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Abstract Scene analysis is a relevant way of gathering information about the structure
of an audio stream. For content extraction purposes, it also provides prior knowledge
that can be taken into account in order to provide more robust results for standard
classification approaches.

In order to perform such scene analysis, we believe that the notion of temporality is
important. Consequently, we study in this paper a new way of modeling the evolution
over time of the frequency and amplitude parameters of spectral components. We
evaluate its benefits by considering its ability to automatically gather the components
of the same sound source. The evaluation of the proposed metric shows that it achieves
good performance and takes better account of micro-modulations.

Keywords auditory scene analysis, mid-level representation, clustering, common
variation cue

1 Introduction

Extracting content from polyphonic audio such as musical streams appears to be
bounded to moderate performance if the stream is considered ’blindly’, i.e. processed
without any prior knowledge of the structure of the stream [2]. As scene analysis is a
relevant way of gathering informations about the structure of an audio stream, per-
forming such operation prior extracting content is a way to address this issue.

On the high end, one can consider a mid-level representation of the polyphony [13,
5] describing polyphonic sounds as a set of coherent spectral regions, where each set
can be considered as monophonic. In this case, one can focus the content extraction
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process to a given element of the scene [28]. On a lower end, one can consider some
time segmentation of the audio stream where sections that have similar properties
are identified and/or clustered. Based on this representation, the temporal priors are
considered to integrate the indexing decision done at each analysis frame to obtain
more robust classification results [21].

In order to extract such representation or segmentation, many cues can be consid-
ered [6]. Timbre is one of them. The description of the timbre of monophonic sounds
has been widely studied [31] and many descriptors have been proposed [18]. These de-
scriptors or features are mainly based on the temporal or spectral observations of the
sounds since “Timbre depends primarily upon the spectrum of the stimulus, but it also
depends on the waveform, the sound pressure, the frequency location, of the spectrum,
and the temporal characteristics of the stimulus.”, as stated in the ANSI definition of
timbre [19]. Unfortunately, most of these descriptors can not be directly extracted from
polyphonic recordings.

If the sounds produced by the instruments can be considered as pseudo-periodic, a
monophonic or polyphonic signal may be decomposed into sinusoidal components with
parameters that evolve slowly with time, the partials. This restriction is not too strong
since most classical instruments fit in this category, from strings to brass instruments.
In this case, several criteria or psychoacoustical 'cues’ proposed in the Auditory Scene
Analysis (ASA) literature [6] may then be considered for an automatic evaluation of the
timbre of each sounds sources [14]. In particular, it is shown in the work of McAdams
[32] that the correlated evolution of the parameters of the partials of a given musical
or vocal tone is an important cue for the perception of timbre.

Consequently, in order to ensure the relevance of the approach proposed in this
paper, the analysed signals have to be pseudo-periodic in order to be suitable for the
sinusoidal model that is the front-end of our method. The signals can be inharmonic. In
fact, that is the main motivation of the use of the common variation cue to complement
the harmonicity one. They should be best monophonic but in case of weak polyphonies,
i.e. no unison, some partials are not overlapping and can be assigned to only one of
the two different sources active at the same time.

The common variation cue has been used for source separation [9,12,46] i.e. to
determine which partials have been produced simultaneously by the same Producing
Sound System (PSS) and therefore automatically extract a high level description of
polyphonic sound. This cue is also a musical parameter that describes timbre and
therefore also have potential for Musical Information Retrieval (MIR) applications such
as musical instrument, instrument class identification, and instrumentalist or locutor
recognition.

These applications both rely on the definition of a metric to evaluate how dissimilar
two partials are, according to the common variation of their parameters. We will show
in this paper that considering the spectrum of these variations allows us to propose
a robust dissimilarity metric. The paper is organized as follows: after a presentation
of the sinusoidal model in Section 2, existing metrics proposed in the literature are
reviewed in Section 3 and the requisites of a relevant metric are also detailed.

The proposed metric is next introduced in Section 4. Motivated by the properties
of the evolutions of the frequencies of the partials, a first metric is proposed. We next
show that this metric can also be successfully used while considering the evolutions of
the amplitudes as soon as the variation of the envelope is removed. The definition of a
metric that jointly considers these two cues is next studied.



In order to compare existing metrics to the ones introduced in this article, we use
the evaluation methodology presented in Section 5, where the database and the criteria
that evaluate the ability of the tested metric to discriminate partials produced from
different PSS. The results of this evaluation are presented in Section 6.

The timbral discrimination capabilities of the proposed metric, i.e. its ability to dif-
ferentiate partials produced by not only different PSS but also different instruments or
different classes of intruments are studied in Section 7 and some potential applications
are described in Section 8.

2 High-Level Representation of Polyphonic Sounds

Most of the descriptors used in MIR, applications consider temporal features such as
mean zero-crossing rate or spectral ones such as Mel-Frequency Cepstrum Coeflicients
(MFCC), see the work of P. Herrera et al. [18] for a deeper review. These descrip-
tors are generally extracted on a frame basis and the frames are usually considered
independently, loosing most of the temporal information.

For various applications, one needs a representation of polyphonic sounds where
the timbral information as well as their evolutions with respect to time of each sound
sources can be considered. In this section, we discuss the fact that the well-known
sinusoidal model can be a basis for such a representation.

2.1 Sinusoidal Model

The sinusoidal model represents pseudo-periodic sounds as sums of sinusoids — so-
called partials — controlled by parameters that evolve slowly with time [33,43]. More
formally put, the audio signal s can be calculated from the controlling parameters using
Equations 1 and 2, where [V is the number of partials and the functions fp, ap, and ¢p
are the instantaneous frequency, amplitude, and phase of the p-th partial, respectively.
The N pairs (fp,ap) are the parameters of the additive model and represent points in
the frequency-amplitude plane at time t¢.

N
s(t) =D ap(t) cos(dp(t)) (1)
p=1

t
6p(t) = 6p(0) +2m [ fyfu) )
This can also be written from the set point of view:

Pr(m) = {Fi(m), Ap(m), P (m)} 3)

where Fj.(m), Ax(m), and @1 (m) are respectively the frequency, amplitude, and phase
of the partial P} at time index m. These parameters are valid for all m € [by,- -, b, +
Il — 1], where the b, and [, are respectively the starting index and the length of the
partial.

On a frame basis, the instantaneous frequency, amplitude, and phase of each par-
tials can be estimated using Fourier based approaches like the parabolic methods [1]
the phase-based methods [25] and the reassignment one proposed in [3]|. In order to



go beyond the resolution limitation of the Fourier transform, one can also consider
parametric methods like the ESPRIT algorithm [29,4] or maximum likelihood ones,
like the matching pursuit [8,10]. Those estimate can be complemented with the esti-
mation of the slope of the frequency and amplitude [1,42] that could be considered at
the tracking phase to obtain a more precise modeling of the long term evolution of the
frequency and amplitude parameters through time.

The partials can be extracted from the parameters estimated on a frame basis using
partial tracking algorithms [33,43,44,27,40,35]. Polyphonic sounds can be considered
with dedicated tracking algorithms [11,26]. However, in order to avoid problems due
to strong polyphony [13], we only consider in this paper mixtures of entities extracted
from momnophonic signals.

2.2 Acoustical Entities

These sinusoidal components are called partials because they are only a part of a more
perceptively coherent entity that may be called an acoustical entity.
This can be written as:

N
S={J En (4)
n=1

with S being the mid-level representation of the sound, E being an acoustical entity
and N the total number of entities in the sound. Hence each entity is made of a group
of partials:

Mn
E,=J P (5)
k=1

where My, is the total number of partials P}’ in the entity.

To extract these entities from a sinusoidal representation of a sound, similarities
between partials should be considered in order to gather the ones belonging to the same
acoustical entity. From the perceptual point of view, some partials belong to the same
entity if they are perceived by the human auditory system as a unique sound. There
are several cues that lead to this perceptual fusion: the common onset, the harmonic
relation of the frequencies, the correlated evolutions of the parameters and the spatial
location [6].

The earliest attempts at acoustical entity identification and separation consider
harmonicity as the sole cue for group formation. Some rely on a prior detection of the
fundamental frequency [17,15] and others consider only the harmonic relation of the
frequencies of the partials [23,46,41]. Yet, many musical instruments are not perfectly
harmonic.

In contrast, the cue that consider the correlated evolutions of the parameters of
the partials is generic. Also, numerous psycho acoustical studies showed that the vari-
ations or the micro-modulations are important for perception. Bregman writes: “Small
fluctuations in frequency occur naturally in the human voice and in musical instru-
ments. The fluctuations are not often very large, ranging from less than 1 percent for
a clarinet tone to about 1 percent for a voice trying to hold a steady pitch, with larger
excursions of as much than as 20 percent for the vibrato of the singer. Even the smaller
amounts of frequency fluctuation can have potent effects on the perceptual grouping
of the components harmonics.” According to the work of McAdams [32], a group of
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Fig. 1 Representation of two fictive sounds in the time-frequency domain. Partials A, B, and
C (clearly correlated in modulation and starting and ending times, that is common variation)
represent the sinusoidal components of the first sound, while D and E represent the sinusoidal
components of the second sound.

partials is perceived as a unique acoustical entity only if these variations are correlated.
Therefore, the correlated evolutions of the parameters of the partials is a generic cue
since it can be observed with any vibrating instruments. As an example, see Figure 1.

In order to define a dissimilarity metric that considers the common variation cue, we
will study in the next section the physical properties of the evolutions of the frequency
and amplitude parameters of the partials.

3 The Common Variation Cue

In order to define a dissimilarity metric that considers the common variation cue, we
have to study the physical properties of the evolutions of the frequency and amplitude
parameters of the partials.

Let us consider a harmonic tone modulated by a vibrato of given depth and rate.
All the harmonics are modulated at the same rate and phase but their respective depth
is scaled by a factor equal to their harmonic rank (see Figure 2(a)). It is then important
to consider a metric which is scale-invariant.

Cooke uses a distance [9] equivalent to the cosine dissimilarity dc, also known as

intercorrelation:
C(Xl,XQ)
de(X1,X0) =1—
(X1,X2) =1 NCS SR ANCoR) (6)
N
o(X1,X2) = ) X1(i) Xa(i) (7
i=1

where X7 and Xg are real vectors of size N. This dissimilarity is scale-invariant.
T. Virtanen et al. proposed (in [46]) to use the mean-squared error between the
vectors first normalized by their average values:

N ) N2
dv(Xl,Xz)—%zl<X)lz.(lz) —X;.—(;)> (8)

where X and X5 are vectors of size N and X denotes the mean of X. This normaliza-
tion is particularly relevant while considering the frequencies since the ratio between



the mean frequency of a given harmonic and the one of the fundamental is equal to its
harmonic rank.

It is proposed in [24] to consider the Auto-Regressive (AR) model as a scale-
invariant metric that considers only the predictable part of the evolutions of the pa-

rameters:
n

Xi(n) =Y k() Xy(n — i) (9)

=1

where the k(i) are the AR coefficients. Since the direct comparison of the AR coeffi-
cients computed from the two vectors X; and X» is not relevant, the spectrum of these
coefficients is compared as proposed by Itakura [20]:

dAR(1 Xo) —log [ HLN S (10)
where
Kj(w) =1+ K(i)e 7™ (11)
=1

When considering the amplitudes of the partials, a scale-invariant metric is also
important. In this context, the normalization proposed by T.Virtanen is no longer
motivated since the relative amplitudes of the harmonics depend on the envelope of
the sound. For example, on Figure 2(b), the topmost curve (with small modulations)
represents the amplitudes of the fundamental partial, while the second to the top curve
with broad oscillation represents the first harmonic.

Moreover the envelope is globally decreasing as the frequency grows, but it can
appear that the amplitude of the envelope is also ascending due to the specific shape of
the envelope around formants. Therefore, when the frequency of a partial is modulated,
the amplitude may be modulated with a phase shift, see the bottom curve of Figure
2(b). Therefore, a metric that is phase-invariant should be considered.

The amplitude evolution of a partial is composed of a temporal envelope and some
periodic modulations. Since the envelope of the amplitude of the partials can be very
different from partials to partials of the same entity it may be useful to consider only
the periodic modulations while computing their similarities. The metric introduced in
the next section will cope with these issues.

4 Proposed Metric

We propose to go beyond temporal domain by taking the parameters to the spectral
domain. There was already an attempt at this, using AR models (see equation 10).
Since the Fourier transform is based on the fact that the input signal is periodic, using
a spectrum of the evolution of the partials might show common periodicities of the
partials. This will be handy for the modulations of the partials created by vibrato
and tremolo, since we can assimilate these modulations to sinusoidal ones over a short
period of time (see [30]). It can be also interesting for micro-modulations such as the
ones produced by vibrating strings such as the strings of a piano (see Figure 3). Hence,
the spectrum of the evolutions in frequency and amplitude of the sound are relevant
from the point of view of the correlation of evolutions.
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Fig. 2 Mean-centered frequencies and amplitudes of some partials of a saxophone tone with
vibrato.

4.1 Using the Frequencies of the Partials

The first step in the calculation of our new metric is to correlate the evolutions of the
frequencies of the partials. As we said before, a good description of these evolutions is
given by the spectra of these evolutions.

The way to compute the spectra of the frequency evolutions of the signal from a
partial is to take off the mean value of this frequency and then compute the Fourier
transform of the resulting signal. Indeed, in order to have a clean spectrum relevant to
the evolutions, it is necessary to have the evolutions centered around zero.

Then, we apply the previously exposed process to the frequencies of all the partials
from which we want to measure evolution correlation. Once we have these frequencies
expressed in terms of spectra, the way to compute the distance between two partial
signals is to intercorrelate their spectra (see equation 6). This gives

ds(f1, f2) = de(|F1), | Fa)) (12)
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Fig. 3 Centered frequencies (top) of a piano note and their corresponding spectra (bottom).
Each curve is shifted for clarity sake.
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Fig. 4 Amplitudes of a partial of an Bb Clarinet and its polynomial envelope estimation.

where f1 and fo are the frequency vectors of two partials P; and Pp and Fj is the
Fourier spectrum of f;. Thanks to the absolute value applied to the spectra, this
distance is phase-invariant.

4.2 Using the Amplitudes of the Partials

In the case of the amplitudes of the partials, the problem is slightly more complicated.
Indeed, in order to center the oscillating part of the signal around zero subtracting the
mean will not be sufficient. As presented in other work [38], subtracting a polynomial
is sufficient to center the oscillations around zero, as we see on Figure 4. The idea
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Fig. 5 Amplitudes of three partials of an Bb Clarinet when the polynomial envelope is removed

(a), and their corresponding spectra (b). The curves have been shifted for clarity sake.

behind this polynomial subtraction is that the envelope of a sound (seen as attack,
decay, sustain and release) can be roughly approximated by a 9th degree polynomial.
An example of such a subtraction is shown on Figure 5.

This gives us the distance dsp:

dsp(ar, az) = de(| A1, | Az]) (13)
where 212 is the Fourier spectrum of aj, with
ar = a, — 1 (ay)

where a1 and a9 are the amplitudes of two partials, I7(x) is the envelope polynomial
computed from signal z, using a simple least-squares method [34].



10

4.3 Metric Combination

In order to exploit both the frequency and amplitude parameters, we need a way to
combine the measures of amplitude and frequency distances.

T.Virtanen et al. proposed to combine frequency and amplitude parameters dis-
tances by means of adding the two distance measures while considering an harmonicity
factor. In their work [46], each distances are weighted before performing the addition.
For comparison purposes, we consider the following distance:

dv(f17f2) +dv(alva2)

dv+v(P17P2): 2

(14)

where fi. and aj are respectively the frequencies and amplitude of partials Pj. Since
the weights are not supplied and no harmonicity information is available it is only an
approximation of the combination scheme proposed by T. Virtanen.

Since our proposed distances ds and dsp are normalized, if we want to give the same
weight to the two distances, we can combine the frequency and amplitude distances by
performing a simple mean. This would then yield :

f17f2) + dsp(‘llya2)
2

d
dy (Pr, Py) = %! (15)
In order to take into account the best result on part of one of the measures, a
method would be to take the minimum of the two distances:

dm (P1, P2) = min(ds(f1, f2), dsp(az, az)) (16)

As it will be presented in Section 6, better results are achieved when we multiply
amplitude and frequency parameter distances. This combination, however less robust
to errors, seems to take better account of the performance of each distance measure
independently. In order to keep the metrics in the same scale, a square root is applied
to the combination:

dx(P1, Po) = 1/ds(f1, fo)dsp(ar, az) (17)

5 Evaluation

In this section, we present the methodology used for evaluating the performance of
the different metrics reviewed in Section 3 and proposed in Section 4. The evaluation
database is first described. Next, several criteria are presented, each one evaluating a
specific property of the evaluated metric.

The objective of the evaluation presented in the remaining of the paper is to study
if the proposed similarity metrics are good candidates for implementing a clustering
of the partials of the same acoustical entity. In Section 7, we extend this study by
considering the statistical properties of one of the proposed metric while considering
not only the entity level but also larger sets such as all the partials played by a given
instrument or a class of instruments.
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5.1 Database

In this study, we focus on a subset of musical instruments that produce pseudo-periodic
sounds and model them as a sum of partials (see Section 2). The instruments of the
IOWA database [16] whose instrument hierarchy is plotted in Figure 7, globally fit to
this condition even though some samples have to be removed. The “pizzicato” tones,
i.e plucked-string tones with strong attack and weak resonating phase as well as the
“pianissimo” tones i.e tones with very low amplitude are discarded.

In order to extract the partials for each tone, each file of the IOWA database is split
into a series of audio files, each containing only one tone. The spectral parameters at
each frames are estimated using the phase derivative method studied in [25| with the
following parameters: the window size is 2048 samples long, the hop size is 512 samples
long at a sampling rate of 44100 Hz. An implementation of the algorithm proposed
by McAuly and Quatieri in [33] is used with a frequency tolerance of 50 Hz. Since we
consider only the prominent partials of a given tone, only the extracted partials lasting
for at least 2 seconds are retained. For each entity, only the 20 partials with the highest
amplitude are retained.

5.2 Methodology

To compare the metrics proposed in Section 4 and those reviewed in Section 3, we use
the following methodology to compute the three evaluation criteria. For the two entities
of the considered couple, the median values of the starting/ending time index of the
partials ts and te are computed. Only the partials existing before and after ¢ts + €5 and
te — ee are kept (see Figure 6). The values €5 and e are arbitrarily small constants.

Then, the partials of the two entities are gathered. Only the common part defined
as the time interval where all the partials are active is considered to evaluate the tested
metric. For example, the common part of the partials represented in Figure 6 is between
cs and ce.

Frequency
[}
O 0
[ 0
| |
| |
[ 0
|
| o lg
[ 0
| |
L f f : >
ts Cs Ce te Time

Fig. 6 Selection of the common parts of the partials of the two acoustical entities. A partial
start is represented with a black filled dot and its end with a white filled dot. Only the partials
existing before and after ts and t. are kept, represented with solid lines. The indexes cs and
ce delimit the common part of all the partials.
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5.3 Performance Criteria

Once the evaluation database and the evaluation methodology are defined, some criteria
have to be defined that reflect if, by considering the evaluated metric, two partials are
“close” if they actually belong to the same acoustical entity and “far” otherwise.

5.8.1 Fisher criterion

A relevant dissimilarity metric between two partials is a metric which is low for partials
of the same entity — the class from the statistical point of view — and high for partials
that do not belong to the same entity. The intra-class dissimilarity should then be
minimal and the inter-class dissimilarity as high as possible. Let U be the set of elements
of cardinal # U and C; the entity of index ¢ between N, different entities. An estimation
of the relevance of a given dissimilarity d(x,y) for a given acoustical entity is:

intra(Cy) = 30 S d(C4(), Ci(k) (15)
=1k=1
ng # U—n;
mter(C) =30 Y d(Gi(). i) (19)
j=1 =1
F(Cy) = % (20)

where n; is the number of partials in C; and C; = U\C;. The overall quality F(U) is
then defined as:

S Ne inter(C;)

FU) =
© va:cl intra(C})

(21)

This last criterion F(U) is loosely based on the fisher discriminant commonly used in
statistical analysis. It provides a first evaluation of the discrimination quality of a given
metric. It can however be noticed that this criterion is dependent of the scale of the
studied dissimilarity metric.

5.3.2 Density criterion

Dissimilarity-vector based classification involves calculating a dissimilarity metric be-
tween pair-wise combinations of elements and grouping together those for which the
dissimilarity metric is small according to a given classification algorithm.

The density criterion D intends to evaluate a property of the tested metric that
should be fulfilled in order to be relevantly used in combination with common classifica-
tion algorithms such as hierarchical clustering or K-means. Indeed, many classification
algorithms iteratively cluster partials which relative distance is the smallest one. The
density criterion verifies that these two partials actually belong to the same acoustical
entity.

More formally, given a set of elements X, ((X) is defined as the ratio of couples
(a,b) so that b is the closest to a and a and b belong to the same acoustical entity.
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Given a function named cl defined as:
cd: X — N

a +— 1
where 7 is the index of the class of a. We get:

_ # {(a,b)|d(a,b) = min.ec x d(a,c) Acl(a) = cl(b)}
% X

where X can be either an acoustical entity C; or the universe U and # x denotes the
cardinal of x.

D(X)

(22)

5.3.3 Classification criterion

For this criterion, the quality of the tested metric is evaluated by considering the quality
of a classification done using the tested metric and a classification algorithm.

We consider an agglomerative hierarchical clustering (AHC) procedure [22]. This
algorithm produces a series of partitions of the partials: (Pn, Pp—1,...,P1).

The first partition P, consists of n singletons and the last partition P; comnsists
of a single class containing all the partials. At each stage, the method joins together
the two cluster of partials which are most similar according to the chosen dissimilarity
metric. At the first stage, of course, this ends in joining together the two partials that
are closest together, since at the initial stage each cluster has only one partial. At each
stage, the dissimilarity between the new cluster and the other ones is computed using
the method proposed by Ward [47].

Hierarchical clustering may be represented by a two dimensional diagram known
as dendrogram which illustrates the fusions made at each successive stage of clustering,
see Figure 7 where the length of the vertical bar that links two classes is calculated
according to the distance between the two joined clusters.

The acoustical entities can then be found by “cutting” the dendrogram at relevant
levels. Here, for the classification criterion, the acoustical entities are identified by
simply cutting the dendrogram at the highest levels to achieve the desired number of
entities. If the desired number of entities is 2, only the highest level is cut (see Figure
7).

The classification criterion H is then defined as the number of partials correctly
classified versus the number of partials classified:

_ # {ala € C; Acl(a) =i}
- e

where C; is an acoustical entity extracted from the hierarchy.

H(X) (23)

6 Results

Each metrics reviewed in Section 3 and proposed in Section 4 are now compared using
the evaluation methodology described in the previous section. The correlation metric
dc of Equation 6 and the metric dy proposed by T.Virtanen (see Equation 8) requires
no parameterization.

The metric dar considers AR vectors of 4 coefficients computed with the Burg
method [7]. The metric ds of Equation 12 considers spectra computed with the Fast
Fourier Transform (FFT) using vectors windowed by the periodic Hann window. The
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p1 ®
Pe :
p2
o
p3
P4
Ps

Fig. 7 Dendrogram representing the hierarchy obtained using the AHC algorithm with 6 par-
tials. The cut at the highest level of the hierarchy represented by a dot identify two acoustical
entities C1 = {p1,pe,p2} and C2 = {p3, pa,ps}-.

F D H

d. || 2.909 0.938 (0.216) _ 0.929 (0.137)
dy || 1.763  0.929 (0.230)  0.881 (0.172)
dar || 1.863  0.712 (0.326)  0.757 (0.166)
ds || 3.488 0.944 (0.210) 0.940 (0.130)
dsp || 2.909  0.936 (0.219)  0.931 (0.133)

Table 1 Three criteria (Fisher, density, hierarchical classification) results for the five metrics
presented in this paper, applied on the frequencies of the partials. The density and hierarchical
criteria (two last columns) are presented as scores between 0 and 1. For every criteria, a higher
value means better performance.

computation of the metric dsp (see Equation 13) is similar except that a 9th order
polynomial is first estimated and removed before the FF'T computation. The results are
presented as mean values for each criterion, and the bracketed values are the standard
deviations (not shown for F since the value is already normalized).

6.1 Frequency Parameter

The metrics between partials based on the frequency parameter is showed on Table 1.
The ds metric we proposed gives the best results for the three criteria. It should be
noted that the correlation metric (dc) gives also good results for the two last criteria.
We can also see that removing the polynomial from the frequencies of the partials does
not contribute to the quality of the metric since frequencies of the partials of the sounds
in the IOWA database are quasi-stationary. The performance is even worse because of
the modulations that the polynomial might take away from the frequency evolutions.

6.2 Amplitude Parameter

As presented on Table 2, the performance of the metrics for the amplitude parameter
are globally worse than those obtained for the frequency parameter, lowering from
94% to 80% correct classifications at best. However, the polynomial removal slightly
enhances the results.
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F D H
d. || 1.304 0.818 (0.300)  0.786 (0.162)
dy || 1.208  0.784 (0.316)  0.773 (0.159)
dar || 1.938  0.664 (0.331)  0.733 (0.156)
ds || 1.452  0.778 (0.301)  0.781 (0.163)
dsp || 1.366  0.796 (0.297)  0.803 (0.171)

Table 2 Three criteria (Fisher, density, hierarchical classification) results for the five metrics
presented in this paper, applied on the amplitudes of the partials. The density and hierarchical
criteria (two last columns) are presented as scores between 0 and 1. For every criteria, a higher
value means better performance.

F D H

doto || 1.298  0.784 (0.316)  0.773 (0.159
dy 2.040  0.923 (0.230)  0.928 (0.137
dm || 3.803  0.934 (0.216)  0.943 (0.122
dx 2.702  0.937 (0.217) 0.951 (0.116

|

N2

Table 3 Three criteria (Fisher, density, hierarchical classification) results for the four com-
bined metrics we defined. The density and hierarchical criteria (two last columns) are presented
as scores between 0 and. For every criteria, a higher value means better performance.

The metric d. performs best for the density criterion since it is generally very low
for very similar partials. The metric dar gives a good result for the Fischer criterion
while it performs badly for the two other criteria. This metric was tested in another
work [24], but only on a very limited database. On a larger database such as one the
one of the IOWA, we can see that this metric does not seem very stable on the three
criteria. In this mater, the spectral metrics ds and dsp perform best.

6.3 Combination

In order to jointly take into account the common variation cue of the frequency and
amplitude parameters, we considered all possible combinations of preceding metrics
(de, dv, dar, ds, dsp) for each spectral paramter with the three operators we proposed
(+, %, min). Only the most relevant ones are presented on Table 3 for clarity sake.

The metric dm, is given best for the Fischer criterion while the metric dx shows
best results for both density and hierarchical classification criteria (the classification
performance is enhanced by 1% over the obtained results with the frequency cue only).
Hence the metric dx will be kept for timbral discrimination presented in the next
Section.

7 Instruments Class discrimination

In the previous section, we used the evaluation database globally in order to compare
the different metrics. We study in this section a detailed evaluation of the behavior of
the proposed metric by considering several levels in the instruments hierarchy of the
IOWA database. Two groups of entities are considered at each experiment to compute
the intra-class and inter-class dissimilarities, noted intra and inter in the remainder of
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Instruments intra(a) intra(b) inter(a, b)

a | b mean o max mean o max mean o min

Ob Ob 0.018  0.020 0.099 | 0.018 0.020 0.099 0.101  0.087 0.004

Ob Sx 0.018  0.021 0.092 | 0.062  0.072 0.652 0.314  0.225 0.007
Tu To 0.021  0.033 0.334 | 0.012 0.015 0.131 0.277  0.152 0.011

BW | WW 0.015 0.022 0.295 | 0.083 0.102 0.667 0.315 0.184 0.016
BS SS 0.127  0.119 0.905 | 0.479 0.3 1.157 0.5 0.265 0.012

S W 0.237 0.216 0.946 | 0.059 0.11 0.928 0.373 0.204 0.024

Table 4 Evaluation of the discrimination capabilities of the proposed metric for different
instruments such as Oboe (Ob), Saxophone (Sx), Trumpet (Tu) and Trombone (To) as well as
sets of instruments of the IOWA database such as Brass Winds (BW), Wood Winds (WW),
Bowed Strings (BS), and Strucked Strings (SS). The values in the table are respectively the
mean, standard deviation and maximal values of the dx metric.

| Bowed || Struck | | Brass || Wood |

Bass, Piano Trombone, Flute,

Cello, Trumpet Saxophone,

Violin Clarinet,
Flute,
Bassoon,
Oboe

Fig. 8 The IOWA database hierarchy.

this section. Each group corresponds to a node at a given level of the hierarchy showed
in Figure 7.

The methodology used for these experiments is the one described in Section 5.
For each experiment, we randomly select 100 entities of each considered group and
the intra and enter are computed for each couple of entities, each entity belonging to
one group. Only couples with different entities are considered. In order to improve
the clarity of the results, the intra and inter values are not averaged over all couples.
Instead, the mean and the standard deviation is computed, as well as the maximum
value respectively for the intra and the inter.

In the first experiment, which results are reported in the first line of Table 4,
we consider acoustical entities produced by the Oboe only. Since the same group is
considered on both sides, the intra values are equal. However, the inter is not equal
to the intra since the computation of the intra involves only the partials of one entity,
while the computation of the inter always involves partials of different entities.

In order to separate perfectly two entities of the Oboe, we would need to have the
minimum value of the inter greater than the maximum value of the ¢ntra. It is clearly
not the case, since 0.0043 < 0.0996. However, the average of the inter is greater than
the maximum value of the intra, thus we could achieve good classifications.
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Let us now consider two instruments of the Wood Wind family, the Oboe and
the Saxophone and two instruments of the Brass Wind family, the Trumpet and the
Trombone. Since the set of entities is different from the previous experiment with Oboe
only, the intra is slightly different. By considering two different instruments, the inter is
increased to a value that remains almost stable in the higher levels of the hierarchy. It
shows that the difference between instruments is the most salient level of the hierarchy,
as far as the proposed metric is considered.

Next, the Brass Wind and the Wood Wind family achieve very low intra, meaning
that partials of the same entity of these two families are dense according to the proposed
metric. The fifth line of Table 4 presents the results while considering the Bowed Strings
and Struck Strings families, that appear to be very dissimilar. The high inter value may
be explained by the different types of excitations lead to very different timbre.

The partials of the acoustical entities produced by the Piano (unique instrument of
the struck string family in the database) are spread over the feature space. Even though
the new metric considers spectral information which does improve the performance over
the temporal information in case of micro-modulations, see Figure 3, it appears that the
micro-modulations are not as salient as larger modulations such as vibrato or tremolo.

8 Applications

In this section, we describe some applications where such description of the spectro-
temporal content of audio streams can be helpful.

8.1 Binaural Scene Analysis

The current paper deals with the common variation of partials. However, two more
cues are important for the perceptual gathering of partials: the common direction of
arrival, and the harmonicity among partials [6].

The common direction of arrival can be determined in the case of multichannel
audio. In the case of binaural sounds (stereo sounds recorded at the entrance of the
auditory channels), it is possible to obtain an overall good estimation of the direction
of arrival of sound sources. As studied in [37], where it is shown that the direction of
arrival of partials, although not a perfect criterion can be used as a partial clustering
cue. The harmonicity cue has been used for the gathering of partials too, such as in [46].
By determining the harmonic relationship between partials, it is possible to determine
gather the partials by sources of the one hand, and point out the overlapping partials.

These three cues work very differently from each other. Hence, by combining them,
we think that we may be able to enhance the robustness and precision of the par-
tial gathering process as the diversity added by the different cues shows interesting
perspectives.

8.2 Acoustical Entities Similarity

In this task we are interested in estimating the similarity between two acoustical entities
that are whether represented as a segment of audio or its sinusoidal representation.
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We are interested in this type of application since there is an increased interest
towards recommendation systems that are not based on an ontology such as genre [45]
or instrument type [21]. Alternatively, one can consider a recommendation system that
states “show me tunes that are similar to the ones I like”. In this case, one needs to
define the similarity between musical audio signals and the timbre is an interesting
dimension to consider.

We are currently investigating a generalized version of the descriptors described in
this paper for such a purpose. Preliminar evaluations show that on continuous musical
solos, the use of those descriptors combined with standard segmental descriptors like
the MFCC'’s significantly improve the performances.

8.3 Singing Voice Detection

As the proposed descriptors capture the modulations over time of the spectral param-
eters, they model efficiently the modulations of the singing voice, such as vibrato or
tremolo. Assuming that the singing voice is almost always modulated [39], one can
consider that the proposed descriptors can be considered to estimate whether a singing
voice is active or not. Preliminar experiments show competitive performance compared
to state-of-the-art statistical approaches using standard descriptors like the MFCC’s
[36]. As the proposed descriptors and the MFCC’s model different aspects of the audio
stream, it is expected that a combination of both approaches will provides a significant
improvement.

9 Conclusion

In this article, we have proposed a new metric that discriminate partials of differ-
ent acoustical entities by considering the evolutions of their frequency and amplitude
parameters.

Considering the correlation of the spectrum of these evolutions lead to more stable
results than the one obtained with the AR modeling approach proposed in previous
work [24]. According to the experiments, the modulations of the frequency appear
to be the most relevant cue, however a slight improvement can be gained concerning
the amplitude if the envelope is removed. We also demonstrated that considering the
combination of metrics of frequencies and the amplitudes enhanced the classification
results as far as the density and hierarchical criteria are concerned.

This new metric may be used for the classification of partials into acoustical entities.
It has to be noted that the hierarchical classification used as a quality criterion in
our study, even though very naive, yields to very good results, about 95 percents
of correct classifications. Even better performance could certainly be obtained using
more sophisticated classification methods, which could be of interest for many MIR
applications.
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