, may lead to conflicts on the returned results over any type of (exceptional or

ordinary) arguments due to the possible hazardous parallel modifications of the global state, while f(2,2)2

and g
(2,2)
2 , as two catchers, may yield in ambiguous case distinctions over input exceptional arguments. I.e.,

it is not obvious to which input argument the recovery would apply when both are exceptional. The rules
(w_lpair_eq), (s_lpair_eq), (w_lcopair_eq) and (s_lcopair_eq), in Figure 17, enforce these restrictions.

The types of Lst+exc is the union of the types of Lst and Lexc. Similarly, the terms of Lst+exc is the
union of the terms of Lst and Lexc. The interface terms for the state effect are pure with respect to the
exception and vice versa: lookup(1,0), update(2,0), tag(0,1) and untag(0,2). As in Sections 4 and 5, we use
the special tpure constructor to translate pure terms such as the identity id, the canonical pair projections
π1, π2, the empty pair 〈 〉, the canonical co-pair inclusions in1, in2, the empty co-pair [] and constants
from a pure type system with product and sum types using the tpure constructor, for all types X and Y, as:

id
(0,0)
X : X→ X := tpure (λ x : X.x : X)

π
(0,0)
1 : X×Y→ X := tpure fst

IMP with exceptions over decorated logic 23

π
(0,0)
2 : X×Y→ Y := tpure snd

〈 〉(0,0)X : X→ 1 := tpure (λ x : X. void : 1)

in
(0,0)
1 : X→ X+Y := tpure inl

in
(0,0)
2 : Y→ X+Y := tpure inr

[]
(0,0)
X : O→ X := tpure (λ _ : O. x : X)

constant
(0,0)
x : 1→ X := tpure (λ _. x : X)

where fst and snd are constructors of product types while inl and inr are of sum types, and in the
definition of []X, X is assumed to be inhabited.

The rule combinations need a bit of reformulation as we summarize below:

• The decoration symbol (0) freely converts into (1) and (2), while the symbol (1) just into (2) when
the other symbol is fixed. I.e., f(0,2) freely converts into f(1,2). See all cases below:

–
f(0,d)

f(1,d)
,

f(1,d)

f(2,d)
,
f(d,0)

f(d,1)
,

f(d,1)

f(d,2)
for d ∈ {0,1,2}

• We have all possible combinations of equality sorts: ≡≡, ≡∼, ∼≡ and ∼∼. The first equality
symbol relates terms with respect to the state effect. I.e., f≡∼ g means that f and g are strongly
equal with respect to the state, while being weakly equal with respect to the exception. Below we
present the conversion rules between these four sorts. The burden here is that a strong equality
symbol can always be freely converted into a weak one independent of according to which effect it
relates terms. But, to convert a weak equality symbol into a strong one, we need to make sure that the
related terms are decorated either with (0) or (1) with respect to the effect they are weakly related.

– (≡≡-to-≡∼)
f(2,2) ≡≡ g(2,2)

f(2,2) ≡∼ g(2,2)
, (≡≡-to-∼≡)

f(2,2) ≡≡ g(2,2)

f(2,2) ∼≡ g(2,2)

– (≡∼-to-∼∼)
f(2,2) ≡∼ g(2,2)

f(2,2) ∼∼ g(2,2)
, (∼≡-to-∼∼)

f(2,2) ∼≡ g(2,2)

f(2,2) ∼∼ g(2,2)

– (∼≡-to-≡≡)
f(1,2) ∼≡ g(1,2)

f(1,2) ≡≡ g(1,2)
, (≡∼-to-≡≡)

f(2,1) ≡∼ g(2,1)

f(2,1) ≡≡ g(2,1)

– (∼∼-to-≡∼)
f(1,2) ∼∼ g(1,2)

f(1,2) ≡∼ g(1,2)
, (∼∼-to-∼≡)

f(2,1) ∼∼ g(2,1)

f(2,1) ∼≡ g(2,1)

• The rules of the logic Lst+exc are presented in Figure 17 as a union of the ones given in Fig-
ures 13 and 15 in terms of new equality sorts and refined term decorations. There, we replay the
whole rule bodies, and implicitly assume that all equality sorts are equivalence relations respecting
the properties reflexivity, symmetry, and transitivity.

We plan it as a future work to come up with a more general and systematic way to combine effects
formalized within decorated logics.

24 Burak Ekici

Rules of the decorated logic for the state and the exception:

(assoc)
f(d1,d2) : X→ Y g(d3,d4) : Y→ Z h(d5,d6) : Z→ T

h(d5,d6) ◦ (g(d3,d4) ◦f(d1,d2))≡≡ (h(d5,d6) ◦g(d3,d4))◦f(d1,d2)

(ids)
f(d1,d2) : X→ Y

f(d1,d2) ◦id(0,0)X ≡≡ f(d1,d2)
(idt)

f(d1,d2) : X→ Y

id
(0,0)
Y ◦f(d1,d2) ≡≡ f(d1,d2)

(pwrepl)
f
(d1,d2)
1 ∼≡ f

(d3,d4)
2 : X→ Y g(0,d5) : Y→ Z

g(0,d5) ◦f(d1,d2)1 ∼≡ g(0,d5) ◦f(d3,d4)2

(wsubs)
g(d5,d6) : X→ Y f

(d1,d2)
1 ∼≡ f

(d3,d4)
2 : Y→ Z

f
(d1,d2)
1 ◦g(d5,d6) ∼≡ f

(d3,d4)
2 ◦g(d5,d6)

(pwsubs)
g(d5,0) : X→ Y f

(d1,d2)
1 ≡∼ f

(d3,d4)
2 : Y→ Z

f
(d1,d2)
1 ◦g(d5,0) ≡∼ f

(d3,d4)
2 ◦g(d5,0)

(wrepl)
f
(d1,d2)
1 ≡∼ f

(d3,d4)
2 : X→ Y g(d5,d6) : Y→ Z

g(d5,d6) ◦f(d1,d2)1 ≡∼ g(d5,d6) ◦f(d3,d4)2

(replsubs)
f
(d1,d2)
1 ≡≡ f

(d3,d4)
2 : X→ Y g

(d5,d6)
1 ≡≡ g

(d7,d8)
2 : Y→ Z

g
(d5,d6)
1 ◦f(d1,d2)1 ≡≡ g

(d7,d8)
2 ◦f(d3,d4)2

(w_unit)
f(d1,d2) : X→ 1

f(d1,d2) ∼≡ 〈 〉(0,0)X

(w_empty)
f(d1,d2) : O→ X

f(d1,d2) ≡∼ []
(0,0)
X

(w_downcast)
f(d1,2) : Y→ X

(↓ f)(d1,1) ≡∼ f(d1,2)

(ax1)
lookup

(1,0)
i ◦update(2,0)i ∼≡ id

(0,0)
Vi

(ax2)
∀i,j ∈ Loc, i 6= j

lookup
(1,0)
i ◦update(2,0)j ∼≡ lookup

(1,0)
i ◦ 〈 〉(0,0)Vi

(eax1)
untag

(0,2)
e ◦tag(0,1)e ≡∼ id

(0,0)
EVe

(eax2)
∀e1,e2 ∈ EName, e1 6= e2

untag
(0,2)
e1 ◦tag(0,1)e2 ≡∼ []

(0,0)
EVe
◦tag(0,1)e2

(effect)
f
(d1,d2)
1 ,f

(d3,d4)
2 : X→ Y f

(d1,d2)
1 ∼≡ f

(d3,d4)
2 〈 〉(0,0)Y ◦f(d1,d2)1 ≡≡ 〈 〉(0,0)Y ◦f(d3,d4)2

f
(d1,d2)
1 ≡≡ f

(d3,d4)
2

(eeffect)
f
(d1,d2)
1 ,f

(d3,d4)
2 : Y→ X f

(d1,d2)
1 ≡∼ f

(d3,d4)
2 f

(d1,d2)
1 ◦ [](0,0)Y ≡≡ f

(d3,d4)
2 ◦ [](0,0)Y

f
(d1,d2)
1 ≡≡ f

(d3,d4)
2

(local_global)
f
(d1,d2)
1 ,f

(d3,d4)
2 : X→ 1 ∀ i ∈ Loc, lookup(1,0)i ◦f(d1,d2)1 ∼≡ lookup

(1,0)
i ◦f(d3,d4)2

f
(d1,d2)
1 ≡≡ f

(d3,d4)
2

(elocal_global)
f
(d1,d2)
1 ,f

(d3,d4)
2 : O→ X ∀ e ∈ EName, f(d1,d2)1 ◦tag(0,1)e ≡∼ f

(d3,d4)
2 ◦tag(0,1)e

f
(d1,d2)
1 ≡≡ f

(d3,d4)
2

(w_lpair_eq)
f
(d1,d2)
1 : X→ Y f

(d3,d4)
2 : X→ Z d1 ∈ {0,1}

π
(0,0)
1 ◦ 〈f1,f2〉

((max(d1,d3),max(d2,d4))
l ∼≡ f

(d1,d2)
1

(s_lpair_eq)
f
(d1,d2)
1 : X→ Y f

(d3,d4)
2 : X→ Z d1 ∈ {0,1}

π
(0,0)
2 ◦ 〈f1,f2〉

((max(d1,d3),max(d2,d4))
l ≡≡ f

(d3,d4)
2

(w_lcopair_eq)
f
(d1,d2)
1 : X→ Y f

(d3,d4)
2 : Z→ Y d2 ∈ {0,1}

[f1 | f2]((max(d1,d3),max(d2,d4)) ◦in1(0,0) ≡∼ f
(d1,d2)
1

(s_lcopair_eq)
f
(d1,d2)
1 : X→ Y f

(d3,d4)
2 : Z→ Y d2 ∈ {0,1}

[f1 | f2]((max(d1,d3),max(d2,d4)) ◦in2(0,0) ≡≡ f
(d3,d4)
2

(tcomp)
f(p,p) : Y→ Z g(p,p) : X→ Y

(tpure f)(0,0) ◦ (tpure g)(0,0) ≡≡ (tpure (f◦g))(0,0)

Figure 17: Lst+exc: rules

IMP with exceptions over decorated logic 25

6.1 Decorated properties of the state and exception effects

The properties given in Sections 4.1 and 5.1 are now stated with the refined term decorations, and related
with the equation sort ≡≡. I.e., the statements propagator-propagates and update-update look like:

∀e ∈ EName, a(0,1) : X→ Y, a(0,1) ◦ [](0,0)X ◦tag(0,1)e ≡≡ []
(0,0)
Y ◦tag(0,1)e : EVe→ Y.

∀i 6= j ∈ Loc, update(2,0)j ◦π
(0,0)
2 ◦ (update(2,0)i ×r id

(0,0)
Vj

)≡≡

update
(2,0)
i ◦π

(0,0)
1 ◦ (id(0,0)Vi

×l update
(2,0)
j) : Vi×Vj→ 1.

These are the archetype properties that we can prove within the scope of the Lst+exc. Although it is doable,
we prefer not to prove them for this generic framework (skipped since it would take substantial amount of
time); instead, we first specialize them in a way to serve as a target language for a denotational semantics
of IMP+Exc, and then prove them for the specialized version. Also, we encode the specialized version in
Coq and certify related proofs. Section 7 gives the related details.

7 IMP+Exc over the combined decorated logic Lst+exc
Now, it comes to define a denotational semantics for the IMP+Exc language, with the combined decorated
logic for the state and the exception (Lst+exc) as the target language. Recall that by doing this, we aim to
prove some (strong) equalities between terminating programs written in IMP+Exc with respect to the state
and the exception effects.

In IMP+Exc, the values that can be stored in any location (variable) i are just integers. So that
any occurrence of (Vi) in term signatures of Lst+exc is replaced by Z. I.e., lookup(1,0) : 1→ Z and
update(2,0) : Z→ 1. We now define a denotational semantics of IMP+Exc expressions over combined
decorated settings using two translator functions daExp and dbExp. The former takes an arithmetic
expression as input and outputs a decorated term of type term Z 1, while the latter takes a Boolean
expression and returns a decorated term of type term B 1:

daExp n ⇒ (constant n)(0,0)

daExp x ⇒ (lookupx)
(1,0)

daExp (a1+a2) ⇒ (tpure add)(0,0) ◦ 〈daExp a1,daExp a2〉(d,0)l

daExp (a1×a2) ⇒ (tpure mlt)(0,0) ◦ 〈daExp a1,daExp a2〉(d,0)l

daExp (a1−a2) ⇒ (tpure subt)(0,0) ◦ 〈daExp a1,daExp a2〉(d,0)l

dbExp b ⇒ (constant b)(0,0)

dbExp (a1
?
= a2) ⇒ (tpure chkeq)(0,0) ◦ 〈daExp a1,daExp a2〉(d,0)l

dbExp (a1
?
6= a2) ⇒ (tpure chkneq)(0,0) ◦ 〈daExp a1,daExp a2〉(d,0)l

dbExp (a1
?
> a2) ⇒ (tpure chkgt)(0,0) ◦ 〈daExp a1,daExp a2〉(d,0)l

dbExp (a1
?
< a2) ⇒ (tpure chklt)(0,0) ◦ 〈daExp a1,daExp a2〉(d,0)l

26 Burak Ekici

dbExp (b1∧b2) ⇒ (tpure andB)(0,0) ◦ 〈dbExp b1,dbExp b2〉(d,0)l

dbExp (b1∨b2) ⇒ (tpure orB)(0,0) ◦ 〈dbExp b1,dbExp b2〉(d,0)l

dbExp (¬b) ⇒ (tpure notB)(0,0) ◦dbExp b(d,0)

In “dbExpb” (6th line above on the left), b can be either of the Boolean expressions true and false. The
constructor tpure is applied to given unary and binary functions. For instance add : (Z×Z)→ Z takes
an instance of an integer tuple and returns their sum. To see the definition of these functions in a Coq
implementation, please check out this file (x).
Remark 7.1. An expression in in IMP+Exc can have memory access right (i.e., a variable x) but can
never throw or catch exceptions. To calculate the decoration d of an arithmetic expression pair, i.e.,
〈daExp a1,daExp a2〉(d,0)l , we use the following strategy:

d := let f(d1,0) = daExp(a1) in let g
(d2,0) = daExp(a2) in max(d1,d2).

The same strategy follows for Boolean expressions, too.
We have some additional rules to make use of some pure algebraic operations in the combined decorated

setting presented in Figure 18 where the pure term lpi b f : 1→ 1, within the rule (imp-li), is used to
bridge successive loop iterations as long as the loop conditional evaluates into decorated logic’s true
(constant true). Also, the pure term pbl : B→ 1+1 forms a bridge between the usual Boolean data type
and its correspondence in the decorated settings which is the type 1+1.

lpi (b : term 1 (1+1)) (f : term 1 1) := tpure (λx : 1.x).

pbl := tpure (bool_to_two).

where bool_to_two (b : bool) := (if b then (inl void) else (inr void)).

such that void : 1 is the unique constructor of the type 1, and

inl, inr : 1→ (1+1) are the canonical inclusions.

The rule (imp6) (functional extensionality), in Figure 18, is to say that if two pure functions on Coq side
are point-wise equal, then they are strongly equal in the decorated setting. Here we take them strongly
equal since strong and weak equalities are indistinguishable when the related terms are pure. The idea is to
be able to use Coq’s Leibniz equality as the strong equality in the decorated setting.

Note also that in (imp2) and (imp4) by replacing false into true we get (imp3) and (imp5) that are not
explicitly stated in Figure 18.

Lemma 7.2. pbl(0,0) ◦ (constant f alse)(0,0) ≡≡ in2.

Proof: unfolding all term definitions, we have tpure (λb : bool. if b then (inl void) else (inr void))
◦ tpure (λ _ : void.true) ≡≡ tpure inl. Now, we obtain ∀x : 1, inlvoid= inlx by first rewriting
tcomp from left to right, and then applying imp6 which is trivial since Leibniz equality ‘=’ is reflexive.

Lemma 7.3. pbl(0,0) ◦ (constant true)(0,0) ≡≡ in1.

(x) https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Functions.v

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Functions.v

IMP with exceptions over decorated logic 27

(imp1)
∀p, q : Z, (f : Z×Z→ Z)

tpure f◦ 〈constant p,constant q〉l ≡≡ (constant f(p,q))

(imp2)
∀p, q : Z, (f : Z×Z→ B) f(p,q) = false

tpure f◦ 〈constant p,constant q〉l ≡≡ constant false

(imp4)
∀p, q : B, (f : B×B→ B) f(p,q) = false

tpure f◦ 〈constant p,constant q〉l ≡≡ constant false

(imp−li)
∀(b : term 1 (1+1)) (f : term 1 1)
lpi b f≡≡

[
(lpi b f)◦f

∣∣id]
l
◦b

(imp6)
(∀x, f x = g x)

tpure f≡ tpure g

Figure 18: Additional rules on pure terms: IMP+Exc specific

Proof: It follows the same steps with the proof of Lemma 7.2
Remark 7.4. See this file (xi) for the Coq certified proofs of the Lemmas 7.2 and 7.3.

The fact that IMP+Exc commands are of type 1→ 1, in throw
(0,1)
e := []

(0,0)
Y ◦tag(0,1)e : EVe→ Y, we

replace EVe and Y with 1. This means that we stick to a single exceptional value (parameter), for each
exception name e ∈ EName.

Below, we recursively define the IMP+Exc commands within Lst+exc using a translator function dCmd

which establishes a decorated term of type term 1 1 out of an input command:

dCmd (SKIP) ⇒ (id 1)(0,0)

dCmd (x, a) ⇒ (updatex)
(2,0) ◦ (daExp a)(d1,0)

dCmd (c1;c2) ⇒ (dCmd c2)
(d1,d2) ◦ (dCmd c1)(k1,k2)

dCmd (if b then c1 else c2) ⇒
[
dCmd c1

∣∣∣ dCmd c2](d1,d2)
l

◦ pbl(0,0) ◦ (dbExp b)(d3,0)

dCmd (while b do c) ⇒
[
(lpi (pbl◦ (dbExp b)) (dCmd c))◦ (dCmd c)

∣∣∣ id](d1,d2)
l

◦ pbl(0,0) ◦ (dbExp b)(d3,0)

dCmd (THROW e) ⇒ throw e(0,1)

dCmd (TRY c1 CATCH e⇒ c2) ⇒ try (dCmd c1) catch (e⇒ (dCmd c2))
(d1,d2)

Remark 7.5. To calculate the decorations d1 and d2 (or k1 and k2), we use the following strategy:

d1 := let f(d
′
1,d
′
2) = dCmd(c1) in let g

(d′3,d
′
4) = dCmd(c2) in max(d

′
1,d
′
3).

d2 := let f(d
′
1,d
′
2) = dCmd(c1) in let g

(d′3,d
′
4) = dCmd(c2) in max(d

′
2,d
′
4).

(xi) https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Derived_co_Pairs.v#L122-L133

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Derived_co_Pairs.v#L122-L133

28 Burak Ekici

For the strategy to calculate d3, see Remark 7.1. Also, recall Definition 5.2: translation of any IMP+Exc
command cannot be a public catcher, even the one for TRY/CATCH. Thus, dCmd function outputs terms at
most wih decoration (1) with respect to the exception effect.

In Figure 19, the diagram on the left schematizes the command if b then c1 else c2: if the Boolean
expression dbExp b evaluates into (constant true) then by Lemma 7.3, we have the command c1 in
execution, c2 otherwise by Lemma 7.2. As for the loops, it is well know that as long as the looping
condition evaluates into (constant true), loop body gets executed. This is depicted in Figure 19 (the
diagram on the right), as the arrow lpi b c is each time replaced by the whole diagram itself. The rule
(imp-li) allows us to do so. If the looping condition evaluates into (constant false), using Lemma 7.2,
we then have the term id1 in execution forcing the loop to terminate. Recall that the case distinction in the
diagrams are provided by the term inclusions.

1

in1

��

c1

##
1

dbExp b // B
pbl // 1+1

[
c1

∣∣c2] // 1
1

in2

OO

c2

;;

1

in1

��

c // 1

lpi b c

��
1

dbExp b // B
pbl // 1+1

[
(lpi b c) ◦ c

∣∣id1] // 1
1

in2

OO

id1

55

Figure 19: (cond b c1 c2) and (while b do c) in Lst+exc

Figure 20 respectively visualizes the formal behaviors of THROW and TRY/CATCH commands where the
basis is the core decorated terms for the exception effect. They are formulated as in Definitions 5.1 and 5.2
with a single difference in their signatures: domains and co-domains are set to 1.

1
tage // O

[]1 // 1

1

in1
��

id1

**
1

c1 // 1
in1 // 1+O

[
id1

∣∣c2 ◦ untage] // 1

O

in2

OO

untage // 1

c2

::

Figure 20: (THROW e) and (TRY c1 CATCH e⇒ c2) in Lst+exc

We now encode the IMP+Exc denotational semantics, with the Lst+exc as the target language, in Coq.
Arithmetic and Boolean expressions are inductively forming new Coq Types, called aExp and bExp
respectively. As for the type constructors, we use the syntactic operators given as parts of aexp and bexp
in Figure 2. The difference lies in the naming: notations are translated into plain text. It is easy to match
them one another as they are given in the same order. Notice also that the implementation of the constant
Boolean expressions true and false are subsumed by the constructor bconst.

IMP with exceptions over decorated logic 29

Inductive aExp : Type ,
| aconst: Z → aExp
| var : Loc → aExp
| plus : aExp → aExp → aExp
| subtr : aExp → aExp → aExp
| mult : aExp → aExp → aExp.

Inductive bExp : Type ,
| bconst: bool → bExp
| eq : aExp → aExp → bExp
| neq : aExp → aExp → bExp
| gt : aExp → aExp → bExp
| lt : aExp → aExp → bExp
| ge : aExp → aExp → bExp
| le : aExp → aExp → bExp
| and : bExp → bExp → bExp
| or : bExp → bExp → bExp
| neg : bExp → bExp.

We interpret the functions daExp and dbExp in Coq using following fixpoints:

Fixpoint daExp (e: aExp): term Z unit ,
match e with

| aconst n ⇒ constant n
| var x ⇒ lookup x
| plus a1 a2 ⇒ tpure add o pair (daExp a1) (daExp a2)
| subtr a1 a2 ⇒ tpure subt o pair (daExp a1) (daExp a2)
| mult a1 a2 ⇒ tpure mlt o pair (daExp a1) (daExp a2)

end.

Fixpoint dbExp (e: bExp): term bool unit ,
match e with

| bconst n ⇒ constant n
| eq a1 a2 ⇒ tpure chkeq o pair (daExp a1) (daExp a2)
| neq a1 a2 ⇒ tpure chkneq o pair (daExp a1) (daExp a2)
| gt a1 a2 ⇒ tpure chkgt o pair (daExp a1) (daExp a2)
| lt a1 a2 ⇒ tpure chklt o pair (daExp a1) (daExp a2)
| ge a1 a2 ⇒ tpure chkge o pair (daExp a1) (daExp a2)
| le a1 a2 ⇒ tpure chkle o pair (daExp a1) (daExp a2)
| and b1 b2 ⇒ tpure andB o pair (dbExp b1) (dbExp b2)
| or b1 b2 ⇒ tpure orB o pair (dbExp b1) (dbExp b2)
| neg b ⇒ tpure notB o (dbExp b)

end.

We follow a similar idea to implement commands. We inductively define a Coq type Cmd of IMP+Exc
commands whose constructors are the members of IMP+Exc command set as presented in Figures 2 and 6.
Notice that some commands are encoded with different names. I.e., the assignment command ‘,’ is called
assign, the sequencing command ‘;’ is called sequence while “if then else” block is named cond in
the implementation. It is easy to match them one another since they are presented in the same order.

Inductive Cmd : Type ,
| skip : Cmd
| sequence : Cmd → Cmd → Cmd
| assign : Loc → aExp → Cmd
| cond : bExp → Cmd → Cmd → Cmd
| while : bExp → Cmd → Cmd
| THROW : EName → Cmd
| TRY_CATCH : EName → Cmd → Cmd → Cmd.

30 Burak Ekici

We now interpret the dCmd function in Coq using the below fixpoint:

Fixpoint dCmd (c: Cmd): (term unit unit) ,
match c with

| skip ⇒ (@id unit)
| sequence c0 c1 ⇒ (dCmd c1) o (dCmd c0)
| assign j e0 ⇒ (update j) o (daExp e0)
| cond b c2 c3 ⇒ copair (dCmd c2) (dCmd c3) o (pbl o (dbExp b))
| while b c4 ⇒ (copair (lpi (pbl o (dbExp b)) (dCmd c4) o (dCmd c4)) (@id unit)) o

(pbl o (dbExp b))
| THROW e ⇒ (throw unit e)
| TRY_CATCH e c1 c2 ⇒ (try_catch e (dCmd c1) (dCmd c2))

end.

Now, we retain sufficient material to state and prove equivalences between programs written in IMP+Exc.
Also, the discussed Coq implementation allows us to certfy them in Coq.

7.1 Program equivalence proofs

In this section, we finally prove equivalences of several programs written in IMP+Exc, using the denotational
semantics characterized within the scope of the logic Lst+exc. Note that for the sake of simplicity,
we will use ux, lx, (t op) and (c p) instead of (update x)(2,0), (lookup x)(1,0), (tpure op)(0,0) and
(constant p)(0,0), respectively.

Remark 7.6. Recall that the use of term products is to impose some order of term evaluation on the mutable
state. IMP+Exc specific properties of the mutable state are slightly different than their generic versions
(mentioned in Section 4.1) due to the fact that the language does not allow parallel term evaluations,
meaning that every term is evaluated in the given sequence. Therefore, we no more need to use term
products in property statements. The properties we use through out the following proofs are re-stated in
Figure 21. The full certified Coq proofs of these properties can be found here (xii).

1. interaction update-update ∀x ∈ Loc p,q : Z, ux ◦ (c p)◦ux ◦ (c q) ≡≡ ux ◦ (c p)
2. commutation update-update ∀x 6= y ∈ Loc p,q : Z, ux ◦ (c p)◦uy ◦ (c q) ≡≡ uy ◦ (c q)◦ux ◦ (c p)
3. commutation-lookup-constant-update ∀x ∈ Loc,p,q ∈ Z, 〈lx,(c q)〉l ◦ux ◦ (c p)≡≡ 〈(c p),(c q)〉l ◦ux ◦ (c p)

Figure 21: Primitive properties of the state: IMP+Exc specific

Remark 7.7. Below, we state three lemmata using the IMP+Exc notation introduced in Figures 2 and 6.
However, we introduce a new set of notations for the Coq encoding to increase the readability score: browse
this set of notations here (xiii) where, i.e., the assign command is denoted by ‘::=’ while the sequence
command by ‘; ;’. These notations do not appear through out the paper, but might be of help in reading the
lemma statements in the Coq encoding. Notice also that they are not so pretty, due to the fact that Coq
internally reserves prettier notations for other issues.

Another point here to notice is that the proofs in the following might be long and hard to follow. If you find
it so, please try reading the Coq codes. They are written in parallel with the ones on the paper. Starting
from Lemma 7.10, we give overall explanations about the way we compute the proof using our semantics

(xii) https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Proofs.v
(xiii) https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/IMPEX_to_COQ.v#L185-L205

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Proofs.v
https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/IMPEX_to_COQ.v#L185-L205

IMP with exceptions over decorated logic 31

before diving it into the detailed rule applications. Note also that proofs are chosen to be presented in a
way that the sides of the equations are simplified until obtaining a trivial equation to solve.
Remark 7.8. All the statements we prove below are strong equations. The reason is that IMP+Exc (or IMP)
language does not have a return command. Thus, one cannot compare the values that two programs
return. When we use some combined decorated logic as a target language for the semantics of another
language with the return command (i.e., the C language), then it would make sense to prove sentences
with weak equations. Recall also that any strong equation can be seen as a weak equation.

Lemma 7.9. For all exceptionally pure commands f, g (doesNotThrowTC(f) = true, doesNotThrowTC
(g) = true) and b ∈ {true,false}, if program pieces prog1 and prog2 are given as in the following
listings, then dCmd (prog1) ≡≡ dCmd (prog2).

Listing 1: prog1

/* prog1 */
if b then f else g;

Listing 2: prog2

/* prog2 */
if b then (if b then f else g)
else g;

Note that the function doesNotThrowTC : cmd→ Bool takes any command, recursively checks whether
the input involves either THROW or TRY/CATCH, and returns true if that is the case; false otherwise.
Browse this function, in a Coq implementation, here (xiv).

Proof: We sketch the diagrams of both programs below:

1

in1

��

f

!!
1

c b // B
pbl // 1+1

[
f

∣∣g] // 1

1

in2

OO

g

==

1

in1

��

k

!!
1

c b // B
pbl // 1+1

[
k

∣∣g] // 1

1

in2

OO

g

==

where k = (if b then f else g). The statement we would like to prove is[
f
∣∣g]

l
◦pbl◦c b≡≡

[
k
∣∣g]

l
◦pbl◦c b. (1)

Using the rules of the logic Lst+exc, in the below given order, the idea is to simplify both sides of the
statement into the same shape with respect to the equality sort ≡≡. The proof proceeds by a case analysis
on b.

If b = false, by unfolding the definitions of pbl and (c f alse), we have[
f
∣∣g]

l
◦t (bool_to_two)◦t (λx : unit.false)≡≡

[
k
∣∣g]

l
◦t (bool_to_two)◦t (λx : unit.false).

(2)
We rewrite (tcomp) on both sides, and get[

f
∣∣g]

l
◦t (λx : unit.bool_to_two false)≡≡

[
k
∣∣g]

l
◦t (λx : unit.bool_two false). (3)

(xiv) https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/IMPEX_to_COQ.v#L148

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/IMPEX_to_COQ.v#L148

32 Burak Ekici

Now, we cut

t (λx : unit.bool_to_two false)≡≡ in2 (4)

and rewrite it back in the goal. So that we obtain[
f
∣∣g]

l
◦in2 ≡≡

[
k
∣∣g]

l
◦in2. (5)

Then, we use (s_lcopair_eq), and finally have g≡≡ g which is trivial since ≡≡ is reflexive. It remains to
show that the cut statement in Equation 4 holds. By simplifying t (λx : unit. bool _to _two false)
and unfolding in2, we have

t (λx : unit.inr x)≡≡ t (inr). (6)

Now, we apply (imp6) and get

∀x : unit,inr x=inr x (7)

which is trivial since the Leibniz equality ‘=’ is reflexive.
If b = true, by following above procedure with true (instead of false) we first handle[

f
∣∣g]

l
◦in1 ≡≡

[
k
∣∣g]

l
◦in1 (8)

and then freely convert ≡≡ into ≡∼. There, rewriting the rule (w_lcopair_eq) yields f ≡∼ k. We unfold k
with b= true and get

f≡∼
[
f
∣∣g]

l
◦in1. (9)

Now by rewriting (w_lcopair_eq), we have f≡∼ f. This is again trivial, since the equality sort ≡∼ is
reflexive.

Lemma 7.10. For all x : Loc, if program pieces prog3 and prog4 are given as in the following listings,
then dCmd (prog3) ≡≡ dCmd (prog4).

Listing 3: prog3

/* prog3 */
x , 2;

while (x
?
< 11)

do (x , x + 4);

Listing 4: prog4

/* prog4 */
x , 14;

Proof: In the proof structure we intend to reduce prog3, first dealing with the pre-loop assignments and
the looping pre-condition. Since it evaluates into true, in the second step we identify things related to the
first loop iteration. The third step primarily studies the second and then the third loop iteration after which
the looping pre-condition switches to false. Finally, we explain the program termination and show that
prog3 does exactly the same state manipulation with prog4. Note also that we do not need to check the
results they returned, since all IMP+Exc commands, thus programs, return void : U.

IMP with exceptions over decorated logic 33

Below is the sketch of prog3:

1 1

in1

��

f // 1

lpi b f

��
1

c 2 // Z ux // 1

〈
lx,c 11

〉
//

lx

@@

c 11

��

Z2 tpure
?
< //

π1

OO

π2

��

B
pbl // 1+1

[
(lpi b f) ◦ f

∣∣id1] // 1

1 1

in2

OO

id1

77

where f= (x, x+4) and b= (x
?
< 11). Using the rules of the logic Lst+exc, we simplify this diagram

into the one given below with respect to the equality sort ≡≡:

1
c 14 // Z ux // 1

which is actually prog4 when sketched.

1. Initially, we have[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
lx,(c 11)

〉
◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (10)

Let us simplify it as far as possible. By rewriting commutation−lookup−constant−update

(see Figure 21), we obtain[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
(c 2),(c 11)

〉
◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (11)

Since the looping pre-condition (t
?
<)◦

〈
(c 2),(c 11)

〉
evaluates into (c true), and due to (imp3),

we have [
(lpi b f)◦f

∣∣id1]◦pbl◦ (c true)◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (12)

By rewriting the Lemma 7.3, we get[
(lpi b f) ◦ f

∣∣id1]◦in1 ◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (13)

Here, we first convert ≡≡ into ≡∼ then rewrite (w_lcopair_eq), and end up with

(lpi b f)◦f◦ux ◦ (c 2)≡∼ ux ◦ (c 14) (14)

in which the second appearance of f unfolds into

(lpi b f)◦ux ◦ (t +)◦
〈
lx,c 4

〉
◦ux ◦ (c 2)≡∼ ux ◦ (c 14). (15)

34 Burak Ekici

Since, there is no exceptional case, we are freely back to ≡≡. By rewriting commutation −lookup
−constant −update, we obtain

(lpi b f)◦ux ◦ (t +)◦
〈
c 2,c 4

〉
◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (16)

The rule (imp1) gives

(lpi b f)◦ux ◦ (c 6)◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (17)

Now, we rewrite the lemma interaction-update-update (see Figure 21) and get

(lpi b f)◦ux ◦ (c 6)≡≡ ux ◦ (c 14). (18)

2. For the second loop iteration, rewriting (imp-li) gives[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
lx,(c 11)

〉
◦ux ◦ (c 6)≡≡ ux ◦ (c 14). (19)

where looping pre-condition evaluates into (c true). Therefore, we iterate the above procedure, given
in the step 1, once again and derive

(lpi b f)◦ux ◦ (c 10)≡≡ ux ◦ (c 14). (20)

3. In the third iteration, rewriting the (imp-li) gives[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
lx,(c 11)

〉
◦ux ◦ (c 10)≡≡ ux ◦ (c 14). (21)

As in step 2, the looping pre-condition evaluates into (c true) forcing us to reiterate the above
procedure, given in the step 1, which results in

(lpi b f)◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (22)

4. In the fourth step, rewriting the (imp-li) gives[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
lx,(c 11)

〉
◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (23)

By rewriting commutation −lookup −constant −update, we obtain[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
(c 14),(c 11)

〉
◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (24)

Finally here, the looping pre-condition (t
?
<)◦

〈
(c 14),(c 11)

〉
evaluates into (c f alse) yielding[

(lpi b f)◦f
∣∣id1]◦pbl◦ (c f alse)◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (25)

We rewrite the Lemma 7.2, and get[
(lpi b f)◦f

∣∣id1]◦in2 ◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (26)

Now we rewrite (s_lcopair_eq) and handle

id1 ◦ux ◦ (c 14)≡≡ ux ◦ (c 14) (27)

which is trivial, since the identity term disappears when to compose and the equality sort ≡≡ is
reflexive.

IMP with exceptions over decorated logic 35

Lemma 7.11. For each x y : Loc, e : EName, if program pieces prog5 and prog6 are given as in the
following listings, then dCmd (prog5) ≡≡ dCmd (prog6).

Listing 5: prog5

/* prog5 */
x , 1;
y , 20;
TRY(

while (true)
do

(if (x
?
<= 0) then (THROW e)

else x , x - 1
)

) CATCH e ⇒ (y , 7);

Listing 6: prog6

/* prog6 */
x , 0;
y , 7;

Proof: In the proof structure, we first tackle with the downcast operator. The second task is to deal with
the first loop iteration which has the state but no exception effect. In the third, we study the second iteration
of the loop where an exception is thrown which is followed by the abrupt loop termination. Finally, in the
fourth step, we explain the exception recovery and the program termination. Below is the sketch of prog5:

1

in1

��

tage // O

[]1

��
1

in1

��

b // B
pbl // 1+1

[
[]1◦tage

∣∣c2] // 1

lpi (c true) c1

��

lpi (c true) c1

��

1

in2

OO

c2

77

1

in1

��

id1

''
1

c0 // 1
pbl◦(c true)// 1+1

[
(lpi (c true) c1)◦

[
[]1◦tage

∣∣c2]◦pbl◦b∣∣∣id1]
// 1

in1 // 1+O
[
id1

∣∣c3 ◦ untage] // 1

1

in2

OO

id1

33

O

in2

OO

untage // 1

c3

BB

where b= (x
?
≤ 0), c0 = (x, 1;y, 20), c1 = (if (x

?
≤ 0) then (THROW e) else (x, x−1)), c2 =

(x, x−1), c3 = (y, 7). The dotted arrows depict the normal loop iterations while dashed ones are to
identify the program behavior after the exception of name e is raised. Using the rules of the logic Lst+exc,
we can reduce the above diagram into the one given below with respect to the equality sort ≡≡:

1
c 0 // Z ux // 1

c 7 // Z
uy // 1

36 Burak Ekici

which is actually the prog6 when sketched.

1. Initially, we have

↓
([
id1
∣∣c3◦untage]◦in1◦[(lpi (c true) c1)◦

[
[]1◦tage

∣∣c2]◦pbl◦b∣∣∣id1]◦pbl◦(c true)
)

◦uy ◦ (c 20)◦ux ◦ (c 1)≡≡ uy ◦ (c 7)◦ux ◦ (c 0). (28)

We convert ≡≡ into ≡∼, then rewrite the (w_downcast) rule and get[
id1
∣∣c3 ◦untage]◦in1 ◦[(lpi (c true) c1)◦

[
[]1 ◦tage

∣∣c2]◦pbl◦b∣∣∣id1]
◦pbl◦ (c true)◦uy ◦ (c 20)◦ux ◦ (c 1)≡∼ uy ◦ (c 7)◦ux ◦ (c 0). (29)

Rewriting commutation-update-update, on both sides, gives[
id1
∣∣c3 ◦untage]◦in1 ◦[(lpi (c true) c1)◦

[
[]1 ◦tage

∣∣c2]◦pbl◦b∣∣∣id1]
◦pbl◦ (c true)◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (30)

Rewriting Lemma 7.3 yields[
id1
∣∣c3 ◦untage]◦in1 ◦[(lpi (c true) c1)◦

[
[]1 ◦tage

∣∣c2]◦pbl◦b∣∣∣id1]
◦in1 ◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (31)

2. Now we rewrite the rule (w_lcopair_eq), and handle[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦

[
[]1 ◦tage

∣∣c2]
◦pbl◦b◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0). (32)

By unfolding b, we have[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦

[
[]1 ◦tage

∣∣c2]
◦pbl◦ (t

?
≤)◦

〈
lx (c 0)

〉
◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (33)

By rewriting the lemma commutation− lookup− constant− update, we obtain[
id1
∣∣c3 ◦untage]◦in1◦(lpi (c true) c1)◦

[
[]1 ◦tage

∣∣c2]
◦pbl◦ (t

?
≤)◦

〈
(c 1),(c 0)

〉
◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (34)

We rewrite the rule (imp2), and get[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)

◦
[
[]1 ◦tage

∣∣c2]◦pbl◦ (c false)◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy.◦ (c 7). (35)

IMP with exceptions over decorated logic 37

Rewriting the Lemma 7.2 yields[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)

◦
[
[]1 ◦tage

∣∣c2]◦in2 ◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy.◦ (c 7). (36)

We now rewrite (s_lcopair_eq) which gives[
id1
∣∣c3 ◦untage]◦in1◦(lpi (c true) c1)

◦c2 ◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (37)

Here, by unfolding c2, we have[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦ux ◦ (t −)◦

〈
lx,(c 1)

〉
◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (38)

Rewriting the lemma commutation−lookup−constant−update gives[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦ux ◦ (t −)◦

〈
(c 1),(c 1)

〉
◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦0(c 7). (39)

We rewrite (imp1), and get[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)

◦ux ◦ (c 0)◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (40)

We again rewrite the lemma commutation-update-update, and obtain[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦ux ◦ (c 0)

◦uy ◦ (c 20)≡∼ ux◦(c 0)◦uy ◦ (c 7). (41)

3. We re-iterate the loop via (imp-li), and have[
id1
∣∣c3 ◦untage]◦in1 ◦ [(lpi (c true) c1)◦c1

∣∣id]
◦pbl◦ (c true)◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy◦(c 7). (42)

We rewrite Lemma 7.3, (w_lcopair_eq), then unfold c1, and get:[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦

[
throw e 1

∣∣c2]
◦pbl◦ (t

?
≤)◦

〈
lx,(c 0)

〉
◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 20). (43)

By rewriting commutation−lookup−constant−update, (imp3) and Lemma 7.3, we have[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦

[
throw e 1

∣∣c2]◦in1
◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 20). (44)

38 Burak Ekici

By (w_lcopair_eq), the exception is raised:[
id1
∣∣c3 ◦untage]◦in1 ◦ ((lpi (c true) c1)◦throw e 1

)
◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 20). (45)

Due to the raised exception, the infinite loop gets abruptly terminated at this step. Here we unfold
the definition of THROW then rewrite propagator-propagates (see Section 6.1), and get[

id1
∣∣c3 ◦untage] ◦in1 ◦ []1 ◦tage ◦ux ◦ (c 0) ◦uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦uy ◦ (c 20). (46)

4. Here, we first cut in1 ◦ []1 ≡≡ in2, and rewrite it back in the equation. Thus, we have[
id1
∣∣c3 ◦untage]◦in2 ◦tage ◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux◦(c 0)◦uy◦(c 7). (47)

By rewriting (s_lcopair_eq), we obtain

c3 ◦untage ◦tage ◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (48)

Since ux ◦ (c 0) ◦ uy ◦ (c 20) is pure with respect to the exception, we rewrite (eax1), and get

c3 ◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy◦(c 7). (49)

Unfolding the definition of the command c3 = (uy ◦ (c 7)), we have

uy ◦ (c 7)◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux◦(c 0)◦uy ◦ (c 7). (50)

We now rewrite commutation− update− update on the left, and handle

ux ◦ (c 0)◦uy ◦ (c 7)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (51)

Finally, it suffices to rewrite interaction− update−update,

ux ◦ (c 0)◦uy ◦ (c 7)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (52)

which is trivial since the equality symbol ≡∼ is reflexive. However, it still remains to prove the
previous cut in1 ◦ []1 ≡≡ in2: since everything is pure with respect to the exception, we have

in1 ◦ []1 ≡∼ in2. (53)

Now, rewriting the rule (w_empty) gives []1+1 ≡∼ []1+1. This is trivial since the equality sort ≡∼
is reflexive.

The full Coq proofs of above lemmata can be found here (xv), and the entire implementation there (xvi).

(xv) https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/IMPEX_Proofs.v
(xvi) https://github.com/ekiciburak/impex-on-decorated-logic

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/IMPEX_Proofs.v
https://github.com/ekiciburak/impex-on-decorated-logic

IMP with exceptions over decorated logic 39

7.2 Automating decorated proofs

A rule in a decorated logic only applies if the given term gets decorated as expected by the rule. Therefore,
decoration checks are pretty important and occur pretty often. To automatize this checks, at the Coq level,
we already have tactics decorate and edecorate. See them here (xvii). Also, we plan to put Czajka and
Kaliszyk (2018)’s CoqHammer tool in use to try automatizing such program property proofs, done within
the scope of decorated logics, implemented in Coq.

7.3 On the completeness of the logic Lst+exc

With the logic Lst+exc, no generic program properties such as

dCmd(p1)≡≡ dCmd(p2) =⇒ ∀ss′, evalp1 s s′ =⇒ evalp2 s s
′

can be proven. Here, eval denotes the big-step semantics of the commands until reaching SKIP. Only
programs that admit a particular specification can be proven to be equivalent with respect to the state and
exception effects. The total correctness is based on a syntactic completeness property. In a way, it is meant
to make sure that we are not using too many axioms to construct a denotational semantics for the IMP+Exc
language using the logic Lst+exc as the target language. This syntactic completeness property is called
relative Hilbert-Post Completeness (rHPC) and elaborately defined by Dumas et al. (2015). Briefly, given
two logics L0 and L such that L0 ⊆ L (L0 is a sub-logic of L) and a theory T of L. T is relatively Hilbert-Post
complete with respect to L0 if (1) at least one sentence is unprovable in T (not the maximal theory ensuring
consistency), and (2) every theory containing T can be generated from T and some sentences from L0. Here,
L0 can be seen as the pure logic that governs the denotational semantics of the effect-free subset of the IMP
language where L is the logic that governs the denotational semantics of the superset of the IMP language
after either the state or exception effect is added.

We prove, in Theorem 6.8.5 in (Ekici (2015)), that the decorated theory of exceptions is relatively
Hilbert-Post complete with respect to its pure part. However, only the core part of the decorated logic for
the state effect is proven to be rHPC (see Theorem 5.4.9 in Ekici (2015)). What we mean by the “core part”
is the logic with no categorical pairs. Clearly, when translated to IMP denotational semantics, it corresponds
to the part that governs conditionals and loops. We can conjecture that the logic is still complete in the
presence of categorical pairs. However, the proof is not yet done.

In the rHPC proof of the core part for the decorated logic for the state, we first determine the canonical
forms of accessors and modifiers and then show that both such forms are equivalent to some finite set of
equations in the pure sublogic of Lst with no pairs. In the presence of categorical pairs, we so far had
difficulties to come up with the canonical forms for accessors and modifiers even though it is clear that
such forms exist. Once we have these forms in hand, it should also be the case that the rules governing
pairs suffice to prove that such forms are equivalent to finite number of equations made of terms coming
from the pure counterpart of the logic Lst . We plan to study this in the near future.

It is also proven that if two theories are rHPC with respect to a (pure) logic, then the combination of
these theories remains to be rHPC. Therefore, the logic Lst+exc without the use of pairs is rHPC.

(xvii) https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Decorations.v

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Decorations.v

40 Burak Ekici

8 Concluding remarks
We have presented frameworks for formalizing the treatment of the state and the exception effects, first
separately, and then combined, using the decorated logic. Decorations describe what computational
effect evaluation of a term may involve, and form a bridge between the syntax and its interpretation in
reasoning about terms by making computational effects explicit in the decorated syntax. We have designed
a denotational semantics for the IMP+Exc language over the combined decorated logic Lst+exc. This
way, we managed prove some strong equalities between IMP+Exc programs. We have also encoded the
combined logic in the Coq proof assistant and certified related proofs.

Acknowledgements
We wish to thank the two anonymous reviewers for their careful reading of our manuscript and for insightful
comments and suggestions. We thank Jean-Guillaume Dumas and Dominique Duval for their support on
all aspects of the presented logics. Many thanks also to Damien Pous for his guidance on Coq related
questions. This work has been partially supported by the Austrian Science Fund (FWF) grant P26201 and
the European Research Council (ERC) Grant No. 714034 SMART.

References
A. Bauer and M. Pretnar. An effect system for algebraic effects and handlers. Logical Methods in

Computer Science, 10(4), 2014. doi: 10.2168/LMCS-10(4:9)2014. URL http://dx.doi.org/10.
2168/LMCS-10(4:9)2014.

A. Bauer and M. Pretnar. Programming with algebraic effects and handlers. J. Log. Algebr. Meth. Program.,
84(1):108–123, 2015. doi: 10.1016/j.jlamp.2014.02.001. URL http://dx.doi.org/10.1016/j.
jlamp.2014.02.001.

N. Benton and A. Kennedy. Exceptional syntax. J. Funct. Program., 11(4):395–410, July 2001.
ISSN 0956-7968. doi: 10.1017/S0956796801004099. URL http://dx.doi.org/10.1017/
S0956796801004099.

E. Brady. Programming and reasoning with algebraic effects and dependent types. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming, ICFP ’13, pages 133–144,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2326-0. doi: 10.1145/2500365.2500581. URL
http://doi.acm.org/10.1145/2500365.2500581.

S. Brookes and K. Van Stone. Monads and Comonads in Intensional Semantics. Technical Report
CMU-CS-93-140, Pittsburgh, PA, USA, 1993. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.45.5695.

Ł. Czajka and C. Kaliszyk. Hammer for Coq: Automation for dependent type theory. J. Autom. Reason-
ing, 61(1-4):423–453, 2018. doi: 10.1007/s10817-018-9458-4. URL https://doi.org/10.1007/
s10817-018-9458-4.

C. Domínguez and D. Duval. Diagrammatic logic applied to a parameterisation process. Mathematical
Structures in Computer Science, 20(4):639–654, 2010. doi: 10.1017/S0960129510000150. URL
http://dx.doi.org/10.1017/S0960129510000150.

http://dx.doi.org/10.2168/LMCS-10(4:9)2014
http://dx.doi.org/10.2168/LMCS-10(4:9)2014
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://dx.doi.org/10.1017/S0956796801004099
http://dx.doi.org/10.1017/S0956796801004099
http://doi.acm.org/10.1145/2500365.2500581
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5695
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5695
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/s10817-018-9458-4
http://dx.doi.org/10.1017/S0960129510000150

IMP with exceptions over decorated logic 41

J. Dumas, D. Duval, L. Fousse, and J. Reynaud. A duality between exceptions and states. Mathematical
Structures in Computer Science, 22(4):719–722, 2012. doi: 10.1017/S0960129511000752. URL
http://dx.doi.org/10.1017/S0960129511000752.

J. Dumas, D. Duval, B. Ekici, and D. Pous. Formal verification in Coq of program properties involving the
global state effect. In C. Tasson, editor, 25e Journées Francophones des Langages Applicatifs, Fréjus,
Jan. 2014a. URL http://hal.archives-ouvertes.fr/hal-00869230.

J. Dumas, D. Duval, B. Ekici, and J. Reynaud. Certified proofs in programs involving exceptions. In Joint
Proceedings of the MathUI, OpenMath and ThEdu Workshops and Work in Progress track at CICM
co-located with Conferences on Intelligent Computer Mathematics (CICM 2014), Coimbra, Portugal,
July 7-11, 2014., 2014b. URL http://ceur-ws.org/Vol-1186/paper-20.pdf.

J. Dumas, D. Duval, and J. Reynaud. Breaking a monad-comonad symmetry between computational
effects. CoRR, abs/1402.1051, 2014c. URL http://arxiv.org/abs/1402.1051.

J. Dumas, D. Duval, B. Ekici, D. Pous, and J. Reynaud. Relative hilbert-post completeness for exceptions.
In Mathematical Aspects of Computer and Information Sciences - 6th International Conference, MACIS
2015, Berlin, Germany, November 11-13, 2015, Revised Selected Papers, pages 596–610, 2015. doi:
10.1007/978-3-319-32859-1_51. URL http://dx.doi.org/10.1007/978-3-319-32859-1_51.

J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: syntax and semantics. J. Log.
Comput., 24(3):615–654, 2014. doi: 10.1093/logcom/exs025. URL http://dx.doi.org/10.1093/
logcom/exs025.

B. Ekici. Certification de programmes avec des effets calculatoires. PhD thesis, 2015. URL https:
//tel.archives-ouvertes.fr/tel-01250842/document.

A. Filinski. Controlling Effects. PhD thesis, 1996.

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The (3rd Edition) (Java
(Addison-Wesley)). Addison-Wesley Professional, 2005. ISBN 0321246780.

M. Hyland, G. D. Plotkin, and J. Power. Combining effects: Sum and tensor. Theor. Comput. Sci., 357(1-3):
70–99, 2006. doi: 10.1016/j.tcs.2006.03.013. URL http://dx.doi.org/10.1016/j.tcs.2006.03.
013.

M. Hyland, P. B. Levy, G. D. Plotkin, and J. Power. Combining algebraic effects with continuations. Theor.
Comput. Sci., 375(1-3):20–40, 2007. doi: 10.1016/j.tcs.2006.12.026. URL http://dx.doi.org/10.
1016/j.tcs.2006.12.026.

B. Jacobs. A formalisation of java’s exception mechanism. In ESOP’01, pages 284–301, 2001.

B. Jacobs and J. Rutten. An introduction to (co)algebras and (co)induction. In In: D. Sangiorgi and J.
Rutten (eds), Advanced topics in bisimulation and coinduction, pages 38–99, 2011.

M. Jaskelioff. Modular monad transformers. In Programming Languages and Systems, 18th European
Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 64–79, 2009.
doi: 10.1007/978-3-642-00590-9_6. URL http://dx.doi.org/10.1007/978-3-642-00590-9_6.

http://dx.doi.org/10.1017/S0960129511000752
http://hal.archives-ouvertes.fr/hal-00869230
http://ceur-ws.org/Vol-1186/paper-20.pdf
http://arxiv.org/abs/1402.1051
http://dx.doi.org/10.1007/978-3-319-32859-1_51
http://dx.doi.org/10.1093/logcom/exs025
http://dx.doi.org/10.1093/logcom/exs025
https://tel.archives-ouvertes.fr/tel-01250842/document
https://tel.archives-ouvertes.fr/tel-01250842/document
http://dx.doi.org/10.1016/j.tcs.2006.03.013
http://dx.doi.org/10.1016/j.tcs.2006.03.013
http://dx.doi.org/10.1016/j.tcs.2006.12.026
http://dx.doi.org/10.1016/j.tcs.2006.12.026
http://dx.doi.org/10.1007/978-3-642-00590-9_6

42 Burak Ekici

O. Kammar, S. Lindley, and N. Oury. Handlers in action. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 145–158, 2013.
doi: 10.1145/2500365.2500590. URL http://doi.acm.org/10.1145/2500365.2500590.

F. W. Lawvere. Functorial Semantic of Algebraic Theories (Available with commentary
as TAC Reprint 5.). PhD thesis, 1963. URL http://matija.pretnar.info/pdf/
the-logic-and-handling-of-algebraic-effects.pdf.

P. B. Levy. Call-by-push-value: A subsuming paradigm. In Typed Lambda Calculi and Applications, 4th
International Conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings, pages 228–242, 1999.
doi: 10.1007/3-540-48959-2_17. URL http://dx.doi.org/10.1007/3-540-48959-2_17.

F. Linton. Relative functorial semantics: adjointness results. In Lecture notes in mathematics, volume 99,
1969.

F. E. J. Linton. Some aspects of equational theories. In Proc. Conf. on Categorical Algebra, pages 84–95,
La Jolla, 1966. Springer-Verlag.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88, pages 47–57,
New York, NY, USA, 1988. ACM. ISBN 0-89791-252-7. doi: 10.1145/73560.73564. URL http:
//doi.acm.org/10.1145/73560.73564.

P. Melliès. Segal condition meets computational effects. In Proceedings of the 25th Annual IEEE Symposium
on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 150–159,
2010. doi: 10.1109/LICS.2010.46. URL http://dx.doi.org/10.1109/LICS.2010.46.

E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, July 1991. ISSN 0890-5401. doi:
10.1016/0890-5401(91)90052-4. URL http://dx.doi.org/10.1016/0890-5401(91)90052-4.

D. Orchard. Should i use a monad or a comonad? Technical report, 2012.

D. A. Orchard, M. Bolingbroke, and A. Mycroft. Ypnos: Declarative, parallel structured grid programming.
In Proceedings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming,
DAMP ’10, pages 15–24, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-859-9. doi: 10.1145/
1708046.1708053. URL http://doi.acm.org/10.1145/1708046.1708053.

T. Petricek, D. Orchard, and A. Mycroft. Coeffects: unified static analysis of context-dependence. In
Proceedings of International Conference on Automata, Languages, and Programming - Volume Part II,
ICALP 2013.

G. D. Plotkin and J. Power. Notions of computation determine monads. In Foundations of Software
Science and Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France,
April 8-12, 2002, Proceedings, pages 342–356, 2002. doi: 10.1007/3-540-45931-6_24. URL http:
//dx.doi.org/10.1007/3-540-45931-6_24.

http://doi.acm.org/10.1145/2500365.2500590
http://matija.pretnar.info/pdf/the-logic-and-handling-of-algebraic-effects.pdf
http://matija.pretnar.info/pdf/the-logic-and-handling-of-algebraic-effects.pdf
http://dx.doi.org/10.1007/3-540-48959-2_17
http://doi.acm.org/10.1145/73560.73564
http://doi.acm.org/10.1145/73560.73564
http://dx.doi.org/10.1109/LICS.2010.46
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://doi.acm.org/10.1145/1708046.1708053
http://dx.doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1007/3-540-45931-6_24

IMP with exceptions over decorated logic 43

G. D. Plotkin and M. Pretnar. Handlers of algebraic effects. In Programming Languages and Systems,
18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings,
pages 80–94, 2009. doi: 10.1007/978-3-642-00590-9_7. URL http://dx.doi.org/10.1007/
978-3-642-00590-9_7.

G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in Computer Science, 9(4),
2013. doi: 10.2168/LMCS-9(4:23)2013. URL http://dx.doi.org/10.2168/LMCS-9(4:23)2013.

M. Pretnar. Inferring algebraic effects. Logical Methods in Computer Science, 10(3), 2014. doi: 10.2168/
LMCS-10(3:21)2014. URL http://dx.doi.org/10.2168/LMCS-10(3:21)2014.

L. Schröder and T. Mossakowski. Generic exception handling and the Java monad. In C. Rattray, S. Maharaj,
and C. Shankland, editors, Algebraic Methodology and Software Technology, volume 3116 of Lecture
Notes in Computer Science, pages 443–459. Springer, 2004. URL http://www.springerlink.com/
openurl.asp?genre=article&issn=0302-9743&volume=3116&spage=443.

N. Tzevelekos. Nominal game semantics. PhD thesis, 2008. CS-RR-09-18.

T. Uustalu and V. Vene. The essence of dataflow programming. In Central European Functional Pro-
gramming School, First Summer School, CEFP 2005, Budapest, Hungary, July 4-15, 2005, Revised
Selected Lectures, pages 135–167, 2005. doi: 10.1007/11894100_5. URL http://dx.doi.org/10.
1007/11894100_5.

T. Uustalu and V. Vene. Comonadic notions of computation. Electron. Notes Theor. Comput. Sci., 203(5):
263–284, June 2008. ISSN 1571-0661. doi: 10.1016/j.entcs.2008.05.029. URL http://dx.doi.org/
10.1016/j.entcs.2008.05.029.

P. Wadler. The essence of functional programming. In Proceedings of the 19th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’92, pages 1–14, New York, NY, USA,
1992. ACM. ISBN 0-89791-453-8. doi: 10.1145/143165.143169. URL http://doi.acm.org/10.
1145/143165.143169.

http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.2168/LMCS-9(4:23)2013
http://dx.doi.org/10.2168/LMCS-10(3:21)2014
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3116&spage=443
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3116&spage=443
http://dx.doi.org/10.1007/11894100_5
http://dx.doi.org/10.1007/11894100_5
http://dx.doi.org/10.1016/j.entcs.2008.05.029
http://dx.doi.org/10.1016/j.entcs.2008.05.029
http://doi.acm.org/10.1145/143165.143169
http://doi.acm.org/10.1145/143165.143169

	Introduction
	On the use of decorated logic
	Organization and contributions

	IMP with exceptions
	A mechanism to handle exceptions

	Decorated Logic (Ldec)
	Monadic Equational Logic (Lmeq)
	The decorated logic

	The Decorated Logic for the state effect (Lst)
	Decorated properties of the memory state
	Lst in Coq

	The Decorated Logic for the exception effect (Lexc)
	Decorated properties of the exception effect
	Lexc in Coq

	Combining Lst and Lexc
	Decorated properties of the state and exception effects

	IMP+Exc over the combined decorated logic Lst+exc
	Program equivalence proofs
	Automating decorated proofs
	On the completeness of the logic Lst+exc

	Concluding remarks

