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In this paper, we facilitate the reasoning about impure programming languages, by annotating terms with “decorations”
that describe what computational (side) effect evaluation of a term may involve. In a point-free categorical language,
called the “decorated logic”, we formalize the mutable state and the exception effects first separately, exploiting a
nice duality between them, and then combined. The combined decorated logic is used as the target language for
the denotational semantics of the IMP+Exc imperative programming language, and allows us to prove equivalences
between programs written in IMP+Exc. The combined logic is encoded in Coq, and this encoding is used to certify
some program equivalence proofs.
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1 Introduction
In programming languages theory, a program is said to have computational effects if, besides a return
value, it has observable interactions with the outside world. For instance, using/modifying the program
state, raising/recovering exceptions, reading/writing data from/to some file, etc. In order to formally reason
about behaviors of a program with computational effects, one has to take into account these interactions.
One difficulty in such a reasoning is the mismatch between the syntax of operations with effects and their
interpretation. Typically, an operation in an effectful language with arguments in X that returns a value in
Y is not interpreted as a function from X to Y , due to the effects, unless the operation is pure.

The best known algebraic approach to formalize computational effects was initiated by Moggi in his
seminal paper (25). He showed that the effectful operations of an impure language can be interpreted
as arrows of a Kleisli category for an appropriate monad (T,η ,µ) over a base category C with finite
products. For instance, in Moggi’s computational metalanguage, an operation in an impure language with
arguments in X that returns a value in Y is now interpreted as an arrow from JXK to T JY K in C where
JXK is the object of values of type X and T JY K is the object of computations that return values of type
Y . The use of monads to formalize effects (such as state, exceptions, input/output and non-deterministic
choice) was popularized by Wadler in (37), and implemented in the programming languages Haskell and
F]. Using monad transformers (18), it is usually possible to “combine” different effects formalized by
monads. Moggi’s computational metalanguage was extended into the basic effect calculus with a notion of
computation type as in Filinski’s effect PCF (12) and in Levy’s call-by-push-value (CBPV) (20). In their
paper (10), Egger at al., defined their effect calculus, named extended effect calculus as a canonical calculus
incorporating the ideas of Moggi, Filinski and Levy. Following Moggi, they included a type constructor for
computations. Following Filinski and Levy, they classified types as value types and computation types.

Being dual to monads, comonads have been used to formalize context-dependent computations. Intu-
itively, an effect which observes features may arise from a comonad, while an effect which constructs
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features may arise from a monad (16). Uustalu and Vene have structured stream computations (36), Orchard
et al. array computations (27) and Tzevelekos game semantics (34) via the use of comonads. In (28),
Petricek et al. proposed a unified calculus for tracking context dependence in functional languages together
with a categorical semantics based on indexed comonads. In his report (26), Orchard proposed a method
for choosing between monads and comonads when formalizing computational effects. A computation can
be seen as a composition of context-dependence and effectfulness (36). In (5), Brookes and Van Stone
showed that such combinations may correspond to distributive laws of a comonad over a monad. This
has been applied to clocked causal data-flow computation, combining causal data-flow and exceptions by
Uustalu and Vene in (35).

Moggi’s approach, using monads in effect modeling, has been extended to Lawvere theories which first
appeared in Lawvere’s 1963 PhD dissertation (19). Three years later, in (22), Linton showed that every
Lawvere theory induces a monad on the category of sets, and more generally on any category which satisfies
the local representability condition (21). Therefore, Moggi’s seminal paper (25), formalizing computational
effects by monads, made it possible for monadic effects to be formalized through Lawvere theories. To this
extend, Plotkin and Power, in (29), have shown that effects such as the global and the local state could be
formalized by signatures of effectful terms and an equational theory explaining the interactions between
them. Melliès has refined this equational theory in (24) showing that some of the equations modeling the
mutable global state can be omitted. In (14, 15), Hyland et al. studied the combination of computational
effects in terms of Lawvere theories.

Plotkin and Pretnar (29, 30, 31) extended Moggi’s classification of terms (values and computations)
with a third level called handlers for the computational effects that can be represented by an algebraic
theory (algebraic effects). Initially, they introduce an handler for the exception handling, and then account
for its generalization to the other handlers to cope with other algebraic effects such as stream redirection,
explicit non-determinism, CCS, parameter passing, timeout and rollback (31, §3). For each algebraic effect,
handling constructs are used to apply handlers to effectful computations where effectful computations can
be interpreted as algebraic operations while handling constructs as homomorphisms from free algebras.
This use of handling constructs is inspired from Benton and Kennedy’s paper (3) where a construct
specifically for exceptions is introduced. Notice also that formalization of the exception effect can also be
made from a co-algebraic point of view as in (17). Also, exception handling is used in (33) to get a Hoare
logic for exceptions .

Apart from all these, there is an older formal way of modeling computational effects called the effect
systems. In their 1988 paper (23), Lucassen and Gifford presented an approach to programming languages
for parallel computers. The key idea was to use an effect system to discover expression scheduling
constraints. There, every expression comes with three components: types to represent the kinds of the
return values, effects to summarize the observable interactions of expressions and regions to highlight the
areas of the memory where expressions may have effects. To this extend, one can simply reason that if
two expressions do not have overlapping effects, then they can obviously be scheduled in parallel. The
reasoning is done by some inference rules for types and effects based on the second order typed λ -calculus.

In (6), Duval et al. proposes yet another paradigm to formalize computational effects by mixing effect
systems and algebraic theories, named the decorated logic. The key point of this paradigm is that every
term comes with a decoration which exposes its features with respect to a single computational effect
or to several ones keeping their interpretations close to syntax in reasoning with effects. In addition, an
equational theory highlights the interactions among terms with two sorts of equations: weak equations
relate terms with respect only to their results and strong equations relate terms with respect both to their
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results and effects. By and large, decorated logic provides an equational reasoning in between programs
written in imperative languages after being a target language for a denotational semantics of the studied
language.

The main point of this paper is to design the decorated logic for the global state and the exception
effects, and then combine them to serve as a target language for denotational semantics of imperative
programming languages mixing mentioned effects only. In this regards, this paper is organized as follows:
in Section 2, we introduce an imperative programming language that mixes the state and the exception
effects by defining its small-step operational semantics. The language we study there is called IMP+Exc
which extends the IMP (or while) language with a mechanism to raise and handle exceptions. In Section 3,
we introduce the decorated logic as a generic framework extending Moggi’s monadic equational logic.
Then, we formally specialize the decorated logic for the state and the exception effects in Sections 4 and 5,
respectively. In Section 6, we combine these logics. Finally, Section 7 details the use of the combined
decorated logic as the target language for the IMP+Exc denotational semantics. This provides a rigorous
formalism for an equational reasoning between termination-guaranteed IMP+Exc programs. I.e., proving
two different looking programs are in fact doing the same job with respect to the state and exception effects.
Also, we certify such proofs with the Coq Proof Assistant. Figure 1 summarizes the approach of the paper.

Decorated logic

implementation

++

equational reasoning between IMP+Exc programs
��

Coq
certi f ied equational reasoning��

IMP+Exc Programs

denotational semantics

OO

33

Figure 1: The approach

2 IMP with exceptions
IMP is a standard Turing complete imperative programming language natively providing global variables
of integer (Z), Boolean (B) and unit (U) data types, standard integer and Boolean arithmetic enriched with a
set of commands that is made of do-nothing, assignment, sequence, conditionals and looping operations.
Below, we detail its syntax where n represents a constant integer term while x is an integer global variable.
Note also that abbreviations aexp and bexp respectively denote arithmetic and Boolean expressions as
well as cmd stands for the commands.

aexp: a1 a2 ::= n | x | a1+a2 | a1−a2 | a1×a2

bexp: b1 b2 ::= true | false | a1
?
= a2 | a1

?
6= a2 | a1

?
> a2 | a1

?
< a2 | b1∧b2 | b1∨b2 | ¬b1

cmd: c1 c2 ::= SKIP | x, e | c1; c2 | if b then c1 else c2 | while b do c1
Figure 2: Standard IMP syntax
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Neither arithmetic nor Boolean expressions are allowed to modify the state: they are either pure or
read-only. We present, in Figure 3, the small-step semantics for evaluation of arithmetic expressions in
IMP where we use a small-step transition function→a : aexp×S→ aexp. This function computes a new
arithmetic expression out of an input arithmetic expression and the current program state denoted S which
includes contents of variables at a given time.

(const)
(n, s)→a n

(var)
(x, s)→a x(s)

(op−sym)
(a1, s)→a n1 (a2, s)→a n2

(a1 op a2,s)→a n1 opZ n2

Figure 3: Small-step natural semantics for arithmetic expressions

The symbol op represents the operation symbols (+, − or ×) given by the standard syntax in Figure 2
while opZ : Z→ Z→ Z denotes the corresponding binary operations in Z. Similarly, in Figure 4, we
present the small-step semantics for evaluation of Boolean expressions in IMP where we use a small-step
transition function→b : bexp×S→ bexp. This function simply computes a new Boolean expression out
of an input Boolean expression and the current program state.

(true)
(true, s)→b true

(false)
(false, s)→b f alse

(op1)
(b1, s)→b n1 (b2, s)→b n2

(b1 opb b2,s)→b n1 opbB n2
(op2)

(b1, s)→b n1

(¬ b1,s)→b neg n1

Figure 4: Small-step natural semantics for arithmetic expressions

The symbols true and false are Boolean operation symbols given by the standard syntax in Figure 2
while true and false are Boolean constructors. Similarly, opb represents the binary operation symbols (all
except ‘¬’), while opbB : B→ B→ B denotes the corresponding Boolean operations, and neg : B→ B is
the Boolean negation. The small-step operational semantics for evaluation of commands are given in Figure
5 where we use a small-step transition function : cmd×S→ cmd×S which is interpreted as at the state
s, one step execution of the command c changes the state into s′ and the command c′ is in execution.

(sequence)
s,c1 s′,c′1

s,(c1;c2) s′,(c′1;c2)
(skip)

s, (SKIP;c) s,c

(assign)
(a, s)→a n

s, (x := a) s[x← n],SKIP

(cond1)
(b, s)→b true

s, (if b then c1 else c2) s,c1
(cond2)

(b, s)→b f alse
s, (if b then c1 else c2) s,c2

(while1)
(b, s)→b true

s, (while b do c) s,(c; while b do c)
(while2)

(b, s)→b f alse
s, (while b do c) s,SKIP

Figure 5: Small-step operational semantics for commands

Note that all the small-step transition functions we used so far are meant to reduce any given configuration
just a single step. I.e., (a, s) →a n means that one step reduction of the arithmetic expression a at a
state s results in another arithmetic expression n. Besides all these, we need to elucidate that a command
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c terminates at a state s if s, c ∗ s′, SKIP for some state s′, where ∗ is the transitive closure of the
transition function . Mind also that there is no run-time error since any command apart from the SKIP is
allowed to execute at any state s, and SKIP alone is used to indicate the final step of some command set.

2.1 A mechanism to handle exceptions
Extending the IMP language with a mechanism that allows raising exceptions and recover from them, we
just enrich the command set with THROW and TRY/CATCH blocks. In addition to the ones in Figure 2, we
also consider following commands in Figure 6.

cmd: c1 c2 ::= . . . | THROW e | TRY c1 CATCH e⇒ c2

Figure 6: Syntax for exceptional commands

where e is an exception name coming from a finite set EName which exists by assumption. There is also
a type EVe of exceptional values (parameters) for each exception name e. The small-step operational
semantics for THROW and TRY/CATCH commands are shown in Figure 7.

(throw)
∀e : EName

s, (THROW e;c) s, THROW e
(tc0)

∀e : EName, c1 ∈ cmd\{THROWe}
s,TRY c1 CATCH e⇒ c2 s,c1

(tc1)
∀e : EName

s,TRY (THROW e) CATCH e⇒ c s,c
(tc2)

∀e1 e2 : EName e1 6= e2

s,TRY (THROW e1) CATCH e2⇒ c s,THROW e1

Figure 7: Small-step operational semantics for additional commands

Exceptional commands are pure in terms of the state effect: they neither use nor modify the program
state However, they introduce another sort of computational effect: the exception. In prior, we stated that
the command SKIP alone indicates the termination of a program. Now, we extend this by saying THROW e

is also an end but an abnormal end. Intuitively, if an exceptional value of name e is raised in the TRY
block and recovered immediately in the CATCH, the program then resumes with the continuation provided.
Unlikely, an exceptional value of name e1 gets propagated if in the CATCH block, another exceptional value
of name e2 is attempted to be recovered.

Recall that in Section 7, we independently define a denotational semantics for the IMP+Exc language
using the decorated logic for the state and the exception effects as the target language. We formalize this
target (in a generic way) logic in Section 6 which basically combines the logics presented in Sections 4 and 5.

3 Decorated Logic (Ldec)
The decorated logic, as a generic framework, is an extension to Moggi’s monadic equational logic (25)
with the use of decorations on terms and equalities. It provides a rigorous formalism to do an equational
reasoning between programs written in imperative programming languages after being defined as a target
language for their denotational semantics.

3.1 Monadic Equational Logic (Lmeq)
The monadic equational logic (Lmeq) is the minimal logic that can be interpreted in a category with objects
as types, arrows as terms and equalities as equations. The keyword “monadic” has little to do with monads.
It rather means that the operations of the logic are unary (or mono-adic). Figure 8 presents the syntax of
the logic Lmeq.
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Grammar for the monadic equational logic:
Types: t ::= X | Y | . . .
Terms: f, g ::= idt | a | b | · · · | g◦f
Equations: eq ::= f∼= g

Figure 8: Lmeq: syntax

Every term has a source and a target type, e.g., f : X→ Y. Every equation is formed by terms with the
same source and target types, e.g., e : f∼= g where f, g : X→ Y.

congruence rules

(refl)
f

f∼= f
(sym)

f∼= g

g∼= f
(trans)

f∼= g g∼= h

f∼= h
(replsubs)

f1 ∼= f2 : X→ Y g1 ∼= g2 : Y→ Z

g1 ◦f1 ∼= g2 ◦f2
categorical rules

(id)
X

idX : X→ X
(comp)

f : X→ Y g : Y→ Z

(g◦f) : X→ Z
(ids)

f : X→ Y

f◦idX ∼= f
(idt)

f : X→ Y

idY ◦f∼= f

(assoc)
f : X→ Y g : Y→ Z h : Z→ U

h◦ (g◦f)∼= (h◦g)◦f
Figure 9: Lmeq: rules

The congruence rules say that the relation ‘∼=’ is a congruence meaning that it is an equivalence relation
(reflexive, symmetric and transitive) which obeys replacements and substitutions of compatible terms
with respect to the composition. The basic categorical rules indicate that there is an identity morphism
idX : X→ X for each type X, composition is an associative operation, and composing any term f with id is
f, up to ∼=, no matter the composition order.

3.2 The decorated logic

The decorated logic, as a generic framework, extends the monadic equational logic with a 3-tier effect
system for terms and a 2-tier system for equations made of “up-to-effects” (weak) and “strong” equalities.
Figure 10 presents its syntax.

Grammar for the decorated logic:
Types: t ::= X | Y | . . .
Decoration for terms: (d) ::= (0) | (1) | (2)
Terms: f, g ::= a(d) | b(d) | · · · | g◦f(d) | (tpure •)(0)

Equations: eq ::= f≡ g | f∼ g

Figure 10: Ldec: syntax

Syntactically, each term has a source and a target type as well as a decoration which describe what
computational side effects evaluation of that term may involve, and used as a superscript (0), (1) or (2):
a pure term is decorated with (0), an effect constructor with (1) and an effect modifier term comes with
the decoration (2). Each equation is formed by two terms with the same source and target as well as a
decoration which is denoted either by “∼” (weak) or by “≡” (strong). A weak equality between two terms
relates them according only to their results, while a strong equality relates terms according both to their
result and the side effect evaluation they involve with respect to the effect in question.
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The tpure is a special constructor used to introduce decorated pure terms into the logic Ldec. It inputs
a non-decorated pure term from a pure type system (i.e., Coq’s logic) and drops it in with the decoration
(0). For instance, the identity term id is defined using the tpure constructor, for all types X as follows:

id
(0)
X : X→ X := tpure (λ x : X.x : X).

In Figure 11, we present the inference rules associated to the syntax given in Figure 9.

hierarchy rules

(0-to-1)
f(0)

f(1)
(1-to-2)

f(1)

f(2)
(stow)

f(2) ≡ g(2)

f∼ g
(wtos)

f(1) ∼ g(1)

f≡ g
congruence rules

(refl)
f(2)

f≡ f
(sym)

f(2) ≡ g(2)

g≡ f
(trans)

f(2) ≡ g(2) g(2) ≡ h(2)

f≡ h

(wrefl)
f(2)

f∼ f
(wsym)

f(2) ∼ g(2)

g∼ f
(wtrans)

f(2) ∼ g(2) g(2) ∼ h(2)

f∼ h

(replsubs)
f
(2)
1 ≡ f

(2)
2 : X→ Y g

(2)
1 ≡ g

(2)
2 : Y→ Z

g1 ◦f1 ≡ g2 ◦f2
categorical rules

(comp)
f(d1) : X→ Y g(d2) : Y→ Z

(g◦f)(max(d1,d2)) : X→ Z
(assoc)

f(2) : X→ Y g(2) : Y→ Z h(2) : Z→ U

h◦ (g◦f)≡ (h◦g)◦f

(ids)
f(2) : X→ Y

f◦idX ≡ f
(idt)

f(2) : X→ Y

idY ◦f≡ f

(tcomp)
f : Y→ Z g : X→ Y

(tpure f)(0) ◦ (tpure g)(0) ≡ (tpure (f ◦ g))(0)

Figure 11: Ldec: rules

Hierarchically, a pure term can be seen as a constructor (0-to-1), and similarly a constructor term can
be seen as a modifier on demand (1-to-2). It is obviously free to convert strong equations into weak ones
(stow). However, one has to make sure that the equated terms are not decorated with (2) in order to convert
weak equations into strong ones with no further evidence (wtos).

Both strong and weak equalities are defined to be equivalence relations with the assumption that they
are reflexive, transitive and symmetric. Strong equations form a congruence relation but weak equations do
not: we will see this in detail when we specialize the decorated logic for the global state and the exception
effects in Sections 4 and 5, respectively.

The categorical rules present properties of the term composition: the decoration of a composition
depends on the decoration of its components, always taking the larger. I.e., ∀f(1) : X→ Y and g(2) : Y→ Z,
g◦f : X→ Z takes the decoration (2) (comp). Composition is an associative operation (assoc). The identity
term disappears when to compose on the right (ids), and on the left (idt). The rule (tcomp) states that the
tpure constructor preserves the composition of pure terms terms up to the strong equality. Meaning that
one can first compose pure terms outside the decorated environment (in any pure type system) and use
the tpure constructor to translate them into the Ldec, or translate the terms into the Ldec first, and then
compose them there. Notice that the red colored composition symbol (◦), in the rule conclusion, stands for
the composition operation for non-decorated pure terms.
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4 The Decorated Logic for the state effect (Lst)
The use and modification of the memory state is the fundamental feature of imperative languages, and
considered as a sort of computational side effect. In this section, we present a proof system for the use of
the global state which involves access and modify operations, called the decorated logic for the state effect
(Lst ). This logic is obtained by extending the generic framework presented in Section 3.2. In this case, the
decoration (0) is reserved for pure terms, while (1) is for read-only (accessor) and (2) is for read-write
(modifier) terms. Two terms are called strongly equal if they return the same result with the same state
manipulation; they are called weakly equal if they return the same result with different state manipulations.

Grammar of the decorated logic for the state: (i ∈ Loc)

Types: t, s ::= X | Y | · · · | t×s | 1 | Vi
Decorations for terms: (d) ::= (0) | (1) | (2)

Terms: f, g ::= a(d) | b(d) | · · · | g◦f(d) | 〈f,g〉(d)l |

lookup
(1)
i | update

(2)
i | (tpure •)(0)

Equations: eq ::= f(d) ≡ g(d) | f(d) ∼ g(d)

Figure 12: Lst : syntax

Figure 12 shows the grammar of the Lst where 1 is the singleton type while Vi is the type of values that
can be stored in any location i. We assume that there is a finite set of locations called Loc. Given types X
and Y, we have X×Y representing type products.

Terms are closed under composition (◦) and pairing (〈_,_〉l). I.e., for all terms f : X→ Y and g : Y→ Z,
we have g◦f : X→ Z. Similarly, for all f : X→ Y and g : X→ Z, there is 〈f,g〉l : X→ Y×Z. Notice that the
pair subscript ‘l’ denotes the left pairs. One can define in a symmetric way the right pairs for terms f : X→ Y

and g : X→ Z as 〈f,g〉r := permut◦ 〈g,f〉l where permut := 〈π2,π1〉l. In the same way, one can respec-
tively obtain left and right products of terms f : X1→ Y1 and g : X2→ Y2 as f×l g := 〈f◦π1,g◦π2〉l and
f×r g := 〈f◦π1,g◦π2〉r. The term pairs/products are used to impose some order of term evaluation since
the evaluation result depends on the order that the mutable state is accessed/modified. I.e., the product of
two terms can be intuitively interpreted as they run on the global state in parallel, while sequential products,
put forward in (7, §2.3), enforce terms to use the state in sequence. The decoration of a pair/product
depends on the decoration of its components, always taking the larger. I.e., ∀f(1) : X→ Y and g(2) : X→ Z,
the term 〈f,g〉l : X→ Y×Z takes the decoration (2). Remark that the pairs of modifiers are allowed to be
constructed in the logic Lst . However, they cannot be used in the provided equational reasoning, since they
may lead to a conflict on the returned result. See the rules (w_lpair_eq) and (s_lpair_eq) in Figure 13.

The interface terms are lookupi : 1× S→ Vi and updatei : Vi× S→ 1× S where S denotes the
distinguished object of states which never appears in the decorated setting. The use of decorations provides
a new schema where term signatures are constructed without any occurrence of the state object. For
instance, lookup(1)i : 1→ Vi is an accessor while update

(2)
i : Vi→ 1 is a modifier. This way, we keep

signatures close to their syntax and compose compatible terms as usual. The term lookup reads the value
stored in a given location while update modifies it. We can call them the unique sources of impurity, since
only the terms including lookup or update are impure; meaning those do not include them are pure with
respect to the state effect.
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The identity term id, the canonical pair projections π1 and π2, the empty pair 〈 〉 and constants are
translated from a pure type system with type products using the tpure constructor, for all types X and Y, as
follows:

id
(0)
X : X→ X := tpure (λ x : X.x : X)

π
(0)
1 : X×Y→ X := tpure fst

π
(0)
2 : X×Y→ Y := tpure snd

〈 〉(0)X : X→ 1 := tpure (λ x : X. void : 1)

constant
(0)
x : 1→ X := tpure (λ _. x : X)

where fst and snd are constructors of product types.
The intended model of the above grammar is built with respect to the set of states S where a pure term

p(0) : X→ Y is interpreted as a function p : X→ Y, an accessor a(1) : X→ Y as a function a : X×S→ Y, and
a modifier m(2) : X→ Y as a function m : X×S→ Y×S. The complete and detailed category theoretical
model is given in (11, §5.1).

Rules of the decorated logic for the state:

(pwrepl)
f
(2)
1 ∼ f

(2)
2 : X→ Y g(0) : Y→ Z

g◦f1 ∼ g◦f2
(wtrans)

f(2) ∼ g(2) g(2) ∼ h(2)

f∼ h

(replsubs)
f
(2)
1 ≡ f

(2)
2 : X→ Y g

(2)
1 ≡ g

(2)
2 : Y→ Z

g1 ◦f1 ≡ g2 ◦f2
(w_unit)

f(2) : X→ 1

f∼ 〈 〉X

(ax1)
lookup

(1)
i ◦update

(2)
i ∼ idVi

(0)
(ax2)

∀i,j ∈ Loc, i 6= j

lookup
(1)
i ◦update

(2)
j ∼ lookup

(1)
i ◦ 〈 〉

(0)
Vi

(effect)
f
(2)
1 ,f

(2)
2 : X→ Y f

(2)
1 ∼ f

(2)
2 〈 〉(0)Y ◦f

(2)
1 ≡ 〈 〉

(0)
Y ◦f

(2)
2

f1 ≡ f2

(local_global)
f
(2)
1 ,f

(2)
2 : X→ 1 ∀ i ∈ Loc, lookup(1)i ◦f

(2)
1 ∼ lookup

(1)
i ◦f

(2)
2

f1 ≡ f2

(w_lpair_eq)
f
(1)
1 : X→ Y f

(2)
2 : X→ Z

π1 ◦ 〈f1,f2〉l ∼ f1
(s_lpair_eq)

f
(1)
1 : X→ Y f

(2)
2 : X→ Z

π2 ◦ 〈f1,f2〉l ≡ f2

Figure 13: Lst : rules

The syntax given in Figure 12 is enriched with a set of rules which are presented in Figure 13 in addition
to the ones in Figure 11. Weak equalities do not form a congruence: the term replacement cannot be
done unless the replaced term is pure. I.e., given an equation f

(2)
1 ∼ f

(2)
2 : X→ Y and a term g : Y→ Z,

it is possible to get the equation g◦f1 ∼ g◦f2 only when the term g is pure. At this stage, we have no
information about the modifications that f1 and f2 make on the memory state. Therefore, the post executed
impure term g would destroy this result equality, for instance by reading the location i on which f1 and f2
has performed different modifications (pwrepl). However, the term substitution can be done regardless
of the term decoration. I.e., given the equation f

(2)
1 ∼ f

(2)
2 : Y→ Z and a term g : X→ Y, it is possible to
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get the equation f1 ◦g∼ f2 ◦g independent from the decoration of the term g. We already now that f1
and f2 return the same result, executing any term g in advance would not end them returning different
results (wsubs). Strong equalities form a congruence by allowing both term substitutions and replacements
regardless of the term decorations (replsubs).

Any term f : X→ 1 with no result returned “void” (the unique inhabitant of 1 type) has an obvious
result equality with the canonical empty pair 〈 〉X (w_unit).

The fundamental equations are given with the rules (ax1) and (ax2). The former states that by updating
the location i with a value v and then observing the same location, one gets the value v. This outputs the
same value with the identity term idVi , if it takes v as an argument. However, notice that these two ways
of getting the value v have different state manipulations which makes them weakly equal. The latter, (ax2),
is to assume that updating the location j with a value v and then reading the content of a different location
i would return the same value with first throwing out the value v then observing the content of location i.
They definitely have different manipulations on the state so that they are weakly equal.

Two modifiers f(2)1 ,f
(2)
2 : X→ Ymodify the state in the same way if and only if 〈 〉Y ◦f1 ≡ 〈 〉Y ◦f2 : X→ 1,

where 〈 〉Y : Y→ 1 throws out the returned value. So that f(2)1 ,f
(2)
2 : X→ Y are strongly equal if and only if

f1 ∼ f2 and 〈 〉Y ◦f1 ≡ 〈 〉Y ◦f2 (effect).

Locally, the strong equality between two modifiers f(2)1 ,f
(2)
2 : X→ 1 can also be expressed as a pair

of weak equations: f1 ∼ f2 and ∀i :Loc,lookupi ◦ 〈 〉Y ◦f1 ∼ lookupi ◦ 〈 〉Y ◦f2. The latter intuitively
means that f1 and f2 leaves the memory with the same values stored in all (finitely many) locations after
being executed. Given that both return “void” there is no explicitly need to check if f1 ∼ f2. It suffices to
see whether ∀i :Loc,lookupi ◦ 〈 〉Y ◦f1 ∼ lookupi ◦ 〈 〉Y ◦f2 to end up with f1 ≡ f2 (local_global).

With (w_lpair_eq) and (w_rpair_eq) term pairs are characterized: the (left) pair structure 〈f1,f2〉l
cannot be used when f1 and f2, both are modifiers, since it may lead to a conflict on the returned result.
However, it can be used only when f1 is an accessor. We state by (w_lpair_eq) that 〈f1,f2〉(2)l has only
result equality with f

(1)
1 and by (w_rpair_eq) that it has both result and effect equality with f

(2)
2 .

Note that these rules are designed to be sound with respect to a categorical model, and detailed in (11,
§5.2, §5.3, §5.4, §5.5). However, their syntactic completeness is not immediate. In (8), we define a
new syntactic completeness property, subsuming a consistency check, called the relative Hilbert-Post
completeness. In (11, §5.4) prove that this set of rules is complete with due respect.

4.1 Decorated properties of the memory state

Plotkin and Power have introduced, in (29, §3), an equational representation of the mutable state whose
decorated versions are given as follows:

(1)d Annihilation lookup-update. Reading the content of a location i and then updating it with the
obtained value is just like doing nothing. ∀i ∈ Loc, update(2)i ◦lookup

(1)
i ≡ id

(0)
1

: 1→ 1.

(2)d Interaction lookup-lookup. Reading twice the same location i is the same as reading it once.
∀i ∈ Loc, lookup(1)i ◦ 〈 〉

(0)
Vi
◦lookup(1)i ≡ lookup

(1)
i : 1→ Vi.

(3)d Interaction update-update. Storing value the values x and y in a row to the same location i is just like
storing y in it. ∀i ∈ Loc, update

(2)
i ◦π

(0)
2 ◦ (update

(2)
i ×r id

(0)
i )≡update(2)i ◦π

(0)
2 : Vi×Vi→ 1.



IMP with exceptions over decorated logic 11

(4)d Interaction update-lookup. Storing the value x in a location i and then reading the content of i,
gives the value x. ∀i ∈ Loc, lookup(1)i ◦update

(2)
i ∼ id

(0)
Vi

: Vi→ Vi.

(5)d Commutation lookup-lookup. The order of reading two different locations i and j does not matter.
∀i 6= j ∈ Loc, (id(0)Vi

×r lookup
(1)
j )◦π

−1(0)
1 ◦lookup(1)i ≡ permut

(0)
j,i ◦ (id

(0)
Vj
×r lookup

(1)
i )◦

π
−1(0)
1 ◦lookup(1)j : 1→ Vi×Vj where π

−1(0)
1 := 〈id,〈 〉〉(0)l .

(6)d Commutation update-update. The order of storing in two different locations i and j does not matter.
∀i 6= j ∈ Loc, update(2)j ◦π

(0)
2 ◦ (update

(2)
i ×r id

(0)
Vj
)≡update(2)i ◦π

(0)
1 ◦

(id
(0)
Vi
×l update

(2)
j ) :Vi×Vj→ 1.

(7)d Commutation update-lookup. The order of storing in a location i and reading another location j

does not matter. ∀i 6= j ∈ Loc, lookup(1)j ◦update
(2)
i ≡ π

(0)
2 ◦ (update

(2)
i ×r id

(0)
Vj
)◦

(id
(0)
Vi
×l lookup

(1)
j )◦π

−1(0)
1 : Vi→ Vj.

(8)d Commutation lookup-constant. Just after storing a constant c in a location i, observing the content
of i is the same as regenerating the constant c. ∀i ∈ Loc, ∀c ∈ Vi; lookup(1)i ◦update

(2)
i ◦

constantc(0) ≡ constantc(0) ◦update(2)i ◦constantc(0) : 1→ Vi.

These are the archetype properties that we have proved within the scope of the Lst . To see these proofs,
check out Ekici’s PhD thesis (11, §5.3). Besides, we have implemented the Lst in Coq to certify mentioned
proofs. Section 4.2 details this implementation.

4.2 Lst in Coq

In this section, we aim to highlight some crucial points of the Lst implementation in Coq. It mainly
consists of four steps: (1) implementing the terms, (2) assigning the decorations over terms, (3) stating the
rules, and (4) proving properties of the memory state referred in Section 4.1.

We represent the set of memory locations by a Coq parameter Loc : Type. Since memory locations may
contain different types of values, we also assume an arrow type Val : Loc→ Type that is the type of values
contained in each location.

Parameters (Loc: Type) (Val: Loc → Type).

We define the terms of Lst using an inductive predicate called term. It establishes a new Coq Type out of
two input Types. The type term Y X is dependent. It depends on the Type instances X and Y, and represents
the arrow type X→ Y in the decorated framework.

Inductive term: Type → Type → Type ,
| tpure: ∀ {X Y: Type}, (X → Y) → term Y X
| comp: ∀ {X Y Z: Type}, term X Y → term Y Z → term X Z
| pair: ∀ {X Y Z: Type}, term X Z → term Y Z → term (X*Y) Z
| lookup: ∀ i:Loc, term (Val i) unit
| update: ∀ i:Loc, term unit (Val i).

Infix "o" , comp (at level 70).
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The constructor tpure takes a Coq side (pure) function and translates it into the decorated environ-
ment. comp constructor deals with the composition of two compatible terms. I.e., given a pair of terms
f : term X Y and g : term Y Z, then the composition f◦g would be an instance of the type term X Z. For
the sake of conciseness, infix ‘◦’ is used to denote the term composition. Similarly, the (left) pair con-
structor is to constitute pairs of compatible terms. I.e., given f : term Y X and g : term Z X, we have pair
〈f,g〉l : term (Y×Z) X. Instead of the symbol 〈_,_〉l, we use the keyword pair in the implementation.
The terms lookup and update come as no surprise; just that the singleton type 1 and the type of values Vi
are respectively called unit and Val i in the code. The terms such as the identity, the pair projections, the
empty pair and the constant function can be derived from the native Coq functions, with the use of tpure
constructor as follows:

Definition id {X: Type} : term X X , tpure id.
Definition pi1 {X Y: Type} : term X (X*Y) , tpure fst.
Definition pi2 {X Y: Type} : term Y (X*Y) , tpure snd.
Definition forget {X} : term unit X , tpure (fun _ ⇒ tt).
Definition constant {X: Type} (v: X): term X unit , tpure (fun _ ⇒ v).

Remark that id is overloaded: defined one is the identity of the decorated logic while the other one is the
identity of Coq’s logic. The pair projections are named pi1 and pi2 while the unique mapping 〈 〉X from
any type X to 1 is named forget in the implementation.

The decorations are enumerated: pure (0), ro (1) and rw (2) and inductively assigned to terms via
the new predicate called is. It builds a proposition out of a term and a decoration. I.e., ∀i : Loc, is ro
(lookup i) is a Prop instance, ensuring that lookup i is an accessor.

Inductive kind , pure | ro | rw.
Inductive is: kind → ∀ X Y, term X Y → Prop ,
| is_tpure: ∀ X Y (f: X → Y), is pure (@tpure X Y f)
| is_comp: ∀ k X Y Z (f: term X Y) (g: term Y Z), is k f → is k g → is k (f o g)
| is_pair: ∀ k X Y Z (f: term X Z) (g: term Y Z), is ro f → is k f → is k g → is k (pair f g)
| is_lookup: ∀ i, is ro (lookup i)
| is_update: ∀ i, is rw (update i)
| is_pure_ro: ∀ X Y (f: term X Y), is pure f → is ro f
| is_ro_rw: ∀ X Y (f: term X Y), is ro f → is rw f.

Any term that is built by the tpure constructor is pure. The decoration of any composed or paired off
term depends on its components and always takes the upper decoration (pure < ro < rw). E.g., given
a modifier term and a read-only term, their composition will be a modifier, as well. The decoration of
a pair construction depends on its second component, since the first one should at most be a read-only
term. Hence, we cannot form pairs of two modifier terms. The pair construction always takes the upper
decoration. For instance, given a pure term and a read-only term, their pair will be a read-only term, too.
We declare the term lookup as an accessor while update being a modifier. The last two constructors
define the decoration hierarchies.

It is trivial to derive that any tpure built term is pure. I.e., the purity of the first pair projection can be
proven as follows:

Lemma is_pi1 X Y: is pure (@pi1 X Y).
Proof. apply is_tpure. Qed.
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We now state the rules up to weak and strong equalities by defining them in a mutually inductive way:
mutuality here is used to enable the constructors including both weak and strong equalities. We use the
notation == and ∼ to denote strong and weak equalities, respectively.

Definition idem X Y (x y: term X Y) , x = y.
Inductive strong: ∀ X Y, relation (term X Y) ,
| refl X Y: Reflexive (@strong X Y)
| sym: ∀ X Y, Symmetric (@strong X Y)
| trans: ∀ X Y, Transitive (@strong X Y)
| replsubs: ∀ X Y Z, Proper (@strong X Y =⇒ @strong Y Z =⇒ @strong X Z) comp
| ids: ∀ X Y (f: term X Y), f o id == f
| idt: ∀ X Y (f: term X Y), id o f == f
| assoc: ∀ X Y Z T (f: term X Y) (g: term Y Z) (h: term Z T), f o (g o h) == (f o g) o h
| wtos: ∀ X Y (f g: term X Y), is ro f → is ro g → f ~ g → f == g
| s_lpair_eq: ∀ X Y’ Y (f1: term Y X) (f2: term Y’ X), is ro f1 → pi2 o pair f1 f2 == f2
| effect: ∀ X Y (f g: term Y X), forget o f == forget o g → f ~ g → f == g
| local_global: ∀ X (f g: term unit X), (∀ i: Loc, lookup i o f ~ lookup i o g) → f == g
| tcomp: ∀ X Y Z (f: Z → Y) (g: Y → X), tpure (compose g f) == tpure g o tpure f
with weak: ∀ X Y, relation (term X Y) ,
| wsym: ∀ X Y, Symmetric (@weak X Y)
| wtrans: ∀ X Y, Transitive (@weak X Y)
| wrepl : ∀ A B C, Proper (@idem C B =⇒ @weak B A =⇒ @weak C A) comp
| pwrepl: ∀ A B C (g: term C B), (is pure g) → Proper (@weak B A =⇒ @weak C A) (comp g)
| wsubs: ∀ A B C, Proper (@weak C B =⇒ @idem B A =⇒ @weak C A) comp
| stow: ∀ X Y (f g: term X Y), f == g → f ~ g
| w_lpair_eq: ∀ X Y’ Y (f1: term Y X) (f2: term Y’ X), is ro f1 → pi1 o pair f1 f2 ~ f1
| w_unit: ∀ X (f g: term unit X), f ~ g
| ax1: ∀ i, lookup i o update i ~ id
| ax2: ∀ i j, i 6= j → lookup j o update i ~ lookup j o forget

where "x == y" , (strong x y) and "x ~ y" , (weak x y).

The rule tcomp states that the tpure constructor preserves the composition of pure terms up to the strong
equality: one can first compose pure terms on Coq side (using higher order function compose) and then
apply tpure constructor to translate them into decorated settings or can translate the terms first and then
compose them in decorated settings.

This framework allows us to express and prove, in Coq, the decorated versions of the properties
mentioned in Section 4.1. E.g., the commutation lookup-uptade looks like:

(** Commutation update update **)
Theorem CUU: ∀ i j: Loc, i 6=j → update j o (pi2 o (rprod (update i) (@id (Val j)))) ==

update i o (pi1 o (lprod (@id (Val i)) (update j))).

where

Definition permut {X Y}: term (X*Y) (Y*X) , pair pi2 pi1.
Definition rpair {X Y Z} (f: term Y X) (g: term Z X): term (Y*Z) X , permut o pair g f.
Definition lprod {X Y X’ Y’} (f: term X X’) (g: term Y Y’): term (X*Y) (X’*Y’) , pair (f o pi1) (g o pi2).
Definition rprod {X Y X’ Y’} (f: term X X’) (g: term Y Y’) ,
permut o pair (g o pi2) (f o pi1).

The full Coq proofs of such properties can be found here, and the entire implementation there.

5 The Decorated Logic for the exception effect (Lexc)
Exception handling is provided by most modern programming languages to deal with anomalous or
exceptional events which require special processing. In linear algebra, for instance, dynamic evaluation can

https://github.com/ekiciburak/decorated-logic-for-states-effect/blob/master/Proofs.v
https://github.com/ekiciburak/decorated-logic-for-states-effect


14 Burak Ekici

be used to apply programs which have been written for the matrices with coefficients modulo some prime
number to the matrices with coefficients modulo some composite number. A way to implement dynamic
evaluation in modern computing languages is to use the exceptions mechanism which is considered as a
computational side effect. In this section, we present a proof system for exceptions, which involves raising
and handling operations, called the decorated logic for the exception effect (Lexc). This logic is obtained by
extending the generic framework presented in Section 3.2. In this context, the decoration (0) is reserved for
pure terms, while (1) is for propagators and (2) is for catchers. A fundamental feature of the exceptions
mechanism is the distinction between ordinary (non-exceptional) values and exceptions (or exceptional
values). Two terms are called strongly equal if they behave the same on ordinary and exceptional values;
they are called weakly equal if they behave the same on ordinary values but different on exceptional ones.

It has been shown in (9) that the core part of this proof system is dual to one for the state. Based on this
nice duality, we build the logic Lexc, and detail it in the following.

Grammar of the decorated logic for the exception: (e ∈ EName)
Types: t, s ::= X | Y | · · · | t+s |O | EVe
Decoration for terms: (d) ::= (0) | (1) | (2)
Terms: f, g ::= a(d) | b(d) | · · · | g◦f(d) | [f | g]l(d)

tag
(1)
e | untag(2)e | (↓ f)(1) | (tpure •)(0)

Equations: eq ::= f(d) ≡ g(d) | f(d) ∼ g(d)

Figure 14: Lexc: syntax

Figure 14 shows the grammar of Lexc where O is the empty (uninhabited) type while EVe is the type
of parameters for each exception name e. We assume that there is a finite set of exception names called
EName. Given types X and Y, we have X+Y denoting co-product (disjoint union or sum) types.

Terms are closed under composition (◦) and co-pairing ([_ | _]l). I.e., for all terms f : X→ Y and
g : Y→ Z, we have g◦f : X→ Z. Similarly, for all f : X→ Y and g : Z→ Y, there is [f | g]l : X+Z→ Y.
Notice that the co-pair subscript ‘l’ denotes the left co-pairs. One can define in a symmetric way the right co-
pairs for terms f : X→ Y and g : Z→ Y as [f | g]r := [g,f]l ◦permut where permut := [in2 | in1]l. Simi-
larly, one can respectively obtain left and right co-products (sums) of terms f : X1→ Y1 and g : X2→ Y2 as
f+lg := [in1 ◦f | in2 ◦g]l and f+rg := [in1 ◦f | in2 ◦g]r. The term co-pairs, thus co-products, are used
to model the case distinction among terms. The decoration of a co-pair (co-product) depends on the deco-
ration of its components, always taking the larger. I.e., ∀f(1) : X→ Z and g(2) : Y→ Z, [f | g]l : X+Y→ Z

takes the decoration (2). Remark that the co-pairs of catchers are allowed to be constructed in the logic
Lexc. However, they cannot be used in the provided equational reasoning, since they may lead to an
ambiguous case distinction over terms returning exceptional arguments. See the rules (w_lcopair_eq) and
(s_lcopair_eq) in Figure 15.

The interface terms are tage : EVe→O+E and untage : O+E→ EVe+E where E denotes the dis-
tinguished object of exceptions which never appears in the decorated setting. The use of decorations
provides a new schema where term signatures are constructed without any occurrence of it. For instance,
tag

(1)
e : EVe→O is a thrower while untag(2)e : O→ EVe is a catcher. This way, we keep signatures close

to their syntax and compose compatible terms as usual. The term tage encapsulates an ordinary value with
an exception of name e while the term untage tries to recover the value from the exceptional case.

The ‘↓’ symbol denotes the downcast term that takes as input a term and prevents it from catching
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exceptions. It is used when to define the try/catch block in this settings. See Definition 5.2.
The identity term id, the canonical co-pair inclusions in1 and in2, and the empty co-pair [ ]X (used to

convert the type of input exceptional value into the given type: X in this case) are translated from a pure
type system with sum types using the tpure constructor, for all types X and Y, as follows:

id
(0)
X : X→ X := tpure (λ x : X.x : X)

in
(0)
1 : X→ X+Y := tpure inl

in
(0)
2 : Y→ X+Y := tpure inr

[ ]
(0)
X : O→ X := tpure (λ _ : O. x : X)

where inl and inr are constructors of sum types.

Definition 5.1. For each type Y and exception name e, the propagator throw(1)Y,e is defined as:

throw
(1)
Y,e := [ ]

(0)
Y ◦tag(1)e : EVe→ Y

Intuitively, raising an exception with name e is first tagging the given ordinary value as an exception of
name e and then coerces the output type into Y for the continuation issues.

Definition 5.2. For each propagators f(1) : X→ Y, g(1) : EVe→ Y and each exception name e, the propaga-
tor try(f)catch(e⇒ g)(1) is defined in three steps, as follows:

Catch(e⇒ g)(2) := [ id
(0)
Y | g(1) ◦untag

(2)
e ]l : Y+O→ Y

Try(f)Catch(e⇒ g)(2) := Catch(e⇒ g)(2) ◦in(0)1Y,O ◦f
(1) : X→ Y

try(f)catch(e⇒ g)(1) := ↓
(
Try(f)Catch(e⇒ g)(2)

)
: X→ Y

To handle an exception, the intermediate expressions Catch(e⇒ g) and Try(f)Catch(e⇒ g) are private
catchers and the expression try(f)catch(e⇒ g) is a public propagator: the downcast operator prevents
it from catching exceptions with name e which might have been raised before the try(f)catch(e⇒ g)
expression. The definition of try(f)catch(e⇒ g) corresponds to the Java mechanism for exceptions (13,
§14) and (17) with the following control flow, where exc? means “is this value an exception?”, an abrupt
termination returns an uncaught exception and a normal termination returns an ordinary value.

��
exc?Y

tt
N

,,abrupt f(1)

��
exc?Y

rr
N

,,
untag

(2)
e
��

normal

exc?Y
tt

N
,,abrupt g(1)

��
normal or abrupt
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Remark 5.3. The decorated terms throw(1) and throw/catch(1) stated in Definitions 5.1 and 5.2 will be
used, in Section 7 (see the translator function dCmd), as the target denotational semantics of the IMP+Exc
commands THROW and TRY/CATCH.

The intended model of the grammar of the logic Lexc is built with respect to the set of exceptions
E where a pure term p(0) : X→ Y is interpreted as a function p : X→ Y, a propagator pp(1) : X→ Y as
a function pp : X→ Y+E, and a catcher c(2) : X→ Y as a function c : X+E→ Y+E. The complete and
detailed category theoretical model is given in (11, §6.1).

Rules of the decorated logic for the exception:

(pwsubs)
g(0) : X→ Y f

(2)
1 ∼ f

(2)
2 : Y→ Z

f1 ◦g∼ f2 ◦g
(wrepl)

f
(2)
1 ∼ f

(2)
2 : X→ Y g(2) : Y→ Z

g◦f1 ∼ g◦f2

(replsubs)
f
(2)
1 ≡ f

(2)
2 : X→ Y g

(2)
1 ≡ g

(2)
2 : Y→ Z

g1 ◦f1 ≡ g2 ◦f2

(w_empty)
f(2) : O→ X

f∼ [ ]X
(w_downcast)

f(2) : Y→ X

(↓ f)(1) ∼ f

(eax1)
untag

(2)
e ◦tag(1)e ∼ id

(0)
EVe

(eax2)
∀e1,e2 ∈ EName, e1 6= e2

untag
(2)
e1 ◦tag

(1)
e2 ∼ [ ]

(0)
EVe
◦tag(1)e2

(eeffect)
f
(2)
1 ,f

(2)
2 : Y→ X f

(2)
1 ∼ f

(2)
2 f

(2)
1 ◦ [ ]

(0)
Y ≡ f

(2)
2 ◦ [ ]

(0)
Y

f1 ≡ f2

(elocal_global)
f
(2)
1 ,f

(2)
2 : O→ X ∀ e ∈ EName, f(2)1 ◦tag

(1)
e ∼ ◦f(2)2 ◦tag

(1)
e

f1 ≡ f2

(w_lcopair_eq)
f
(1)
1 : X→ Y f

(2)
2 : Z→ Y

[f1 | f2]◦in1 ∼ f1
(s_lcopair_eq)

f
(1)
1 : X→ Y f

(2)
2 : Z→ Y

[f1 | f2]◦in2 ≡ f2

Figure 15: Lexc: rules

The syntax given in Figure 14 is enriched with a set of rules which are presented in Figure 15 in addition
to the ones in Figure 11. Weak equalities do not form a congruence: the term substitution cannot be done
unless the substituted term is pure. I.e., given the equation f

(2)
1 ∼ f

(2)
2 : Y→ Z and a term g : X→ Y, it

is possible to get the equation f1 ◦g∼ f2 ◦g only when the term g is pure. At this stage, we have no
information about the behaviors of f1 and f2 on exceptional values. Therefore, the pre-executed term
g would destroy this result equality unless being pure, for instance, by throwing an exception of name
e for which f1 and f2 can perform different behaviors: one can propagate, while the other can recover
from it (pwrepl). However, the term replacement can be done regardless of the term decoration. I.e.,
given the equation f

(2)
1 ∼ f

(2)
2 : X→ Y and a term g : Y→ Z, it is possible to get the equation g◦f1 ∼ g◦f2

independent from the decoration of the term g. We already now that f1 and f2 behave the same on ordinary
values, executing any term g afterwards would not end the composition behave different on ordinary
values (wrepl). Strong equalities form a congruence by allowing both term substitutions and replacements
regardless of the term decorations (replsubs).
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Any term f : O→ X with no input parameter has an equivalence on ordinary values with the empty
co-pair [ ]X (w_empty).

The rule (w_downcast) states that the term (↓ f) behaves as f, if the argument is ordinary. It prevents f
from catching the exceptional arguments otherwise.

The fundamental equations are given with the rules (eax1) and (eax2). The former states that encapsulat-
ing an ordinary value with an exception of name e followed by an immediate recovery would be equivalent
to “doing nothing” in terms of ordinary values. Clearly, this is only a weak equation since its sides behave
different on exceptional values: left hand side may recover but right hand side definitely propagates. The
latter, (eax2), is to assume that encapsulating an ordinary value v with an exception of name e2 and then
trying to recover it from a different exception of name e1 would just lead e2 to be propagated. Similarly, if
the ordinary value v is encapsulated with e2 with no recovery attempt afterwards would again lead e2 to be
propagated. These two operations behave the same on ordinary values but different on exceptional ones.
For instance, left hand side recovers the input value encapsulated with the exception name e1 while right
hand side propagates it.

Two catchers f(2)1 ,f
(2)
2 : X→ Y behave the same on exceptional values if and only if f1 ◦ [ ]X ≡ f2 ◦ [ ]X,

where [ ]X : O→ X throws out the exceptional values. So that f(2)1 ,f
(2)
2 : X→ Y are strongly equal if and

only if f1 ∼ f2 and f1 ◦ [ ]X ≡ f2 ◦ [ ]X (eeffect).
Strong equality between two catchers f(2)1 ,f

(2)
2 : O→ X can also be expressed as a pair of weak equations:

f1 ∼ f2 and ∀e : ENname,f1 ◦tage ∼ f2 ◦tage.The latter intuitively means that f1 and f2 behaves the
same on all (finitely many) exceptional values when executed. Given that both behave the same on ordinary
arguments (due to (w_empty)), there is no explicitly need to check if f1 ∼ f2. It suffices to see whether
∀e : EName,f1 ◦tage ∼ f2 ◦tage to end up with f1 ≡ f2 (elocal_global).

With (w_lcopair_eq) and (w_rcopair_eq) term co-pairs (sums) are characterized: the (left) co-pair
structure [f1 | f2]l cannot be used when f1 and f2, both are catchers, since it may lead to a conflict on
exceptional values. When f1 is a propagator, with (w-copair-eq), we assume that ordinary values of type X
are treated by [f1 | f2](2)l as they would be by f

(1)
1 and with (s-copair-eq) that ordinary values of type Z and

exceptional values are treated by [f1 | f2](2)l as they would be by f
(2)
2 .

Similar to the rules of the logic Lst , the rules of the logic Lexc also designed to be sound with respect to
a categorical model, and detailed in (11, §6.2, §6.3, §6.4, §6.5). In addition, in (8) we prove that this set of
rules is complete with respect to the notion of relative Hilbert-Post completeness.

5.1 Decorated properties of the exception effect
Similar to the one for the state effect presented in Section 4.1, we propose an equational representation of
the exception effect with the following decorated equations:

(1)d Annihilation tag-untag. Untagging an exception of name e and then raising it again is just like doing
nothing. ∀e ∈ EName, tag(1)e ◦untag(2)e ≡ id

(0)
O : O→O.

(2)d Commutation untag-untag. Untagging two distinct exception names can be done in any order.
∀e 6= r ∈ EName, (untage+r idEVr)

(2) ◦in(0)2 ◦untag
(2)
r ≡

(idEVe +l untagr)
(2) ◦in(0)1 ◦untag

(2)
e : O→ EVe+EVr.

(3)d Propagator-propagates. A propagator term always propagates the exception.
∀e ∈ EName, a(1) : X→ Y, a(1) ◦ [ ](0)X ◦tag

(1)
e ≡ [ ]

(0)
Y ◦tag

(1)
e : EVe→ Y.
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(4)d Recovery. The parameter used for throwing an exception may be recovered.(
∀f(1), g(1) : X→O, [ ]

(0)
Y ◦f(1) ≡ [ ]

(0)
Y ◦g(1) =⇒ f(1) ≡ g(1)

)
=⇒(

∀e ∈ EName, u(0)1 ,u
(0)
2 : X→ EVe,

(
[ ]

(0)
Y ◦tag

(1)
e ◦u(0)1 ≡ [ ]

(0)
Y ◦tag

(1)
e ◦u(0)2

)
=⇒ u

(0)
1 ≡ u

(0)
2

)
.

(5)d Try. The strong equation is compatible with try/catch.
∀e ∈ EName, a(1)1 , a

(1)
2 : X→ Y, b(1) : EVe→ Y, a

(1)
1 ≡ a

(1)
2 =⇒(

↓
(
[idY | b◦untage]l ◦in1 ◦ [ ]Y ◦tage ◦a1

)(1) ≡ ↓
(
[idY | b◦untage]l ◦in1 ◦ [ ]Y ◦tage ◦a2

)(1))
.

(6)d Try0. Pure code inside try never triggers the code inside catch.
∀e ∈ EName, u(0) : X→ Y, b(1) : EVe→ Y,

↓
(
[idY | b◦untage]l ◦in1 ◦u

)(1) ≡ id
(0)
Y ◦u(0) : X→ Y.

(7)d Try1. The code inside catch is executed as soon as an exception is thrown inside try.
∀e ∈ EName, u(0) : X→ EVe, b

(1) : EVe→ Y,

↓
(
[idY | b◦untage]l ◦in1 ◦ [ ]Y ◦tage ◦u

)(1) ≡ b(1) ◦u(0) : X→ Y.

(8)d Try2. An exception gets propagated, if the exception name is not pattern matched in catch.
∀ (e 6= f) ∈ EName, u(0) : X→ EVf, b

(1) : EVe→ Y,

↓
(
[idY | b◦untage]l ◦in1 ◦ [ ]Y ◦tagf ◦u

)(1) ≡ [ ]
(0)
Y ◦tag

(1)
f ◦u(0) : X→ Y.

These are the archetype properties that we have proved within the scope of the Lexc. To see these
proofs, check out (11, §6.7). Besides, we have implemented the Lexc in Coq to certify mentioned proofs.
Section 5.2 briefly discusses this implementation.

5.2 Lexc in Coq
Coq implementation of Lexc follows the same approach with the one for Lst . We represent the set of
exception names by a Coq parameter EName : Type. An arrow type EVal : EName→ Type is assumed as
the type of values (parameters) for each exception name. We then inductively define terms and, assign
decorations over them. There, we respectively use keywords epure, ppg and ctc instead of (0), (1) and
(2). The rules up to weak and strong equalities are stated in a mutually inductive way to write constructors
including both types of equalities, similar to the approach presented in Section 4.2. We choose not to replay
the entire Coq encoding here, but we formalize Definitions 5.1 and 5.2 in Coq terms as follows:

Definition throw (X: Type) (e: EName) , (@empty X) o tag e.
Definition try_catch (X Y: Type) (e: EName) (f: term Y X) (g: term Y (Val e)) ,

downcast (copair (@id Y) (g o untag e) o in1 o f).

The encodings of other terms are contained in this file.
We can conclude that such a framework allows us to express and prove, in Coq, the decorated versions

of the properties mentioned in Section 5.1. E.g., the propagator-propagates looks like:

(** Propagator propagates **)
Lemma PPT: ∀ X Y (e: EName) (a: term Y X), is ppg a → a o ((@empty X) o tag e) == (@empty Y) o tag e.

The full Coq proofs of such properties can be found here, and the entire implementation there.

https://github.com/ekiciburak/decorated-logics-for-exceptions-effect/blob/master/Terms.v
https://github.com/ekiciburak/decorated-logics-for-exceptions-effect/blob/master/Proofs.v
https://github.com/ekiciburak/decorated-logics-for-exceptions-effect


IMP with exceptions over decorated logic 19

6 Combining Lst and Lexc

In order to formally cope with different computational effects, one needs to compose the related formal
models. For instance, using monad transformers (18), it is usually possible to combine effects formalized
by monads, as encoded in Haskell. Handler compositions allow combining effects modelled by algebraic
handlers, as implemented in Eff (1, 2, 32) and in Idris (4). To combine effects formalized in decorated
settings, we just need to compose the related logics. In this section, we formally study the combination
of the state and the exception effects using the logics Lst and Lexc. We call the newly born logic the
decorated logic for the state and the exception, and denote it Lst+exc. To start with, we give below the
syntax of Lst+exc:

Grammar of the decorated logic for the state and the exception: (i ∈ Loc) (e ∈ EName)

Types: t, s ::= X | Y | · · · | t×s | t+s | 1 |O | Vi | EVe

Decoration for terms: (d1,d2) ::= (0,0) | (0,1) | (0,2) | (1,0) | (1,1) |

(1,2) | (2,0) | (2,1) | (2,2)

Terms: f, g ::= a(d1,d2) | b(d1,d2) | · · · | g◦f(d1,d2) |

〈f,g〉(d1,d2)l | [f | g](d1,d2)l |

lookup
(1,0)
i | update(2,0)i |

tag
(0,1)
e | untag(0,2)e |

(↓ f)(0,1) | (tpure •)(0,0)

Equations: eq ::= f(d1,d2) ≡≡ g(d1,d2) | f(d1,d2) ≡∼ g(d1,d2) |

f(d1,d2) ∼≡ g(d1,d2) | f(d1,d2) ∼∼ g(d1,d2)

Figure 16: Lst+exc: syntax

The decorations are paired off to cover all possible combinations: the decoration symbol on the left
is given in terms of the state effect while the one on the right is of the exception. I.e., f(1,2) says that f
may access to the state alongside catching exceptions. The decoration of a (co)-pair ((co)-product) or a
composition depends on the decorations of its components, always taking the larger. I.e., ∀f(1,2) : X→ Y

and g(2,1) : Y→ Z, g◦f : X→ Z takes the decoration (2,2).
Types and terms are manually unionized in such a way that the interface terms for the state effect are

pure with respect to the exception and vice versa: lookup(1,0), update(2,0), tag(0,1) and untag(0,2). As in
Sections 4 and 5, we use the special tpure constructor to define pure terms such as the identity id, the
canonical pair projections π1 and π2, the empty pair 〈 〉, the canonical co-pair inclusions in1 and in2, the
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empty co-pair [ ] and constants are translated from a pure type system with product and sum types using
the tpure constructor, for all types X and Y, as:

id
(0,0)
X : X→ X := tpure (λ x : X.x : X)

π
(0,0)
1 : X×Y→ X := tpure fst

π
(0,0)
2 : X×Y→ Y := tpure snd

〈 〉(0,0)X : X→ 1 := tpure (λ x : X. void : 1)

in
(0,0)
1 : X→ X+Y := tpure inl

in
(0,0)
2 : Y→ X+Y := tpure inr

[ ]
(0,0)
X : O→ X := tpure (λ _ : O. x : X)

constant
(0,0)
x : 1→ X := tpure (λ _. x : X)

where fst and snd are constructors of product types while inl and inr are of sum types.
The rule combinations need a bit of reformulation as we summarize below:

• The decoration symbol (0) freely converts into (1) and (2), while the symbol (1) just into (2) when
the other symbol is fixed. I.e., f(0,2) freely converts into f(1,2). See all cases below:

–
f(0,d)

f(1,d)
,

f(1,d)

f(2,d)
,
f(d,0)

f(d,1)
,

f(d,1)

f(d,2)
for d ∈ {0,1,2}

• We have all possible combinations of equality sorts: ≡≡, ≡∼, ∼≡ and ∼∼. The first equality
symbol relates terms with respect to the state effect. I.e., f≡∼ g means that f and g are strongly
equal with respect to the state, while being weakly equal with respect to the exception. Below we
present the conversion rules between these four sorts. The burden here is that a strong equality
symbol can always be freely converted into a weak one independent of according to which effect it
relates terms. But, to convert a weak equality symbol into a strong one, we need to make sure that the
related terms are decorated either with (0) or (1) with respect to the effect they are weakly related.

– (≡≡-to-≡∼)
f(2,2) ≡≡ g(2,2)

f≡∼ g
, (≡≡-to-∼≡)

f(2,2) ≡≡ g(2,2)

f∼≡ g

– (≡∼-to-∼∼)
f(2,2) ≡∼ g(2,2)

f∼∼ g
, (∼≡-to-∼∼)

f(2,2) ∼≡ g(2,2)

f∼∼ g

– (∼≡-to-≡≡)
f(1,2) ∼≡ g(1,2)

f≡≡ g
, (≡∼-to-≡≡)

f(2,1) ≡∼ g(2,1)

f≡≡ g

– (∼∼-to-≡∼)
f(1,2) ∼∼ g(1,2)

f≡∼ g
, (∼∼-to-∼≡)

f(2,1) ∼∼ g(2,1)

f∼≡ g

• The rules of the logic Lst+exc are presented in Figure 17 as a union of the ones given in Fig-
ures 13 and 15 in terms of new equality sorts and refined term decorations. There, we replay the
whole rule bodies, and implicitly assume that all equality sorts are equivalence relations respecting
the properties reflexivity, symmetry, and transitivity.
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Rules of the decorated logic for the state and the exception:

(assoc)
f(2,2) : X→ Y g(2,2) : Y→ Z h(2,2) : Z→ T

h◦ (g◦f)≡≡ (h◦g)◦f
(ids)

f(2,2) : X→ Y

f◦idX ≡≡ f
(idt)

f(2,2) : X→ Y

idY ◦f≡≡ f

(pwrepl)
f
(2,2)
1 ∼≡ f

(2,2)
2 : X→ Y g(0,2) : Y→ Z

g◦f1 ∼≡ g◦f2
(wsubs)

g(2,2) : X→ Y f
(2,2)
1 ∼≡ f

(2,2)
2 : Y→ Z

f1 ◦g∼≡ f2 ◦g

(pwsubs)
g(2,0) : X→ Y f

(2,2)
1 ≡∼ f

(2,2)
2 : Y→ Z

f1 ◦g≡∼ f2 ◦g
(wrepl)

f
(2,2)
1 ≡∼ f

(2,2)
2 : X→ Y g(2,2) : Y→ Z

g◦f1 ≡∼ g◦f2

(replsubs)
f
(2,2)
1 ≡≡ f

(2,2)
2 : X→ Y g

(2,2)
1 ≡≡ g

(2,2)
2 : Y→ Z

g1 ◦f1 ≡≡ g2 ◦f2

(w_unit)
f(2,2) : X→ 1

f∼≡ 〈 〉X
(w_empty)

f(2,2) : O→ X

f≡∼ [ ]X
(w_downcast)

f(2,2) : Y→ X

(↓ f)(2,1) ≡∼ f

(ax1)
lookup

(1,0)
i ◦update(2,0)i ∼≡ id

(0,0)
Vi

(ax2)
∀i,j ∈ Loc, i 6= j

lookup
(1,0)
i ◦update(2,0)j ∼≡ lookup

(1,0)
i ◦ 〈 〉(0,0)Vi

(eax1)
untag

(0,2)
e ◦tag(0,1)e ≡∼ id

(0,0)
EVe

(eax2)
∀e1,e2 ∈ EName, e1 6= e2

untag
(0,2)
e1 ◦tag(0,1)e2 ≡∼ [ ]

(0,0)
EVe
◦tag(0,1)e2

(effect)
f
(2,2)
1 ,f

(2,2)
2 : X→ Y f

(2,2)
1 ∼≡ f

(2,2)
2 〈 〉(0,0)Y ◦f(2,2)1 ≡≡ 〈 〉(0,0)Y ◦f(2,2)2

f1 ≡≡ f2

(eeffect)
f
(2,2)
1 ,f

(2,2)
2 : Y→ X f

(2,2)
1 ≡∼ f

(2,2)
2 f

(2,2)
1 ◦ [ ](0,0)Y ≡≡ f

(2,2)
2 ◦ [ ](0,0)Y

f1 ≡≡ f2

(local_global)
f
(2,2)
1 ,f

(2,2)
2 : X→ 1 ∀ i ∈ Loc, lookup(1,0)i ◦f(2,2)1 ∼≡ lookup

(1,0)
i ◦f(2,2)2

f1 ≡≡ f2

(elocal_global)
f
(2,2)
1 ,f

(2,2)
2 : O→ X ∀ e ∈ EName, f(2,2)1 ◦tag(0,1)e ≡∼ ◦f(2,2)2 ◦tag(0,1)e

f1 ≡≡ f2

(w_lpair_eq)
f
(1,2)
1 : X→ Y f

(2,2)
2 : X→ Z

π1 ◦ 〈f1,f2〉l ∼≡ f1
(s_lpair_eq)

f
(1,2)
1 : X→ Y f

(2,2)
2 : X→ Z

π2 ◦ 〈f1,f2〉l ≡≡ f2

(w_lcopair_eq)
f
(2,1)
1 : X→ Y f

(2,2)
2 : Z→ Y

[f1 | f2]◦in1 ≡∼ f1
(s_lcopair_eq)

f
(2,1)
1 : X→ Y f

(2,2)
2 : Z→ Y

[f1 | f2]◦in2 ≡≡ f2

(tcomp)
f : Y→ Z g : X→ Y

(tpure f)(0,0) ◦ (tpure g)(0,0) ≡≡ (tpure (f◦g))(0,0)

Figure 17: Lst+exc: rules

6.1 Decorated properties of the state and exception effects

The properties given in Sections 4.1 and 5.1 are now stated with the refined term decorations, and related
with the ≡≡ equation. I.e., propagator-propagates and annihilation untag-untag look like:
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∀e ∈ EName, a(0,1) : X→ Y, a(0,1) ◦ [ ](0,0)X ◦tag(0,1)e ≡≡ [ ]
(0,0)
Y ◦tag(0,1)e : EVe→ Y.

∀i 6= j ∈ Loc, update(2,0)j ◦π
(0,0)
2 ◦ (update(2,0)i ×r id

(0,0)
Vj

)≡≡

update
(2,0)
i ◦π

(0,0)
1 ◦ (id(0,0)Vi

×l update
(2,0)
j ) : Vi×Vj→ 1.

These are the archetype properties that we can prove within the scope of the Lst+exc. However, we prefer
not to prove them for this generic framework; instead, we first specialize them in a way to serve as a target
language for a denotational semantics of IMP+Exc, and then prove them for the specialized version. Also,
we encode the specialized version in Coq and certify related proofs. Section 7 gives the related details.

7 IMP+Exc over the combined decorated logic Lst+exc

Now, it comes to define a denotational semantics for the IMP+Exc language, with the combined decorated
logic for the state and the exception (Lst+exc) as the target language. Recall that by doing this, we aim to
prove some (strong) equalities between terminating programs written in IMP+Exc with respect to the state
and the exception effects.

In IMP+Exc, the values that can be stored in any location (variable) i are just integers. So that any
occurrence of (Vi) in term signatures of Lst+exc is replaced by Z. I.e., lookup(1,0) : 1→ Z while Z. I.e.,
update(2,0) : Z→ 1. Here, we start with defining a denotational semantics of IMP+Exc expressions over
combined decorated settings using a translator function dExp. This function takes an expression as input
and outputs a decorated term of type term Z 1 or term B 1 depending on the input expression type:

dExp n ⇒ (constant n)(0,0)

dExp x ⇒ (lookup x)(1,0)

dExp (a1+a2) ⇒ (tpure add)(0,0) ◦ 〈dExp a1,dExp a2〉(1,0)l

dExp (a1×a2) ⇒ (tpure mlt)(0,0) ◦ 〈dExp a1,dExp a2〉(1,0)l

dExp (a1−a2) ⇒ (tpure subt)(0,0) ◦ 〈dExp a1,dExp a2〉(1,0)l

dExp (true) ⇒ (constant true)(0,0)

dExp (false) ⇒ (constant f alse)(0,0)

dExp (a1
?
= a2) ⇒ (tpure chkeq)(0,0) ◦ 〈dExp a1,dExp a2〉(1,0)l

dExp (a1
?
6= a2) ⇒ (tpure chkneq)(0,0) ◦ 〈dExp a1,dExp a2〉(1,0)l

dExp (a1
?
> a2) ⇒ (tpure chkgt)(0,0) ◦ 〈dExp a1,dExp a2〉(1,0)l

dExp (a1
?
< a2) ⇒ (tpure chklt)(0,0) ◦ 〈dExp a1,dExp a2〉(1,0)l

dExp (b1∧b2) ⇒ (tpure andB)(0,0) ◦ 〈dExp b1,dExp b2〉(1,0)l



IMP with exceptions over decorated logic 23

dExp (b1∨b2) ⇒ (tpure orB)(0,0) ◦ 〈dExp b1,dExp b2〉(1,0)l

dExp (¬b) ⇒ (tpure notB)(0,0) ◦dExp b(1,0)

where true and false are Boolean constructors. The constructor tpure is applied to given unary functions.
For instance add : (Z×Z)→ Z takes an instance of an integer tuple and returns their sum. To see the
definition of the other functions in a Coq implementation, please check out this file.

We have some additional rules to make use of some pure algebraic operations in the combined decorated
setting presented in Figure 18 where the pure term lpi : 1→ 1, within the rule (imp-li), is used to connect
successive loop iterations as long as the loop conditional evaluates into decorated logic’s true (constant
true). Also, the pure term pbl : B→ 1+1 forms a bridge between the usual Boolean data type and its
correspondence in the decorated settings which is the type 1+1.

lpi (b : term 1 (1+1)) (f : term 1 1) := tpure (λx : 1.x).

pbl := tpure (bool_to_two)

where bool_to_two (b : bool) := (if b then (inl void) else (inr void)).

such that void : 1 is the unique constructor of the type 1, and

inl, inr : 1→ (1+1) are the canonical inclusions

Note also that in (imp2) and (imp4) by replacing false into true we get (imp3) and (imp5) that are not
explicitly stated in Figure 18.

(imp1)
∀p, q : Z, (f : Z×Z→ Z)

tpure f◦ 〈constant p,constant q〉l ≡≡ (constant f(p,q))

(imp2)
∀p, q : Z, (f : Z×Z→ B) f(p,q) = false

tpure f◦ 〈constant p,constant q〉l ≡≡ constant false

(imp4)
∀p, q : B, (f : B×B→ B) f(p,q) = false

tpure f◦ 〈constant p,constant q〉l ≡≡ constant false

(imp−li)
∀(b : term 1 (1+1)) (f : term 1 1)
lpi b f≡≡

[
(lpi b f)◦f

∣∣id]
l
◦b

(imp6)
(∀x, f x = g x)

tpure f≡ tpure g

Figure 18: Additional rules on pure terms: IMP+Exc specific

Lemma 7.1. pbl(0,0) ◦ (constant f alse)(0,0) ≡≡ in2.

Proof: unfolding all term definitions, we have tpure (λ : bool. if b then (inl 1) else (inr 1)) ◦
tpure (λ _ : 1.true) ≡≡ tpure inl. Now, it is trivial to obtain tpure inl ≡≡ tpure inl by first
rewriting tcomp from left to right, and then applying imp6.

Lemma 7.2. pbl(0,0) ◦ (constant true)(0,0) ≡≡ in1.

Proof: It follows the same steps with the proof of Lemma 7.1

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Functions.v
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Remark 7.3. See this file for the Lemmata 7.1 and 7.2 statements with their proofs in a Coq implementation.

The fact that IMP+Exc commands are of type 1→ 1, and since throw(0,1)e := [ ]
(0,0)
Y ◦tag(0,1)e : EVe→ Y

is a command, we replace EVe and Y with 1. This means that we stick to a single exceptional value
(parameter), for each exception name e ∈ EName.

Below, we recursively define the IMP+Exc commands within Lst+exc using a translator function dCmd

which establishes a decorated term of type term 1 1 out of an input command. The translation of any
IMP+Exc command cannot be a public catcher, even the one for TRY/CATCH; recall Definition 5.2. That is
why we have at most decoration (1) with respect to the exception.

dCmd (SKIP) ⇒ (id 1)(0,0)

dCmd (x, a) ⇒ (updatex)
(2,0) ◦ (dExp a)(1,0)

dCmd (c1;c2) ⇒ (dCmd c2)
(2,1) ◦ (dCmd c1)(2,1)

dCmd (if b then c1 else c2) ⇒
[
dCmd c1

∣∣∣ dCmd c2]
l

(2,1)
◦ pbl(0,0) ◦ (dExp b)(1,0)

dCmd (while b do c) ⇒
[
(lpi (pbl◦ (dExp b)) (dCmd c))◦ (dCmd c)

∣∣∣ id]
l

(2,1)

◦ pbl(0,0) ◦ (dExp b)(1,0)

dCmd (THROW e) ⇒ throw e(0,1)

dCmd (TRY c1 CATCH e⇒ c2) ⇒ try (dCmd c1) catch (e⇒ (dCmd c2))
(2,1)

In Figure 19, the diagram on the left schematizes the command if b then c1 else c2: if the Boolean
expression dExp b evaluates into (constant true) then by Lemma 7.2, we have the command c1 in
execution, c2 otherwise by by Lemma 7.1. As for the loops, it is well know that as long as the looping
condition evaluates into (constant true), loop body gets executed. This is depicted in Figure 19 (the
diagram on the right), as the arrow lpi b c is each time replaced by the whole diagram itself. This is made
possible by the rule (imp-li). If the looping condition evaluates into (constant false), using Lemma 7.1,
we then have the term id1 in execution forcing the loop to terminate. Notice that the case distinction in the
diagrams are provided by the term inclusions.

1

in1

��

c1

##
1

dExp b // B
pbl // 1+1

[
c1

∣∣c2] // 1
1

in2

OO

c2

;;

1

in1

��

c // 1

lpi b c

��
1

dExp b // B
pbl // 1+1

[
(lpi b c) ◦ c

∣∣id1] // 1
1

in2

OO

id1
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Figure 19: (cond b c1 c2) and (while b do c) in Lst+exc

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Derived_co_Pairs.v#L122-L132
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Figure 20 respectively visualizes the formal behaviors of THROW and TRY/CATCH commands where the
basis is the core decorated terms for the exception effect. They are formulated as in Definitions 5.1 and 5.2
with a single difference in their signatures: domains and co-domains are now set to 1.

1
tage // O

[]1 // 1

1

in1
��

id1

**
1

c1 // 1
in1 // 1+O

[
id1

∣∣c2 ◦ untage] // 1

O

in2

OO

untage // 1

c2

::

Figure 20: (THROW e) and (TRY c1 CATCH e⇒ c2) in Lst+exc

We now implement the IMP+Exc denotational semantics using the Lst+exc as the target language in a
Coq encoding. Expressions are inductively forming a new Coq Type by taking another Coq Type as input,
and called Exp. Indeed, the type Exp is a dependent type. This means that the type Exp A depends on the
term A: Type. I.e., when A := B, we build the type for Boolean expressions while the case A := Z is to
construct the type for arithmetic expressions. As for the type constructors, we use the syntactic operators
given within the contexts of aexp and bexp in Figure 2. The only difference is in the constructor names:
instead of the corresponding notations, they are given in plain text. However, it is easy to match them one
another since they are given in the same order. I.e., ttrue is used instead of the true expression symbol.
Note also that true stands for the Boolean constructor.

Inductive Exp : Type → Type ,
| const : ∀ A, A → Exp A
| var : Loc → Exp Z
| plus : Exp Z → Exp Z → Exp Z
| subtr : Exp Z → Exp Z → Exp Z
| mult : Exp Z → Exp Z → Exp Z
| ttrue : Exp bool
| ffalse: Exp bool
| eq : Exp Z → Exp Z → Exp bool
| neq : Exp Z → Exp Z → Exp bool
| gt : Exp Z → Exp Z → Exp bool
| lt : Exp Z → Exp Z → Exp bool
| ge : Exp Z → Exp Z → Exp bool
| le : Exp Z → Exp Z → Exp bool
| and : Exp bool → Exp bool → Exp bool
| or : Exp bool → Exp bool → Exp bool
| neg : Exp bool → Exp bool.

Let us interpret the dExp function in Coq using the following fix-point:

Fix-point dExp A (e: Exp A): term A unit ,
match e with

| const Z n ⇒ constant n
| var x ⇒ lookup x
| plus a1 a2 ⇒ tpure add o pair (dExp Z a1) (dExp Z a2)
| subtr a1 a2 ⇒ tpure subt o pair (dExp Z a1) (dExp Z a2)
| mult a1 a2 ⇒ tpure mlt o pair (dExp Z a1) (dExp Z a2)
| ttrue ⇒ constant true
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| ffalse ⇒ constant false
| eq a1 a2 ⇒ tpure chkeq o pair (dExp Z a1) (dExp Z a2)
| neq a1 a2 ⇒ tpure chkneq o pair (dExp Z a1) (dExp Z a2)
| gt a1 a2 ⇒ tpure chkgt o pair (dExp Z a1) (dExp Z a2)
| lt a1 a2 ⇒ tpure chklt o pair (dExp Z a1) (dExp Z a2)
| ge a1 a2 ⇒ tpure chkge o pair (dExp Z a1) (dExp Z a2)
| le a1 a2 ⇒ tpure chkle o pair (dExp Z a1) (dExp Z a2)
| and b1 b2 ⇒ tpure andB o pair (dExp bool b1) (dExp bool b2)
| or b1 b2 ⇒ tpure orB o pair (dExp bool b1) (dExp bool b2)
| neg b ⇒ tpure notB o (dExp bool b)

end.

A similar idea of implementation follows for the commands. We inductively define a Coq type Cmd
of IMP+Exc commands whose constructors are the members of IMP+Exc command set as presented in
Figures 2 and 6. Notice that some commands are encoded with different names. I.e., the assignment
command ‘,’ is called assign, the sequencing command ‘;’ is called sequence while “if then else”
block is named cond in the implementation. However, it is easy to match them one another since they are
presented in the same order.

Inductive Cmd : Type ,
| SKIP : Cmd
| sequence : Cmd → Cmd → Cmd
| assign : Loc → Exp Z → Cmd
| cond : Exp bool → Cmd → Cmd → Cmd
| while : Exp bool → Cmd → Cmd
| THROW : EName → Cmd
| TRY_CATCH : EName → Cmd → Cmd → Cmd.

We now interpret the dCmd function in Coq using the below fix-point:

Fixpoint dCmd (c: Cmd): (term unit unit) ,
match c with

| skip ⇒ (@id unit)
| sequence c0 c1 ⇒ (dCmd c1) o (dCmd c0)
| assign j e0 ⇒ (update j) o (dExp Z e0)
| cond b c2 c3 ⇒ copair (dCmd c2) (dCmd c3) o (pbl o (dExp bool b))
| while b c4 ⇒ (copair (lpi (pbl o (dExp bool b)) (dCmd c4) o (dCmd c4)) (@id unit)) o (pbl o

(dExp bool b))
| THROW e ⇒ (throw unit e)
| TRY_CATCH e c1 c2 ⇒ (try_catch e (dCmd c1) (dCmd c2))

end.

Now, we retain sufficient material to state and prove equivalences between programs written in IMP+Exc,
and certify such proofs in Coq.

7.1 Program equivalence proofs

In this section, we finally prove equivalences of bunch of programs written in IMP+Exc, using the denota-
tional semantics characterized within the scope of the logic Lst+exc. Note that for the sake of simplicity,
we will use ux, lx, (t op) and (c p) instead of (update x)(2,0), (lookup x)(1,0), (tpure op)(0,0) and
(constant p)(0,0), respectively.

Remark 7.4. Recall that the use of term products is to impose some order of term evaluation on the mutable
state. IMP+Exc specific properties of the mutable state are slightly different than their generic versions
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(mentioned in Section 4.1) due to the fact that the language does not allow parallel term evaluations,
meaning that every term is evaluated in the sequence they are given. Therefore, we no more need to use
term products in property statements. The properties we use through out the following proofs are re-stated
in Figure 21. The full certified Coq proofs of these properties can be found here.

1. interaction update-update ∀x ∈ Loc p,q : Z, ux ◦ (c p)◦ux ◦ (c q) ≡≡ ux ◦ (c p)
2. commutation update-update ∀x 6= y ∈ Loc p,q : Z, ux ◦ (c p)◦uy ◦ (c q) ≡≡ uy ◦ (c q)◦ux ◦ (c p)
3. commutation-lookup-constant-update ∀x ∈ Loc,p,q ∈ Z, 〈lx,(c q)〉l ◦ux ◦ (c p)≡≡ 〈(c p),(c q)〉l ◦ux ◦ (c p)

Figure 21: Primitive properties of the state: IMP+Exc specific

Remark 7.5. Below, we state three lemmata using the IMP+Exc notation introduced in Figures 2 and 6.
However, we introduce a new set of notations for the Coq encoding to increase the readability score even
a little: browse this set of notations here where, i.e., the assign command is denoted by ‘::=’ while the
sequence command by ‘; ;’. These notations do not appear through out the paper, but might be of help in
reading the lemma statements in the Coq encoding. Notice also that they are not so pretty, due to the fact
that Coq internally reserves prettier notations for other issues.

Lemma 7.6. For all exceptionally pure commands f, g ∈ cmd\{THROW,TRY/CATCH} and b∈ {true,false},
if program pieces prog1 and prog2 are given as in the following listings, then dCmd (prog1) ≡≡
dCmd (prog2).

Listing 1: prog1

/* prog1 */
if b then f else g;

Listing 2: prog2

/* prog2 */
if b then (if b then f else g)
else g;

Proof: We sketch the diagrams of both programs below:

1

in1

��

f

!!
1

c b // B
pbl // 1+1

[
f

∣∣g] // 1

1

in2

OO

g

==

1

in1

��

k

!!
1

c b // B
pbl // 1+1

[
k

∣∣g] // 1

1

in2

OO

g

==

where k = (if b then f else g). The statement we would like to prove is[
f
∣∣g]

l
◦pbl◦c b≡≡

[
k
∣∣g]

l
◦pbl◦c b. (1)

Using the decorated rules of the logic Lst+exc, in the below given order, our aim is to simplify both sides
of the statement into the same shape with respect to the equality sort ≡≡. The proof proceeds by a case
analysis on b.

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/Proofs.v
https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/IMPEX_to_COQ.v#L82-L103
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If b = false, by unfolding the definitions of pbl and (c f alse), we have[
f
∣∣g]

l
◦t (bool_to_two)◦t (λx : unit.false)≡≡

[
k
∣∣g]

l
◦t (bool_to_two)◦t (λx : unit.false).

(2)
We rewrite (tcomp), and get[

f
∣∣g]

l
◦t (λx : unit.bool_to_two false)≡≡

[
k
∣∣g]

l
◦t (λx : unit.bool_two false). (3)

Now, we cut
t (λx : unit.bool_to_two false)≡≡ in2 (4)

and rewrite it back in the goal. So that we obtain[
f
∣∣g]

l
◦in2 ≡≡

[
k
∣∣g]

l
◦in2. (5)

Then, we use (s_lcopair_eq), and finally have g≡≡ g which is trivial since ≡≡ is reflexive. It remains to
show that the cut statement in Equation 4 is true. By simplifying t (λx : unit. bool _to _two false)
and unfolding in2, we have

t (λx : unit.inr x)≡≡ t (inr). (6)

Now, we apply (imp6) and get
∀x : unit,inr x=inr x (7)

which is trivial since the Leibniz equality ‘=’ is reflexive.
If b = true, by following above procedure with true (instead of false) we first handle[

f
∣∣g]

l
◦in1 ≡≡

[
k
∣∣g]

l
◦in1 (8)

and then freely convert ≡≡ into ≡∼. There, rewriting the rule (w_lcopair_eq) yields f ≡∼ k. We unfold k
with b= true and get

f≡∼
[
f
∣∣g]

l
◦in1. (9)

Now by rewriting (w_lcopair_eq), we have f≡∼ f, which is again trivial, since ≡∼ is reflexive.

Lemma 7.7. For all x : Loc, if program pieces prog3 and prog4 are given as in the following listings,
then dCmd (prog3) ≡≡ dCmd (prog4).

Listing 3: prog3

/* prog3 */
x , 2;

while (x
?
< 11)

do (x , x + 4);

Listing 4: prog4

/* prog4 */
x , 14;

Proof: In the proof structure we intend to reduce prog3, first dealing with the pre-loop assignments and
the looping pre-condition. Since it evaluates into true, in the second step we identify things related to the
first loop iteration. The third step primarily studies the second and then the third loop iterations after which
the looping pre-condition switches to false. Finally, we explain the program termination and show that
prog3 does exactly the same state manipulation with prog4. Note also that we do not need to check the
results they returned, since all IMP+Exc commands, thus programs, return void : U.
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Below is the sketch of prog3:

1 1

in1

��

f // 1

lpi b f

��
1

c 2 // Z ux // 1

〈
lx,c 11

〉
//

lx

@@

c 11

��

Z2 tpure
?
< //

π1

OO

π2

��

B
pbl // 1+1

[
(lpi b f) ◦ f

∣∣id1] // 1

1 1

in2

OO

id1

77

where f= (x, x+4) and b= (x
?
< 11). Using the decorated rules of the logic Lst+exc, given in the below

order, we simplify this diagram into the one given below with respect to the equality sort ≡≡:

1
c 14 // Z ux // 1

which is actually prog4 when sketched.

1. Initially, we have

[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
lx,(c 11)

〉
◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (10)

Let us simplify it as far as possible. By rewriting commutation−lookup−constant−update

(see Figure 21), we obtain

[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
(c 2),(c 11)

〉
◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (11)

Since the looping pre-condition (t
?
<)◦

〈
(c 2),(c 11)

〉
evaluates into (c true), due to (imp3), we

have [
(lpi b f)◦f

∣∣id1]◦pbl◦ (c true)◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (12)

By rewriting the Lemma 7.2, we get[
(lpi b f) ◦ f

∣∣id1]◦in1 ◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (13)

Here, we first convert ≡≡ into ≡∼ then rewrite (w_lcopair_eq), and end up with

(lpi b f)◦f◦ux ◦ (c 2)≡∼ ux ◦ (c 14) (14)

in which the second appearance of f unfolds into

(lpi b f)◦ux ◦ (t +)◦
〈
lx,c 4

〉
◦ux ◦ (c 2)≡∼ ux ◦ (c 14). (15)
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Since, there is no exceptional case, we are freely back to ≡≡. By rewriting commutation −lookup
−constant −update, we obtain

(lpi b f)◦ux ◦ (t +)◦
〈
c 2,c 4

〉
◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (16)

The rule (imp1) gives

(lpi b f)◦ux ◦ (c 6)◦ux ◦ (c 2)≡≡ ux ◦ (c 14). (17)

Now, we rewrite the lemma interaction-update-update (see Figure 21) and get

(lpi b f)◦ux ◦ (c 6)≡≡ ux ◦ (c 14). (18)

2. For the second loop iteration, rewriting (imp-li) gives[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
lx,(c 11)

〉
◦ux ◦ (c 6)≡≡ ux ◦ (c 14). (19)

where looping pre-condition evaluates into (c true). Therefore, we iterate the above procedure, given
in the step 1, once again and derive

(lpi b f)◦ux ◦ (c 10)≡≡ ux ◦ (c 14). (20)

3. In the third iteration, rewriting the (imp-li) gives[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
lx,(c 11)

〉
◦ux ◦ (c 10)≡≡ ux ◦ (c 14). (21)

As in step 2, the looping pre-condition evaluates into (c true) forcing us to reiterate the above
procedure, given in the step 1, which results in

(lpi b f)◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (22)

4. In the fourth step, rewriting the (imp-li) gives[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
lx,(c 11)

〉
◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (23)

By rewriting commutation −lookup −constant −update, we obtain[
(lpi b f)◦f

∣∣id1]◦pbl◦ (t ?
<)◦

〈
(c 14),(c 11)

〉
◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (24)

Finally here, the looping pre-condition (t
?
<)◦

〈
(c 14),(c 11)

〉
evaluates into (c f alse) yielding[

(lpi b f)◦f
∣∣id1]◦pbl◦ (c f alse)◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (25)

We rewrite the Lemma 7.1, and get[
(lpi b f)◦f

∣∣id1]◦in2 ◦ux ◦ (c 14)≡≡ ux ◦ (c 14). (26)

Now, we rewrite (s_lcopair_eq), and handle

id1 ◦ux ◦ (c 14)≡≡ ux ◦ (c 14) (27)

which is trivial, since the identity term disappears when to compose and ≡≡ is reflexive.
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Lemma 7.8. For each x y : Loc, e : EName, if program pieces prog5 and prog6 are given as in the
following listings, then dCmd (prog5) ≡≡ dCmd (prog6).

Listing 5: prog5

/* prog3 */
x , 1;
y , 20;
TRY(

while (true)
do

( if (x
?
<= 0) then (THROW e)

else x , x - 1
)

) CATCH e ⇒ (y , 7);

Listing 6: prog6

/* prog4 */
x , 0;
y , 7;

Proof: In the proof structure, we first tackle with the downcast operator. The second task is to deal with
the first loop iteration which has the state but no exception effect. In the third, we study the second iteration
of the loop where an exception is thrown, and the abrupt loop termination afterwards. Finally, in the fourth
step, we explain the exception recovery and the normal program termination. Below is the sketch of prog5:

1

in1

��

tage // O

[ ]1

��
1

in1

��

b // B
pbl // 1+1

[
[ ]1◦tage

∣∣c2] // 1

lpi (c true) c1

��

lpi (c true) c1

��

1

in2

OO

c2

77

1

in1

��

id1

''
1

c0 // 1
pbl◦(c true)// 1+1

[
(lpi (c true) c1)◦

[
[ ]1◦tage

∣∣c2]◦pbl◦b∣∣∣id1]
// 1

in1 // 1+O
[
id1

∣∣c3 ◦ untage] // 1

1

in2

OO

id1

33

O

in2

OO

untage // 1

c3

BB

where b= (x
?
≤ 0), c0 = (x, 1;y, 20), c1 = (if (x

?
≤ 0) then (THROW e) else (x, x−1)), c2 =

(x, x−1), c3 = (y, 7). Notice that blue arrows depict the normal loop iterations while red ones are to
identify the program behavior after the exception of name e is raised. Using the rules of the logic Lst+exc,
we can reduce the above diagram into the one given below with respect to the equality sort ≡≡:

1
c 0 // Z ux // 1

c 7 // Z
uy // 1

which is actually the prog6 when sketched.
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1. Initially, we have

↓
([
id1
∣∣c3◦untage]◦in1◦[(lpi (c true) c1)◦

[
[ ]1◦tage

∣∣c2]◦pbl◦b∣∣∣id1]◦pbl◦(c true)
)

◦uy ◦ (c 20)◦ux ◦ (c 1)≡≡ uy ◦ (c 7)◦ux ◦ (c 0). (28)

We first convert ≡≡ into ≡∼, then rewrite the (w_downcast) rule and get

[
id1
∣∣c3 ◦untage ]◦in1 ◦[(lpi (c true) c1)◦

[
[ ]1 ◦tage

∣∣c2]◦pbl◦b∣∣∣id1]
◦pbl◦ (c true)◦uy ◦ (c 20)◦ux ◦ (c 1)≡∼ uy ◦ (c 7)◦ux ◦ (c 0). (29)

Rewriting commutation-update-update, on both sides, gives

[
id1
∣∣c3 ◦untage]◦in1 ◦[(lpi (c true) c1)◦

[
[ ]1 ◦tage

∣∣c2]◦pbl◦b∣∣∣id1]
◦pbl◦ (c true)◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (30)

Rewriting Lemma 7.2 yields

[
id1
∣∣c3 ◦untage]◦in1 ◦[(lpi (c true) c1)◦

[
[ ]1 ◦tage

∣∣c2]◦pbl◦b∣∣∣id1]
◦in1 ◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (31)

2. Now; we rewrite the rule (w_lcopair_eq), and handle[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦

[
[ ]1 ◦tage

∣∣c2]
◦pbl◦b◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0). (32)

By unfolding b, we have[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦

[
[ ]1 ◦tage

∣∣c2]
◦pbl◦ (t

?
≤)◦

〈
lx (c 0)

〉
◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (33)

Rewriting the lemma commutation− lookup− constant− update, we obtain[
id1
∣∣c3 ◦untage]◦in1◦(lpi (c true) c1)◦

[
[ ]1 ◦tage

∣∣c2]
◦pbl◦ (t

?
≤)◦

〈
(c 1),(c 0)

〉
◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (34)

We rewrite the rule (imp2), and get[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)

◦
[
[ ]1 ◦tage

∣∣c2]◦pbl◦ (c false)◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy.◦ (c 7). (35)
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Rewriting the Lemma 7.1 yields[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)

◦
[
[ ]1 ◦tage

∣∣c2]◦in2 ◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy.◦ (c 7). (36)

We now rewrite (s_lcopair_eq) which gives[
id1
∣∣c3 ◦untage]◦in1◦(lpi (c true) c1)

◦c2 ◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (37)

Here, by unfolding c2, we have[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦ux ◦ (t −)◦

〈
lx,(c 1)

〉
◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (38)

Rewriting the lemma commutation−lookup−constant−update gives[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦ux ◦ (t −)◦

〈
(c 1),(c 1)

〉
◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦0(c 7). (39)

We rewrite (imp1), and get[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)

◦ux ◦ (c 0)◦ux ◦ (c 1)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (40)

We again rewrite the lemma commutation-update-update, and obtain[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦ux ◦ (c 0)

◦uy ◦ (c 20)≡∼ ux◦(c 0)◦uy ◦ (c 7). (41)

3. We re-iterate the loop via (imp-li), and have[
id1
∣∣c3 ◦untage]◦in1 ◦ [(lpi (c true) c1)◦c1

∣∣id]
◦pbl◦ (c true)◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy◦(c 7). (42)

We rewrite Lemma 7.2, (w_lcopair_eq), then unfold c1, and get:[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦

[
throw e 1

∣∣c2]
◦pbl◦ (t

?
≤)◦

〈
lx,(c 0)

〉
◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 20). (43)

By rewriting commutation−lookup−constant−update, (imp3) and Lemma 7.2, we have[
id1
∣∣c3 ◦untage]◦in1 ◦ (lpi (c true) c1)◦

[
throw e 1

∣∣c2]◦in1
◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 20). (44)
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By (w_lcopair_eq), the exception is raised:[
id1
∣∣c3 ◦untage]◦in1 ◦ ((lpi (c true) c1)◦throw e 1

)
◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 20). (45)

Due to the raised exception, the infinite loop gets abruptly terminated at this step. We first unfold
THROW then rewrite propagator-propagates (see Section 6.1), and get[

id1
∣∣c3 ◦untage] ◦in1 ◦ [ ]1 ◦tage ◦ux ◦ (c 0) ◦uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦uy ◦ (c 20). (46)

4. Here, we first cut in1 ◦ [ ]1 ≡≡ in2, and rewrite it back in the equation. Thus, we have[
id1
∣∣c3 ◦untage]◦in2 ◦tage ◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux◦(c 0)◦uy◦(c 7). (47)

By rewriting (s_lcopair_eq), we obtain

c3 ◦untage ◦tage ◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (48)

Since ux ◦ (c 0) ◦ uy ◦ (c 20) is pure with respect to the exception, we rewrite (eax1), and get

c3 ◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy◦(c 7). (49)

Unfolding the definition of the command c3 = (uy ◦ (c 7)), we have

uy ◦ (c 7)◦ux ◦ (c 0)◦uy ◦ (c 20)≡∼ ux◦(c 0)◦uy ◦ (c 7). (50)

We now rewrite commutation− update− update on the left, and handle

ux ◦ (c 0)◦uy ◦ (c 7)◦uy ◦ (c 20)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (51)

Finally, it suffices to rewrite interaction− update−update,

ux ◦ (c 0)◦uy ◦ (c 7)≡∼ ux ◦ (c 0)◦uy ◦ (c 7). (52)

which is trivial since the equality symbol ≡∼ is reflexive. It still remains to prove the previous cut
in1 ◦ [ ]1 ≡≡ in2: since everything is pure with respect to the exception, we have

in1 ◦ [ ]1 ≡∼ in2. (53)

Now, rewriting the rule (w_empty) gives [ ]1+1 ≡∼ [ ]1+1.

The full Coq proofs of above lemmata can be found here, and the entire implementation there.

8 Concluding remarks
We have presented frameworks for formalizing the treatment of the state and the exception effects, first
separately, and then combined, using the decorated logic. Decorations describe what computational
effect evaluation of a term may involve, and form a bridge between the syntax and its interpretation in
reasoning about terms by making computational effects explicit in the decorated syntax. We have designed
a denotational semantics for the IMP+Exc language using the combined decorated logic Lst+exc as the
target language. This way, we managed prove strong equalities between IMP+Exc programs. We have also
encoded the combined logic in the Coq proof assistant to certify related proofs.

https://github.com/ekiciburak/impex-on-decorated-logic/blob/master/IMPEX_Proofs.v
https://github.com/ekiciburak/impex-on-decorated-logic
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