
HAL Id: hal-01132831
https://hal.science/hal-01132831v1

Preprint submitted on 18 Mar 2015 (v1), last revised 12 Oct 2018 (v9)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IMP with exceptions over decorated logic
Burak Ekici

To cite this version:

Burak Ekici. IMP with exceptions over decorated logic. 2015. �hal-01132831v1�

https://hal.science/hal-01132831v1
https://hal.archives-ouvertes.fr

IMP with exceptions over decorated logic

Burak Ekici∗

March 18, 2015

Abstract

In this paper, we separately design the decorated logic with respect to

the state and the exception effects. Then, we combine two logics to be

able to establish small-step semantics of IMP imperative language with

exceptional abilities, in a decorated setting. We implement the decorated

framework in Coq and certify program equivalence proofs written in that

context.

Keywords: Decorated logic, proofs of programs, proof verification, Coq.

1 Introduction

In mostly used imperative programming languages (such as C/C++ and Java),
computational effects do exist. With no doubt, they bring an ease and flexibility
to the coding process. However, the problem becomes explicit when to prove the
properties of programs involving effects. The major difficulty in such kind of a
reasoning is the mismatch between the syntax of operations with effects and their
interpretation. Typically, a piece of program with arguments in X that returns
a value in Y is not interpreted as a function from X to Y due to the effects.
The best-known algebraic approach to the problem was initiated by Moggi and
implemented in Haskell. There, the main focus is to interpret programs with
effects through the monads: the interpretation looks like a function from X
to T (Y) where T is a monad. This approach has been extended to Lawvere
theories and algebraic handlers [10, 11] while there are some others relying
on effect systems [8, 12] or Hoare Logic [13]. In [6] Duval et al. proposes
yet another approach where algebraic theories and effect systems are mixed
by adding decorations to the terms and equations keeping their interpretations
close to syntax in reasoning with effects. In this paper, we first introduce small-
step semantics for IMP with exceptional abilities (IMP+Exc). This follows the
same approach given in [7]. Then, Duval’s decorated logic has been designed
for the state and the exception effects, first separately then combined. The

∗Laboratoire J. Kuntzmann, Université de Grenoble. 51, rue des Mathématiques, umr

CNRS 5224, bp 53X, F38041 Grenoble, France, Burak.Ekici@imag.fr.

1

mailto:Burak.Ekici@imag.fr

combination here means “merging” the behind logics. Next, we establish small-
step semantics of IMP+Exc over the combined decorated settings. There, we are
able to cope with termination-guaranteed programs. We illustrate the program
equivalence proofs within that context and certify proofs with the Coq Proof
Assistant.

2 IMP with exceptional abilities

IMP is a standard imperative programming language. It natively provides
global variables of type integer, standard integer arithmetic and boolean expres-
sions enriched with a set of commands that is made of do-nothing, assignment,
sequence, conditionals and looping operations. Below, we detail the syntax
where n represents a constant integer term while x is an integer global variable.
Note also that abbreviations aexp and bexp respectively denote arithmetic and
boolean expressions as well as cmd stands for commands.

aexp: a1 a2 ::= n | x | a1 + a2 | a1 × a2

bexp: b1 b2 ::= true | false | a1 = a2 | a1 6= a2 | a1 > a2 | a1 < a2 |

b1 ∧ b2 | b1 ∨ b2

cmd: c1 c2 ::= skip | x := e | c1; c2 | if b then c1 else c2 | while b do c1

Figure 1: Standard IMP syntax

Neither arithmetic nor boolean expressions are allowed to modify the state: they
are either pure or read-only. Indeed, small-step semantics for expressions is a
total function of the form: JexpK×s→ exp. It constitutes a new expression out
of an input expression and the current state. We recursively define it as follows:

JnK(s) = n

JxK(s) = α(x)

Jexp1 op exp2K(s) = Jexp1K(s) JopK Jexp2K(s)

Figure 2: Small-step semantics for expressions

where JopK stands for natural semantics of any syntactically well-defined arith-
metic or boolean operation. For instance, no matter the current state s, the
expression J5 + 4 K(s) will evaluate into 9. Note that constant terms are pure.

2

(skip)
s, (SKIP; c) s, c

(sequence)
s, c1 s′, c′1

s, (c1; c2) s′, (c′1; c2)

(assign)
s, (x := a) s{x← JaK(s)}, SKIP

(cond1)
JbK(s) = true

s, (cond b c1 c2) s, c1
(cond2)

JbK(s) = false

s, (cond b c1 c2) s, c2

(while1)
JbK(s) = true

s, (while b do c) s, (c; while b do c)

(while2)
JbK(s) = false

s, (while b do c) s, SKIP

Figure 3: Small-step semantics for commands

The small-step semantics of commands is also a total function defined by the
judgment s × c s′ × c′. That is to say, in the state s, execution of the
command c will change the state into s′ and it remains to execute c′. Details
can be found in Fig. 3. It remains to note that a command c at some state
s terminates if there exists a state s′ such that s, c s′, SKIP after a finite
number of execution steps. Else if such a state s′ does not exist, the command
c runs forever. Mind also that there is no run-time error since any command
apart from SKIP is allowed to execute at any state s. SKIP alone is used to
indicate the final step of some command set.

2.1 Adding exceptional abilities

Providing exceptional abilities to the standard IMP language is about enriching
the command set with throw and TRY/CATCH blocks. In addition to the ones
in Fig. 1, we also consider following commands:

cmd: c1 c2 ::= . . . | throw exc | try c1 catch exc⇒ c2

Figure 4: Syntax for additional commands

where exc is an exception name of a new type EName. There might be different
exception names but EName is the only type within the context that we introduce
in this paper. The small-step semantics for throw and TRY/CATCH commands
are detailed below:

3

(throw)
s, (throw exc; c) s, throw exc

(try1)
s, try SKIP catch exc⇒ c s, SKIP

(try2)
s, try (throw exc) catch exc⇒ c s, c

(try3)
exc1 exc2 : EName exc1 6= exc2

s, try (throw exc1) catch exc2 ⇒ c s, throw exc1

Figure 5: Small-step semantics for additional commands

Exceptional commands are pure with respect to the state effect: they neither
use nor modify the program state. However, they introduce another sort of com-
putational effect: the exception. In prior, we stated that the command SKIP

alone indicates the termination of a program. Now, we extend this by stating:
throw exc is also an end but an exceptional end.

Recall that the new language is abbreviated as “IMP+Exc” and the idea is to
certify equivalences between programs written in that language. To this extend,
Section 3 and Section 4 respectively study decorated logics for the state and the
exception which are combined in Section 5. Finally in Section 6, we translate
IMP+Exc semantics into decorated settings enriched with an implementation
in Coq. There, we give a bunch of examples of equivalent code blocks with
certified equivalence proofs. One of the main examples involves a program with
an infinite loop inside the try block in which an exception is thrown. As soon
as the exceptional case is met, the program terminates the loop, recovers the
exception and continues with an ordinary execution. We will prove that such a
program has both result and effect equivalence with another one (just made of
assignments) up to the state and the exception.

3 Decorated Logic for the state

Even though it is not syntactically mentioned, the usage/modification of the
memory state is allowed in imperative languages. For instance, a C function
may look up the value of a variable as well as another can modify it. That is an
ease in coding but in order to prove correctness of programs with such abilities,
one has to revert an explicit usage/manipulation of the state. Therefore, any
access to the state is treated as a computational effect: a syntactical term
f : X → Y is not interpreted as f : X → Y unless it is pure. Indeed, a term
which reads the program state has instead the interpretation: f : X × S → Y
while another term which updates the state is interpreted as: f : X×S → Y ×S
where ‘×’ is the product operator and S is the set of possible states. In [4], we
proposed a formal system to prove program properties involving the state, while
keeping the memory accesses and manipulations implicit. As in [1], decorated
logics for states are obtained from equational logics by classifying terms and

4

equations. Terms are classified as pure terms, accessors or modifiers, which is
expressed by adding a decoration or superscript, respectively (0), (1) and (2):
the decoration of a term (or an equation) characterizes the way it may interact
with the state. The decoration (0) is reserved for pure terms, while (1) is for
read-only (accessor) and (2) is for read-write (modifier) terms. Equations are
classified as strong or weak equations, denoted respectively by the symbols ≡
and ∼. Weak equation relates only the returned values, while strong equation
relates both values and the state effect. Let us start with the descriptions of
main features: syntax and rules.

3.1 Syntax and rules

Each type is interpreted as a set. In Fig. 6, 1 is the set of singleton while Vi is
the set of values that can be stored in any location i. Terms represent functions;
they are closed under composition and “pairs”, π1 and π2 represent the canon-
ical projections with 〈 〉X : X→ 1 being the canonical empty pair for each type
X. The basic interface functions are lookup i : 1 → Vi and update i : Vi → 1.
Fundamentally, lookup reads the value stored in a given location while update
stands to modify it. As mentioned, decorations are used to express the state

interaction of a given term. In particular, id(0), π
(0)
1 , π

(0)
2 and 〈 〉(0) are pure.

lookup(1) is an accessor while update(2) is a modifier. The usage of decora-
tions provides a new schema where term signatures are constructed without
any occurrence of the state set. So that signatures are kept close to syntax.
In addition, decorations give us the flexibility to cope with several interpreta-
tions of the state: any proof in decorated settings is valid for different state
interpretations.

Syntax :

Types: t ::= A | B | · · · | t× t | 1 | Vi s.t.i∈Loc

Terms: f ::= id | f ◦ f | 〈f, f〉 | π1 | π2 | 〈 〉 |

lookup i : 1→ Vi | update i : Vi → 1

Decoration for terms: (d) ::= (0) | (1) | (2)

Equations: e ::= f ≡ f | f ∼ f

Figure 6: Syntax for the state

The intended model is built with respect to the set of states, denoted S, which
never appears in the syntax. A pure term p(0) : X → Y is interpreted as a
function p : X → Y , an accessor a(1) : X → Y as a function a : X × S → Y
and a modifier m(2) : X → Y as a function m : X × S → Y × S. Obviously,
pure terms can be seen as accessors and accessors as modifiers on demand. For
instance, this allows term compositions to be directly done without recalling the
Kleisli composition. The complete characterization is given in [1].

5

Rules:

(equiv≡), (subs≡), (repl≡) for all decorations
(equiv∼), (subs∼) for all decorations, (repl∼) only when replaced term is pure

(unit∼)
f (2) : X → 1

f ∼ 〈 〉X
(≡-to-∼)

f (2) ≡ g(2)

f ∼ g
(ax1)

lookup i ◦ update i ∼ idV

(ax2)
for each pair of locations (i, j) s.t. i 6= j

lookup i ◦ update j ∼ lookup i ◦ 〈 〉V

(eq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eq2)
f
(2)
1 , f

(2)
2 : X → Y f

(2)
1 ∼ f

(2)
2 〈 〉

(0)
Y ◦ f

(2)
1 ≡ 〈 〉

(0)
Y ◦ f

(2)
2

f1 ≡ f2

(eq3)
for each loc. i, f

(2)
1 , f

(2)
2 : X → 1 lookup i(1) ◦ f

(2)
1 ∼ lookup i(1) ◦ f

(2)
2

f1 ≡ f2

(pair1)
f
(1)
1 : X → Y f

(2)
2 : X → Z

π1 ◦ 〈f1, f2〉 ∼ f1
(pair2)

f
(1)
1 : X → Y f

(2)
2 : X → Z

π2 ◦ 〈f1, f2〉 ≡ f2

Figure 7: Rules for the state

As stated in Fig. 7, given syntax is enriched with a set of rules with a special
focus on decorations. Strong equations form a congruence while weak equations
do not: the replacement rule holds only when the replaced term is pure. The
fundamental equations for states are provided by the rules (ax1) and (ax2). With
(ax1), we have lookup i(1) ◦ update i(2) ∼ idV

(0). This means that updating
the location i with a value v and then observing the value of the location does
return v. Clearly this is only a weak equation: its right-hand side does not
modify the state while its left-hand side usually does. With (ax2), lookup i(1) ◦

update j(2) ∼ lookup i(1) ◦ 〈 〉V
(0)

, we assume that updating the location j

with a value v and then reading the content of location i would return the same
result with first forgetting the value v then observing the content of location
i. They definitely have different effects on the state. Mind also that this
assumption is valid when i 6= j. There is an obvious conversion from strong to
weak equations (≡-to-∼), any term f : X→ 1 with no result returned (void) is
said to have an evident result equivalence with the canonical empty pair 〈 〉X by
(unit∼). In addition strong and weak equations coincide on accessors by rule

(eq1). Two modifiers f
(2)
1 , f

(2)
2 : X → Y modify the state in the same way if

and only if 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 : X → 1, where 〈 〉Y : Y → 1 throws out the
returned value. Then weak and strong equations are related by the property
that f1 ≡ f2 if and only if f1 ∼ f2 and 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2, by rule (eq2). For
each location i, this can be expressed as a pair of weak equations f1 ∼ f2 and
lookup i ◦ 〈 〉Y ◦ f1 ∼ lookup i ◦ 〈 〉Y ◦ f2, by rule (eq3). With (pair1) and
(pair2) categorical pairs are characterized: the pair structure 〈f1, f2〉 cannot be
used while both f1 and f2 are modifiers, since it would lead to a conflict on
the returned result. However, it can be used when only f1 is an accessor. By

6

(pair1), we state that 〈f1, f2〉
(2) has only result equivalence with f

(1)
1 and both

result and effect equivalence with f
(2)
2 by (pair2) .

3.2 Decorated logic for the state in Coq

We represent the set of memory locations by a Coq parameter Loc: Type.
Since memory locations may contain different types of values, we also assume
an arrow type Val : Loc→ Type that is the type of values contained in each
location.
Parameter Loc: Type. Parameter Val: Loc → Type.

Figure 8: Locations and values in Coq

The terms of the logic are defined through the inductive type named term which
establishes a new Type out of two input Types. The type term Y X is dependent.
It depends on the Type instances X and Y and represents the arrow type: X→ Y.
The constructor tpure takes a Coq side (pure) function and drops it into the
decorated environment. So that pure terms as id, π1, π2 and 〈 〉 are covered
within the scope of tpure.

Inductive term: Type → Type → Type :=
| comp : ∀ {X Y Z: Type}, term X Y → term Y Z

→ term X Z
| pair : ∀ {X Y Z: Type}, term X Z → term Y Z

→ term (X×Y) Z
| tpure : ∀ {X Y: Type}, (X → Y) → term Y X
| lookup : ∀ i:Loc, term (Val i) unit
| update : ∀ i:Loc, term unit (Val i).

Infix ”o” := comp (at level 60).

Inductive kind := pure | ro | rw.
Inductive is: kind → ∀ X Y, term X Y → Prop :=
| is tpure: ∀ X Y (f: X → Y),

is pure (@tpure X Y f)
| is comp: ∀ k X Y Z (f: term X Y)

(g: term Y Z), is k f → is k g → is k (f o g)
| is pair: ∀ k X Y Z (f: term X Z) (g: term Y Z),

is k f → is k g → is k (pair f g)
| is lookup: ∀ i, is ro (lookup i)
| is update: ∀ i, is rw (update i)
| is pure ro: ∀ X Y (f: term X Y),

is pure f → is ro f
| is ro rw: ∀ X Y (f: term X Y),

is ro f → is rw f.

Figure 9: Terms and decorations for the state in Coq

Decorations are enumerated: pure (0), ro (1) and rw (2) and inductively as-
signed to terms via the new type is. It builds a proposition out of a term

and a decoration. I.e., ∀i : Loc, is ro (lookup i) is a Prop instance, ensur-
ing that lookup i is an accessor. Last two constructors define the decoration
hierarchies.
Definition id {X: Type} : term X X := tpure id.
Definition pi1 {X Y: Type} : term X (X×Y) := tpure fst.
Definition pi2 {X Y: Type} : term Y (X×Y) := tpure snd.
Definition forget {X} : term unit X := tpure (fun ⇒ tt).
Definition constant {X: Type} (v: X): term X unit := tpure (fun ⇒ v).
Definition perm {X Y}: term (X×Y) (Y×X) := pair pi2 pi1.
Definition invpi1 {X}: term (X×unit) X := pair id forget.

Figure 10: Some derived terms for the state in Coq

Fig. 10 includes derivation of some terms that we latter use. I.e., 〈 〉 is handled
via tpure and called forget. Besides, we state the rules, in Fig 11, up to weak
and strong equalities by defining them in a mutually inductive way: mutuality
here is used to enable the constructors with both weak and strong equalities.

7

Reserved Notation ”x == y” (at level 80). Reserved Notation ”x ∼ y” (at level 80).

Inductive strong: ∀ X Y, relation (term X Y) :=
| subs-repl≡: ∀ X Y Z, Proper (@strong X Y ==> @strong Y Z ==> @strong X Z) comp
| eq1: ∀ X Y (f g: term X Y), is ro f → is ro g → f ∼ g → f == g
| eq2: ∀ X Y (f g: term Y X), (forget o f == forget o g) → f ∼ g → f == g
| eq3: ∀ X (f g: term unit X), (∀ i: Loc, lookup i o f ∼ lookup i o g) → f == g
| pair2: ∀ X Y’ Y (f1: term Y X) (f2: term Y’ X), is ro f1 → pi2 o pair f1 f2 == f2

with weak: ∀ X Y, relation (term X Y) :=
| subs∼: ∀ A B C, Proper (@weak C B ==> @strong B A ==> @weak C A) comp
| repl∼: ∀ A B C (g: term C B), (is pure g) → Proper (@weak B A ==> @weak C A) (comp g)
| unit∼: ∀ X (f g: term unit X), f ∼ g
| ax1: ∀ i, lookup i o update i ∼ id
| ax2: ∀ i j, i 6=j → lookup j o update i ∼ lookup j o forget
| ≡-to-∼: ∀ X Y (f g: term X Y), f == g → f ∼ g
| pair1: ∀ X Y’ Y (f1: term Y X) (f2: term Y’ X), is ro f1 → pi1 o pair f1 f2 ∼ f1

where ”x == y” := (strong x y) and ”x ∼ y” := (weak x y).

Figure 11: Rules for the state in Coq

One can simply derive the reflexivity property up to weak equality: given f ≡ f,
it suffices to convert strong equality into weak by (≡-to-∼). Now; we can form
the primitive properties of the state structure as in [10] but this time with
decorations.

1. annihilation lookup-update ∀i ∈ Loc, update i(2) ◦ lookup i(1) ≡ id unit(0)

2. interaction lookup-lookup ∀ i ∈ Loc, lookup i(1) ◦ forget (Val i)(0) ◦ lookup i(1) ≡

lookup i(1)

3. interaction update-update ∀ i ∈ Loc, update i(2) ◦ pi2(0) ◦ pair(update i, id (Val i))(2) ≡

update i(2) ◦ pi2(0)

4. interaction update-lookup ∀ i ∈ Loc, lookup i(1) ◦ update i(2) ∼ id (Val i)(0)

5. commutation lookup-lookup ∀ i 6= j ∈ Loc, pair(id (Val i), lookup j)(1) ◦ lookup i(1) ≡

perm j i(0) ◦ pair(id (Val j), lookup i)(1) ◦ lookup j(1)

6. commutation update-update ∀ i 6= j ∈ Loc, update j(2) ◦pi2(0) ◦pair(update i, id (Val j))(2) ≡

update i(2) ◦ pi1(0) ◦ pair(id (Val i), update j)(2)

7. commutation update-lookup ∀ i 6= j ∈ Loc, lookup j(1) ◦ update i(2) ≡ pi2(0) ◦

pair(update i, id (Val j))(2) ◦ pair(id (Val i), lookup j)(1) ◦ invpi1(0)

Figure 12: Primitive properties of the state

Then, we prove such properties within the decorated context and get these
proofs certified by Coq. In [3], we detail the implementation as well as the Coq
certified proof of commutation update-lookup. For the definitions of terms
invpi and perm one can refer back to Fig. 10. The complete Coq library with all
certified proofs can be found on https://forge.imag.fr/frs/download.php/649/STATES-0.8.tar.gz.

4 Decorated Logic for the exception

Exception handling is provided by most modern programming languages. It
allows to deal with anomalous or exceptional events which require special pro-
cessing. That brings a flexibility to the coding but in order to prove the correct-
ness of such programs one has to revert an explicit interaction with exceptions.

8

https://forge.imag.fr/frs/download.php/649/STATES-0.8.tar.gz

Therefore, any interaction with exceptional cases is treated as a new sort of com-
putational effect: a term f : X → Y is not interpreted as a function f : X → Y
unless it is pure. Indeed, a term which may raise an exception is instead in-
terpreted as a function f : X → Y + E and similarly, a term which may catch
an exception is interpreted as a function f : X + E → Y + E where ‘+’ is
disjoint union operator and E is the set of exceptions. Moreover, it has been
shown in [2] that the core part of this proof system is dual to one for the state
which is explained in Section 3. As in [3], decorated logics for exception are
obtained from equational logics by classifying terms and equations. Terms are
classified as pure terms, propagators or catchers, which is expressed by adding a
decoration or superscript, respectively (0), (1) and (2): the decoration of a term
(or an equation) characterizes the way it may cope with exceptional cases. The
decoration (0) is reserved for terms which are pure, while (1) is for throwers and
(2) is for catchers. Equations are classified as strong or weak equations, denoted
respectively by the symbols ≡ and ∼. Weak equation relates the ordinary cases
in programs, while strong equations relates both ordinary and exceptional cases.
Let us describe the main features of the logic: syntax and rules.

4.1 Syntax and rules

The full syntax is declared in Fig. 13 where 0 is the empty type while Ve repre-
sents the set of values which can be used as arguments for the exceptions with
name e. Terms represent functions; they are closed under composition and “co-
pairs” (or case distinction), inl and inr represent the canonical inclusions into
a coproduct (or disjoint union). The basic functions for dealing with exceptions
are tag e : Ve → 0 and untag e : 0 → Ve. A fundamental feature of the mech-
anism of exceptions is the distinction between ordinary (or non-exceptional)
values and exceptions. While tag e encapsulates its argument (which is an ordi-
nary value) into an exception, untag e is applied to an exception for recovering
this argument. The usual throw and try/catch constructions are built from
the more basic tag e and untag e operations [3]. The term downcast takes an
input term f and behaves exactly as f on ordinary arguments, if the argument
is exceptional then it enforces f to propagate it (in case f might catch it). As
mentioned, we use decorations on terms for expressing how they interact with
the exceptions. In particular, id(0), inl(0), inr(0) and [](0) are pure. Clearly
tag e(1) and downcast(1) are throwers while untag e(2) is a catcher. A thrower
may throw exceptions and must propagate any given exception, while a catcher
may recover from exceptions. Using decorations provides a new schema where
term signatures are constructed without any occurrence of a “type of excep-
tions”. Thus, signatures are kept close to the syntax. In addition, decorating
terms gives us the flexibility to cope with more than one interpretation of the
exceptions. This means that with such an approach, any proof in decorated
logic is valid for different implementations of the exceptions.

9

Syntax :

Types: t ::= A | B | · · · | t+ t | 0 | Ve s.t.e∈EName

Terms: f ::= id | f ◦ f | [f | f] | inl | inr | [] |

tag e : Ve → 0 | untag e : 0→ Ve | downcast

Decoration for terms: (d) ::= (0) | (1) | (2)

Equations: e ::= f ≡ f | f ∼ f

Figure 13: Syntax for the exception

The intended model is built with respect to the set of exceptions, denoted E,
which never appears in the syntax. It interprets each type X as a set X , each
pure term u(0) : X → Y as a function u : X → Y , each propagator a(1) : X → Y
as a function a : X → Y + E and each catcher f (2) : X → Y as a function
f : X + E → Y + E. The complete characterization is given in [3].

Rules:

(equiv≡), (subs≡), (repl≡) for all decorations
(equiv∼), (repl∼) for all decorations, (subs∼) only when substituted term is pure

(empty∼)
f (2) : 0→ X

f ∼ []X
(≡-to-∼)

f (2) ≡ g(2)

f ∼ g
(downcast∼)

f (2) : Y → X

downcast f ∼ f
(eax1)

untag e ◦ tag e ∼ idV

(eax2)
for each pair of exception names (e1, e2) s.t. e1 6= e2

untag e1 ◦ tag e2 ∼ []V ◦ tag e2

(eeq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eeq2)
f
(2)
1 , f

(2)
2 : Y → X f

(2)
1 ∼ f

(2)
2 f

(2)
1 ◦ []

(0)
Y ≡ f

(2)
2 ◦ []

(0)
Y

f1 ≡ f2

(eeq3)
for exc. name e, f

(2)
1 , f

(2)
2 : 0→ X f

(2)
1 ◦ tag e(1) ∼ ◦f

(2)
2 ◦ tag e(1)

f1 ≡ f2

(copair1)
f
(1)
1 : X → Y f

(2)
2 : Z → Y

[f1 | f2] ◦ inl ∼ f1
(copair2)

f
(1)
1 : X → Y f

(2)
2 : Z → Y

[f1 | f2] ◦ inr ≡ f2

Figure 14: Rules for the exception

As stated in Fig. 14, a set of rules enriches the syntax with a special focus on dec-
orations. Strong equations form a congruence while weak equations do not: the
replacement rule holds only when the replaced term is pure. Since, (downcast
f) and f behave the same on ordinary arguments, they are weakly equal ensured
by the rule (donwcast∼). The fundamental equations for states are provided by
the rules (eax1) and (eax2). With (ax1), we have untag e(2) ◦ tag e(1) ∼ idV

(0).
This means that encapsulating the argument with an exception of name e

followed by an immediate recovery would be equivalent to “doing nothing”
with respect to the ordinary values. Clearly this is only a weak equation: its
right-hand side has no exceptional case while its left-hand has. With (eax2),

10

untag e1
(2) ◦ tag e2

(1) ∼ []V ◦ tag e2
(1), we assume on the left that encap-

sulating an argument with an exception of name e2 and then recovering from
a different exception of name e1 would just lead e2 to be propagated. Whilst
on the right, the argument is encapsulated with e2 with no recovery attempt
afterwards. Thus, they behave different on exceptional values but the same on
ordinary ones: the equality in between is weak. There is an obvious conversion
from strong to weak equations (≡-to-∼), any term f : 0→ X with no input pa-
rameter is said to have an equivalence on ordinary values with the canonical
empty copair []X by (empty∼). In addition strong and weak equations coincide

on propagators by rule (eeq1). Two catchers f
(2)
1 , f

(2)
2 : X → Y have the same

effect up to the exceptional values if and only if f1 ◦ []Y ≡ f2 ◦ []Y : 0 → X .
Then weak and strong equations are related by the property that f1 ≡ f2 if
and only if f1 ∼ f2 and f1 ◦ []Y ≡ f2 ◦ []Y , by rule (eeq2). For each excep-
tion name e, this can be expressed as a pair of weak equations f1 ∼ f2 and
f1 ◦ []Y ◦ tag e ∼ f2 ◦ []Y ◦ tag e, ensured by the rule (eeq3). With (copair1)
and (copair2) categorical copairs are characterized: the copair structure [f1 | f2]
cannot be used while both f1 and f2 are catchers, since it would lead to a con-
flict when the argument is an exception. However, it can be used when only f1
is a propagator. With (copair1), we state that ordinary arguments are treated

by [f1 | f2]
(2) as they would be by f

(1)
1 and with (copair2), both ordinary and

exceptional arguments are treated by [f1 | f2]
(2) as they would be by f

(2)
2 .

4.2 Decorated logic for the exception in Coq

Coq implementation follows the same approach with the one for the state. We
represent the set of exception names by a Coq parameter EName: Type, we
assume an arrow type Val : EName→ Type which is the set of parameters for
each exception name. Then, we inductively define terms and assign decorations:

Parameter EName: Type. Parameter EVal: EName → Type.

Figure 15: Exception names and values in Coq

We use keywords pure, propagator and thrower instead of (0), (1) and (2).

Inductive term: Type → Type → Type :=
| downcast : ∀{X Y} (f: term Y X), term Y X
| copair : ∀ {X Y Z: Type}, term Z X → term Z Y

→ term Z (X + Y)
| tpure : ∀ {X Y: Type}, (X → Y) → term Y X
| tag : ∀ e:EName, term Empty set (EVal e)
| untag : ∀ e:EName, term (EVal e) Empty set.

Inductive kind := pure | propagator | catcher.

Inductive is: kind → ∀ X Y, term X Y → Prop :=
| is downcast: ∀ X Y (f: term Y X),

is propagator (downcast f)
| is tpure: ∀ X Y (f: X → Y),

is pure (@tpure X Y f)
| is copair: ∀ k X Y Z (f: term X Z)

(g: term Y Z), is k f → is k g → is k (pair f g)
| is tag: ∀ i, is propagator (tag e)
| is untag: ∀ i, is catcher (untag e)
| is pure propagator: ∀ X Y (f: term X Y),

is pure f → is propagator f
| is propagator catcher: ∀ X Y (f: term X Y),

is propagator f → is catcher f.

Figure 16: Terms and decorations for the exception in Coq

Some derived terms including throw and TRY/CATCH blocks are hereby stated:

11

Definition id {X: Type} : term X X := tpure id.
Definition emptyfun (X: Type) (e: Empty set) : X := match e with end.
Definition empty X: term X Empty set := tpure (emptyfun X).
Definition inl {X Y} : term (X+Y) X := tpure inl.
Definition inr {X Y} : term (X+Y) Y := tpure inr.
Definition throw (X: Type) (e: EName): term X unit := (empty X) o tag e.
Definition TRY CATCH (X Y: Type) (e:EName) (f: term Y X) (g: term Y unit)

:= downcast(copair (@id Y) (g o untag e) o inl o f).
Definition ttrue : term (unit+unit) unit := inl.
Definition ffalse : term (unit+unit) unit := inr.

Figure 17: Some derived terms for the exception in Coq

The functions inl and inr indicate coprojections. In addition, [] is called
empty. ttrue and ffalse correspond to boolean true and false. The operation
throw e is just taging an exception of name e followed by []X which is used to
bridge the execution to the next command. Within the scope of the intended
model, it is used to include 0 into 0 + X . To build (TRY f CATCH e g), we
use copairs to have case distinction: (1) either the term f does not throw an
exception so that the term g is never triggered. That corresponds to the idY case
of the copair. (2) or else, the code f throws an exception then through untag e,
the exception would be recovered (if pattern matching is fine with exception
names) and execution continues with the term g. The whole TRY− CATCH block
is either pure (in case no exceptional case has been met) or a thrower/propagator
(in case, the thrown exception by f has not been caught or a previously thrown
exception has been propagated). This is ensured the rule (downcast∼). Now;
we get the rules in Coq:

Reserved Notation ”x == y” (at level 80). Reserved Notation ”x ∼ y” (at level 80).
Definition pure id X Y (x y: term X Y) := is pure x ∧ x = y.

Inductive strong: ∀ X Y, relation (term X Y) :=
| subs-repl≡: ∀ X Y Z, Proper (@strong X Y ==> @strong Y Z ==> @strong X Z) comp
| eeq1: ∀ X Y (f g: term X Y), is propagator f → is propagator g → f ∼ g → f == g
| eeq2: ∀ X Y (f g: term X Y), (f o empty == g o empty) → f ∼ g → f == g
| eeq3: ∀ X (f g: term X Empty set), (∀ e: EName, f o tag e ∼ g o tag e) → f == g
| copair2: ∀ X Y Z (f1: term Y X) (f2: term Y Z), is propagator f1 → pair f1 f2 o inr == f2
| s-equiv1: ∀ X Y (f: term X Y), f == f

with weak: ∀ X Y, relation (term X Y) :=
| subs∼ : ∀ A B C, Proper (@weak C B ==> @pure id B A ==> @weak C A) comp
| repl∼ : ∀ A B C, Proper (@strong C B ==> @weak B A ==> @weak C A) comp
| empty∼: ∀ X (f g: term X Empty set), f ∼ g
| donwcast∼: ∀ X Y (f: term Y X), downcast f ∼ f
| eax1: ∀ e, untag e o tag e ∼ id
| eax2: ∀ e1 e2, e1 6=e2 → untag e1 o tag e2 ∼ empty o tag e2
| ≡-to-∼: ∀ X Y (f g: term X Y), f == g → f ∼ g
| copair1: ∀ X Y Z (f1: term Y X) (f2: term Y Y), is propagator f1 → copair f1 f2 o inl ∼ f1

where ”x == y” := (strong x y) and ”x ∼ y” := (weak x y).

Figure 18: Rules for the exception in Coq

12

1. propagator propagates: ∀g(1) : Y → X, g(1) ◦ []
(0)
Y ≡ []

(0)
X

2. annihilation untag-tag: tag t(1) ◦ untag t(2) ≡ id 0
(0)

3. annihilation catch-raise: (TRY− CATCH f (t ⇒ (throw t Y)))(1) ≡ f(1)

4. commutation untag-untag: s 6= t, (untag t(2) + id s(0)) ◦ untag s(2) ≡ (id t(0) + untag s(2)) ◦ untag t(2)

5. interaction propagator-throw: g(1) : Y → X, g(1) ◦ (throw t Y) ≡ (throw t X)

6. commutation catch-catch: s 6= t, (TRY− CATCH f (t ⇒ g | s ⇒ h))(1) ≡ (TRY − CATCH f (s ⇒ h | t ⇒ g))(1)

Figure 19: Primitive properties of the exception

After all, we give the properties of the exception followed by the related proofs
certified in Coq. In [3], we detail the implementation and the certified proof
of the propagator propagates. The complete Coq library with all certified
proofs is available on https://forge.imag.fr/frs/download.php/648/EXCEPTIONS-0.3.tar.gz.

5 Combination: the state & the exception

In order to formally cope with both the state and the exception effects in the
same program, one needs to combine the related formal models. For instance in
Haskell, effects are modeled by monads and combination is done through monad
transformers. However, here we just merge the related decorated logics. Let us
start with explanation of the syntax:

Syntax :

Types: t ::= A | B | · · · | t+ t | t× t | 1 | 0 |

Vi s.t.i∈Loc | Ve s.t.e∈EName

Terms: f ::= id | f ◦ f | [f | f] | 〈f, f〉 |

| [] | 〈 〉 | inl | inr | π1 | π2 | downcast |

lookup i : 1→ Vi | update i : Vi → 1 |

tag e : Ve → 0 | untag e : 0→ Ve

Decoration for terms: (d) ::= (0, 0) | (0, 1) | (0, 2) | (1, 0) | (1, 1) | (1, 2) |

(2, 0) | (2, 1) | (2, 2)

Equations: e ::= f ≡≡ f | f ≡∼ f | f ∼≡ f | f ∼∼ f

Figure 20: Syntax for the combined state and exception

Types and terms are simply unionized. The decorations are paired off to cover
all possible combinations: left component is given up to the state while right is
to the exception. I.e., f (1,2) says that f is an accessor with respect to the state
and catcher to the exception. The hierarchies among decorations are preserved:
f(0,d)

f(1,d) ,
f(1,d)

f(2,d) ,
f(d,0)

f(d,1) and f(d,1)

f(d,2) . Obviously, we have all possible combinations

of equalities with preserved hierarchies: (≡≡-to-≡∼)
f≡≡g

f≡∼g
, (≡≡-to-∼≡)

f≡≡g

f∼≡g
and

(∼∼-to-≡≡)
f(d1,d2)∼∼ g(d3,d4)

f≡≡ g
only when d1, d2, d3, d4 ≤ 1. Here we form the combined

13

https://forge.imag.fr/frs/download.php/648/EXCEPTIONS-0.3.tar.gz

rules:

1. ≡≡ relates the properties that are strongly equal both up to the state

and the exception: (eq1) is now with f
(d1,2)
1 , f

(d2,2)
2 , (eq2) and (eq3) with

f
(2,2)
1 , f

(2,2)
2 and (pair2) with f

(1,2)
1 , f

(2,2)
2 . In addition, (eeq1) with f

(2,d1)
1 ,

f
(2,d2)
2 , (eeq2) and (eeq3) with f

(2,2)
1 , f

(2,2)
2 and (copair2) with f

(2,1)
1 , f

(2,2)
2 .

2. ∼≡ relates the properties that are weakly equal up to the state: (unit∼) is
now with f (2,2), (ax1) and (ax2) with lookup(1,0), update(2,0) and (pair1)

with f
(1,2)
1 , f

(2,2)
2

3. ≡∼ relates the properties that are weakly equal up to the exception:
(empty∼) is with f (2,2), (downcast∼) with f (2,2), (eax1) and (eax2) with

tag(0,1), untag(0,2) and (copair1) with f
(2,1)
1 , f

(2,2)
2

4. ∼∼ relates nothing but the conversions: ∼≡ and ≡∼ can be seen as ∼∼.

6 IMP+Exc over decorated logic

Finally, it comes to translate the semantics detailed in Section 2 into the com-
bined decorated settings. Given that IMP only provides the integer data type,
the values that can be stored in any location i are just integers. So that any
occurrence of (Val i) in term signatures is replaced by Z. Here, we start with
expressions and recursively define the translator function dExp. It mainly takes
an expression and outputs a decorated term of type term Z unit or term B unit

depending on the input expression type. Below, we have it recursively defined:

dExp n ⇒ (constant n)
(0,0)

dExp x ⇒ (lookup x)(1,0)

dExp (f exp) ⇒ (tpure f)(0) ◦ (dExp exp)(1,0)

dExp 〈exp1, exp2〉 ⇒ 〈dExp exp1, dExp exp2〉
(1,0)

Figure 21: Translating expressions into decorated settings

where f is a unary pure term. Besides, we have some additional rules to make
use of some pure algebraic operations in the decorated setting. Before going into
the rule details, we define some terms that help to form them: given in Fig. 22,
lpi is the syntactical term providing loop iteration(s) together with the rule
(imp-loopiter) while pbl forms terms of type term (unit+ unit) B for com-
patibility issues in rule statements (imp2) and (imp4).

14

lpi (b : term unit (unit+ unit)) (f : term unit unit) := tpure (λx : unit.x).

pbl := tpure (bool to two)

where bool to two (b : bool) := (if b then (inl tt) else (inr tt)).

such that tt : unit and inl, inr : unit→ (unit+ unit)

Figure 22: Additional terms: IMP specific

(imp− loopiter)
∀(b : term unit (unit+ unit)) (f : term unit unit)

lpi b f ≡≡
[

(lpi b f) ◦ f
∣

∣id
]

◦ b

(imp1)
∀p, q : Z, (f : Z× Z→ Z)

tpure f ◦ 〈constant p, constant q〉 ≡≡ (constant f(p, q))

(imp2)
∀p, q : Z, (f : Z× Z→ B) f(p, q) = false

pbl ◦ tpure f ◦ 〈constant p, constant q〉 ≡≡ ffalse

(imp4)
∀p, q : B, (f : B× B→ B) f(p, q) = false

pbl ◦ tpure f ◦ 〈constant p, constant q〉 ≡≡ ffalse

(imp6)
f : Y→ Z g : X→ Y

tpure f ◦ tpure g ≡≡ tpure (λx.f(g x))

(imp7)
f g : Y→ X (∀x, f x = g x)

tpure f ≡ tpure g

Figure 23: Additional rules: IMP specific

In (imp2) and (imp4) by replacing false into true and ffalse into ttrue

we get (imp3) and (imp5) that are not explicitly stated here. The fact that
IMP commands are of type 1→ 1, they will be designed in such a way that
domains and codomains being set to unit within the decorated scope. Now;
we recursively define the translator function dCmd which establishes a decorated
term of type term unit unit, out of an input command:

15

dCmd SKIP ⇒ (id unit)
(0,0)

dCmd (x := a) ⇒ (update x)(2,0) ◦ (dExp a)(1,0)

dCmd (c1; c2) ⇒ (dCmd c2)
(2,0) ◦ (dCmd c1)

(2,0)

dCmd (cond b c1 c2) ⇒
[

dCmd c1

∣

∣

∣
dCmd c2

](2,0)

◦ pbl(0,0) ◦ (dExp b)(1,0)

dCmd (while b do c) ⇒
[

(lpi (pbl ◦ (dExp b)) (dCmd c)) ◦ (dCmd c)
∣

∣

∣
id

](2,0)

◦ pbl(0,0) ◦ (dExp b)
(1,0)

dCmd (throw exp) ⇒ []1
(0,0)
◦ tag exp(0,1)

dCmd (try c1 catch exp⇒ c2) ⇒ ↓ (
[

id
∣

∣

∣
c2 ◦ untag exp

]

◦ inl ◦ c1)
(0,1)

Figure 24: Translating commands into decorated settings

Let us take a closer look into conditionals and loops in terms of diagrams:

1

ttrue

��

c1

##H
HH

HH
HH

HH
H

1
dExp b

// B
pbl b

// 1 + 1
[

c1

∣

∣c2

]

// 1

1

ffalse

OO

c2

;;wwwwwwwwww

1

ttrue

��

c
// 1

lpi b c

��

1
dExp b

// B
pbl b

// 1 + 1
[

(lpi b c) ◦ c

∣

∣id1

]

// 1

1

ffalse

OO

id1

55llllllllllllllllll

Figure 25: (cond b c1 c2) and (while b do c) in decorated settings

there, we use categorical copairs to have case distinction. For instance, in Fig. 25
on the left, after the condition check if the boolean evaluates into ttrue, then
we have c1 in execution or else c2. The only difference on the right is that as
long as the boolean evaluates into ttrue, c is in execution: diagrammatically,
it says that the arrow lpd b c is each time replaced by the whole diagram it-
self. As mentioned, this property is provided by the syntactic term lpd and the
attached rule (imp-loopiter). When the boolean evaluates into ffalse, we
have id forcing the loop to terminate.

Contrarily, in the translation of throw and try/catch, the basis is the core
decorated operations for the exception effect. Recall that they are defined as
they are given in Section 4.2 with a single difference in the signatures: do-
mains/codomains are now set to 1. Below, we have the translation in terms of
diagrams:

16

1
tag exp

// 0
[]1

// 1

1

inl
��

id1

**UU
UUU

UUU
UUU

UUU
UUU

UUU
U

1
c1

// 1
inl

// 1 + 0
[

id1

∣

∣c2 ◦ untag exp

]

// 1

0

inr

OO

untag exp
// 1

c2

::tttttttttt

Figure 26: (throw exp) and (try c1 catch exp⇒ c2) in decorated settings

We implement such formalizations in Coq:

Inductive Exp : Type → Type :=
| const : ∀ A, A → Exp A
| loc : Loc → Exp Z
| apply : ∀ A B, (A → B) → Exp A → Exp B
| pExp : ∀ A B, Exp A → Exp B → Exp (A ×
B).

Fixpoint dExp A (e: Exp A): term A unit :=
match e with
| const Z n ⇒ constant n
| loc x ⇒ lookup x
| apply f x ⇒ tpure f o (dExp x)
| pExp x y ⇒ pair (dExp x) (dExp y)

end.

Figure 27: IMP+Exc expressions in Coq

Expressions are inductively defined forming a new Coq Type, Exp. Indeed, Exp
is a dependent type. That means that the type of Exp A depends on the term
A: Type. For instance, when A := B, we build the type for boolean expressions
while the case A := Z enables us to construct the type for arithmetic expressions.
Obviously, Exp is polymorphic, too. Speaking of the constructors: an expres-
sion might be a constant term (constructed by const), a variable (by loc), an
expression with an applied pure term (by apply) or a pair of expressions (by
pExp). The translation given in Fig. 21 is characterized by the fixpoint dExp.

A similar idea of implementation follows for the commands:

Inductive Cmd : Type :=
| skip : Cmd
| sequence : Cmd → Cmd → Cmd
| assign : Loc → Exp Z → Cmd
| cond : Exp B → Cmd → Cmd → Cmd
| while : Exp bool → Cmd → Cmd
| throw : EName → Cmd
| try catch : EName → Cmd → Cmd → Cmd.

Fixpoint dCmd (c: Cmd): (term unit unit) :=
match c with
| skip ⇒ (@id unit)
| sequence c0 c1 ⇒ (dCmd c1) o (dCmd c0)
| assign i a ⇒ (update i) o (dExp a)
| cond b c2 c3 ⇒ copair (dCmd c2) (dCmd c3)

o (pbl o (dExp b))
| while b c4 ⇒ (copair (lpd (pbl o (dExp b))

(dCmd c4) o (dCmd c4))
(@id unit)) o (pbl o (dExp b))

| throw e ⇒ (throw unit e)
| try catch e c1 c2 ⇒ (@TRY CATCH (dCmd c1)

(dCmd c2))
end.

Figure 28: IMP+Exc commands in Coq

In Fig. 28 on the left, we inductively define commands and on the right, re-
cursively translate their behaviors into decorated settings. This translation is
similar to the one given in Fig. 24, but this time done in Coq terms. Within
the above context, we retain sufficient material to prove equivalences among
programs involving not only the state but also the exception effect.

17

6.1 Program equivalence proofs: the state and the excep-

tion

Here, we exemplify a bunch of program equivalence proofs. Note that for the

sake of simplicity, we will use ux, lx, (t op) and (c p) instead of (update x)(2,0),

(lookup x)
(1,0)

, (tpure op)
(0,0)

and (constant p)
(0,0)

, respectively.

Remark 6.1. IMP specific properties of the state are slightly different than their

generic versions given in Fig. 12. The ones we use through the following proofs

are re-stated below. The full certified proofs can be found in the Coq release: see

the given link at the end of the section.

1. interaction update-update ∀ x ∈ Loc p, q : Z, ux ◦ (c p) ◦ ux ◦ (c q) ≡ ux ◦ (c p)

2. commutation update-update ∀ x 6= y ∈ Loc p, q : Z, ux ◦ (c p) ◦ uy ◦ (c q)
≡ uy ◦ (c q) ◦ ux ◦ (c p)

3. commutation-lookup-constant-update ∀ x ∈ Loc, p, q ∈ Z, 〈lx, (c q)〉◦ux◦(c p) ≡ 〈(c p), (c q〉)◦
ux ◦ (c p)

Figure 29: Primitive properties of the state: IMP specific

Lemma 6.2. For each f(2,0), g(2,0) : Cmd and b(0,0) : bool, let prog3 = (if b

then f else g) and prog4 = (if b then (if b then f else g) else g). Then

prog3 ≡≡ prog4.

Proof. We first sketch the diagrams of both programs as below:

1

inl

��

f

%%J
JJ

JJ
JJ

JJ
JJ

1
c b

// B
pbl

// 1 + 1
[

f

∣

∣g

]

// 1

1

inr

OO

g

::ttttttttttt

1

inl

��

k

%%J
JJ

JJ
JJ

JJ
JJ

1
c b

// B
pbl

// 1 + 1
[

k

∣

∣g

]

// 1

1

inr

OO

g

::ttttttttttt

where k = (if b then f else g). Thus,
[

f
∣

∣g
]

◦ pbl ◦ c b ≡
[

k
∣

∣g
]

◦ pbl ◦ c b.
The proof proceeds by the induction on b. If b = false, by unfolding pbl and
(c false), we have

[

f
∣

∣ g
]

◦ tpure(bool to two) ◦ tpure(λx : unit.false)≡
[

k
∣

∣ g
]

◦ tpure(bool to two) ◦ tpure(λx : unit.false). We rewrite (imp6)

to get
[

f
∣

∣ g
]

◦ tpure(λx : unit.bool to two false) ≡
[

k
∣

∣ g
]

◦ tpure

(λx : unit.bool two false). Now, we cut tpure (λx : unit.bool to two false)
≡≡ inr. So that we obtain

[

f
∣

∣ g
]

◦ inr ≡≡
[

k
∣

∣ g
]

◦ inr. Then, we
use (copair2), and finally have g ≡≡ g. It remains to show tpure (λx : unit.
bool to two false) ≡≡ inr. By simplifying tpure (λx : unit. bool to two

false) and unfolding inr, we have tpure (λx : unit. inr x) ≡≡ (tpure inr).
Now, we apply (imp7) and get ∀x : unit, inr x = inr x.

18

Else if b = true, by following above procedure with true (instead of false)
we first handle

[

f
∣

∣g
]

◦ inl ≡≡
[

k
∣

∣g
]

◦ inl and then freely convert ≡≡ into ≡∼.
There, rewriting the rule (copair1) yields f ≡∼ k. We unfold k with b = true.
Thus f ≡∼

[

f
∣

∣ g
]

◦ inl. Now by rewriting (copair1), we have f ≡∼ f.

Lemma 6.3. For each x : loc, let prog5 = (x := 2; while (x < 11) do x :=
x+ 4;) and prog6 = (x := 14). Then prog5 ≡≡ prog6.

Proof. In the proof structure, we first deal with the pre-loop assignments and the
looping pre-condition. Since it evaluates into true, in the second step we identify
things related to the first loop iteration. The third step primarily studies the
second and then the third loop iteration after which the looping pre-condition
switches to false. Finally, we explain the program termination. Let us sketch
the diagram of prog5:

1 1

ttrue

��

f
// 1

lpi b f

��

1
c 2

// Z
ux

// 1
〈lx,c 11〉

//

lx

<<xxxxxxxxxx

c 11
""F

FF
FF

FF
FF

F Z
2 tpure <

//

π1

OO

π2

��

B
pbl

// 1 + 1
[

(lpi b f) ◦ f

∣

∣id1

]

// 1

1 1

ffalse

OO

id1

55kkkkkkkkkkkkkkkkkkk

where f = (x := x+ 4) and b = (x < 11).

1. So that we have
[

(lpi b f) ◦ f
∣

∣ id1

]

◦ pbl ◦ (tpure <) ◦ 〈lx, (c 11)〉
◦ ux ◦ (c 2) ≡≡ ux ◦ (c 14). Let us try to simplify it as far as possible.
By commutation− lookup− constant− update, we obtain

[

(lpibf) ◦

f
∣

∣ id1

]

◦ pbl ◦ (tpure <) ◦〈(c 2), (c 11)〉 ◦ ux ◦ (c 2) ≡≡ ux ◦ (c 14). By

rewriting (imp2):
[

(lpi b f) ◦ f
∣

∣id1

]

◦ ttrue ◦ ux ◦ (c 2)≡≡ ux ◦ (c 14).
We first convert ≡≡ into ≡∼ and then rewrite (copair1). So that we
have (lpi b f) ◦ f ◦ ux ◦ (c 2) ≡∼ ux ◦ (c 14) which unfolds (lpi b f)
◦ ux ◦ (tpure +) ◦ 〈lx, c 4〉 ◦ ux ◦ (c 2) ≡∼ ux ◦ (c 14). Since, there is
no exceptional case, we are back to ≡≡. By rewriting commutation

−lookup −const ant −update, we obtain (lpi b f) ◦ ux ◦ (tpure +)
◦ 〈c 2, c 4〉 ◦ ux ◦ (c 2) ≡≡ ux ◦ (c 14). The rule (imp2) gives (lpi
b f) ◦ ux ◦ (c 6) ◦ ux ◦ (c 2) ≡≡ ux ◦ (c 14). Now, by the lemma
interaction-update-update, we get (lpi b f) ◦ ux ◦ (c 6) ≡≡ ux ◦
(c 14).

2. We can rewrite (imp-loopiter) and get
[

(lpi b f) ◦ f
∣

∣ id1

]

◦ pbl

◦ (tpure <) ◦ 〈lx, (c 11)〉 ◦ ux ◦ (c 6) ≡≡ ux ◦ (c 14). In the second
iteration with the above procedure, we have

[

(lpi b f) ◦ f
∣

∣ id1

]

◦ pbl
◦ (tpure <) ◦ 〈lx, (c 11)〉 ◦ ux ◦ (c 10) ≡ ≡ ux ◦ (c 14).

19

3. The third iteration yields
[

(lpi b f) ◦ f
∣

∣ id1

]

◦ pbl ◦ (tpure <) ◦
〈lx, (c 11)〉 ◦ ux ◦ (c 14) ≡≡ ux ◦ (c 14). Now; again by rewriting the
lemma commutation-lookup-constant-update, we have

[

(lpi b f) ◦

f
∣

∣ id1

]

◦ pbl ◦ (tpure <) ◦ 〈(c 14), (c 11)〉 ◦ ux ◦ (c 14) ≡≡ ux ◦ (c 14).

We rewrite (imp2) and then obtain
[

(lpi b f) ◦ f
∣

∣ id1

]

◦ inr ◦ ux ◦
(c 14) ≡≡ ux ◦ (c 14).

4. Finally, it suffices to rewrite (copair2); id1 ◦ ux ◦ (c 14) ≡≡ ux ◦ (c 14).

Lemma 6.4. For each x y : Loc, e : EName, let prog3 = (x := 1; y := 20; try
((while (tt) do (if (x <= 0) then (throw e) else (x := x− 1)))) catch (e ⇒
(y := 7))) and prog4 = (x := 0; y := 7) . Then prog3 ≡≡ prog4.

Proof. Within the below enumerated proof structure, we first tackle with the
downcast operator. The second task is to deal with the first loop iteration
which has the state but no exception effect. In the third, we study the second
iteration of the loop where an exception is thrown. Finally, in the fourth step,
we explain the loop termination followed by the exception recovery and the
program termination. Let us now sketch the diagram of prog3:

1

inl
��

tag e
// 0

[]1

""E
EE

EE
EE

E

1

ttrue

��

b
// B

pbl
// 1 + 1

[

[]1◦tag e

∣

∣c2

]

// 1

lpi ffalse c1

rr

lpi ttrue c1

xx

1

inr

OO
c2

55kkkkkkkkkkkkkkkkkk
1

inl
��

id1

))S
SSS

SSS
SSS

SSS
SSS

SS

1
c0

// 1 + 1

[

(lpi ttrue c1)◦
[

[]1◦tag e

∣

∣c2

]

◦pbl◦b

∣

∣

∣
id1

]

// 1
inl

// 1 + 0
[

id1

∣

∣c3 ◦ untag exp

]

// 1

1

ffalse

OO

id1

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 0

inr

OO

untag exp
// 1

c3

<<yyyyyyyy

where b = (x <= 0), c0 = (x := 0; y := 20), c1 = (if(x <= 0) then(throw e)
else (x := x− 1)), c2 = (x := x− 1) and c3 = (y := 7).

1. We have ↓
(

[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦
[

(lpi ttrue c1) ◦
[

[]1 ◦

tag e
∣

∣ c2
]

◦ pbl ◦ b
∣

∣

∣
id1

]

◦ ttrue
)

◦ uy ◦ (c 20) ◦ ux ◦ (c 1) ≡≡

uy ◦ (c 7) ◦ ux ◦ (c 0). We first convert ≡≡ into ≡∼, then rewrite the

(downcast∼) rule and get
[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦
[

(lpi ttrue c1)

◦
[

[]1 ◦ tag e
∣

∣ c2
]

◦ pbl ◦ b
∣

∣

∣
id1

]

◦ ttrue ◦ uy ◦ (c 20) ◦ ux ◦ (c 1)

≡∼ uy ◦ (c 7) ◦ ux ◦ (c 0). Rewriting commutation-update-update, on

20

both sides, gives
[

id1

∣

∣c3 ◦ untag e
]

◦inl ◦
[

(lpi ttrue c1) ◦
[

[]1 ◦ tag e
∣

∣ c2
]

◦ pbl ◦ b
∣

∣

∣
id1

]

◦ ttrue ◦ ux ◦ (c 1) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0)

◦ uy ◦ (c 7).

2. Now; we rewrite the rule (copair1), and handle
[

id1

∣

∣ c3 ◦ untag e
]

◦

inl ◦ (lpi ttrue c1) ◦
[

[]1 ◦ tag e
∣

∣ c2
]

◦ pbl ◦ b ◦ ux ◦ (c 1) ◦ uy ◦

(c 20) ≡∼ ux ◦ (c 0). By unfolding b, we get
[

id1

∣

∣ c3 ◦ untag e
]

◦ inl

◦ (lpi ttrue c1) ◦
[

[]1 ◦ tag e
∣

∣ c2
]

◦ pbl ◦ (tpure <=) ◦ 〈lx (c 0)〉
◦ ux ◦ (c 1) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 7). With the help of
lemma commutation− lookup− constant− update, we obtain

[

id1

∣

∣ c3

◦ untag e
]

◦inl ◦ (lpi ttrue c1) ◦
[

[]1 ◦ tag e
∣

∣ c2
]

◦ pbl ◦ (tpure
<=) ◦ 〈(c 1), (c 0)〉 ◦ ux ◦ (c 1) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 7).
The rule (imp2) gives

[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦ (lpi ttrue c1) ◦
[

[]1 ◦ tag e
∣

∣ c2
]

◦ ffalse ◦ ux ◦ (c 1) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0)

◦ uy. ◦ (c 7). We now rewrite (copair2)
[

id1

∣

∣ c3 ◦ untag e
]

◦ inl

◦ (lpi ttrue c1) ◦ c2 ◦ ux ◦ (c 1) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦
(c 7). Here, we unfold c2,

[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦ (lpi ttrue c1)
◦ ux ◦ (tpure −) ◦ 〈lx, (c 1)〉 ◦ ux ◦ (c 1) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0)
◦ uy ◦ (c 7). The lemma commutation− lookup− constant− update

gives
[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦ (lpi ttrue c1) ◦ ux ◦ (tpure −) ◦
〈(c 1), (c 1)〉 ◦ ux ◦ (c 1) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦0(c 7). We
rewrite (imp1) and then get

[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦ (lpi ttrue c1)
◦ ux ◦ (c 0) ux ◦ (c 1) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 7). We again
rewrite the lemma commutation-update-update and obtain

[

id1

∣

∣ c3 ◦

untag e
]

◦ inl ◦ (lpi ttrue c1) ◦ ux ◦ (c 0) ◦ uy ◦ (c 20) ≡∼ ux◦ (c 0)
◦ uy ◦ (c 7).

3. We re-iterate the loop via (imp-loopiter) with ux ◦ (c 0) ◦ uy ◦ (c 20):
[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦
[

(lpi ttrue c1) ◦ c1
∣

∣ id
]

◦ ttrue ◦ ux ◦ (c 0)
◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 7). We first rewrite (copair1) and
unfold c1:

[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦ (lpi ttrue c1) ◦
[

throw e 1
∣

∣c2
]

◦ pbl ◦ (tpure <=) ◦ 〈lx, (c 0)〉 ◦ ux ◦ (c 0) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0)
◦ uy ◦ (c 20). By rewriting commutation− lookup− constant− update

and (imp3), the comparison yields in ttrue. So that:
[

id1

∣

∣ c3 ◦ untag

e
]

◦ inl ◦ (lpi ttrue c1) ◦
[

throw e 1
∣

∣ c2
]

◦ ttrue ◦ ux ◦ (c 0)
◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 20). By (copair1), the exception
is thrown:

[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦
(

(lpi ttrue c1) ◦ throw e

1
)

◦ ux ◦ (c 0) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 20). Now; via

interaction-propagator-throw, we get
[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦
(throw e 1) ◦ ux ◦ (c 0) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 20).

4. Here, we first unfold throw:
[

id1

∣

∣ c3 ◦ untag e
]

◦ inl ◦ []1 ◦ tag e ◦ ux ◦
(c 0) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 20) then, cut inl ◦ []1 ≡≡ inr.
Thus, we have

[

id1

∣

∣ c3 ◦ untag e
]

◦ inr ◦ tag e ◦ ux ◦ (c 0) ◦ uy ◦
(c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 7). By (copair2), c3 ◦ untag e ◦ tag e ◦

21

ux ◦ (c 0) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 7). Since ux ◦ (c 0) ◦ uy ◦
(c 20) is pure up to the exception, we rewrite (eax1) to get c3 ◦ ux ◦ (c 0)
◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy◦ (c 7). If follows c3 = (uy ◦ (c 7)) that
uy ◦ (c 7) ◦ ux ◦ (c 0) ◦ uy ◦ (c 20) ≡∼ ux◦ (c 0) ◦ uy ◦ (c 7). We now
rewrite commutation− update− update on the left to have ux ◦ (c 0) ◦
uy ◦ (c 7) ◦ uy ◦ (c 20) ≡∼ ux ◦ (c 0) ◦ uy ◦ (c 7). Finally, it suffices to
rewrite interaction− update−update, ux ◦ (c 0) ◦ uy ◦ (c 7) ≡∼ ux ◦
(c 0) ◦ uy ◦ (c 7). It still remains to prove that inl ◦ []1 ≡≡ inr: since
everything is pure up to the exception, we have inl ◦ []1 ≡∼ inr. Now,
(unit∼) suffices to have []1+1 ≡∼ []1+1.

The complete Coq library with all certified proofs can be found on https://forge.imag.fr/frs/download.php/651/IMP-STATES-

7 Conclusion

We have presented new frameworks for formalizing the treatment of the state
and the exception via the decorated logic both separately and combined with
Coq implementations. Decorations form a bridge between the syntax and the
interpretation by turning the syntax sound without adding any explicit type of

the state nor the exception. Combined setting is specialized for the IMP+Exc
language and finally equivalence proofs of programs are given with related cer-
tifications in Coq. Besides, in [5], we prove that the core language for the
state and exception as well as the programmers’ language for the exception are
complete.

References

[1] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude
Reynaud. Decorated proofs for computational effects: States. ACCAT
2012. Electronic Proceedings in Theoretical Computer Science 93, p. 45-59
(2012).

[2] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude
Reynaud. A duality between exceptions and states. Mathematical Struc-
tures in Computer Science 22, p. 719-722 (2012).

[3] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici and Jean-Claude
Reynaud. Certified proofs in programs involving exceptions. CICM 2014,
CEUR Workshop Proceedings, no 1186, paper 20.

[4] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous. For-
mal verification in Coq of program properties involving the global state.
JFLA 2014, pages 1–15, January 2014.

22

https://forge.imag.fr/frs/download.php/651/IMP-STATES-EXCEPTIONS-0.3.tar.gz
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ACCAT2012.3.pdf
http://arxiv.org/pdf/1112.2394v1
http://ceur-ws.org/Vol-1186/paper-20.pdf
http://arxiv.org/pdf/1310.0794v2

[5] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous and
Jean-Claude Reynaud. Hilbert-Post completeness for the state and the ex-
ception effects. Research report (2015).

[6] César Dominguez, Dominique Duval. Diagrammatic logic applied to a
parameterization process. Mathematical Structures in Computer Science
20(04) p. 639-654.

[7] Claude Marché. MPRI Course notes: Proof of a program. (2012).

[8] John M. Lucassen, David K. Gifford. Polymorphic effect systems. POPL
1988. ACM Press, p. 47-57.

[9] Eugenio Moggi. Notions of Computation and Monads. Information and
Computation 93(1), p. 55-92 (1991).

[10] Gordon D. Plotkin, John Power. Notions of Computation Determine Mon-
ads. FoSSaCS 2002. LNCS, Vol. 2620, p. 342-356, Springer (2002).

[11] Gordon D. Plotkin, Matija Pretnar. Handlers of Algebraic Effects. ESOP
2009. LNCS, Vol. 5502, p. 80-94, Mpringer (2009).

[12] Sam Staton. Completeness for Algebraic Theories of Local State. FoSSaCS
2010. LNCS, Vol. 6014, p. 48-63, Springer (2010).

[13] Viviana Bono, Manfred Kerber. Extending Hoare Calculus to Deal with
Crash. The University of Birmingham, School of Computer Science, CSR-
06-08.

23

http://arxiv.org/pdf/1503.00948v1.pdf
http://arxiv.org/pdf/0908.3737v1.pdf
https://www.lri.fr/~marche/MPRI-2-36-1/2012/poly-chap2.pdf
http://www.cs.ioc.ee/ewscs/2010/mycroft/lucassen-popl88.pdf
http://www.cs.cmu.edu/afs/cs/user/crary/www/819-f09/Moggi91.pdf
http://link.springer.com/chapter/10.1007/3-540-45931-6_24
http://homepages.inf.ed.ac.uk/gdp/publications/Effect_Handlers.pdf
http://www.cs.ru.nl/~sstaton/papers/fossacs10.pdf
ftp://ftp.cs.bham.ac.uk/pub/authors/M.Kerber/TR/CSR-06-08.pdf

	Introduction
	IMP with exceptional abilities
	Adding exceptional abilities

	Decorated Logic for the state
	Syntax and rules
	Decorated logic for the state in Coq

	Decorated Logic for the exception
	Syntax and rules
	Decorated logic for the exception in Coq

	Combination: the state & the exception
	IMP+Exc over decorated logic
	Program equivalence proofs: the state and the exception

	Conclusion

