N

N

Timed automata based modeling and verification of

denial of service attacks in wireless sensor networks

Youcef Hammal, Quentin Monnet, Lynda Mokdad, Jalel Ben-Othman,
Abdelkarim Abdelli

» To cite this version:

Youcef Hammal, Quentin Monnet, Lynda Mokdad, Jalel Ben-Othman, Abdelkarim Abdelli. Timed
automata based modeling and verification of denial of service attacks in wireless sensor networks.
Studia Informatica Universalis, 2014, 12 (1), pp 1-46. hal-01132722

HAL Id: hal-01132722
https://hal.science/hal-01132722
Submitted on 17 Mar 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01132722
https://hal.archives-ouvertes.fr

Timed automata based modeling and
verification of denial of service attacks in
wireless sensor networks

Youcef HAMMAL”, Quentin MONNETT, Lynda MOKDADT,
Jalel BEN-OTHMAN! and Abdelkarim ABDELLI™

* LSI, Department of Computer Science
USTHB University, Algeria

T Lab. LACL, Université Paris-Est
LACL (EA 4219), UPEC, F-94010 Créteil, France
E-mails: quentin.monnet@lacl.fr, lynda.mokdad @u-pec.fr

Y Lab. L2TI, Université Paris 13
L2TI (EA 3043), UP13, F-93430 Villetaneuse, France
E-mail: jbo@univ-parisi3.fr

Abstract. Sensor networks have been increasingly deployed for civil and military applications
over the last years. Due to their low resources, sensors come along with new issues regarding
network security and energy consumption.

Focusing on the network availability, previous studies proposed to protect the network against
denial of service attacks with the use of traffic monitoring agents. Working on the election
process, we try to enhance this solution by introducing an energy-aware and secure method to
dynamically select these “cNodes” in a clustered WSN: nodes with the higher residual energy
get elected. We discuss limitations of this deterministic selection and suggest to designate new
control nodes, “vNodes”, to monitor the cNodes by periodically enquiring about their remain-
ing energy, thus ensuring that they do not lie during the election process in attempt to keep their
role.

Validation is first carried out with a formal specification of our proposal using the UPPAAL
model-checker. We model nodes by means of communicating timed automata, logical clocks
and timing constraints. Through Computation Tree Logic we express and check properties for

the election processes, related to energy and presence of greedy or jamming nodes.

Studia Informatica Universalis.

2 Studia Informatica Universalis.

Finally, we present some experimental results obtained with the ns-3 simulator in order to
analyze the impact of our proposal on the energy repartition in the network.

Keywords: Wireless sensor networks; Reliability, availability, and serviceability; Energy-
aware systems, Model-checking; Simulation

Introduction

Collecting data has been a fast increasing concern over the last
decades. Today, all is to be measured, or watched over. One wants
to study the pollution degree of seas. Other people intend to measure
seismic activity, or regulate traffic on roads, or regulate the humidity
level under greenhouses. . . Examples of measures to be done over wide
areas are countless. Some of those areas of interest may be hard to ac-
cess (mountain, dense forests...). Obviously it is not possible to send
humans bearing measuring tools to all those places, all the time. This is
why wireless sensor networks (often abbreviated as WSNs) have been
deployed in a growing fashion. Those networks are made of small de-
vices, sometimes dropped on the spot by helicopter, tasked with gath-
ering data on their physical environment. Sensors embed radio emitters
and receivers, and are able to exchange data through wireless commu-
nication. Meaningful data is typically directed to a base station, which
acts as an interface between the network and the user.

Sensors may be numerous, so they must be cheap. This means that
they have low computing capabilities, and little available memory. They
also run on limited energy, drawn directly from their battery. It is not
always feasible to reach the sensors once the network is deployed, and
hence to change their batteries, so the energy consumption must be han-
dle with great care. For these reasons algorithms run by the sensors must
be as less requiring as possible. And yet in the same time, the sensors,
once left to their own devices, must self-organize and form a consistent
network without outside help.

Some of the various applications of WSNs are very sensitive. They
may be deployed for forest fire detection, or for measuring the nuclear
activity degree in sensitive areas. Military operations may also involve

Timed automata for DoS in WSNs 3

them for communications, or for detection (be it for detecting enemies
or biological or chemical agents). In this context, bringing security
guaranties to the network becomes a primary issue. Availability is the
capacity of the network to carry out the services it was designed for,
whatever happens. It is related to resistance to failures or, this is the
point in this paper, to what we call denial of service attacks, which aim
at bringing the network down.

Based on former proposals (see Section 1), the present study relies
on the use of monitoring nodes (or “cNodes”) to protect a clustered
wireless sensor network again various denial of service attacks. Specif-
ically, it focuses on the selection process of those control nodes. Our
approach consists in taking energy into account at this step, so as to ob-
tain a better load balancing. We propose to designate the sensors for the
cNode position according to their residual energy, but we show that sev-
eral problems occur with deterministic election. Indeed compromised
nodes could see a flaw to exploit in order to take over the cNode role
and decrease the odds of being detected by announcing high residual
energy. We address this issue by introducing a second role of surveil-
lance: we choose “vNodes” responsible for watching over the cNodes
and for matching their announced consumption against a mathematical
model. We also recommend that every node in the cluster be monitored
by at least one cNode to prevent all the cNodes to be elected inside the
same spatial area of the cluster at each election iteration.

We intend to validate our approach through two different processes.
First we propose a formal specification of our proposal using timed au-
tomaton of the UPPAAL model-checker. Cluster heads, communication
mediums, different kinds of nodes in our WSN as well as compromised
nodes are modeled by means of communicating timed automata that are
augmented with logical clocks and timing constraints. Furthermore, we
use CTL (Computation Tree Logic) logic to express and check many
properties related to cNodes and vNodes election process in accordance
with the defined criteria related to energy consumption and presence
of compromised nodes which may have greedy or jamming behaviors.
The second aspect of this validation consists in a software simulation of
our proposal.

4 Studia Informatica Universalis.

Hence the rest of the paper is organized as follows: first we present a
quick overview of related works in Section 1. After we introduce a new
cNode selection method in Section 2, we present a formal specification
and model-checking of our solution through the timed automata of the
UPPAAL model-checker in Section 3. We then describe and discuss the
simulation of the algorithm that we have done using ns-3 in Section 4,
while last Section eventually summarizes the main contributions of the
paper and gives some directions of future works.

1. Related works

Deploying wireless sensor networks for sensitive operations requires
that all aspects of network security are reviewed. Hence numerous re-
search investigations have been undertaken on ways to improve security
in WSNs.

Some of these studies led to new protocols to provide confidentiality
in WSNs, i.e. to prevent unauthorized intruders to access to the mean-
ingful data that nodes exchange in the network. In [1] for example,
the authors introduce a method to ensure data confidentiality against
parasitic adversaries. The use a very simple key management scheme,
roughly consisting in sharing a key between each node and the base
station. They also introduce en route encryption mechanism to rein-
force the confidentiality against compromised nodes: a special subset
of nodes in the network re-encrypt the message on its way to the base
station. A periodic renewing of the keys of the node is deployed, to
prevent attackers to use compromised keys at will. The authors claim
a low energy consumption in regard with classic public key encryption
schemes. But encryption itself is not always necessary: another exam-
ple concerning confidentiality is [2], where we proposed several ways
to split messages and to send them through several distinct paths in the
network to avoid using systematical strong encryption. Depending on
the importance of the data contained in each packet, we propose to send
it using one of the three: the SDMP method [3], a secret sharing scheme
such as Shamir’s [4], or standard encryption.

Another issue consists in ensuring that every node actually is who
it pretends to be (thus preventing address spoofing). This is called au-

Timed automata for DoS in WSNs 5

thentication. It often comes along with data integrity. For instance the
proposals in [5] are based on two symmetric key-based security building
blocks. The first block is called Secure Network Encryption Protocol.
It provides data confidentiality, two-party data authentication and data
freshness. The second block is called fTESLA (for “micro” version of
the Timed, Efficient, Streaming, Loss-tolerant Authentication Protocol)
and assumes authenticated broadcast using one-way key chains con-
structed with secure hash functions. Many other mechanisms related to
authentication are resumed and compared in surveys such as [6].

Other studies have been realized in an attempt to secure specific op-
erations occurring in WSNs, and one can find secure ways to compress
or aggregate data in WSNs [7, 8]. But confidentiality, authentication
or secure aggregation are of no use if the good functioning of the net-
work gets disrupted. What is the point in ciphered and authenticated
messages which will never reach their destination? This brings us to
resistance against denial of service (DoS) attacks, which is the topic of
this paper.

Indeed there are many existing attacks able to compromise the good
working of a wireless sensor network. Several mechanisms have been
proposed to detect it and to provide countermeasures [9, 10]. Even re-
stricted to the data link, media access control and network layers of the
network, there are many different existing DoS attacks. Consequently,
even more solutions have been proposed to counter them. Various stud-
ies have been realized in the purpose of countering one specific kind of
attack, sometimes on specific protocols, thus leading to the proposals
of hardened versions of AODV [11] or DSR [12] for instance. Some
researchers prefer to ensure that nodes are not physically withdrawn
from the network to get modified [13], considering any returning node
as compromised (but not detecting nodes modified on site), or to verify
by means of mobile agents that the binary code run by the nodes has not
been modified [14], although this solution makes use of cryptography
mechanisms and can limit the evolution of the network.

Many other systems, often more convenient to deploy, consist in the
implementation of trust based mechanisms [15, 16] with agents apply-
ing set of rules [17] on traffic to attribute a trust value to each of the
nodes in the network. Each enforced rule is expected to protect the net-

6 Studia Informatica Universalis.

work against one kind of attacks: intruders are detected on breaking the
rules. We are particularly interested in the solution of Lai and Chen [18]
who proposed to elect control nodes to monitor the traffic in clustered
networks so as to detect and react to denial of service attacks. In such a
scheme, clustered networks are partitioned into clusters via algorithms
such as LEACH [19] or VSR [20]. One cluster head (CH) per clus-
ter is responsible for gathering data from its peers, for aggregating and
sending it to the base station. The CHs are the only nodes to use long
range (and expensive) transmissions to reach the base station. Cluster-
ing enables to preserve energy for the sensing nodes and offers an easier
management of the nodes. In our case, all nodes of a cluster can reach
their cluster head directly (/-hop transmission), as on Figure 1. Control

O cluster head

@ sensing node

base station

Figure 1: Clustered wireless sensor networks scheme

nodes are elected among the non-cluster head nodes of a cluster. We
call them cNodes from now on. They are responsible for listening to the
traffic and detecting nodes whose emitted traffic exceeds a given thresh-
old value. These abnormal behaviors are reported to the cluster head.
On reception of reports from several distinct cNodes (to prevent false
denunciation from a compromised node), the CH virtually excludes the
suspicious node from the cluster. Although the original method is ef-
ficient for detecting rogue nodes, the authors do not give details of the
election mechanism to choose the cNodes. Also, there is no mention in
their study of renewing the election in time, which causes the appointed
cNodes to endorse a heavier energy consumption on a long time.

Timed automata for DoS in WSNs 7

In a first attempt to bring load balancing to this solution, we propose
in former papers to reiterate the election periodically [21,22]. Results
coming from the simulation show a better load repartition among the
cluster. But in previous work our focus was not on designing an energy
efficient election process for the cNodes. Contrary to the present study,
we had assumed that the election would be led by the nodes themselves,
each node picking a pseudo-random number and matching it to a pre-
defined probability to decide whether it would be or not cNode for the
coming cycle (this is roughly the same principle as the self-election of
the cluster heads in LEACH clustering protocol).

Beside being energy-efficient, it is important for an algorithm to just
work, and thus for researchers to provide guaranties of its functioning.
Formal method may help in this, and one of the most interesting tech-
niques is model-checking. It is a formal method based technique for
verifying finite-state-concurrent systems, and can automatically extract
performance or safety properties from a model and to ensure they are
asserted at all time in the network. Additionally, were a system not
to work properly, model-checking tools provide a trace to help find-
ing the source of the error. Contrary to testing or simulation, results
obtained via model-checking do not vary between distinct running in-
stances; more important, formal specification enables one to verify the
system against every single execution trace, where testing would only
raise some encountered errors (maybe not all existing errors). Model-
checking is used in a wide area of applications, from the validation of
network protocols to the verification of safety properties in regard with
the non-collision between platoon vehicles [23], for example.

One of the two aforementioned papers already makes use of formal
methods, including model-checking, to evaluate its proposal [22]. A
first attempt is described in the study to model it with CTMC (Con-
tinuous Time Markov Chains), but limitations due to the period over
which the detection is performed led to put away Markovian processes.
Instead the nodes and the monitoring agents are modeled with eGSPN
(extended Generalized Stochastic Petri Networks), a class of Petri net-
works including times transitions and suitable for representing stochas-
tic processes. From those eGSPNs we could extract a number of per-
formance and dependability properties formally expressed in terms of

8 Studia Informatica Universalis.

the Hybrid Automata Stochastic Logic (HASL [24]) and relying on Lin-
ear Hybrid Automata (LHA). These properties were eventually asserted
with the COSMOS statistical model-checker [25].

Other works include model-checking of WSN-addressed systems,
though we found few of them concerning protection against DoS at-
tacks. In [26] for example, three security protocols are analyzed through
model-checking, nominally TinySec, allowing authentication and en-
cryption, and LEAP and TinyPK, both used for key management. The
authors used the AVISTA model-checker, designed for verifying secu-
rity protocols. In our study, we prefer to work with the more general
UPPAAL model-checking tool.

2. c¢Nodes selection mechanism

Control nodes watching over the network traffic allow the detection
of various types of denial of service attacks. This is achieved with
agents running on the cNodes and applying specific rules on overheard
traffic [17]. Each rule is used to fight against one (sometimes a few)
specific attack(s): jamming, tampering, black hole attacks, and so on.
Each time a cNode notices that a rule is broken by a node, it raises a bad
behaviour for this node, and send an alert to the cluster head. Following
are some example rules:

— Rate rule: assuming that minimal and maximal rates for data each
node sends are enforced, a bad behaviour will be reported if those rates
are not respected. With this rule, monitoring agents should be able to
detect negligence (if minimal rate is not reached) or flooding (if maxi-
mal rate is exceeded) attacks.

— Retransmission rule: a cNode overhearing a packet supposed to
be retransmitted by one of its neighbor (the neighbor node is not the
final destination for this packet). If the concerned neighbor does not
forward the packet, it may be undertaking a black-hole (full dismissal
of packets) or a selective forwarding attack.

— Integrity rule: a bad behaviour will be raised if a neighbor of the
node running the monitoring agent tampers a packet before forwarding
it. Applying this rule assumes that the nodes are not expected to proceed

Timed automata for DoS in WSNs 9

either to data aggregation or compression before forwarding.

— Delay rule: forwarding a packet should not exceed a threshold de-
lay.

— Replay rule: a message should be sent no more than a limited num-
ber of times.

— Jamming rule: an unusually high number of collisions (compared
to average, or concerning only some nodes) may be related to the pres-
ence of ajamming node. If jamming is done with random noise, without
legitimate packets containing a node identifier, it may be difficult to de-
tect the source of it, but several cooperating agents should be able to
detect it.

— Radio transmission range rule: a node sending messages with an
unexpectedly high power may be trying to launch a hello flood (it tries
to appear in the neighbor list of as many nodes as possible) or wormhole
attack (it redirects a part of the overheard traffic to another part of the
network). Hence it may be consider as a bad behaviour.

In the rest of this study, we will not describe in details each one of the
mentioned attacks, nor will we detail the associated solutions to counter
them. When details are needed, we will consider only one example:
flooding attacks. The model of a flooding attack is the following: a
malicious node sends a high amount of data to prevent legitimate nodes
from communicating by saturating the medium, or by establishing too
many connections with the receiver node [27]. In wireless sensor net-
works, it is also used to drain the energy of neighbor nodes. cNodes
are responsible for listening to the traffic of their surrounding nodes:
if a sensor is to generate more traffic in the network than a predeter-
mined threshold, it is considered as potentially compromised and trying
to flood the network. At this time a report is sent to the cluster head.
On reception of reports coming from multiple cNodes, the CH considers
that traffic from the suspicious node must no more be considered. Infor-
mation about distrust is passed on to normal nodes which stop listening
to the packets coming from the attacker. We work under the following
assumptions: firstly, the cluster head is not a compromised node (the
use of cNodes to detect a malicious CH is described in [18], but it is
not considered in this paper). Secondly, we do not consider the case of
several malicious nodes cooperating with one another.

10 Studia Informatica Universalis.

Electing the cNodes is not an easy task. In [22] we expose and com-
pare three ways to elect them:

— pseudo-random election by the base station;
— pseudo-random election by the cluster head;

— pseudo-random election by the nodes themselves (all nodes have a
probability p to become cNode; they pick a pseudo-random number z,
and endorse the cNode role if and only if x is lower than p).

We assumed that election should be random so that compromised nodes
would not be aware of which node could control the traffic. In that
previous study however we do not consider the remaining energy during
the cNodes election. But monitoring the traffic implies to keep listening
for wireless transmission without interruption. Hence cNodes will have
a greater energy consumption than normal nodes. Given that preserving
energy is an essential issue in the network, we prefer to ensure load
balancing rather than assuring a pseudo-random election, and thus we
mean to consider the residual energy of the nodes during the election.
This choice also raises new issues and makes us define a new role for
the nodes in the cluster.

2.1. Using vNodes to ensure a secured deterministic election

There is no way to measure remotely the residual energy of a node,
so the only way to get its value is to “ask” this node. The election
algorithm we propose is described as follows:

1) During first step, each node evaluates its residual energy and sends
the value to the cluster head;

2) Having received the residual energy of all nodes in the cluster, the
cluster head picks the n nodes with the highest residual energy (where
n is the desired number of cNodes during each cycle) and returns them
a message to assign them the role of cNode.

It is a deterministic selection algorithm which eliminates any random
aspect from the process. The rule is simple: nodes possessing (locally)
the highest residual energy will be elected. Given that the cNode role
implies consuming more energy (cNodes listen to surrounding commu-

Timed automata for DoS in WSNs 11

nications most of the time), rotation of the roles is theoretically assured.
But the deterministic aspect is also a flaw that may be exploited by
compromised nodes. This is a crucial issue: we can not neglect com-
promised nodes as the whole cNodes mechanism is deployed in the sole
purpose to detect them!

More precisely, the problem may be stated as follows. Compromised
nodes will be interested in endorsing a cNode role, as it enables them:

—to reduce the number of legitimate cNodes able to detect them;

—to advertise the cluster head about “innocent” sensing nodes to
have them revoked.

When a pseudo-random election algorithm is applied, a compromised
node (or even several ones) can be elected during a cycle, but it will
loose its role further in time, for later cycles. Even with a self-election
process (based on LEACH [19] model for instance, such as shortly de-
scribed above), compromised nodes can keep their cNode role as long
as they want, but they can not prevent other (legitimate) nodes to elect
themselves, too. With deterministic election however, they can monop-
olize most of the available cNode roles. They only have to announce
the highest residual energy value at the first step of the election to get
assured to win. If there are enough compromised nodes to occupy all
of the n available cNode roles, then they become virtually immune to
potential detection.

To prevent nodes from lying when announcing their residual energy,
we propose to assign a new role to some of the neighbors of each ¢N-
ode. Those nodes — we call them vNodes, as for verification nodes —
are responsible for the surveillance of the monitoring nodes. Once the
cNodes election is over, each neighbor to a cNode decides with a given
probability whether it will be a vNode for this cNode or not. A given
node can act as a vNode for several cNode (in other words, it can survey
several neighbor cNode).

If this role consumes too much energy, it is not worth deploying vN-
odes: we should rather use pseudo-random election for the cNodes. So
vNodes must not stay awake and listen most of the time, as cNodes do.
Instead they send, from time to time, requests to the cNode they watch

12 Studia Informatica Universalis.

over, asking it for its residual energy. They wait for the answer, and
keep the value in memory.

Once they have gathered enough data, vNodes try to correlate the
theoretical model of consumption of the cNode they survey and its an-
nounced consumption, deduced from broadcast messages (during elec-
tions) and answers to requests from vNodes. Four distinct cases may
occur:

1) The announced consumption does not correlate (at all) with the
theoretical model: there is a high probability the node is compromised
and seeks to take over cNode role. It is reported to the cluster head;

2) The announced consumption correlates exactly with the theoret-
ical model: the node is probably a compromised node trying to get
elected while escaping to detection (in other words, the rogue cNode
adapts its behavior regarding to the previous point). It is easy to detect
the subterfuge as values received from the rogue node and the ones com-
puted by the vNodes are exactly the same. It is reported to the cluster
head;

3) The announced consumption correlates roughly with the theoreti-
cal model, but does not evolve in the same way (regarding to the model)
than the real consumption locally observed by the vNodes (local (in
time) evolution of the announced consumption does not “stick” to the
one of the surrounding vNodes, which should roughly rise or decrease
during the same periods). The node is probably compromised, trying
to escape detection by decreasing its announced energy with random
values. It is reported to the CH;

4) The announced consumption correlates roughly with theoretical
model, and evolves in the same way as the traffic observed by vNodes.
Whether the node is compromised or not, it has a normal behavior, and
is allowed to act as a cNode.

If a given vNode is in fact a malicious node, it could lie about integrity of
the cNode it watches. To prevent that, the cluster head must receive mul-
tiple reports (their number exceeding a predetermined threshold) from
distinct vNodes before actually considering a cNode as compromised.
To some extent, this also makes the scheme resilient to errors from the
vNodes.

Timed automata for DoS in WSNs 13

In that way, nodes are allowed to act as cNodes only if they announce
plausible amounts of residual energy. Assuming that this role consumes
more energy than sensing only, the nodes elected as cNodes will sooner
or later see their residual energy drop below the reserve of normal sens-
ing nodes, which implies that they will not get re-elected at the next
election. Note that the cases 2 and 3 make a compromised node decre-
ment its announced energy as the time goes by. Even if inconsistency
may be noticed and the compromise detected, this simple behavior en-
sures that the rogue node will stop to get elected at one point in the
time.

Thus, the interest of viNodes can be summarized as follows: a com-
promised node can not ensure the takeover of the cNode role at each
cycle without cheating when announcing residual energy, and hence be-
ing detected by the vNodes. Detecting rogue cNodes, or forcing them to
give up their role for later cycles, are the two purposes of the vNodes.
The vNode role does not prevent a node to process to its normal sensing
activity (requests to cNodes must not occur often, otherwise it will drain
too much power from the vNodes). The state machine of the nodes is
presented in Figure 2.

Figure 2: State machine of the (non-CH) nodes

2.2. Cluster coverage in case of heterogeneous activity

Deterministic election of the cNodes does not only introduce a flaw
that compromised nodes could try to exploit. There is a second problem,
independent from the nodes behavior, that could prevent the detection
of compromised nodes. If a region of the cluster happens to produce
more traffic activity than the other parts of the cluster, the energy of its
nodes will be drawn faster. In consequence, none of the n nodes with the

14 Studia Informatica Universalis.

highest residual energy (n being the desired number of cNodes during
each cycle) will be located inside this region, and some nodes may not
be covered for surveillance as long as traffic do not fade, possibly for
all cycles. Figure 3 illustrates this problem.

cluster

area with
high activity

cNodes' range
does not cover
all nodes in cluster

nodes with low
residual energy

Figure 3: Illustrative scheme: cNodes are elected inside the area with
less activity (thus with more residual energy) and do not cover nodes
from the opposite side of the network.

To address this issue we need to ensure that every node in the net-
work is covered by at least one cNode. So the election process we pre-
sented in 2.1 needs to be modified. The correct version is as follows:

1) During first step, each node evaluates its residual energy and
broadcasts the value;

2) The cluster head listens to all values. Other nodes also register all
messages they hear into memory;

3) All nodes send to the CH the list of their 1-hop neighbors ';

4) The CH picks the n nodes among those with the highest residual
energy, such that the n nodes cover all other nodes in range . If needed,
it selects some additional nodes to cover all the cluster;

5) The CH returns to selected nodes a message to assign them the
role of cNode.

Note that some clustering algorithms (such as HEED [28] for exam-
ple) provide other election mechanisms (for cluster heads, but that can
also be used for selecting cNodes) based on residual energy. We do not

1. We do not deal with the case of compromised nodes cheating at this step of the process.

Indeed they could announce extra virtual neighbors to try to escape from coverage.
2. The details of the algorithm executed by the cluster head at this step are not given in this

study.

Timed automata for DoS in WSNs 15

want to use it because energy only takes part in the process as a fac-
tor for probability that the nodes declare themselves elected. Instead
we prefer nodes to broadcast their residual energy in order to enable
surveillance by the vNodes.

2.3. Observations

cNodes apply a very basic trust based scheme to the cluster: when
a sensor node breaks a rule, for example by exceeding a given thresh-
old for transmitted packets, it is considered as untrustworthy. There
are many other trust based schemes in literature, most of them more
advanced than this one (see Section 1). The cNodes could implement
several other trust mechanisms (by lowering a reputation score on bad
behaviour for each node for instance). As more complex mechanism
would create additional overhead, we prefer to limit our study to this
simple method.

3. Formal specification and model-checking of the system

In this section, we present a formal specification and model-checking
of our system made up of a network of wireless sensors (WSN) which
have to operate under DoS attacks. The language we use to modeling
cluster heads, mediums, and nodes of such systems is the timed au-
tomata of the model-checker UPPAAL [29].

Timed automata, first introduced in [30], are flattened automata aug-
mented with time constraints over logical clocks. However, UPPAAL
modeling language offers additional features such as bounded integer
variables and urgency. The query language of UPPAAL, used to spec-
ify properties to be checked, is a subset of CTL (Computation Tree
Logic) [31-33].

Accordingly, before our system could be model-checked with UP-
PAAL, it has first to be specified as timed automata. We first give the
definition of standard automata and show how these are augmented with
time annotations and timed semantics to give rise to the modeling lan-
guage of UPPAAL. Thereafter, we explain through our study case how

16 Studia Informatica Universalis.

send ?

Idle Busy

fail !

receive !

Figure 4: Classical untimed automaton

the components of the system are described by means of these timed
automata.

3.1. Timed automata

We present below the definition of classical finite state automaton
which are used to specify intended (untimed) behaviors of processes
(i.e., active components of communicating systems such as nodes and
cluster heads of WSN). Obviously, each of these automata does not take
into account time constraints and only describes its process statuses and
control moves between them along with their triggers (see Figure 4).

Definition 3.1. An untimed automaton is a tuple A = (Q, 3, <, qo)
where:

— @ is the set of locations (untimed states) of the process automaton
(depicted as graph nodes). For instance, /dle and Busy are locations in
the automaton given in Figure 4.

— I 1s the set of interactions (i.e., events) that the specified process
could perform synchronously with the related interactions of its cooper-
ating processes. An interaction occurs over an abstract channel whose
symbol (let it be a) is a part of its name. Henceforth, the symbols a! and
a? denote respectively send and receipt interactions.

——=€ @ x X x @ is the set of edges (automaton transition arcs)
between locations. As illustrated in Figure 4, the occurrence of a send?
event leads the control to move through the edge labeled with this event
from Idle location to Busy location.

— o 1s the initial location (denoted by a double circle such as for /dle
location in Figure 4).

Timed automata for DoS in WSNs 17

However when analyzing a timed system, designers of its reactive
components would actually want to express onto their automata the
timing constraints that govern most of the interactions’ occurrences be-
tween the components. Hence, occurrences of send or receipt actions
have to abide to timing restrictions in order to correctly provide com-
ponent services to its environment. Formally, this approach consists in
expressing time constraints by means of boolean formulas over logical
clocks. Such variables express time progress but their values could be
initialized and tested.

Definition 3.2. (timing constraint) Let y be a finite set of clocks ranging
over R=? (set of non negative real numbers). The set W(y) of timing
constraints on x is defined by the following syntax: ¢ ::= true | xr <
clz—y < c|not(y) | wAY where z,y € x, c € R=%and <€ {<, <}
Other assertions such as, z > 3,2 < x < y + 5, 1 V ¢ can be defined
as abbreviations.

A valuation v € V of the clocks is a function that assigns a non-
negative real value v(z) € R=° to each clock z € x. We say that v
satisfies a constraint ¢ € W if ¢)(v) evaluates to true. For v € V and
X C x, we define v[X := 0] to be the valuation v" € V such that
v'(r) = 0if z € X, and v'(x) = v(z) otherwise. For § € R=°, we
define v + ¢ to be the valuation v" € V such that v'(x) = v(z) + 0 for
all z € y.

Roughly, a timed automaton [30] is a finite directed graph annotated
with conditions and resets over non-negative real valued clocks. We
thus enhance previous untimed graphs with timing constrains by adding
three mappings /, G and Z as follows:

Definition 3.3. (Timed Automata) The timed version of an automaton
A =(Q,—,3, qo) is an extended graph Ar = (A, x, I, G, Z) where:
— x is a finite set of clocks.
—1:Q — ¥(x),
-G :—— Y(x), and
— 7 —>— 2X

The first mapping I assigns to each location ¢ € () of the untimed au-
tomaton a sojourn or activity condition called invariant (denoted 1(q))

18 Studia Informatica Universalis.

which may be the boolean constant true. The second mapping G as-
signs to each edge (e €<) a timing guard which should be true to let
the edge be taken (i.e., to let the transition fire). The mapping Z asso-
ciates with each edge a set of clocks initializations which may be empty
(see Figure 5).

A state of a timed automaton 4 depicts a configuration of the au-
tomaton at some instant. Formally, it is a pair (¢, v) defined by a loca-
tion ¢ and a clock valuation v. At any state, A can evolve either by
a discrete state change corresponding to a move through an edge that
may change the location and reset some of the clocks, or by a continu-
ous state change due to the progress of time at a location. For a € ¥ and

. 5
for § € R=° we define the relation —+C (Q x V)?and —C (Q x V)?
characterizing respectively the discrete and the continuous state changes
as follows:

e=(q,a,q¢) €—,G(e)(v) V&' € R, <6.1(q)(v+)
(4:0) == (¢, 0[Z(e) == 0) (g,0) = (¢',v+9)

The first inference rule states that a discrete transition could be taken
(given in the rule conclusion) if the guard G(e) of the related edge e
evaluates to true (as stated in the rule premise). Some clocks Z(e) (if
any) shall be reset once the edge e is taken. On the other hand, the
second rule shows how time can progress with some amount 9 in some
location ¢ by increasing clocks valuations (from v to v + d). This rule is
called time closure and stipulates that this time progress could occur if
the location invariant 7(¢) continuously remains true for all valuations
v + ¢ such that ¢’ < 4.

The role of invariants is important. Indeed as time progresses, the
values of the clocks increase providing the state satisfies the invari-
ant. For states that do not satisfy the invariant, the progress of time
is “stopped”. This mechanism allows the specification of hard dead-
lines: when for some action the deadline specified by the invariant is
reached, the continuous flow of time is interrupted. Therefore, the ac-
tion becomes urgent and it is “forced” to occur if it is enabled.

A deadlock status will be thus any timed configuration of the au-
tomaton whose the related active location has a false activity condition

Timed automata for DoS in WSNs 19

and all its outgoing transitions have false timing guards. In other terms,
the time can not progress in such a state where no action is enabled in
respect of its timing guard. So, no way is available to leave this state to
enable time progress again.

3.2. Modeling language of UPPAAL

The modeling language of UPPAAL [29] consists in networks of
timed automata. In fact, a system is modeled as a network of timed
automata in parallel, each of which is related to at least one of the sys-
tem components. As aforementioned, a timed automaton is a flattened
finite-state machine extended with clock variables. It uses a dense-time
model where a clock variable evaluates to a real number. All the clocks
progress synchronously in such a way that all automata clocks valua-
tions simultaneously increase with the same amount of time. Other-
wise, when the progress of one clock is blocked because some timing
constraint becomes unsatisfied at a given instant then all the clocks be-
come blocked too. The model is further extended with bounded discrete
variables that are part of the state. These variables are used as in pro-
gramming languages: they are read, written, and are subject to common
arithmetic operations or manipulated within C-like functions we could
add as assignments onto the edges. A state of the timed system is de-
fined, as explained in Subsection 3.1, by the locations of all automata,
the clock constraints, and the values of the discrete variables. Every
automaton may fire an edge separately or synchronize with another au-
tomaton, which leads to a new state.

The UPPAAL modeling language extends timed automata with the
following additional features [29]:

— Constants are declared as const name=value. Constants by def-
inition cannot be modified and must have an integer value. Bounded
integer variables are declared as int[min,max] name, where min and
max are the lower and upper bounds, respectively. Guards, invariants,
and assignments may contain expressions ranging over bounded inte-
ger variables. The bounds are checked upon verification and violating
a bound leads to an invalid state that is discarded (at run-time). If the
bounds are omitted, the default range of —32768 to 32768 is used. Here

20 Studia Informatica Universalis.

is a declaration of two constants denoting the numbers of respectively
nodes and regions in a WSN cluster:

const int NBR_NODES =9, NBR_REGIONS = 2;

In the same way we declare other constants manipulated in our mod-
els, such as ASLEEP_DUR, AWAKEN_DUR, & ELECTION_TERM denoting
respectively the asleep mode duration, the awaken mode duration and
the period to selecting cNodes and vNodes.

— Templates automata are defined with a set of parameters that can
be of any type (e.g., int, chan). These parameters are substituted for
a given argument in the process declaration. For instance, the Node
template has two arguments related to the identifiers of the node itself
and the region it belongs to. These parameters are respectively defined
according to the new types ¢d/N and /dR declared as follows:

typedef int[0, NBR_NODES — 1] IdN;
typedef int[0, NBR_REGIONS — 1] IdR;

— Binary synchronization channels (abstract interaction gates) are de-
clared as chan c. An edge labeled with c! in one automaton synchronizes
with another labeled ¢? in a cooperating automaton. A synchronization
pair is chosen non-deterministically if several combinations are enabled.

— Broadcast channels are declared as broadcast chan c;. In a broad-
cast synchronization one sender (e.g., the cluster head C'H launching
the signal release! to free all mediums) can synchronize with an arbi-
trary number of receivers (e.g., mediums waiting for release?). Any
receiver that can synchronize in the current state must do so. If there
are no receivers, then the sender can still execute the release! action,
i.e. broadcast sending is never blocking. For instance, the statement
given below defines two broadcast channels the C'H use to make all
nodes respectively sleep or wake whatever their current statuses:

broadcast chan sleep,wake;

— Urgent synchronization channels are declared by prefixing the
channel declaration with the keyword urgent. Delays must not occur
if a synchronization transition on an urgent channel is enabled. Edges
using urgent channels for synchronization cannot have time constraints,

Timed automata for DoS in WSNs 21

i.e. no clock guards. Urgent locations (denoted with U letter inside its
depicting circle) are semantically equivalent to adding an extra clock =,
that is reset on all incoming edges, and having an invariant z < 0 on the
location. Hence, time is not allowed to progress when the system is in
an urgent location.

— Committed locations are even more restrictive on the execution
than urgent locations. A state is committed if any of the locations in
the state is committed (denoted with the C letter inside its circle). A
committed state cannot delay and the next transition must involve an
outgoing edge of at least one of the committed locations.

— Arrays are allowed for clocks, channels, constants and integer vari-
ables. They are defined by appending a size to the variable name, e.g.
we define some arrays of channels which the nodes of each region use
to interact with the related medium to achieve their communications:

broadcast chan send[NBR_REGIONS|,receive] NBR_REGIONS]|;
broadcast chan ok[NBR_REGIONS], failNBR_REGIONS];
chan rtc_rtsINBR_REGIONS|;

chan free]NBR_REGIONS],busy[NBR_REGIONS];

The next arrays of channels are used by the cluster head and vN-
odes to request and get the residual energies from nodes of any kind or
cNodes:

broadcast chan req_All_Residual Energy,req_CN_ResEnergy[NBR_REGIONS];
chan getResidualEnergy[NBR_NODES];
broadcast chan get_CN_ResEnergylNBR_REGIONS];

Next, we define also arrays of other types that allow the cluster head
to store collected residual energies of nodes, suspicion claims on them,
sets of selected cNodes and vNodes. Note that ListO f Nodes is just a
new type derived from int with a limited range [0. NBR_NODES —
1].

int nodeResidual Energy[NBR_NODES];
int nbrClaims[NBR_NODES];

ListO f NodessetO fC Nodes, setOfV Nodes;
ListO fNodes sortedListO f Nodes;

22 Studia Informatica Universalis.

fail[reg]!

c=0 collision

rtc_rts[reg]?

c>=t_min
receive[reg]!

ok[reg]!
c:=0

send[reg]?

?
rtc_rts[reg]? Idle

c<=t_max
fail[reg]! Busy
?
reloase? =0 c<=t_max

busy[reg]? free[reg]? send[reg]? busy[reg]?
c:=0 c:=0

Figure 5: UPPAAL automaton of a region medium template

bool visited NBR_NODES]; //mark visited nodes.
bool regCovered NBR_REGIONS];//mark regions in which at least one clode is

elected.

— Expressions in UPPAAL range over clocks and integer variables.
Expressions are manipulated with the following labels:

- Guard A guard over an edge is a particular expression satisfying
the following conditions: it is side-effect free; it evaluates to a boolean;
only clocks, integer variables, and constants are referenced (or arrays of
these types); clocks and clock differences are only compared to integer
expressions; guards over clocks are essentially conjunctions (disjunc-
tions are allowed over integer conditions).

- Synchronization A synchronization label is either on the form
Expression! or FExpression? or is an empty label. The expression
must be side-effect free, evaluate to a channel, and only refer to integers,
constants and channels.

- Assignment An assignment label is a comma separated list of
expressions with a side-effect; expressions must only refer to clocks,
integer variables, and constants and only assign integer values to clocks.

- Invariant An invariant over a location is an expression that sat-
isfies the following conditions: it is side-effect free; only clock, integer
variables, and constants are referenced; it is a conjunction of conditions
of the form x < e or x <= e where z is a clock reference and e evalu-

ates to an integer.

Timed automata for DoS in WSNs 23

3.3. UPPAAL models of the system components

We are interested in modeling and analyzing all processes in one
cluster. Each cluster is split up into many regions, each of which
consists of many nodes communicating throughout a shared medium.
Hence, two nodes which try to send their data in the same time, would
lead a collision that makes their attempts fail. We present below the au-
tomata templates of each of the system components: the region medium,
the cluster head, parts of a node implementing sensing, cNode and
vNode modes, the whole node, and lastly fragments of compromised
nodes.

3.3.1. Automaton of the medium

Each region possesses its separate medium allowing all its nodes to
communicate with each other. Collisions may thus happen leading to
failure of data transmission. The automaton template of a medium is
parameterized by its region identifier reg and owns an initial location
Idle where the medium is considered as free. That is why, the event
free[reg]? may happen at that location in a synchronous way with the
achievement of its dual action free[reg|! in any node automaton which
is checking the medium status.

When a node automaton tries to execute an action send[reg|!, the
related medium automaton should have its control in Idle location
where it can synchronize with the previous event by taking the edge
labeled with its dual action send[reg|? and incoming to Busy location.
Therein, the medium can interact with any node that is checking (over
the channel busy[reg|) whether it is occupied. However, the medium
could stay at this location as long as its invariant ¢ <= {_max is true
where {_max is the maximum value of the contention window of trans-
mission. Meanwhile, four cases may occur:

1) The communication may abort, for instance because the receiver
was not ready. This case is depicted by an edge labeled with fail[reg]!
outgoing back from Busy to the initial location /dle.

2) Another node can make a send which leads to collision. This fail-
ure is depicted by a sequence of two edges labeled with respectively
send|reg]? and fail[reg] with a committed location in-between. At

24 Studia Informatica Universalis.

last, the control returns also back to the initial location Idle.

3) The medium may receive from the cluster head a prevailing signal
rtc_rts[reg|? asking it to commute to the RTC/RTS?* communication
mode depicted by the location RT'C.

4) If no one among the three cases described above does happen and
the clock ¢ valuation comes to exceed ¢_min delay (minimum value
of contention window) then events receive[reg|! and ok[reg|! could be
successively broadcast to all nodes of the region and control returns
back to Idle location. Note that such actions remain offered as long as
the edge guard and the source location Busy invariant are true and no
one of the above conflicting transitions does occur.

Last, it should be noticed that the medium may change its status
from Idle to RT'C location through an edge labeled with the event
rtc_rts[reg]? broadcast by the cluster head C'H. On the other hand,
control may return back to /dle location once the medium succeeds to
perform release? event in a synchronized way with a release! event
that C'H should have simultaneously broadcast.

3.3.2. Automaton template of the cluster head

The cluster head C'"H may be in either Awaken location or Asleep
location. It shall commute from one status to the other one according
to timing constraints using a local clock c; and expressed in terms of
guards and invariants we added on both these two locations and the
edges in-between. For instance, the invariant on the location Asleep is
¢y <= ASLEFEP_DUR stating that the control may remain in this
location as long as the amount of time elapsed therein (given by c;
valuation) does not go beyond the sleep duration. Hence, the transi-
tion to Awaken status becomes urgent exactly once that limit is reached,
thereby, broadcasting a wake! signal to reactivate all the system nodes
which would have been as well in Asleep mode for the same amount
of time. Similarly, the control goes from Awaken to Asleep whenever
the clock value reaches the Awaken duration AW AKEN_DU R, deac-
tivating thus the system nodes throughout the broadcast channel sleep!.

3. This mode is temporarily used to send control packets in the CSMA/CA protocol.

Timed automata for DoS in WSNs 25

e:ldN
e:ldN belongs(e,setOfCNodes)
nbrClaims[e]>=threshold claimSuspected[e]?
disconnect[e]! reg:=regionOfNodel[e],
nbrClaims[e]:=0 node:=var1 not belongs(node,setOfVNodes)

and not belongs(node,setOfCNodes) e:ldN

e:ldN and regionOfNode[node]==reg activeNode[e] and not visited[e]

belongs(e,setOfVNodes)
claimSuspected[e]?
node:=var1,reg:=regionOfNode[e]

getResidualEnergy[e]?
visited[e]:=true,
nodeResidualEnergy[e]:=var2

ridR
rtc_rts[r]!
i++

i==NBR_REGIONS '
c2==ELECTION_TERM req_All_ResidualEnergy!

O Enquiring
Awaken i==0 & c2:=0,resetLists() ¢2<=DELAY1
c1<=AWAKEN_DUR and
c2<=ELECTION_TERM

nbrClaims[node]++

belongs(node,setOfCNodes)
and regionOfNode[node]==reg

nbrClaims[node]++

c1>=AWAKEN_DUR
sleep!
c1:=0

nbCNodes==0

c2==DELAY1
nbCNodes:=selectCNodes()
c2:=

c2==DELAY3
release!
c2:=0

¢c1==ASLEEP_DUR
wake!
c1:=0

Asleep
c1<=ASLEEP_DUR

c2==DELAY2 and nbCNodes!=0
¢2:=0,i:=0,resetVisited()

Publishing

WaitingForVNodes c2<=DELAY2

c2<=DELAY3

e:ldN e:ldN

not belongs(e,setOfCNodes) nbCNodes!=0
and not visited(e] electedCNodesle]!
getldVNode[e]? var1:=isCNode(e)

visited[e]:=true, setOfVNodes[i++]:=e

Figure 6: UPPAAL automaton of the cluster head template

However, the invariant at the Awaken location is a conjunction
which contains an additional activity condition over a second clock
co, namely ¢ <= FELECTION_TERM related to the election
cycle of cNodes and vNodes. In fact, this location could be also
left to Enquiring location via an edge when the guard c;, ==
ELECTION_TERM becomes true. In this case, once all regions
mediums are checked as free the control immediately moves (through
a second step outgoing from an urgent location) and the C'H thereafter
yields a broadcast req_All_Residual Energy! to all the cluster nodes
(including both cNodes and vNodes) in order to trigger the collect of
residual energies from these nodes. During this move, the lists related
to the cNodes and vNodes selection shall also be emptied thanks to the
function resetList(). Notice also the initialization of the clock ¢y in such
a way it could be used next in other timing formulae. The rational be-
hind such a reduction of clocks number or an integer variable range is
to alleviate the state explosion problem.

When the cluster head control reaches the Enquiring location it
stays therein until the clock ¢, reaches some delay during which the
cluster head is expected to receive the residual energies of the nodes
throughout the broadcast canal get Residual Energy. We take care that

26 Studia Informatica Universalis.

every node does not send its data more than once by using a boolean
array visited that records such events. Once c, valuation equals some
delay 1 the cNodes are elected and saved according to our method im-
plemented in the function selectC'Nodes(). Simultaneously to that
function call a silent move occurs into the next location Publishing
where each node is informed whether it is selected as cNode or not. In
a similar fashion, the progress of ¢y to delay 2 triggers the transition
to WaitingForVNodes location where the control stays for some delay 3
during which the cluster head collects the identifiers of the vNodes. No-
tice that some nodes will randomly proclaim themselves as vNodes and
then communicate their identifiers to the cluster head which stores them
into a set of vNodes. When the delay 3 expires, the control returns back
to the initial location Awaken.

Between two election cycles, the cluster head at Awaken location
might receive through claimSuspected channels, from time to time,
claims about suspected simple sensing nodes or cNodes. The cluster
head has to check the identity of the C'Node which sends the claim
about a node that operates within the sensing mode. To this end, the
C H checks that the sender belongs to the set of cNodes and is situated
in the same region as the suspected node. Similarly, the cluster head has
to check that any suspension claim about a cNode is sent by a viNode sit-
uated in the same region as the suspected cNode and that it has not been
sent by another cNode which would be considered in such a case as
compromised. Every time that a claim on a cNode or a sensing node
e is deemed a potential treat, then the number of claims on that node
(i.e., nbrClaimsle]) is incremented. When the number increases up to
a given threshold, the cluster head achieves an action disconnect|e]!
that will be synchronized with a dual action (disconnectle]?) in the au-
tomaton of the suspected node e. There are two edges labeled with the
action disconnectle]?, which are outgoing from locations in parts of
the node automaton related to the sensing and cNode modes and both
of them lead to a sink state Disconnected where no more activity is
allowed. Note that the election cycle begins with a rtc,ts broadcast
signal to get hold of mediums of regions and it finishes with a release
broadcast signal to free them again.

Timed automata for DoS in WSNs 27

3.3.3. Automaton of the sensing role of WSN nodes

The automaton template given in Figure 7 illustrates the sensing
function mode of a node nd. We notice that initial location is Awaken
from which the control may go to Asleep_SN location and then return
back in accordance with the receipt of respectively two signals sleep?
and wake originating from the cluster head. Note also that when the
node in a sensing mode wakes up it will randomly choose a number n
of a new type NbrM sgs defined as follows:

typedef int[0, MAX_NBR_MSGS — 1] NbrMsgs;

where MAX_NBR_MSGS is an integer constant previously de-
clared. The sensing node shall also be deactivated and change its sta-
tus from Awaken to Disconnected location through either one of two
edges as soon as respectively its residual energy runs out or the signal
diconnect? from C H is received.

The sensing node (at Awaken location) can also overhear all data
packets sent on the medium of its region reg via a receive[reg|? ac-
tion labeling a loop arc upon Awaken location and decreasing thus the
residual energy of nd with some amount RC' (constant previously de-
fined). Furthermore, the sensing node can make send actions a number
of times equal to the chosen number nbM sgsToSend: first, it has to
check whether its region medium is free (by an interaction free[reg|!
guarded with nbM sgsToSend > 0). If this is case, the control moves
to a location ReadyToSend where it shall stay for random time less
than a previously constant BAC KOF'F. During this time interval, it
shall always sense the medium as free otherwise it returns back to ini-
tial status Awaken via an edge labeled with the event busy[reg]! (in a
synchronized manner with a dual event in the medium automaton). It
may also leave to Asleep location whenever it receives the C'H signal
sleep.

Once the clock ¢ reaches the timeout value BAC KOF'F at location
ReadyT oSend, the control will immediately leave to W aiting location
throughout an edge labeled with the action send[reg|! that decrements
the residual energy with an amount denoted SC. Thereafter, Waiting
location could be left by means of one of four outgoing edges respec-

28 Studia Informatica Universalis.

Asleep_SN

getResidualEnergy[nd]!

var2:=residualEnergy . Idle_CNode

n:NbrMsgs
wake?
nbMsgsToSend:=n

sleep?

electedCNodes[nd]?

cnElected:=var1 nd==cnElected

receive[reg]? countCN++
' i ?
residualEnergy-=RC| req_All_ResidualEnergy?

?
residualEnergy<=0 Awaken electedCNodes[nd]?

cnElected:=var1

rand:ldN
nd !=cnElected
chosen:=isVN(nd,rand

disconnect[nd]?

Di

FONNECtEctiveNode[nd]:=false,

compromised:=true

ok[reg]?

nbMsgsToSend-- » nbMsgsToSend>0

free[reg]!
c:=0

UL electedCNodes[nd]?

n
sleep? cnElected:=var1

chosen

c<=BACKOFF getldVNode[nd]!

Waiting send[reg]! freefreg]! countVN++
residualEnergy-=SC ReadyToSend
c<=BACKOFF O 1dte_vNode

sleep?

Figure 7: UPPAAL automaton of the sensing role of a WSN node

tively labeled with the following events:

1) sleep broadcast event that makes the node fall into the
Asleep_S N mode,

2) busy[reg|? event signalling that the medium has become occupied
and control has to return back to Awaken,

3) fail[reg|? event that the medium broadcasts to tell the node about
the failure of its send operation (e.g., collision), which leads it to return
back to Awaken,

4) ok[reg| event that signals a successful send operation which
decrements the number of messages to send and makes control return
back to Awaken.

The cluster head C'H periodically broadcasts a request to all ac-
tive nodes for collecting their residual energies by means of the event
req_All_Residual Energy? to which the node nd shall as well im-
mediately respond (thanks to the urgent location in-between). Hence,
the value of residual Energy is sent to C'H through the interaction
get Residual Energy[nd).

Once the collect operation is completed, C'H launches the selec-
tion cycle by interacting through the canal electedC Node|nd] with

Timed automata for DoS in WSNs 29

node nd (if always active) which would receive a integer value. If this
value corresponds to its identifier then it immediately goes to the loca-
tion /dle_C'Node where it begins functioning according to the cNode
mode until it receives again another event electedC Node[nd]? which
relaunches a new election cycle. However, if the received value is not
nd then the node will call a routine ¢sV' N parameterized with a ran-
domly sampled integer rand. The result of the routine is stored in a
variable chosen, which the control transitions depend on as follows: if
chosen is false then the control commutes to Awaken location of the
simple sensing mode else the edge to /dle_V N location is taken and
the node nd commutes to the vNode mode which will last until a new
event electedC' Node[nd]? is received to relaunch a new election cycle.

3.3.4. Automaton of the cNode role

In a similar way to sensing mode, the cNode automaton (depicted in
Figure 8) may be disconnected and thus deactivated because of a run-
out of the battery or a receipt of the disconnected|nd|? event from C'H.
It shall also go to the asleep mode by entering a separate Asleep_C'N
location from which it will be able to return back exactly to the cNode
mode Idle_C'N location once it receives the awakening event. Fur-
thermore, a cNode must immediately send to C'H its residual energy
through the canal get Residual Energy[nd] whenever it is requested to
do so via the signal get_All_Residual Energy. When C'H sends the
event electedC N ode[nd] to the cNode, the latter will check the received
value to its identifier in order to return back to the sensing mode initial
location Awaken or to commute into the vNode functioning mode (by
entering /dle_V Node location).

The automaton parts related to the intended mission of the cNode are
the following (see Figure 8):

— The ¢Node can overhear send actions made by each node e in its
region. Every time it senses such an operation it increments a counter
sent M sgs|e] related to messages sent by e.

— Since a cNode may overhear messages sent throughout its region
reg, each action receive|reg|? causes an energy consumption of an
amount equal to RC.

30 Studia Informatica Universalis.

disconnect[nd]?
activeNode[nd]:=false,
compromised:=true

Asleep_CN e:ldN

receive[reg]? reg==regionOfNode[e]
residualEnergy-=RC send[reg]?
sentMsgs[e]++

wake?

residualEnergy<=0
activeNode[nd]:=false

req_CN_ResEnergy[reg]?

get C NfResEnergy[regm

vari:=nd,

var2:=residualEnergy
c>=DELAY1
total:=sumNbAIlISentMsgs(reg)

req_All_ResidualEnergy?

Disconnected ldle C Node
c<=DELAY
getResidualEnergy[nd]!
var2:=residualEnergy

electedCNodes[nd]?)
cnElected:=var1

e:ldN

nd==cnElected sentMsgs[e]<threshold

c:=0, reset(),

Awaken COUNtCN-++

total=total-sentMsgs|e],

electedCNodes[nd]? sentMsgs[e]:=0

e:ldN
sentMsgs[e]>=threshold
claimSuspected[nd]!

var1:=e, total=total-sentMsgs][e],
sentMsgs[e]:=0

cnElected:=var1

rand:ldN
nd !=cnElected
chosen:=isVN(nd,rand)

not chosen

electedCNodes[nd]?

cnElected:=var1
chosen

getldVNode[nd]!
countVN++

Idle_VNode

Figure 8: UPPAAL automaton of the cNode role

— In fact, the Idle_C'Node is constrained by a timed invariant ¢ <=
DFE LAY such that time progresses until the guard c == DFE LAY be-
comes true making it possible to perform a silent move to a committed
location (via an edge without a label). At the committed location, the
cNode checks the number of sent messages sentM sgs[e| of each node
e in its region in accordance with some threshold. If sent M sgs|e] does
not exceed threshold then the cNode simply resets this counter, else it
sends a suspicion claim on the node e to the cluster head via the event
claimSuspected|nd]! which conveys the suspected node identifier e (in
the assignment part) and then it resets sentM sgs|e].

— Since the cNode behavior may be analyzed by vNodes in its region,
then the cNode could be asked at any time to transmit its residual en-
ergy throughout the broadcast channel req C'N_ResEnergy|reg]. In
such a case, it shall immediately send the requested value via the event
get_C'N_ResEnergy|reg]!.

Timed automata for DoS in WSNs 31

Idle_CNode .

electedCNodes[nd]?
cnElected:=var1 nd==cnElected

countCN++

Awaken

©

electedCNodes[nd]?

cnElected:=vart

rand:IdN
nd !=cnElected
chosen:=isVN(nd,rand)

get_CN_ResEnergy[reg]?

cn:=vart,
electedCNodes[nd]? reCN:=var2
cnElected:=vart

(cnResEnergy[cn]-reCN)

claim uspected[nd)]!
vari:=cn,

not chosen cnResEnergy[cn]:=reCN

electedCNodes[nd]?

cnElected:=var1
chosen

getldVNode[nd]!
c:=0, countVN++

Idle_VNode

c<=DELAY2 _ O>=DELAY2

req_CN_ResEnergy[reg]!
0

(cnResEnergy[cn]-reCN)
<AVRG

cnResEnergy[cn]
:=reCN

req_All_ResidualEnergy?

getResidualEnergy([nd]!
var2:=residualEnergy

receive[reg]?

WaitingCN
residualEnergy-=RC

c<=DELAY3

>
residualEnergy<=0 sleep?

?
Asleep_VN sleep?
activeNode[nd]:=false

Disconnected

Figure 9: UPPAAL automaton of the vNode role

3.3.5. Automaton of the vNode role

Similarly to sensing and cNode modes, the vNode automaton (given
in Figure 9) could be disconnected and thus deactivated because of a
run-out of the battery or a receipt of the disconnected|nd]? event from
C' H. Notice that it must go to the asleep mode by entering a separate
Asleep_V N location to be able to return back exactly to the vNode
mode Idle_V N location once it receives the awakening event. Like-
wise, it has to immediately send to C'H its residual energy through
the canal get Residual Energy[nd| whenever it is requested to do so
via the signal get_All_Residual Energy. When C'H sends the event
electedC N ode[nd] to the vNode, the latter will check the received value
to its identifier in order to either return back to the sensing mode initial
location Awaken or to commute into the cNode functioning mode (by
entering [dle_C'N ode location).

The expected mission of our vNode automaton is to check the
cNodes 1n its region by looking at their energy consumption values
and comparing them to a threshold AV RG representing some aver-
age of energy consumption of regular cNodes. That is why the vN-

32 Studia Informatica Universalis.

disconnect{nd]? e:ldN

— — Asleep_CN . receivelreg]? reg==regionOfNodele]
activeNode[nd]=false, compromised:=ri Q-vake (oD <RC sendliedls

residualEnergy<=0 sentMsgs[e]++

activeNode([nd]=false ‘ req CN_ResEnergy[reg]?
Asleep_SN req_All_ResidualEnergy? \
Q getResidualEnergyind]! Tdle_CNode JLJE get_CN_ResEnergylreg]! ©
© ¢<=DELAY17/ R 72

var2:-residualEnergy (@)

r=nd,
getResidualEnergy[nd]! var2:=residualEnergy

var2:=residualEnergy
electedCNodes[nd]?
cnElected:=var1

n:NbrMsgs
wake?

nbMsgsToSend:=n

sleep?
c>=DELAY1
total:=sumNbAlISentMsgs(reg)

receive[reg]?
residualEnergy-=RC|

req_All_ResidualEnergy? gdj):(‘;gii‘l(c’lcd

Q) e:ldN
COUNtCN++ ‘ sentMsgse]<threshold
2
ML Awaken electedCNodes[nd] ‘ el ota sontegs(e],

cnElected:=varl sentMsgs[e:=0

residualEnergy<=0

@; disconnectind]?

[nd):=false rand:IdN sentMsgs[e]>=threshold
compromised:=true nd I=cnElected electedCNodes[nd]? claimSuspected[nd]!
real? chosen:=isVN(nd,rand) cnElected:=var1 vart:=e, total=total-sentMsgs{e],
oklreg) sentMsgs[e]:=0
nbMsgsToSend- nbMsgsToSend>0

free[reg]! not chosen
=0 ©) | etectedCNodesind]?

(cnResEnergy[cnl-reCN)
-AVRG
2 5
e O chosen| | CnElected:=vari geL ON_ResEnergyrea) claimSuspected[nd]!
- varl:=cn,
Waiting ~—C<=BACKOFF " treelreg] getidVNode[nd]! reCN:=var2 e oy{en] —reON
send[req c:=0, countVNed | 1o vNode
residualEnergy-=SC .~ ReadyToSend e o c>=DELAY2
¢<=BACKOFF req All_ResidualEnergy? = req_CN_ResEnergylreg]! (cnResEnergy[cn]-reCN)
7 o) ‘ & <AVRG
=reCN
getResidualEnergy[nd]! ‘ 5 @ e
varzisresidualEneray " (oseivefreg]? WaitingCN
residualEnergy<=0 residualEnergy-=RC c<=DELAY3

sleep? sleep?

activeNode[nd]:=false Asleep_VN

Figure 10: UPPAAL automaton modeling the whole WSN node tem-
plate

ode has to periodically request from cNodes their residual energies.
The collect periodicity is implemented by means of a clock ¢, an
invariant ¢, <= DFELAY?2 on Idle_V Node location, and a guard
¢y >= DFELAY, on the edge launching the collect request on a broad-
cast channel req C'N_ResEnergy[reg]. Once this signal is broad-
cast, the control moves into the new location WaitingC' N where it
can stay for some delay DFELAY3 during which it would receive re-
quested values reC'N along with cNodes’ identifiers cn over the chan-
nel get_C'N_ResEnergy|reg]. Every value reC'N received is stored
and used to compute the energy consumption that is compared to the
threshold AV RG. If it is found greater than AV RG, the vNode sends a
suspicion claim on the cNode cn to the cluster head along the channel
claimSuspected[nd]!. When the period DELAYj; expires (that is, the
guard co >= DFELAY3 becomes true), the control moves back from
WaitingC' N to Idle_V Node.

3.3.6. Whole automaton template of a WSN node

Given that all functioning modes are modeled, we build the whole
model of a WSN node might alternatively operate in sensing, cNode,
and vNode modes. This operation is achieved by putting their au-

Timed automata for DoS in WSNs 33

tomata together and merging their nodes and edges labeled with the
same names. Guards and invariants of such common elements would
be combined with the conjunction operator and all of their assignments
would be preserved. Figure 10 depicts the automaton of the node tem-
plate able to function according to the aforementioned modes.

3.3.7. Automaton of compromised node

In addition to the aforementioned behavior of a normal node, a com-
promised node can transmit false values about its residual energy to the
cluster head so that this faked information improves its chances to be
selected as a cNode. Once a compromised node commutes the cNode
mode, it can send any number of false suspicion claims against any node
in its region. Similarly, it can decide to not use the random process to
become vNode. Instead, it can deterministically decide to commute into
the vNode functioning mode and thereafter make any number of false
suspicion claims on cNodes of its regions. Furthermore, a compromised
node (as depicted by Figure 11) may have a greedy behavior whereby
it tries to get hold on the medium by performing send actions at a high
rate and without any delay whenever the medium is sensed as free. This
functioning mode will deprive the other nodes from using the medium
to send their data. It could also have a jamming behavior where it recur-
rently makes unlimited send actions labeling a loop arc upon Awaken
location) without checking whether the medium is free. Such behav-
ior would certainly leads to collisions and deprive regular nodes from
accessing the medium.

3.4. Model-checking properties

3.4.1. System under analysis

Once the templates have been defined, we build the whole system
by instantiating C'ompomisedN ode, Node and Medium templates as
many times as necessary an then combining the produced processes
with the only one process Cluster Head in parallel as shown in the
next example:

34 Studia Informatica Universalis.

send[reg]!
Awaken &

ok[reg]?
nbMsgsToSend-- nbMsgsToSend>0
free[reg]!
c:=0
Waiting send[reg]!
ReadyToSend

Figure 11: A fragment of UPPAAL automaton modeling a compro-
mised node

// template instantiations.
medium0 = Medium(O0);
mediuml=Medium(1) ;
CH=ClusterHead () ;

node0 = Node(0,0);

nodel = Node(1,0);

node2 = Node(2,1);

node3

Node(3,1);
node4 = Node(4,0);

nodeC=CompromisedNode(5,0) ;
// List one or more processes to be composed into a system.

system CH, mediumO,mediuml,node0,nodel,node2,node3,...,nodeC;

3.4.2. Model checking properties

Given a model of a system, a model checker tests automatically
whether this model meets a given specification. Specifications must
be expressed in a formally well-defined language such as propositional
temporal logics [31-33]. The verification procedure is an exhaustive
search of the state space of the system. We use UPPAAL, one of
the many model checking tools, which uses a simplified version of
CTL (Computation Tree Logic) where nesting of path formulae are dis-

Timed automata for DoS in WSNs 35

carded. Like in CTL, the query language consists of path formulae and
state formulae; state formulae describe individual states, whereas path
formulae quantify over paths or traces of the model. Path formulae can
be classified into reachability, safety and liveness.

— State formulae A state formula is an expression that can be eval-
uated for a state without looking at the behavior of the model. For in-
stance, this could be a simple expression, like ¢ >= BACKOFF, that
is true in a state whenever the clock c is greater or equal than some con-
stant BAC KOUF'F. The syntax of state formulae is a superset of that of
guards where use of disjunctions is not restricted. It is also possible to
test whether a particular process is in a given location using an expres-
sion on the form node0.Disconnected where node(is a process and
Disconnected is a location. In UPPAAL, deadlock is expressed using
a special state formula which simply consists of the keyword deadlock
and is satisfied for all deadlock states. A state is a deadlock state if there
are no outgoing action transitions neither from the state itself or any of
its delay successors. However, it can only be used with reachability path
formulae as shown later.

— Reachability properties These are the simplest form of properties.
They ask whether a given state formula ¢, possibly can be satisfied by
any reachable state, i.e., does there exist a path starting at the initial
state, such that ¢ is eventually satisfied along that path. We express
that some state satisfying ¢ should be reachable using the path formula
E <> ¢. Reachability properties are often used while designing a
model to perform sanity checks. For instance, we have checked such
properties (e.g., £ <> node0.Idle_C'Node) to show that within the
system model it is possible for node0 to be selected as cNode at some
point in the future.

— Safety properties Safety properties are on the form: “something
bad will never happen”. For instance, a deadlock should never occur in
the model. A variation of this property is that “something will possibly
never happen”. In UPPAAL these properties are formulated positively,
e.g. something good is invariantly true. Let ¢ be a state formulae. We
express that ¢ should be true in all reachable states with the path formu-
lae A[]¢ whereas F[|¢ says that there should exist a maximal path such
that ¢ is always true. For instance, we have checked using UPPAAL that

36 Studia Informatica Universalis.

the following property is satisfied:
A[[(CH.Enguiring imply CH.i == NBR_REGIONS

requiring that the cluster head C'H gets hold of mediums of all regions
before it could launch the selection cycle of cNodes.

— Liveness Properties Liveness properties are of the form: some-
thing will eventually happen. In its simple form, liveness is expressed
with the path formula A <> ¢, meaning ¢ is eventually satisfied.
The more useful form is the leads_to or response property, written
¢ --+ 1% which is read as whenever ¢ is satisfied, then eventually 1)
will be satisfied. We thus checked the two following liveness properties:
the first one expresses that whenever the battery of a node runs out, this
node would be connected, whereas the second property states that any
node in asleep mode shall be awaken later:

node0.residual Energy <= 0 --» node0.Disconnected and CH.Asleep --+ CH.Awaken.
We give below a list of other CTL formulae expressing properties we
could use to analyse our system:

—would any compromised node node always eventually be detected
in the future?:

nodeC.Awaken --» nodeC.compromised == true Where compromised is a

boolean variable to be set to true when the node is disconnected by
CH.

—Is there any risk that a cNode be a vNode controlling itself at the
same time?:

E <> node0.Idle_CNode and node0.Idle_V Node.

— Is there any risk that a cNode be a vNode controlling other cNode
at the same time?:

E <> (node0.Idle_V Node and nodel.Idle_CNode and CH.belongs(1,CH.setOfCNodes))

where belongs(e, list) is a function we have defined to tell whether a
node e belongs to some list of nodes.

4. ¢ --» 1 is equivalent to A[[(¢p = A <> v).

Timed automata for DoS in WSNs 37

—is it possible that a cNode be compromised?:
node0.Idle_C Node --+ node0.compromised == true

—1s it possible that a vNode be compromised?:
node0.ldle_V Node --+ node0.compromised == true

— does always the residual energy of any node decrease and eventu-
ally runs out?:

node0. Awaken --+ node0.Disconnected

—can C'H elect successively the same node cNode twice?:

(CH.c1 == node0.DELAY1 and node0.Idle_C Node) - (CH.c1 ==
2 xnode0.DELAY1 and node0.Idle_C Node)

— does the number of times that a node is selected a ¢Node reach a
given threshold n within some interval of time d

(CH.c1 == 0 and node0.Awaken) --» (CH.cl == d and node0.countCN >=n)

where counterC'N 1is an integer variable to be incremented every time
a node is selected as cNode

4. Selection in practice: results from simulation

Beside formal specification, we have undertaken a more concrete
simulation of our proposal regarding the energy consumption in order
to compare it with our previous model (the one using pseudo-random
election for cNodes). We used ns-3 software [34] to proceed.

In the new proposal, the vNodes are to model the theoretical con-
sumption of the cNodes they watch over. We have chosen to use
Rakhmatov and Vrudhula’s diffusion model [35] to compute the con-
sumption. This choice was driven by several reasons:

— it provides a pretty accurate approximation of real consumption,
taking into account chemical processes internal to the battery such as
rate capacity effect and recovery effect;

— it is one of the models already implemented in NS-3. So in our case
it is an absolutely perfect theoretical model. It remains “theoretical” as

38 Studia Informatica Universalis.

vNodes use this model to compute the expected behaviour of cNodes
according to the few packets they sometimes hear. Meanwhile, real
cNodes consumption computed by ns-3 core takes into account every
packet actually sent or received by cNodes, also including packets that
vNodes can not hear (because of distance or sleep schedule). So the
values computed by vNodes and ns-3 core will not always be the same,
which allows us to use the model.

Rakhmatov and Vrudhula’s diffusion model refers to the chemical re-
action happening inside the battery electrolyte, and is summarized by
equation (1).

u(t)

Ve

t t o0
o(t) = / i(r)dr + / i(T) <2 Z expﬁ2m2(tr)> dr (1)
0 0 m=1

—_—
1(t)

~

where:
— o(t) is the apparent charge lost from the battery at ¢;
—[(t) is the charge lost to the load (“useful” charge);
—u(t) is the unavailable charge (“lost in battery” charge);

—i(t) is the current at t;

_5:7“/5

w,
of the electrolyte.

, where D is the diffusion constant and w the full width

In practice, computing the first ten terms of the sum provides a good
approximation (this is also the default behavior of ns-3, by the way).

We launched several simulation instances and chose to focus on the
energy consumption and load balancing in the cluster. To obtain data
about detection rate or false positive values of the cNodes scheme, the
reader is redirected to our previous work [21,22]. When we imple-
mented our solution, we set the parameters of the simulation as detailed
in Table 1.

We obtained the residual energy values for each node at each minute
of the simulation. From this data we draw the average residual en-
ergy of the nodes (excluding cluster head) as well as the standard devi-

Timed automata for DoS in WSNs 39

Table 1: Parameters used for simulations

Parameter Value
Number of nodes 30 (plus 1 CH)
Number of cNodes 4
Probability for vNodes selection 33 %
Delay between consecutive elections 1 minute
Simulation length 30 minutes
Cluster shape Squared box
Cluster length Diagonal is 2 x50 meters
Transmission range 50 meters
Location of the nodes CH: center; others: random
Mobility of the nodes Null

Average data sent by normal nodes 1024 bytes every 3 seconds
Data sent by vNodes (per target cNode) 1024 bytes every 5 seconds

ation. Average residual energy per minute in the batteries of the nodes
is displayed on Figure 12. Increasing values at ¢ = 11 minutes and
t = 15 minutes with the use of the proposed solution traduce the recov-
ery effect of the batteries. As expected, our proposal causes an increased
global energy consumption. This is due, of course, to the new vNode
role. vNodes have to wake up periodically to send requests to neigh-
bor cNodes and to wait for an answer: this is energy-consuming. The
estimated overhead for our solution appears on Figure 13.

Standard deviation of residual energy value in the nodes at each
minute of the simulation is presented on Figure 14. During the first
minutes of simulation, our solution creates a higher disproportion in
load balancing due to the introduction of vNodes (there are more nodes
assuming demanding functions). But after the seven first minutes or so,
the standard deviation with our method falls below the standard devia-
tion of previous method. This is the consequence of a better load repar-
tition over the nodes with our solution. The difference between standard
deviation with and without our simulation may look small: this is due
to the model of the simulation we implemented. Given that we have a
good pseudo-random numbers generator, when the number of elections
get high, all nodes will roughly assume cNode role the same number of

40

Studia Informatica Universalis.

125100 T T T T
a with proposed solution ——
P without proposed solution 8-
<
=
° 125050 -
=
“5 f HEg =
E 53-8 DBBDE"B’DD'DEB'DBDD]
8 125000 4
(5]
=
ES
S
2124950 -
Q
&
)
Z
124900 L L L L L
0 5 10 15 20 25 30

Time (minutes)

Figure 12: Average residual energy of the nodes (excluding cluster
head)

times in simulation not using our solution. As sensing nodes all have the
same activity, a correct repartition of the cNode roles over the time leads
to a good energy balance. But in a situation where sensing nodes have
different activity levels — for instance, if there is an area in the cluster
when measured events occur much more often than in the other parts of
the cluster — the consumption would not be equilibrated between all
the nodes with the previous method; whereas our solution would deal
well with this case, since cNodes are elected according to residual en-
ergy. Thus simulations show that the use of vNodes leads to a higher
energy consumption, but electing cNodes on residual energy provides a
better load repartition in the cluster.

Conclusion

Monitoring agents running on cNodes are used in clustered wireless
sensor networks to apply rules on traffic of the nodes and to detect sev-
eral types of denial of service attacks (e.g. flooding, black hole attacks).
We proposed in this paper a new method to dynamically elect those ¢N-
odes, which is based on their residual energy. The aim of the proposed

Timed automata for DoS in WSNs 41

2 35000 |- I I Withlproposedlsolution I 7
L without proposed solution --------
s 30000 7
a
k=]
<
5 25000 R
5]
=
&
2 20000 R
© =
>
=] 15000 R
s
5 10000 - R
5
=
£ 5000 1
0 - 1 1 1 1 1
0 5 10 15 20 25 30

Time (minutes)

Figure 13: Estimated number of generated packets during the simula-
tion

selection algorithm is to provide a better load balancing in the cluster,
assuming that the cNodes role leads to a greater consumption.

We have addressed several issues related with the deterministic na-
ture of the selection. Compromised nodes trying to systematically take
over the cNode role are forced to abandon it for later cycles, or get
detected, by vNodes. The vNode role is a new role we introduced to
survey the cNodes. They periodically enquire for the residual energy of
the cNodes, and match the return value with a theoretical model: were a
compromised node to pretend having a high residual energy in attempt
to be elected for each cycle, it would get detected. The issue of areas of
the cluster uncovered by cNodes, depending of the activity in the clus-
ter, is addressed by enforcing covering of the whole cluster: the cluster
head is to designate additional cNodes if needed. Working with clusters
ensures a good scalability of the solution. It is also flexible, as cNodes
can endorse various trust-based model, and monitoring rules can be set
to fight against several types of denial of service attacks. And the use
of vNodes is resilient to a small percentage of compromised vNodes
(depending on parameters set by user).

We also have presented a timed automata-based approach to model-
ing and analyzing our method; we modeled behaviors of regular nodes

42 Studia Informatica Universalis.

T T T
with proposed solution ——
without proposed solution 8-

Standard deviation for residual energy (J)

0 5 10 15 20 25 30

Time (minutes)

Figure 14: Standard deviation for residual energy of the nodes

that might alternatively operate in sensing, cNode, and vNode modes
along with compromised nodes which act in greedy or jamming ways.
Such a rigorous and formal approach helped us fix many design errors
of the proposal and overcome flaws that led the system to erroneous sta-
tuses. Many properties have been expressed in Computation Tree Logic
(CTL) and checked over the system under design.

Eventually, the results we have obtained through simulations show
that even though using our simulation causes a higher global consump-
tion of energy in the cluster, it provides a better load repartition between
Sensors.

Future works include improvements of our solution by adding moni-
toring of the cluster head, as well as modeling a cluster with areas of dif-
ferent activity levels. Concerning the formal approach, we also plane to
explore a probabilistic model checking on our model to evaluate timing
limits and performances. To enable such an approach, we have to adorn
transitions of our automata with quantitative annotations about trans-
mission success, failure and collision probabilities. Thereafter, more
suitable tools have to be used to make use of this information in order
to quantitatively deal with liveness properties.

Timed automata for DoS in WSNs 43

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[9]

Jun Luo, Panagiotis Papadimitratos, and Jean-Pierre Hubaux.
GossiCrypt: wireless sensor network data confidentiality against
parasitic adversaries. In Proceedings of the fifth annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON’08), pages 441-450, San
Francisco, CA, USA, June 2008.

Quentin Monnet, Lynda Mokdad, and Jalel Ben-Othman. Data
protection in multipaths WSNs. In Proceedings of the fifth IEEE
international workshop on Performance Evaluation of communi-
cations in DIStributed Systems and WEb based Service Architec-
tures (PEDISWESA’13), Split, Croatia, July 2013.

Jalel Ben-Othman and Lynda Mokdad. Enhancing data security in
ad hoc networks on based multipath routing. Journal of Parallel
and Distributed Computing, 70(3):309-316, March 2010.

Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612—-613, November 1979.

Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and
J. D. Tygar. SPINS: Security Protocols for Sensor Networks. Wire-
less Networks, 8(5):521-534, September 2002.

Marcos A. Simplicio, Jr, Bruno T. de Oliveira, Paulo S. L. M.
Barreto, Cintia B. Margi, Tereza C. M. B. Carvalho, and Mats
Naslund. Comparison of authenticated-encryption schemes in
wireless sensor networks. In Proceedings of the 36th Annual IEEE
Conference on Local Computer Networks, pages 454-461, Bonn,
Germany, October 2011.

Kui Wu, Dennis Dreef, Bo Sun, and Yang Xiao. Secure data ag-
gregation without persistent cryptographic operations in wireless
sensor networks. Ad Hoc Networks, 5(1):100-111, January 2007.

Suat Ozdemir and Yang Xiao. Secure data aggregation in wireless
sensor networks: a comprehensive overview. Computer Networks,
53(12):2022-2037, August 2009.

Shio Kumar Singh, M. P. Singh, and D. K. Singh. A survey on net-
work security and attack defense mechanism for wireless sensor

44

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Studia Informatica Universalis.

networks. International Journal of Computer Trends and Technol-
ogy, May 2011.

Vishal Rathod and Mrudang Mehta. Security in wireless sensor

network: a survey. Ganpat University Journal of Engineering and
Technology, 1(1):35—44, January 2011.

Hongmei Deng, Wei Li, and Dharma P. Agrawal. Routing security
in wireless ad hoc networks. IEEE Communications Magazine,
40(10):70-75, October 2002.

Benjamin J. Culpepper and H. Chris Tseng. Sinkhole intrusion
indicators in DSR MANETSs. In Proceedings of the first Inter-
national on Broadband Networks BroadNets’04), pages 681-688,
San José, CA, USA, October 2004.

Jun-Won Ho. Distributed detection of node capture attacks in
wireless networks. In Hoang Duc Chinh and Yen Kheng Tan, edi-
tors, Smart Wireless Sensor Networks, chapter 20, pages 345-360.
InTech, December 2010.

Sina Hamedheidari and Reza Rafeh. A novel agent-based ap-
proach to detect sinkhole attacks in wireless sensor networks.
Computers and Security, 37:1-14, September 2013.

Mohammad Momani and Subhash Challa. Survey of trust models
in different network domains. International Journal of Ad Hoc,
Sensor and Ubiquitous Computing, 1(3):1-19, September 2010.

M. Carmen Fernandez-Gago, Rodrigo Roman, and Javier Lopez.
A survey on the applicability of trust management systems for
wireless sensor networks. In Proceedings of the third international
workshop on Security, Privacy and trust in Pervasive and Ubiq-
uitous computing (SECPerU’07), pages 25-30, Istanbul, Turkey,
July 2007.

Mohammad Reza Rohbanian, Mohammad Rafi Kharazmi, Alireza
Keshavarz-Haddad, and Manije Keshtgary. Watchdog-LEACH: a
new method based on LEACH protocol to secure clustered wire-
less sensor networks. Advances in Computer Science: an Interna-
tional Journal, 2(3):105-117, July 2013.

Gu Hsin Lai and Chia-Mei Chen. Detecting denial of service at-
tacks in sensor networks. Journal of Computers, 4(18), January
2008.

[19]

[22]

[23]

[24]

[25]

[26]

[27]

Timed automata for DoS in WSNs 45

M. J. Handy, M. Haase, and D. Timmerman. Low energy adaptive
clustering hierarchy with deterministic cluster-head selection. In
Proceedings of the 4th IEEE International Workshop on Mobile
and Wireless Communications Networks, pages 368-372, Stock-
holm, Sweden, 2002.

Fabrice Theoleyre and Fabrice Valois. VSR: a routing protocol
based on a structure of self-organization. Studia Informatica Uni-
versalis, 6(1):27-57, 2008.

Malek Guechari, Lynda Mokdad, and Sovanna Tan. Dynamic so-
lution for detecting denial of service attacks in wireless sensor net-
works. In Proceedings of the 2012 IEEFE International Conference
on Communications (ICC’12), Ottawa, Canada, June 2012.

Paolo Ballarini, Lynda Mokdad, and Quentin Monnet. Modeling

tools for detecting DoS attacks in WSNs. Security and Communi-
cation Networks, 6(4):420-436, April 2013.

Madeleine El-Zaher, Jean-Michel Contet, Pablo Gruer, Franck
Gechter, and Abderrafiaa Koukam. VSR: a routing protocol based
on a structure of self-organization. Studia Informatica Universalis,
10(3):119-141, 2012.

Paolo Ballarini, Hilal Djafri, Marie Duflot, Serge Haddad, and Ni-
hal Pekergin. HASL: an expressive language for statistical veri-
fication of stochastic models. In Proceedings of the 5th interna-
tional ICST conference on performance evaluation methodologies
and tools (VALUETOOLS’11), pages 306-315, Cachan, France,
May 2011.

Paolo Ballarini, Hilal Djafri, Marie Duflot, Serge Haddad, and
Nihal Pekergin. COSMOS: a statistical model checker for the
hybrid automata stochatic logic. In Proceedings of the 8th

international conference on quantitative evaluation of systems
(QEST’11), pages 143—144, Aachen, Germany, September 2011.

Llanos Tobarra, Diego Cazorla, Fernando Cuartero, Gregorio
Diaz, and Emilia Cambronero. Model checking wireless sensor
network security protocols: TinySec + LEAP + TinyPK. Telecom-
munication Systems, 40(3—4):91-99, April 2009.

Jinat Rehana. Security of wireless sensor network. Technical re-
port, Helsinki University of Technology, 2009.

46

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

Studia Informatica Universalis.

Ossama Younis and Sonia Fahmy. HEED: a Hybrid, Energy-
Efficient Distributed clustering approach for ad-hoc sensor net-
works. IEEE Transactions on Mobile Computing, 3(4):366-379,
October 2004.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tuto-
rial on Uppaal. In Formal Methods for the Design of Real-Time
Systems, volume 3185, pages 200-236. Springer, 2004.

R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183-235, 1994.

R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real
time systems. In Proceedings of the fifth Symposium on Logic In
Computer Science (LICS’90), pages 414-425, 1990.

T. A. Henzinger. Symbolic model checking for real-time systems.
Information and Computation, 111:193-244, 1994.

G. J. Holzmann. Software model checking. NATO Summer School,
10S Press Computer and System Sciences, Marktoberdorf Ger-
many, 180:309-355, August 2000.

The network simulator — ns-3.

D. Rakhmatov and S. Vrudhula. An analytical high-level battery
model for use in energy management of portable electronic sys-
tems. In Proceedings of the International Conference on Com-
puter Aided Design (ICCAD’01), pages 488—493, San Jose, CA,
USA, November 2001.

	Related works
	cNodes selection mechanism
	Using vNodes to ensure a secured deterministic election
	Cluster coverage in case of heterogeneous activity
	Observations

	Formal specification and model-checking of the system
	Timed automata
	Modeling language of UPPAAL
	UPPAAL models of the system components
	Model-checking properties

	Selection in practice: results from simulation

