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Re
eived: date / A

epted: dateAbstra
t S
ene analysis is a relevant way of gathering information about the stru
tureof an audio stream. For 
ontent extra
tion purposes, it also provides prior knowledgethat 
an be taken into a

ount in order to provide more robust results for standard
lassi�
ation approa
hes.In order to perform su
h s
ene analysis, we believe that the notion of temporality isimportant. Consequently, we study in this paper a new way of modeling the evolutionover time of the frequen
y and amplitude parameters of spe
tral 
omponents. Weevaluate its bene�ts by 
onsidering its ability to automati
ally gather the 
omponentsof the same sound sour
e. The evaluation of the proposed metri
 shows that it a
hievesgood performan
e and takes better a

ount of mi
ro-modulations.Keywords auditory s
ene analysis, mid-level representation, 
lustering, 
ommonvariation 
ue1 Introdu
tionExtra
ting 
ontent from polyphoni
 audio su
h as musi
al streams appears to bebounded to moderate performan
e if the stream is 
onsidered 'blindly', i.e. pro
essedwithout any prior knowledge of the stru
ture of the stream [2℄. As s
ene analysis is arelevant way of gathering informations about the stru
ture of an audio stream, per-forming su
h operation prior extra
ting 
ontent is a way to address this issue.On the high end, one 
an 
onsider a mid-level representation of the polyphony [13,5℄ des
ribing polyphoni
 sounds as a set of 
oherent spe
tral regions, where ea
h set
an be 
onsidered as monophoni
. In this 
ase, one 
an fo
us the 
ontent extra
tionM. LagrangeTele
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2pro
ess to a given element of the s
ene [28℄. On a lower end, one 
an 
onsider sometime segmentation of the audio stream where se
tions that have similar propertiesare identi�ed and/or 
lustered. Based on this representation, the temporal priors are
onsidered to integrate the indexing de
ision done at ea
h analysis frame to obtainmore robust 
lassi�
ation results [21℄.In order to extra
t su
h representation or segmentation, many 
ues 
an be 
onsid-ered [6℄. Timbre is one of them. The des
ription of the timbre of monophoni
 soundshas been widely studied [31℄ and many des
riptors have been proposed [18℄. These de-s
riptors or features are mainly based on the temporal or spe
tral observations of thesounds sin
e �Timbre depends primarily upon the spe
trum of the stimulus, but it alsodepends on the waveform, the sound pressure, the frequen
y lo
ation, of the spe
trum,and the temporal 
hara
teristi
s of the stimulus.�, as stated in the ANSI de�nition oftimbre [19℄. Unfortunately, most of these des
riptors 
an not be dire
tly extra
ted frompolyphoni
 re
ordings.If the sounds produ
ed by the instruments 
an be 
onsidered as pseudo-periodi
, amonophoni
 or polyphoni
 signal may be de
omposed into sinusoidal 
omponents withparameters that evolve slowly with time, the partials. This restri
tion is not too strongsin
e most 
lassi
al instruments �t in this 
ategory, from strings to brass instruments.In this 
ase, several 
riteria or psy
hoa
ousti
al '
ues' proposed in the Auditory S
eneAnalysis (ASA) literature [6℄ may then be 
onsidered for an automati
 evaluation of thetimbre of ea
h sounds sour
es [14℄. In parti
ular, it is shown in the work of M
Adams[32℄ that the 
orrelated evolution of the parameters of the partials of a given musi
alor vo
al tone is an important 
ue for the per
eption of timbre.Consequently, in order to ensure the relevan
e of the approa
h proposed in thispaper, the analysed signals have to be pseudo-periodi
 in order to be suitable for thesinusoidal model that is the front-end of our method. The signals 
an be inharmoni
. Infa
t, that is the main motivation of the use of the 
ommon variation 
ue to 
omplementthe harmoni
ity one. They should be best monophoni
 but in 
ase of weak polyphonies,i.e. no unison, some partials are not overlapping and 
an be assigned to only one ofthe two di�erent sour
es a
tive at the same time.The 
ommon variation 
ue has been used for sour
e separation [9,12,46℄ i.e. todetermine whi
h partials have been produ
ed simultaneously by the same Produ
ingSound System (PSS) and therefore automati
ally extra
t a high level des
ription ofpolyphoni
 sound. This 
ue is also a musi
al parameter that des
ribes timbre andtherefore also have potential for Musi
al Information Retrieval (MIR) appli
ations su
has musi
al instrument, instrument 
lass identi�
ation, and instrumentalist or lo
utorre
ognition.These appli
ations both rely on the de�nition of a metri
 to evaluate how dissimilartwo partials are, a

ording to the 
ommon variation of their parameters. We will showin this paper that 
onsidering the spe
trum of these variations allows us to proposea robust dissimilarity metri
. The paper is organized as follows: after a presentationof the sinusoidal model in Se
tion 2, existing metri
s proposed in the literature arereviewed in Se
tion 3 and the requisites of a relevant metri
 are also detailed.The proposed metri
 is next introdu
ed in Se
tion 4. Motivated by the propertiesof the evolutions of the frequen
ies of the partials, a �rst metri
 is proposed. We nextshow that this metri
 
an also be su

essfully used while 
onsidering the evolutions ofthe amplitudes as soon as the variation of the envelope is removed. The de�nition of ametri
 that jointly 
onsiders these two 
ues is next studied.



3In order to 
ompare existing metri
s to the ones introdu
ed in this arti
le, we usethe evaluation methodology presented in Se
tion 5, where the database and the 
riteriathat evaluate the ability of the tested metri
 to dis
riminate partials produ
ed fromdi�erent PSS. The results of this evaluation are presented in Se
tion 6.The timbral dis
rimination 
apabilities of the proposed metri
, i.e. its ability to dif-ferentiate partials produ
ed by not only di�erent PSS but also di�erent instruments ordi�erent 
lasses of intruments are studied in Se
tion 7 and some potential appli
ationsare des
ribed in Se
tion 8.2 High-Level Representation of Polyphoni
 SoundsMost of the des
riptors used in MIR appli
ations 
onsider temporal features su
h asmean zero-
rossing rate or spe
tral ones su
h as Mel-Frequen
y Cepstrum Coe�
ients(MFCC), see the work of P. Herrera et al. [18℄ for a deeper review. These des
rip-tors are generally extra
ted on a frame basis and the frames are usually 
onsideredindependently, loosing most of the temporal information.For various appli
ations, one needs a representation of polyphoni
 sounds wherethe timbral information as well as their evolutions with respe
t to time of ea
h soundsour
es 
an be 
onsidered. In this se
tion, we dis
uss the fa
t that the well-knownsinusoidal model 
an be a basis for su
h a representation.2.1 Sinusoidal ModelThe sinusoidal model represents pseudo-periodi
 sounds as sums of sinusoids � so-
alled partials � 
ontrolled by parameters that evolve slowly with time [33,43℄. Moreformally put, the audio signal s 
an be 
al
ulated from the 
ontrolling parameters usingEquations 1 and 2, where N is the number of partials and the fun
tions fp, ap, and φpare the instantaneous frequen
y, amplitude, and phase of the p-th partial, respe
tively.The N pairs (fp, ap) are the parameters of the additive model and represent points inthe frequen
y-amplitude plane at time t.
s(t) =

NX

p=1

ap(t) cos(φp(t)) (1)
φp(t) = φp(0) + 2π

Z t

0

fp(u) du (2)This 
an also be written from the set point of view:
Pk(m) = {Fk(m),Ak(m), Φk(m)} (3)where Fk(m), Ak(m), and Φk(m) are respe
tively the frequen
y, amplitude, and phaseof the partial Pk at time index m. These parameters are valid for all m ∈ [bk, · · · , bk +

lk − 1], where the bk and lk are respe
tively the starting index and the length of thepartial.On a frame basis, the instantaneous frequen
y, amplitude, and phase of ea
h par-tials 
an be estimated using Fourier based approa
hes like the paraboli
 methods [1℄the phase-based methods [25℄ and the reassignment one proposed in [3℄. In order to



4go beyond the resolution limitation of the Fourier transform, one 
an also 
onsiderparametri
 methods like the ESPRIT algorithm [29,4℄ or maximum likelihood ones,like the mat
hing pursuit [8,10℄. Those estimate 
an be 
omplemented with the esti-mation of the slope of the frequen
y and amplitude [1,42℄ that 
ould be 
onsidered atthe tra
king phase to obtain a more pre
ise modeling of the long term evolution of thefrequen
y and amplitude parameters through time.The partials 
an be extra
ted from the parameters estimated on a frame basis usingpartial tra
king algorithms [33,43,44,27,40,35℄. Polyphoni
 sounds 
an be 
onsideredwith dedi
ated tra
king algorithms [11,26℄. However, in order to avoid problems dueto strong polyphony [13℄, we only 
onsider in this paper mixtures of entities extra
tedfrom monophoni
 signals.2.2 A
ousti
al EntitiesThese sinusoidal 
omponents are 
alled partials be
ause they are only a part of a moreper
eptively 
oherent entity that may be 
alled an a
ousti
al entity.This 
an be written as:
S =

N[

n=1

En (4)with S being the mid-level representation of the sound, E being an a
ousti
al entityand N the total number of entities in the sound. Hen
e ea
h entity is made of a groupof partials:
En =

Mn[

k=1

P
n
k (5)where Mn is the total number of partials Pn

k in the entity.To extra
t these entities from a sinusoidal representation of a sound, similaritiesbetween partials should be 
onsidered in order to gather the ones belonging to the samea
ousti
al entity. From the per
eptual point of view, some partials belong to the sameentity if they are per
eived by the human auditory system as a unique sound. Thereare several 
ues that lead to this per
eptual fusion: the 
ommon onset, the harmoni
relation of the frequen
ies, the 
orrelated evolutions of the parameters and the spatiallo
ation [6℄.The earliest attempts at a
ousti
al entity identi�
ation and separation 
onsiderharmoni
ity as the sole 
ue for group formation. Some rely on a prior dete
tion of thefundamental frequen
y [17,15℄ and others 
onsider only the harmoni
 relation of thefrequen
ies of the partials [23,46,41℄. Yet, many musi
al instruments are not perfe
tlyharmoni
.In 
ontrast, the 
ue that 
onsider the 
orrelated evolutions of the parameters ofthe partials is generi
. Also, numerous psy
ho a
ousti
al studies showed that the vari-ations or the mi
ro-modulations are important for per
eption. Bregman writes: �Small�u
tuations in frequen
y o

ur naturally in the human voi
e and in musi
al instru-ments. The �u
tuations are not often very large, ranging from less than 1 per
ent fora 
larinet tone to about 1 per
ent for a voi
e trying to hold a steady pit
h, with largerex
ursions of as mu
h than as 20 per
ent for the vibrato of the singer. Even the smalleramounts of frequen
y �u
tuation 
an have potent e�e
ts on the per
eptual groupingof the 
omponents harmoni
s.� A

ording to the work of M
Adams [32℄, a group of
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Fig. 1 Representation of two �
tive sounds in the time-frequen
y domain. Partials A, B, andC (
learly 
orrelated in modulation and starting and ending times, that is 
ommon variation)represent the sinusoidal 
omponents of the �rst sound, while D and E represent the sinusoidal
omponents of the se
ond sound.partials is per
eived as a unique a
ousti
al entity only if these variations are 
orrelated.Therefore, the 
orrelated evolutions of the parameters of the partials is a generi
 
uesin
e it 
an be observed with any vibrating instruments. As an example, see Figure 1.In order to de�ne a dissimilarity metri
 that 
onsiders the 
ommon variation 
ue, wewill study in the next se
tion the physi
al properties of the evolutions of the frequen
yand amplitude parameters of the partials.3 The Common Variation CueIn order to de�ne a dissimilarity metri
 that 
onsiders the 
ommon variation 
ue, wehave to study the physi
al properties of the evolutions of the frequen
y and amplitudeparameters of the partials.Let us 
onsider a harmoni
 tone modulated by a vibrato of given depth and rate.All the harmoni
s are modulated at the same rate and phase but their respe
tive depthis s
aled by a fa
tor equal to their harmoni
 rank (see Figure 2(a)). It is then importantto 
onsider a metri
 whi
h is s
ale-invariant.Cooke uses a distan
e [9℄ equivalent to the 
osine dissimilarity dc, also known asinter
orrelation:
dc(X1, X2) = 1 −

c(X1, X2)p
c(X1, X1)

p
c(X2, X2)

(6)
c(X1, X2) =

NX

i=1

X1(i)X2(i) (7)where X1 and X2 are real ve
tors of size N . This dissimilarity is s
ale-invariant.T. Virtanen et al. proposed (in [46℄) to use the mean-squared error between theve
tors �rst normalized by their average values:
dv(X1, X2) =

1

N

NX

i=1

„
X1(i)

X̄1

−
X2(i)

X̄2

«2 (8)where X1 and X2 are ve
tors of size N and X̄ denotes the mean of X. This normaliza-tion is parti
ularly relevant while 
onsidering the frequen
ies sin
e the ratio between



6the mean frequen
y of a given harmoni
 and the one of the fundamental is equal to itsharmoni
 rank.It is proposed in [24℄ to 
onsider the Auto-Regressive (AR) model as a s
ale-invariant metri
 that 
onsiders only the predi
table part of the evolutions of the pa-rameters:
Xl(n) ≈

nX

i=1

kl(i)Xl(n − i) (9)where the kl(i) are the AR 
oe�
ients. Sin
e the dire
t 
omparison of the AR 
oe�-
ients 
omputed from the two ve
tors X1 and X2 is not relevant, the spe
trum of these
oe�
ients is 
ompared as proposed by Itakura [20℄:
dAR(X1, X2) = log

Z π

−π

|K1(ω)|

|K2(ω)|

dω

2π
(10)where

Kl(ω) = 1 +
nX

i=1

Kl(i)e
−jiω (11)When 
onsidering the amplitudes of the partials, a s
ale-invariant metri
 is alsoimportant. In this 
ontext, the normalization proposed by T.Virtanen is no longermotivated sin
e the relative amplitudes of the harmoni
s depend on the envelope ofthe sound. For example, on Figure 2(b), the topmost 
urve (with small modulations)represents the amplitudes of the fundamental partial, while the se
ond to the top 
urvewith broad os
illation represents the �rst harmoni
.Moreover the envelope is globally de
reasing as the frequen
y grows, but it 
anappear that the amplitude of the envelope is also as
ending due to the spe
i�
 shape ofthe envelope around formants. Therefore, when the frequen
y of a partial is modulated,the amplitude may be modulated with a phase shift, see the bottom 
urve of Figure2(b). Therefore, a metri
 that is phase-invariant should be 
onsidered.The amplitude evolution of a partial is 
omposed of a temporal envelope and someperiodi
 modulations. Sin
e the envelope of the amplitude of the partials 
an be verydi�erent from partials to partials of the same entity it may be useful to 
onsider onlythe periodi
 modulations while 
omputing their similarities. The metri
 introdu
ed inthe next se
tion will 
ope with these issues.4 Proposed Metri
We propose to go beyond temporal domain by taking the parameters to the spe
traldomain. There was already an attempt at this, using AR models (see equation 10).Sin
e the Fourier transform is based on the fa
t that the input signal is periodi
, usinga spe
trum of the evolution of the partials might show 
ommon periodi
ities of thepartials. This will be handy for the modulations of the partials 
reated by vibratoand tremolo, sin
e we 
an assimilate these modulations to sinusoidal ones over a shortperiod of time (see [30℄). It 
an be also interesting for mi
ro-modulations su
h as theones produ
ed by vibrating strings su
h as the strings of a piano (see Figure 3). Hen
e,the spe
trum of the evolutions in frequen
y and amplitude of the sound are relevantfrom the point of view of the 
orrelation of evolutions.
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(b) AmplitudesFig. 2 Mean-
entered frequen
ies and amplitudes of some partials of a saxophone tone withvibrato.4.1 Using the Frequen
ies of the PartialsThe �rst step in the 
al
ulation of our new metri
 is to 
orrelate the evolutions of thefrequen
ies of the partials. As we said before, a good des
ription of these evolutions isgiven by the spe
tra of these evolutions.The way to 
ompute the spe
tra of the frequen
y evolutions of the signal from apartial is to take o� the mean value of this frequen
y and then 
ompute the Fouriertransform of the resulting signal. Indeed, in order to have a 
lean spe
trum relevant tothe evolutions, it is ne
essary to have the evolutions 
entered around zero.Then, we apply the previously exposed pro
ess to the frequen
ies of all the partialsfrom whi
h we want to measure evolution 
orrelation. On
e we have these frequen
iesexpressed in terms of spe
tra, the way to 
ompute the distan
e between two partialsignals is to inter
orrelate their spe
tra (see equation 6). This gives
ds(f1, f2) = dc(|F1|, |F2|) (12)
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ies (top) of a piano note and their 
orresponding spe
tra (bottom).Ea
h 
urve is shifted for 
larity sake.
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Fig. 4 Amplitudes of a partial of an Bb Clarinet and its polynomial envelope estimation.where f1 and f2 are the frequen
y ve
tors of two partials P1 and P2 and Fk is theFourier spe
trum of fk. Thanks to the absolute value applied to the spe
tra, thisdistan
e is phase-invariant.4.2 Using the Amplitudes of the PartialsIn the 
ase of the amplitudes of the partials, the problem is slightly more 
ompli
ated.Indeed, in order to 
enter the os
illating part of the signal around zero subtra
ting themean will not be su�
ient. As presented in other work [38℄, subtra
ting a polynomialis su�
ient to 
enter the os
illations around zero, as we see on Figure 4. The idea
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traFig. 5 Amplitudes of three partials of an Bb Clarinet when the polynomial envelope is removed(a), and their 
orresponding spe
tra (b). The 
urves have been shifted for 
larity sake.behind this polynomial subtra
tion is that the envelope of a sound (seen as atta
k,de
ay, sustain and release) 
an be roughly approximated by a 9th degree polynomial.An example of su
h a subtra
tion is shown on Figure 5.This gives us the distan
e dsp:
dsp(a1, a2) = dc(|fA1|, |fA2|) (13)where fAk is the Fourier spe
trum of fak with

fak = ak − Π(ak)where a1 and a2 are the amplitudes of two partials, Π(x) is the envelope polynomial
omputed from signal x, using a simple least-squares method [34℄.



104.3 Metri
 CombinationIn order to exploit both the frequen
y and amplitude parameters, we need a way to
ombine the measures of amplitude and frequen
y distan
es.T.Virtanen et al. proposed to 
ombine frequen
y and amplitude parameters dis-tan
es by means of adding the two distan
e measures while 
onsidering an harmoni
ityfa
tor. In their work [46℄, ea
h distan
es are weighted before performing the addition.For 
omparison purposes, we 
onsider the following distan
e:
dv+v(P1, P2) =

dv(f1, f2) + dv(a1, a2)

2
(14)where fk and ak are respe
tively the frequen
ies and amplitude of partials Pk. Sin
ethe weights are not supplied and no harmoni
ity information is available it is only anapproximation of the 
ombination s
heme proposed by T. Virtanen.Sin
e our proposed distan
es ds and dsp are normalized, if we want to give the sameweight to the two distan
es, we 
an 
ombine the frequen
y and amplitude distan
es byperforming a simple mean. This would then yield :

d+(P1, P2) =
ds(f1, f2) + dsp(a1, a2)

2
(15)In order to take into a

ount the best result on part of one of the measures, amethod would be to take the minimum of the two distan
es:

dm(P1, P2) = min(ds(f1, f2), dsp(a1, a2)) (16)As it will be presented in Se
tion 6, better results are a
hieved when we multiplyamplitude and frequen
y parameter distan
es. This 
ombination, however less robustto errors, seems to take better a

ount of the performan
e of ea
h distan
e measureindependently. In order to keep the metri
s in the same s
ale, a square root is appliedto the 
ombination:
d×(P1, P2) =

q
ds(f1, f2)dsp(a1, a2) (17)5 EvaluationIn this se
tion, we present the methodology used for evaluating the performan
e ofthe di�erent metri
s reviewed in Se
tion 3 and proposed in Se
tion 4. The evaluationdatabase is �rst des
ribed. Next, several 
riteria are presented, ea
h one evaluating aspe
i�
 property of the evaluated metri
.The obje
tive of the evaluation presented in the remaining of the paper is to studyif the proposed similarity metri
s are good 
andidates for implementing a 
lusteringof the partials of the same a
ousti
al entity. In Se
tion 7, we extend this study by
onsidering the statisti
al properties of one of the proposed metri
 while 
onsideringnot only the entity level but also larger sets su
h as all the partials played by a giveninstrument or a 
lass of instruments.



115.1 DatabaseIn this study, we fo
us on a subset of musi
al instruments that produ
e pseudo-periodi
sounds and model them as a sum of partials (see Se
tion 2). The instruments of theIOWA database [16℄ whose instrument hierar
hy is plotted in Figure 7, globally �t tothis 
ondition even though some samples have to be removed. The �pizzi
ato� tones,i.e plu
ked-string tones with strong atta
k and weak resonating phase as well as the�pianissimo� tones i.e tones with very low amplitude are dis
arded.In order to extra
t the partials for ea
h tone, ea
h �le of the IOWA database is splitinto a series of audio �les, ea
h 
ontaining only one tone. The spe
tral parameters atea
h frames are estimated using the phase derivative method studied in [25℄ with thefollowing parameters: the window size is 2048 samples long, the hop size is 512 sampleslong at a sampling rate of 44100 Hz. An implementation of the algorithm proposedby M
Auly and Quatieri in [33℄ is used with a frequen
y toleran
e of 50 Hz. Sin
e we
onsider only the prominent partials of a given tone, only the extra
ted partials lastingfor at least 2 se
onds are retained. For ea
h entity, only the 20 partials with the highestamplitude are retained.5.2 MethodologyTo 
ompare the metri
s proposed in Se
tion 4 and those reviewed in Se
tion 3, we usethe following methodology to 
ompute the three evaluation 
riteria. For the two entitiesof the 
onsidered 
ouple, the median values of the starting/ending time index of thepartials ts and te are 
omputed. Only the partials existing before and after ts + ǫs and
te − ǫe are kept (see Figure 6). The values ǫs and ǫe are arbitrarily small 
onstants.Then, the partials of the two entities are gathered. Only the 
ommon part de�nedas the time interval where all the partials are a
tive is 
onsidered to evaluate the testedmetri
. For example, the 
ommon part of the partials represented in Figure 6 is between
cs and ce. Frequen
y

Timets tececsFig. 6 Sele
tion of the 
ommon parts of the partials of the two a
ousti
al entities. A partialstart is represented with a bla
k �lled dot and its end with a white �lled dot. Only the partialsexisting before and after ts and te are kept, represented with solid lines. The indexes cs and
ce delimit the 
ommon part of all the partials.



125.3 Performan
e CriteriaOn
e the evaluation database and the evaluation methodology are de�ned, some 
riteriahave to be de�ned that re�e
t if, by 
onsidering the evaluated metri
, two partials are�
lose� if they a
tually belong to the same a
ousti
al entity and �far� otherwise.5.3.1 Fisher 
riterionA relevant dissimilarity metri
 between two partials is a metri
 whi
h is low for partialsof the same entity � the 
lass from the statisti
al point of view � and high for partialsthat do not belong to the same entity. The intra-
lass dissimilarity should then beminimal and the inter-
lass dissimilarity as high as possible. Let U be the set of elementsof 
ardinal # U and Ci the entity of index i between Nc di�erent entities. An estimationof the relevan
e of a given dissimilarity d(x, y) for a given a
ousti
al entity is:intra(Ci) =

niX

j=1

niX

k=1

d(Ci(j), Ci(k)) (18)inter(Ci) =

niX

j=1

# U−niX

l=1

d(Ci(j), Ci(l)) (19)
F(Ci) =

inter(Ci)intra(Ci)
(20)where ni is the number of partials in Ci and Ci = U\Ci. The overall quality F(U) isthen de�ned as:

F(U) =

PNc

i=1 inter(Ci)PNc

i=1 intra(Ci)
(21)This last 
riterion F(U) is loosely based on the �sher dis
riminant 
ommonly used instatisti
al analysis. It provides a �rst evaluation of the dis
rimination quality of a givenmetri
. It 
an however be noti
ed that this 
riterion is dependent of the s
ale of thestudied dissimilarity metri
.5.3.2 Density 
riterionDissimilarity-ve
tor based 
lassi�
ation involves 
al
ulating a dissimilarity metri
 be-tween pair-wise 
ombinations of elements and grouping together those for whi
h thedissimilarity metri
 is small a

ording to a given 
lassi�
ation algorithm.The density 
riterion D intends to evaluate a property of the tested metri
 thatshould be ful�lled in order to be relevantly used in 
ombination with 
ommon 
lassi�
a-tion algorithms su
h as hierar
hi
al 
lustering or K-means. Indeed, many 
lassi�
ationalgorithms iteratively 
luster partials whi
h relative distan
e is the smallest one. Thedensity 
riterion veri�es that these two partials a
tually belong to the same a
ousti
alentity.More formally, given a set of elements X, ζ(X) is de�ned as the ratio of 
ouples

(a, b) so that b is the 
losest to a and a and b belong to the same a
ousti
al entity.



13Given a fun
tion named cl de�ned as:
l: X → N

a 7→ iwhere i is the index of the 
lass of a. We get:
D(X) =

# {(a, b) | d(a, b) = minc∈X d(a, c) ∧ 
l(a) = 
l(b)}
# X

(22)where X 
an be either an a
ousti
al entity Ci or the universe U and # x denotes the
ardinal of x.5.3.3 Classi�
ation 
riterionFor this 
riterion, the quality of the tested metri
 is evaluated by 
onsidering the qualityof a 
lassi�
ation done using the tested metri
 and a 
lassi�
ation algorithm.We 
onsider an agglomerative hierar
hi
al 
lustering (AHC) pro
edure [22℄. Thisalgorithm produ
es a series of partitions of the partials: (Pn, Pn−1, . . . , P1).The �rst partition Pn 
onsists of n singletons and the last partition P1 
onsistsof a single 
lass 
ontaining all the partials. At ea
h stage, the method joins togetherthe two 
luster of partials whi
h are most similar a

ording to the 
hosen dissimilaritymetri
. At the �rst stage, of 
ourse, this ends in joining together the two partials thatare 
losest together, sin
e at the initial stage ea
h 
luster has only one partial. At ea
hstage, the dissimilarity between the new 
luster and the other ones is 
omputed usingthe method proposed by Ward [47℄.Hierar
hi
al 
lustering may be represented by a two dimensional diagram knownas dendrogram whi
h illustrates the fusions made at ea
h su

essive stage of 
lustering,see Figure 7 where the length of the verti
al bar that links two 
lasses is 
al
ulateda

ording to the distan
e between the two joined 
lusters.The a
ousti
al entities 
an then be found by �
utting� the dendrogram at relevantlevels. Here, for the 
lassi�
ation 
riterion, the a
ousti
al entities are identi�ed bysimply 
utting the dendrogram at the highest levels to a
hieve the desired number ofentities. If the desired number of entities is 2, only the highest level is 
ut (see Figure7). The 
lassi�
ation 
riterion H is then de�ned as the number of partials 
orre
tly
lassi�ed versus the number of partials 
lassi�ed:
H(X) =

# {a|a ∈ Ĉi ∧ cl(a) = i}

# X
(23)where Ĉi is an a
ousti
al entity extra
ted from the hierar
hy.6 ResultsEa
h metri
s reviewed in Se
tion 3 and proposed in Se
tion 4 are now 
ompared usingthe evaluation methodology des
ribed in the previous se
tion. The 
orrelation metri


dc of Equation 6 and the metri
 dv proposed by T.Virtanen (see Equation 8) requiresno parameterization.The metri
 dar 
onsiders AR ve
tors of 4 
oe�
ients 
omputed with the Burgmethod [7℄. The metri
 ds of Equation 12 
onsiders spe
tra 
omputed with the FastFourier Transform (FFT) using ve
tors windowed by the periodi
 Hann window. The
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p1

p2

p3

p4

p5

p6

Fig. 7 Dendrogram representing the hierar
hy obtained using the AHC algorithm with 6 par-tials. The 
ut at the highest level of the hierar
hy represented by a dot identify two a
ousti
alentities C1 = {p1, p6, p2} and C2 = {p3, p4, p5}.
F D H

dc 2.909 0.938 (0.216) 0.929 (0.137)
dv 1.763 0.929 (0.230) 0.881 (0.172)
dar 1.863 0.712 (0.326) 0.757 (0.166)
ds 3.488 0.944 (0.210) 0.940 (0.130)
dsp 2.909 0.936 (0.219) 0.931 (0.133)Table 1 Three 
riteria (Fisher, density, hierar
hi
al 
lassi�
ation) results for the �ve metri
spresented in this paper, applied on the frequen
ies of the partials. The density and hierar
hi
al
riteria (two last 
olumns) are presented as s
ores between 0 and 1. For every 
riteria, a highervalue means better performan
e.
omputation of the metri
 dsp (see Equation 13) is similar ex
ept that a 9th orderpolynomial is �rst estimated and removed before the FFT 
omputation. The results arepresented as mean values for ea
h 
riterion, and the bra
keted values are the standarddeviations (not shown for F sin
e the value is already normalized).6.1 Frequen
y ParameterThe metri
s between partials based on the frequen
y parameter is showed on Table 1.The ds metri
 we proposed gives the best results for the three 
riteria. It should benoted that the 
orrelation metri
 (dc) gives also good results for the two last 
riteria.We 
an also see that removing the polynomial from the frequen
ies of the partials doesnot 
ontribute to the quality of the metri
 sin
e frequen
ies of the partials of the soundsin the IOWA database are quasi-stationary. The performan
e is even worse be
ause ofthe modulations that the polynomial might take away from the frequen
y evolutions.6.2 Amplitude ParameterAs presented on Table 2, the performan
e of the metri
s for the amplitude parameterare globally worse than those obtained for the frequen
y parameter, lowering from94% to 80% 
orre
t 
lassi�
ations at best. However, the polynomial removal slightlyenhan
es the results.
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F D H

dc 1.304 0.818 (0.300) 0.786 (0.162)
dv 1.298 0.784 (0.316) 0.773 (0.159)
dar 1.938 0.664 (0.331) 0.733 (0.156)
ds 1.452 0.778 (0.301) 0.781 (0.163)
dsp 1.366 0.796 (0.297) 0.803 (0.171)Table 2 Three 
riteria (Fisher, density, hierar
hi
al 
lassi�
ation) results for the �ve metri
spresented in this paper, applied on the amplitudes of the partials. The density and hierar
hi
al
riteria (two last 
olumns) are presented as s
ores between 0 and 1. For every 
riteria, a highervalue means better performan
e.

F D H
dv+v 1.298 0.784 (0.316) 0.773 (0.159)
d+ 2.040 0.923 (0.230) 0.928 (0.137)
dm 3.303 0.934 (0.216) 0.943 (0.122)
d× 2.702 0.937 (0.217) 0.951 (0.116)Table 3 Three 
riteria (Fisher, density, hierar
hi
al 
lassi�
ation) results for the four 
om-bined metri
s we de�ned. The density and hierar
hi
al 
riteria (two last 
olumns) are presentedas s
ores between 0 and. For every 
riteria, a higher value means better performan
e.The metri
 dc performs best for the density 
riterion sin
e it is generally very lowfor very similar partials. The metri
 dar gives a good result for the Fis
her 
riterionwhile it performs badly for the two other 
riteria. This metri
 was tested in anotherwork [24℄, but only on a very limited database. On a larger database su
h as one theone of the IOWA, we 
an see that this metri
 does not seem very stable on the three
riteria. In this mater, the spe
tral metri
s ds and dsp perform best.6.3 CombinationIn order to jointly take into a

ount the 
ommon variation 
ue of the frequen
y andamplitude parameters, we 
onsidered all possible 
ombinations of pre
eding metri
s(dc, dv, dar, ds, dsp) for ea
h spe
tral paramter with the three operators we proposed(+, ×, min). Only the most relevant ones are presented on Table 3 for 
larity sake.The metri
 dm is given best for the Fis
her 
riterion while the metri
 d× showsbest results for both density and hierar
hi
al 
lassi�
ation 
riteria (the 
lassi�
ationperforman
e is enhan
ed by 1% over the obtained results with the frequen
y 
ue only).Hen
e the metri
 d× will be kept for timbral dis
rimination presented in the nextSe
tion.7 Instruments Class dis
riminationIn the previous se
tion, we used the evaluation database globally in order to 
omparethe di�erent metri
s. We study in this se
tion a detailed evaluation of the behavior ofthe proposed metri
 by 
onsidering several levels in the instruments hierar
hy of theIOWA database. Two groups of entities are 
onsidered at ea
h experiment to 
omputethe intra-
lass and inter-
lass dissimilarities, noted intra and inter in the remainder of



16Instruments intra(a) intra(b) inter(a, b)a b mean σ max mean σ max mean σ minOb Ob 0.018 0.020 0.099 0.018 0.020 0.099 0.101 0.087 0.004Ob Sx 0.018 0.021 0.092 0.062 0.072 0.652 0.314 0.225 0.007Tu To 0.021 0.033 0.334 0.012 0.015 0.131 0.277 0.152 0.011BW WW 0.015 0.022 0.295 0.083 0.102 0.667 0.315 0.184 0.016BS SS 0.127 0.119 0.905 0.479 0.3 1.157 0.5 0.265 0.012S W 0.237 0.216 0.946 0.059 0.11 0.928 0.373 0.204 0.024Table 4 Evaluation of the dis
rimination 
apabilities of the proposed metri
 for di�erentinstruments su
h as Oboe (Ob), Saxophone (Sx), Trumpet (Tu) and Trombone (To) as well assets of instruments of the IOWA database su
h as Brass Winds (BW), Wood Winds (WW),Bowed Strings (BS), and Stru
ked Strings (SS). The values in the table are respe
tively themean, standard deviation and maximal values of the d× metri
.
Strings WindBowed WoodBrassBass,Cello,Violin

IOWA
Piano Trombone,Trumpet Flute,Saxophone,Clarinet,Flute,Bassoon,Oboe
Stru
k

Fig. 8 The IOWA database hierar
hy.this se
tion. Ea
h group 
orresponds to a node at a given level of the hierar
hy showedin Figure 7.The methodology used for these experiments is the one des
ribed in Se
tion 5.For ea
h experiment, we randomly sele
t 100 entities of ea
h 
onsidered group andthe intra and inter are 
omputed for ea
h 
ouple of entities, ea
h entity belonging toone group. Only 
ouples with di�erent entities are 
onsidered. In order to improvethe 
larity of the results, the intra and inter values are not averaged over all 
ouples.Instead, the mean and the standard deviation is 
omputed, as well as the maximumvalue respe
tively for the intra and the inter.In the �rst experiment, whi
h results are reported in the �rst line of Table 4,we 
onsider a
ousti
al entities produ
ed by the Oboe only. Sin
e the same group is
onsidered on both sides, the intra values are equal. However, the inter is not equalto the intra sin
e the 
omputation of the intra involves only the partials of one entity,while the 
omputation of the inter always involves partials of di�erent entities.In order to separate perfe
tly two entities of the Oboe, we would need to have theminimum value of the inter greater than the maximum value of the intra. It is 
learlynot the 
ase, sin
e 0.0043 < 0.0996. However, the average of the inter is greater thanthe maximum value of the intra, thus we 
ould a
hieve good 
lassi�
ations.



17Let us now 
onsider two instruments of the Wood Wind family, the Oboe andthe Saxophone and two instruments of the Brass Wind family, the Trumpet and theTrombone. Sin
e the set of entities is di�erent from the previous experiment with Oboeonly, the intra is slightly di�erent. By 
onsidering two di�erent instruments, the inter isin
reased to a value that remains almost stable in the higher levels of the hierar
hy. Itshows that the di�eren
e between instruments is the most salient level of the hierar
hy,as far as the proposed metri
 is 
onsidered.Next, the Brass Wind and the Wood Wind family a
hieve very low intra, meaningthat partials of the same entity of these two families are dense a

ording to the proposedmetri
. The �fth line of Table 4 presents the results while 
onsidering the Bowed Stringsand Stru
k Strings families, that appear to be very dissimilar. The high inter value maybe explained by the di�erent types of ex
itations lead to very di�erent timbre.The partials of the a
ousti
al entities produ
ed by the Piano (unique instrument ofthe stru
k string family in the database) are spread over the feature spa
e. Even thoughthe new metri
 
onsiders spe
tral information whi
h does improve the performan
e overthe temporal information in 
ase of mi
ro-modulations, see Figure 3, it appears that themi
ro-modulations are not as salient as larger modulations su
h as vibrato or tremolo.8 Appli
ationsIn this se
tion, we des
ribe some appli
ations where su
h des
ription of the spe
tro-temporal 
ontent of audio streams 
an be helpful.8.1 Binaural S
ene AnalysisThe 
urrent paper deals with the 
ommon variation of partials. However, two more
ues are important for the per
eptual gathering of partials: the 
ommon dire
tion ofarrival, and the harmoni
ity among partials [6℄.The 
ommon dire
tion of arrival 
an be determined in the 
ase of multi
hannelaudio. In the 
ase of binaural sounds (stereo sounds re
orded at the entran
e of theauditory 
hannels), it is possible to obtain an overall good estimation of the dire
tionof arrival of sound sour
es. As studied in [37℄, where it is shown that the dire
tion ofarrival of partials, although not a perfe
t 
riterion 
an be used as a partial 
lustering
ue. The harmoni
ity 
ue has been used for the gathering of partials too, su
h as in [46℄.By determining the harmoni
 relationship between partials, it is possible to determinegather the partials by sour
es of the one hand, and point out the overlapping partials.These three 
ues work very di�erently from ea
h other. Hen
e, by 
ombining them,we think that we may be able to enhan
e the robustness and pre
ision of the par-tial gathering pro
ess as the diversity added by the di�erent 
ues shows interestingperspe
tives.8.2 A
ousti
al Entities SimilarityIn this task we are interested in estimating the similarity between two a
ousti
al entitiesthat are whether represented as a segment of audio or its sinusoidal representation.



18 We are interested in this type of appli
ation sin
e there is an in
reased interesttowards re
ommendation systems that are not based on an ontology su
h as genre [45℄or instrument type [21℄. Alternatively, one 
an 
onsider a re
ommendation system thatstates �show me tunes that are similar to the ones I like�. In this 
ase, one needs tode�ne the similarity between musi
al audio signals and the timbre is an interestingdimension to 
onsider.We are 
urrently investigating a generalized version of the des
riptors des
ribed inthis paper for su
h a purpose. Preliminar evaluations show that on 
ontinuous musi
alsolos, the use of those des
riptors 
ombined with standard segmental des
riptors likethe MFCC's signi�
antly improve the performan
es.8.3 Singing Voi
e Dete
tionAs the proposed des
riptors 
apture the modulations over time of the spe
tral param-eters, they model e�
iently the modulations of the singing voi
e, su
h as vibrato ortremolo. Assuming that the singing voi
e is almost always modulated [39℄, one 
an
onsider that the proposed des
riptors 
an be 
onsidered to estimate whether a singingvoi
e is a
tive or not. Preliminar experiments show 
ompetitive performan
e 
omparedto state-of-the-art statisti
al approa
hes using standard des
riptors like the MFCC's[36℄. As the proposed des
riptors and the MFCC's model di�erent aspe
ts of the audiostream, it is expe
ted that a 
ombination of both approa
hes will provides a signi�
antimprovement.9 Con
lusionIn this arti
le, we have proposed a new metri
 that dis
riminate partials of di�er-ent a
ousti
al entities by 
onsidering the evolutions of their frequen
y and amplitudeparameters.Considering the 
orrelation of the spe
trum of these evolutions lead to more stableresults than the one obtained with the AR modeling approa
h proposed in previouswork [24℄. A

ording to the experiments, the modulations of the frequen
y appearto be the most relevant 
ue, however a slight improvement 
an be gained 
on
erningthe amplitude if the envelope is removed. We also demonstrated that 
onsidering the
ombination of metri
s of frequen
ies and the amplitudes enhan
ed the 
lassi�
ationresults as far as the density and hierar
hi
al 
riteria are 
on
erned.This new metri
 may be used for the 
lassi�
ation of partials into a
ousti
al entities.It has to be noted that the hierar
hi
al 
lassi�
ation used as a quality 
riterion inour study, even though very naive, yields to very good results, about 95 per
entsof 
orre
t 
lassi�
ations. Even better performan
e 
ould 
ertainly be obtained usingmore sophisti
ated 
lassi�
ation methods, whi
h 
ould be of interest for many MIRappli
ations.A
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