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Abstract
Javascript is the prevalent scripting language for the web.
It lets web pages register callbacks to react to user events.
A callback is a function to be invoked later with a result
currently unavailable. This pattern also proved to respond
efficiently to remote requests. Javascript is currently used
to implement complete web applications. However, callbacks
are ill-suited to arrange a large asynchronous execution flow.
Promises are a more adapted alternative. They provide a
unified control over both the synchronous and asynchronous
execution flows.

The next version of Javascript proposes to replace callbacks
with Promises. This paper brings the first step toward a
compiler to help developers prepare this shift. We present
an equivalence between callbacks and Dues. The latter are a
simpler specification of Promises developed for the purpose
of this demonstration. From this equivalence, we implement
a compiler to transform an imbrication of callbacks into a
chain of Dues. This equivalence is limited to Node.js-style
asynchronous callbacks declared in situ. We evaluate our
compiler over 64 npm packages, 9 of them present compa-
tible callbacks and compile successfully.

We consider this shift to be a first step toward the merge
of concepts from the data-flow programming model into the
imperative programming model.

Categories and Subject Descriptors
D.3.4 [Software Engineering]: Processors—Code genera-
tion, Compilers, Run-time environments

General Terms
Compilation

Keywords
Flow programming, Web, Javascript

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.
Copyright is held by the owner/author(s).

AWeS’15 April 21, 2015, Bordeaux, France
Copyright © 2015 ACM 978-1-4503-3477-8/15/04 ...$15.00.

1. INTRODUCTION
The world wide web started as a document sharing platform
for academics. It is now a rich application platform, per-
vasive, and accessible from almost everywhere. This trans-
formation began in Netscape 2.0 with the introduction of
Javascript, a web scripting language.

Javascript was originally designed for the manipulation of a
graphical interface, the Document Object Model (DOM 1).
Functions are first-class citizens ; it allows to manipulate
them like any object, and to link them to react to asyn-
chronous events, e.g. user inputs and remote requests. These
asynchronously triggered functions are named callbacks, and
allow to efficiently cope with the distributed and inherently
asynchronous architecture of the Internet. This made Javas-
cript a language of choice to develop both client and, more
recently, server applications for the web.

Callbacks are well-suited for small interactive scripts. But in
a complete application, they are ill-suited to control the lar-
ger asynchronous execution flow. Their use leads to intricate
imbrications of function calls and callbacks, commonly pre-
sented as callback hell 2, or pyramid of doom. This is widely
recognized as a bad practice and reflects the unsuitability of
callbacks in complete applications. Eventually, developers
enhanced callbacks to meet their needs with the concept of
Promise [12].

Promises bring a different way to control the asynchronous
execution flow, better suited for large applications. They ful-
fill this task well enough to be part of the next version of
the Javascript language, ECMAScript 6 3. However, because
Javascript started as a scripting language, beginners are of-
ten not introduced to Promises early enough. Most APIs use
the classical callback approach encouraging beginner in this
practice. Moreover, despite its benefits, the concept of Pro-
mise is not yet widely acknowledged. Developers may imple-
ment their own library for asynchronous flow control before
discovering existing ones. There is such a disparity between
the needs for and the adoption of Promises libraries, that
there are almost 40 different implementations 4.

With the upcoming introduction of Promise as a language
feature, we expect an increase of interest, and believe that

1. http://www.w3.org/DOM/
2. http://maxogden.github.io/callback-hell/
3. http://people.mozilla.org/~jorendorff/es6-draft.html
4. https://github.com/promises-aplus/promises-spec/blob/

master/implementations.md
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many developers will shift to this better practice. In this pa-
per, we propose a compiler to automate this shift in existing
code bases. We present the transformation from an imbrica-
tion of callbacks to a sequence of Promise operations, while
preserving the semantic.

Promises bring a better way to control the asynchronous exe-
cution flow, but they also impose a conditional control over
the result of the execution. Callbacks, on the other hand,
leave this conditional control to the developer. This paper
focuses on the transformation from imbrication of callbacks
to chain of Promises. To avoid unnecessary modifications
on this conditional control, we introduce an alternative to
Promises leaving this conditional control to the developer,
like callbacks. We call this simpler specification Dues. Our
approach enables us to compile legacy Javascript code and
brings a first automated step toward full Promises integra-
tion. This simple and pragmatic compiler has been tested
over 64 Node.js packages from the node package manager
(npm 5), 9 of them with success.

2. DEFINITIONS
2.1 Callback
A callback is a function passed as a parameter to a function
call. It is invoked by the callee to continue the execution
with data not available in the caller context. We distinguish
three kinds of callbacks.

Iterators are functions called for each item in a set,
often synchronously.

Listeners are functions called asynchronously for each
event in a stream.

Continuations are functions called asynchronously once
a result is available.

As we will see later, Promises are designed as placeholders
for a unique outcome. Iterators and Listeners are invoked
multiple times resulting in multiple outcomes. Only conti-
nuations are equivalent to Promises. Therefore, we focus on
continuations in this paper.

Callbacks are often mistaken for continuations ; the former
are not inherently asynchronous while the latter are. In a
synchronous paradigm, the sequentiality of the execution
flow is trivial. An operation needs to complete before execu-
ting the next one. In an asynchronous paradigm, parallelism
is trivial, but the sequentiality of operations needs to be ex-
plicit. Continuations are the functional way of providing this
control over the sequentiality of the asynchronous execution
flow.

A continuation is a function passed as an argument to allow
the callee not to block the caller until its completion. The
caller is able to continue the execution while the callee runs
in background. The continuation is invoked later, at the ter-
mination of the callee to continue the execution as soon as
possible and process the result ; hence the name continua-
tion. It provides a necessary control over the asynchronous
execution flow. It also brings a control over the data flow
which essentially replaces the return statement at the end

5. https://www.npmjs.com/

of a synchronous function. At its invocation, the continua-
tion retrieves both the execution flow and the result.

The convention on how to hand back the result must be com-
mon for both the callee and the continuation. For example,
in Node.js, the signature of a continuation uses the error-first
convention. The first argument contains an error or null if
no error occurred ; then follows the result. Listing 1 is a pat-
tern of such a continuation. However, continuations don’t
impose any conventions ; indeed, other conventions are used
in the browser.

1 my_fn(input , function continuation(error , result) {
2 if (!error) {
3 console.log(result);
4 } else {
5 throw error;
6 }
7 });

Listing 1: Example of a continuation

The callback hell occurs when many asynchronous calls are
arranged to be executed sequentially. Each consecutive ope-
ration adds an indentation level, because it is nested inside
the continuation of the previous operation. It produces an
imbrication of calls and function definitions, as shown in lis-
ting 2. We say that continuations lack the chained compo-
sition of multiple asynchronous operations. Promises allow
to arrange such a sequence of asynchronous operations in a
more concise and readable way.

1 my_fn_1(input , function cont(error , result) {
2 if (!error) {
3 my_fn_2(result , function cont(error , result) {
4 if (!error) {
5 my_fn_3(result , function cont(error , result) {
6 if (!error) {
7 console.log(result);
8 } else {
9 throw error;

10 }
11 });
12 } else {
13 throw error;
14 }
15 });
16 } else {
17 throw error;
18 }
19 });

Listing 2: Example of a sequence of continuations

2.2 Promise
In a synchronous paradigm, the sequentiality of the execu-
tion flow is trivial. While in an asynchronous paradigm, this
control is provided by continuations. Promises provide a uni-
fied control over the execution flow for both paradigms. The
ECMAScript 6 specification 6 defines a Promise as an ob-
ject that is used as a placeholder for the eventual outcome
of a deferred (and possibly asynchronous) operation. Pro-
mises expose a then method which expects a continuation
to continue with the result ; this result being synchronously
or asynchronously available.

6. https://people.mozilla.org/~jorendorff/es6-draft.html#
sec-promise-objects
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Promises force another control over the execution flow. Ac-
cording to the outcome of the operation, they call one func-
tion to continue the execution with the result, or another
to handle errors. This conditional execution is indivisible
from the Promise structure. As a result, Promises impose a
convention on how to hand back the outcome of the deferred
computation, while classic continuations leave this conditio-
nal execution to the developer.

1 var promise = my_fn_pr(input)
2

3 promise.then(function onSuccess(result) {
4 console.log(result);
5 }, function onError(error) {
6 throw error;
7 });

Listing 3: Example of a promise

Promises are designed to fill the lack of chained composi-
tion from continuations. They allow to arrange successions
of asynchronous operations as a chain of continuations, by
opposition to the imbrication of continuations illustrated in
listing 2. That is to arrange them, one operation after the
other, in the same indentation level.

The listing 4 illustrates this chained composition. The func-
tions my_fn_pr_2 and my_fn_pr_3 return promises when they
are executed, asynchronously. Because these promises are
not available synchronously, the method then synchronously
returns intermediary Promises. The latter resolve only when
the former resolve. This behavior allows to arrange the conti-
nuations as a flat chain of calls, instead of an imbrication of
continuations.

1 my_fn_pr_1(input)
2 .then(my_fn_pr_2 , onError)
3 .then(my_fn_pr_3 , onError)
4 .then(console.log , onError);
5

6 function onError(error) {
7 throw error;
8 }

Listing 4: A chain of Promises is more concise than
an imbrication of continuations

The Promises syntax is more concise, and also more readable
because it is closer to the familiar synchronous paradigm. In-
deed, Promises allow to arrange both the synchronous and
asynchronous execution flow with the same syntax. It al-
lows to easily arrange the execution flow in parallel or in
sequence according to the required causality. This control
over the execution leads to a modification of the control
over the data flow. Programmers are encouraged to arrange
the computation as series of coarse-grained steps to carry
over inputs. In this sense, Promises are comparable to some
coarse-grained data-flow programming paradigms, such as
Flow-based programming [16].

2.3 From continuations to Promises
As detailed in the previous sections, continuations provide
the control over the sequentiality of the asynchronous exe-
cution flow. Promises improve this control to allow chained
compositions, and unify the syntax for the synchronous and
asynchronous paradigm. This chained composition brings a

greater clarity and expressiveness to source codes. At the
light of these insights, it makes sense for a developer to
switch from continuations to Promises. However, the refacto-
ring of existing code bases might be an operation impossible
to carry manually within reasonable time. We want to au-
tomatically transform an imbrication of continuations into
a chained composition of Promises.

We identify two steps in this transformation. The first is to
provide an equivalence between a continuation and a Pro-
mise. The second is the composition of this equivalence. Both
steps are required to transform imbrications of continuations
into chains of Promises.

Because Promises bring chained composition, the first step
might seem trivial as it does not imply any imbrication to
transform into chain. However, as explained in section 2.2,
Promises impose a control over the execution flow that conti-
nuations leave free. This control induces a common conven-
tion to hand back the outcome to the continuation.

In the Javascript landscape, there is no dominant convention
for handing back outcomes to continuations. In the browser,
many conventions coexist. For example, jQuery ’s ajax 7 me-
thod expects an object with different continuations for suc-
cess, errors and various other events during the asynchro-
nous operation. Q 8, a popular library to control the asyn-
chronous flow, exposes two methods to define continuations :
then for successes, and catch for errors. On the other hand,
the Node.js API always used the error-first convention, en-
couraging developers to provide libraries using the same
convention. In this large ecosystem the error-first convention
is predominant. All these examples use different conventions
than the Promise specification detailed in section 2.2. They
present strong semantic differences, despite small syntactic
differences.

To translate these different conventions into the Promises
one, the compiler would need to identify them. Such an
identification might be possible with static analysis methods
such as the points-to analysis [19], or a program logic [5, 3].
However, it seems impracticable because of the number and
semantical heterogeneity of these conventions. Indeed, in the
browser, each library seems to provide its own convention.

In this paper, we are interested in the transformation from
imbrications to chains, not from one convention to another.
The error-first convention, used in Node.js, is likely to re-
present a large, coherent code base to test the equivalence.
Indeed contains currently more than 125 000 packages. For
this reason, we focus only on the error-first convention.
Thus, our compiler is only able to compile code that follows
this convention. The convention used by Promises is incom-
patible. We propose an alternative specification to Promise
following the error-first convention. In the next section we
present this specification called Due.

The choice to focus on Node.js is also motivated by our
intention to compare later the chained sequentiality of Pro-
mises with the data-flow paradigm. Node.js allows to ma-
nipulate streams of messages. This proved to be efficient

7. http://api.jquery.com/jquery.ajax/
8. http://documentup.com/kriskowal/q/
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for real-time web applications manipulating streams of user
requests. Both Promises and data-flow arrange the compu-
tation in chains of independent operations.

2.4 Due
A Due is an object used as placeholder for the eventual out-
come of a deferred operation. Dues are a simplification of the
Promise specification. They are essentially similar to Pro-
mises, except for the convention to hand back outcomes.
They use the error-first convention, like Node.js, as illustra-
ted in listing 5. The implementation of Dues and its tests
are available online 9. A more in-depth description of Dues
and their creation follows in the next paragraphs.

1 var my_fn_due = require(’due’).mock(my_fn);
2

3 var due = my_fn_due(input);
4

5 due.then(function continuation(error , result) {
6 if (!error) {
7 console.log(result);
8 } else {
9 throw error;

10 }
11 });

Listing 5: Example of a due

A due is typically created inside the function which returns
it. In listing 5, line 1, the mock method wraps my_fn in a
Due-compatible function. The rest of this code is similar to
the Promise example, listing 3.

We illustrate in listing 6 the creation of a Due through the
mock method. At its creation, line 6, the Due expects a call-
back containing the deferred operation, which is my_fn here.
This callback is executed synchronously with the function
settle as argument to settle the Due, synchronously or asyn-
chronously. The settle function is pushed at the end of the
list of arguments. The callback invokes the deferred opera-
tion with this list of arguments, and the current context,
line 8. When finished, the latter calls settle to settle the
Due and save the outcome. Settled or not, the created Due
is always synchronously returned. Its then method allows
to define a continuation to retrieve the saved outcome, and
continue the execution after its settlement. If the deferred
operation is synchronous, the Due settles during its creation
and the then method immediately calls this continuation. If
the deferred operation is asynchronous, this continuation is
called during the Due settlement.

1 Due.mock = function(my_fn) {
2 return function mocked_fn () {
3 var _args = Array.prototype.slice.call(arguments),
4 _this = this;
5

6 return new Due(function(settle) {
7 _args.push(settle);
8 my_fn.apply(_this , _args);
9 })

10 }
11 }

Listing 6: Creation of a due

The composition of Dues is the same than for Promises (see
section 2.2). Through this chained composition, Dues ar-

9. https://www.npmjs.com/package/due

range the execution flow as a sequence of actions to carry
on inputs.

This simplified specification adopts the same convention than
Node.js for continuations to hand back outcomes. Therefore,
the equivalence between a continuation and a Due is trivial.
Dues are admittedly tailored for this paper, hence, they are
not designed to be written by developers, like Promises are.
They are an intermediary step between classical continua-
tions and Promises. We present in section 3 the equivalence
between continuations and Dues.

3. EQUIVALENCE
We present the transformation from a nested imbrication
of continuations into a chain of Dues. We explain the three
limitations imposed by our compiler for this transformation
to preserve the semantic. They preserve the execution order,
the execution linearity and the scopes of the variables used
in the operations.

3.1 Execution order
Our compiler spots function calls with a continuation, which
are similar to the abstraction in (1). It wraps the function fn
into the function fndue to return a Due. And it relocates the
continuation in a call to the method then, which references
the Due previously returned. The result should be similar to
(2). The differences are highlighted in bold font.

fn([arguments], continuation) (1)

fndue([arguments]).then(continuation) (2)

The execution order is different whether continuation is cal-
led synchronously, or asynchronously. If fn is synchronous, it
calls the continuation within its execution. It might execute
statements after executing continuation, before returning.
If fn is asynchronous, the continuation is called after the
end of the current execution, after fn. The transformation
erases this difference in the execution order. In both cases,
the transformation relocates the execution of continuation
after the execution of fn. For synchronous fn, the execution
order changes ; the execution of statements at the end of fn
and the continuation switch. The latter must be asynchro-
nous to preserve the execution order.

3.2 Execution linearity
Our compiler transforms a nested imbrication of continua-
tions, which is similar to the abstraction in (3) into a flatten
chain of calls encapsulating them, like in (4).

fn1([arguments], cont1{
declare variable← result

fn2([arguments], cont2{
print variable

})
}) (3)

https://www.npmjs.com/package/due


declare variable

fn1due([arguments])

.then(cont1{
variable← result

fn2due([arguments])

})
.then(cont2{

print variable

}) (4)

An imbrication of continuations must not contain any loop,
nor function definition that is not a continuation. Both mo-
dify the linearity of the execution flow which is required for
the equivalence to keep the semantic. A call nested inside
a loop returns multiple Dues, while only one is returned to
continue the chain. A function definition breaks the execu-
tion linearity. It prevent the nested call to return the Due
expected to continue the chain. On the other hand, conditio-
nal branching leaves the execution linearity and the semantic
intact. If the nested asynchronous function is not called, the
execution of the chain stops as expected.

3.3 Variable scope
In (3), the definitions of cont1 and cont2 are overlapping.
The variable declared in cont1 is accessible in cont2 to be
printed. In (4), however, definitions of cont1 and cont2 are
not overlapping, they are siblings. The variable is not ac-
cessible to cont2. It must be relocated in a parent function
to be accessible by both cont1 and cont2. To detect such va-
riables, the compiler must infer their scope statically. Lan-
guages with a lexical scope define the scope of a variable sta-
tically. Most imperative languages present a lexical scope,
like C/C++, Python, Ruby or Java. The subset of Javas-
cript excluding the built-in functions with and eval is also
lexically scoped. To compile Javascript, the compiler must
exclude programs using these two statements.

4. COMPILER
We build a compiler to automate the application of this
equivalence on existing Javascript projects. The compilation
process contains two important steps, the identification of
the continuations, and the generation of chains.

4.1 Identification of continuations
The first compilation step is to identify the continuations
and their imbrications. The nested imbrication of callbacks
only occurs when they are defined in situ. The compiler de-
tects a function definition within the arguments of a function
call. This detection is based on the syntax, and is trivial.

Not all detected callbacks are continuations, but the equi-
valence is applicable only on the latter. A continuation is
a callback invoked only once, asynchronously. Spotting a
continuation implies to identify these two conditions. There
is no syntactical difference between a synchronous and an
asynchronous callee. And it is impossible to assure a call-
back to be invoked only once, because the implementation
of the callee is often statically unavailable. Therefore, the
identification of continuations is necessarily based on seman-
tical differences. To recognize these differences, the compiler

would need to have a deep understanding of the control and
data flows of the program. Because of the highly dynamic
nature of Javascript, this understanding is either unsound,
limited, or complex. Instead, we choose to leave to the deve-
loper the identification of compatible continuations among
the identified callbacks. They are expected to understand the
limitations of this compiler, and the semantic of the code to
compile.

We provide a simple interface for developers to interact with
the compiler. We built this interface around the compiler in
a web page available online 10 to reproduce the tests. The
web technologies allow to quickly build an interface for a
wide variety of computing devices.

This interaction prevents the complete automation of the
individual compilation process. However, we are working on
an automation at a global scale. We expect to be able to
identify a continuation only based on the name of its callee,
e.g. fs.readFile. We built a service to gather these names
along with their identification. The compiler queries this ser-
vice to present to the developer an estimated identification.
After the compilation, it sends back the identification cor-
rected by the developer to refine the future estimations. In
future works, we would like to study the possibility for such
a service to assist, and ease the compilation process.

4.2 Generation of chains
The compositions of continuations and Dues are arranged
differently. Continuations structure the execution flow as a
tree, while a chain of Dues imposes to arrange it sequentially.
A parent continuation can execute several children, while a
Due allow to chain only one. The second compilation step is
to identify the imbrications of continuations, and trim the
extra branches to transform them into chains.

If a continuation has more than one child, the compiler tries
to find a single legitimate child to form the longest chain pos-
sible. This legitimate child is the only parent among its si-
blings. If there are several parents among the children, none
are the legitimate child. The non legitimate children start
a new tree. This step transform each tree of continuations
into several chains of continuations that translate into se-
quences of Dues. The code generation from these chains is
straightforward from the equivalence.

5. EVALUATION
To validate our compiler, we compile several Javascript pro-
jects likely to contain continuations. We present the results
of these tests.

The compilation of a project requires user interaction. To
conduct the test in a reasonable time, we limit the test set
to a minimum. We search the Node Package Manager da-
tabase to restrict the set to Node.js projects. We refine the
selection to web applications depending on the web frame-
work express, but not on the most common Promises libra-
ries such as Q and Async. We refine further the selection
to projects using the test frameworks mocha in its default
configuration. We use these tests to validate the compiler.
The test set contains 64 projects. This subset is very small,

10. compiler-due.apps.zone52.org
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and cannot represent the wide possibilities of Javascript. Ho-
wever, we believe it is sufficient to represent a majority of
common cases.

For each project, we verify that is is correctly tested, and
passes the tests. During the compilation, we identify the
compatible continuations among the detected callbacks. We
apply the unmodified test on the compilation result. The
compilation result should pass the tests as well. This is not
a strong validation, but it assures the compiler to work as
expected in most common cases.

Of the 64 projects tested, almost a half, does not contain
any compatible continuations. We reckon that these pro-
jects use continuations the compiler is unable to detect. The
other projects were rejected by the compiler because they
contain with or eval statements, they use Promises libraries
we didn’t filter previously. 9 projects compiled successfully.
The compiler did not fail to compile any project of the initial
test set.

Over the 9 successfully compiled projects, the compiler de-
tected 172 callbacks. We manually identified 56 of them to
be compatible continuations. The false positives are mainly
the listeners that the web applications register to react to
user requests.

One project contains 20 continuations, the others contains
between 1 and 9 continuations each. On the 56 continua-
tions, 36 are single. The others 20 continuations belong to
imbrications of 2 to 4 continuations. The result of this eva-
luation prove the compiler to be able to successfully trans-
form imbrications of continuations. The details are available
in Appendix A.

6. RELATED WORKS
To our knowledge, our work is the first to explore the trans-
formation from continuations to Promises in Javascript, and
to state the similarity between Promises and data-flow pro-
gramming. This section presents the various works related
to ours. Our work is based on the previous work on Promises
and Futures [12], and their specifications in Javascript 11 12.

Because of its dominant position in the web, Javascript is re-
cently subject to a growing interest in the field of static ana-
lysis. We identify two teams working on static analysis for
Javascript. In the Department of Computing, Imperial Col-
lege London, S. Maffeis, P. Gardner and G. Smith realised a
large body of work around the static analysis of Javascript.
Their work is based around an operational semantic [13] to
bring program understanding [17, 6, 5, 3]. Their goal seems
to revolve around security applications of this analysis [15,
14]. In a collaboration between the programming language
research groups at Aarhus University and Universität Frei-
burg, P. Thiemann, S. Jensen and A. Møller are working on
the static analysis of Javascript. They presented a tool pro-
viding type inference using abstract interpretation [18, 9, 8].
Their goal is to improve the tools available for Javascript de-
velopers [2]. Another example of interest for Javascript static
analysis is the adaptation of the points-to analysis from L.

11. https://promisesaplus.com/
12. https://people.mozilla.org/~jorendorff/

es6-draft.html#sec-promise-objects

Andersen’s thesis [1] to Javascript, by D. Jang et al. [7] and
S. Wei et al. [19].

The industry seems to follow the same trends. There are
some security tools based on static analysis. We can cite for
example, the company Shape Security 13. They developed
Esprima, a Javascript parser, and a serie of tools to help sta-
tic analysis. Facebook released flow 14 on 26 October 2014,
a static type checker for Javascript.

Promises combine controls over the execution and the data
flow. It arrange the execution parts sequentialy and assign
the result of one into the inputs of the next. This arrange-
ment seems similar to some works on the field of functional
and data-flow programming [10, 4, 16, 11]. We consider it a
first step in the merge of elements from the data-flow para-
digm into the imperative paradigm. The Functional Reactive
Programming paradigm pushes the intrication of data and
control-flow even further [20].

7. CONCLUSION
In this paper, we introduce a compiler to automatically trans-
form an imbrication of continuations into a sequence of Dues.
First, we define callbacks and Promises, and then introduce
Dues, a simpler specification to Promises. We explain the
transformation from the nested imbrication of continuations
to a chain of Dues, and present a compiler to automate this
transformation on existing code bases. The compiler is eva-
luated against a set of npm projects.

This transformation flattens a nested imbrication of conti-
nuations. The result is a sequence of operations encapsulated
in Dues. The latter, like Promises, arrange both the control
and data flow. The outcome of an operation is assigned as
the input of the next. Such an arrangement is very suggestive
of a data flow process, that is a chain of operations feeding
the next with the result of the previous.

We aim at pushing further this analogy. A web application
manipulates a flow of user requests. We think it is possible
to arrange such an application as a chain of independent
operations communicating by messages. We want to deve-
lop the compiler further to bring complete independence to
the asynchronous operations delimited by the Dues. This
independence would allow to transform a monolithic pro-
gram into a chain of independent asynchronous operations
linked by a flow of messages. We expect a possibility for new
execution models to take advantage of this independence to
bring performance scalability. Developers could continue to
use the monolithic model for its evolution advantages, and
leave the performance burdens to the execution engines.

13. https://shapesecurity.com/
14. http://flowtype.org/

https://promisesaplus.com/
https://people.mozilla.org/~jorendorff/es6-draft.html#sec-promise-objects
https://people.mozilla.org/~jorendorff/es6-draft.html#sec-promise-objects
https://shapesecurity.com/
http://flowtype.org/
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APPENDIX

A. EVALUATION RESULTS
On the 64 projects composing the test set

29 (45.3%) do not contain any compatible continuations,

10 (15.6%) are not compilable because they contain with
or eval statements,

5 (7.8%) use less common asynchronous libraries we didn’t
filter previously,

4 (6.3%) are not syntactically correct,

4 (6.3%) fail their tests before the compilation,

3 (4.7%) are not tested, and

10 (14.0%) compile successfully.

The compiler do not fail to compile any project.

No continuations

with or eval statments

Promises libraries

Syntax errors

Tests fail before compilation

Not tested

Compiled

45.3%

15.6% 7.8%

6.3%

6.3%

4.7%14.0%

Figure 1: Compilation results distribution

29 projects contain no compatible continuation.
app-json-fetcher release 2.1.0
brokowski release 0.1.8
claus release 0.0.2
code-connect-server release 0.1.7
costa release 0.5.0
csp-endpoint release 0.0.1
express-device release 0.3.11
express-resource-plus release 0.2.1
fizzbuzz-hypermedia-server release 0.1.2
flair-doc release 0.1.0
generator-wikismith release 0.2.2
glsl-transition-minify release 0.3.1
heroku-proxy release 2.1.1
http-test-servers release 0.0.12
jellyjs-plugin-httpserver release 0.0.8
loopback-angular-cli release 1.1.1
loopback-explorer release 1.6.4
moby release 1.1.1
monami release 0.0.21
mongoose-epxress-resource release 0.1.2
nodebootstrap-server release 1.1.2
oauth-express release 0.0.1
public-server release 2.0.1
scrapit release 0.0.4
sik release 0.0.1
sonea release 0.0.3
squirrel-server release 0.0.1
vsoft-explorer release 0.2.1
webs-weeia release 0.2.2



10 projects contain eval or with statements.
adnoce release 1.1.2
arkhaios release 0.2.0
browserman release 0.1.2
infectwit release 0.0.1
ldapp release 0.1.4
levelhud release 0.1.3
manet release 0.3.2
solid release 0.2.1
swac release 0.12.1
swac-odm release 0.2.1

5 projects already use asynchronous frameworks.
boomerang-server es6-promise release 0.0.1
hyper.io when release 0.2.0
lanetix-microservice bluebird release 1.4.6
librarian bluebird release 1.1.1
webtasks subtask release 0.0.3

4 projects fail their tests before the compilation.
express-orm-mvc release 1.1.0
derpjs release 0.2.2
hangout release 0.0.3
ord.zeke.xxx release 1.0.0

3 projects do not provide tests.
inchi-server release 0.0.1
otwo release 0.0.1
tuzi release 0.1.5

9 projects successfully compile.
express-user-couchdb release 0.3.5
express-endpoint release 1.2.11
gifsockets-server release 0.38.1
heroku-bouncer release 4.0.1
moonridge release 0.6.9
redis-key-overview release 0.0.3
slack-integrator release 0.0.6
timbits release 0.7.3
tingo-rest release 1.0.1

The compiler detected 172 callbacks, 52 of them turned out
to be compatible continuations.

continuations chains length
name total compiled 1 2 3 4
express-user-couchdb 40 20 9 2 1 1
express-endpoint 19 2 2
gifsockets-server 3 1 1
heroku-bouncer 7 3 3
moonridge 37 6 2 2
redis-key-overview 14 9 6 1
slack-integrator 6 3 1 1
timbits 34 8 8
tingo-rest 12 4 4
total 172 54 36 5 2 1

In the following tables, are the name of the callee for each
continuations, grouped by package.

express-endpoint
ruleFn
parseParams

express-user-couchdb

config.validateUser
createSession
db.destroy
db.get ×5
db.insert ×5
db.view ×3
getUserName
lookupUser
req.session.destroy ×2

gifsockets-server getRawBody

heroky-bouncer
ensureValidToken
oauth.getOAuthAccessToken
request.post

moonridge

doc.remove
doc.save
model.findById ×2
mongoose.connect
populateWithClientQuery

redis-key-overview

exec ×2
execstderr
fs.unlink
fs.writeFile ×2
request.post
res.sendfile ×3

slack-integrator
config.payload
sendPayload
request

timbits

loadTimbits
res.render
timbit.test ×2
timbits.pantry.fetch ×2
request

tingo-rest

req.collection.findOne
req.collection.insert
req.collection.update
req.collection.remove
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