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On diffeomorphism extension

Pauline Bernard, Laurent Praly∗and Vincent Andrieu†

December 2, 2015

Abstract

We state and prove a result concerning the fact that a diffeomorphism can be “ex-
tended” in such a way that its image is Rn.

Before stating the theorem, we introduce the following property :

Definition 1 (Conditions (C)) An open subset E of Rm is said to verify condition (C) if
there exist a C1 function κ : Rm → R, a bounded1 C1 vector field χ, and a closed set K0

contained in E such that:

1. E = {z ∈ Rn, κ(z) < 0}

2. K0 is globally attractive for χ

3. we have the following transversality assumption:

∂κ

∂z
(z)χ(z) < 0 ∀z ∈ Rm : κ(z) = 0.

We now state the main theorem of this note :

Theorem 1 (Image extension) Let ψ: D ⊂ Rm → ψ(D) ⊂ Rm be a diffeomorphism. If
ψ(D) verifies condition (C) or D is C2-diffeomorphic to Rm and ψ is C2, then for any compact
set K in D there exists a diffeomorphism ψe : D → Rm satisfying :

ψe(D) = Rm , ψe(z) = ψ(z) ∀z ∈ K.

The proof of this theorem, given in Section 2, relies on two preliminary lemmas presented
in Section 1.
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1 Technical lemmas

1.1 Construction of a diffeomorphism from an open set to Rm

In this section, we give sufficient conditions to build a diffeomorphism from Rm to an open
subset E which leaves Eε ⊂ E unchanged. This construction is made explicit in the proof.

The complementary, closure, interior and boundary of a set S are denoted Sc, S,
◦
S and

∂S, respectively, with ∂S = S\
◦
S.

The Hausdorff distance dH between two sets A and B is defined by :

dH(A,B) = max

{
sup
xA∈A

inf
xB∈B

|xA − xB| , sup
x∈A

inf
xB∈B

|xA − xB|
}

With Z(z, t) we denote the (unique) solution, at time t, to ż = χ(z) going trough z at time
0.

Lemma 1 Let E be an open strict subset of Rm verifying (C), with a Cs vector field χ. Then,
for any strictly positive real number ε, there exists a Cs-diffeomorphism φ: Rm → E, such
that, with

Σ =
⋃
t∈[0,ε]

Z(∂E, t) ,

we have φ(z) = z for all z ∈ Eε = E ∩ Σc and dH(∂Eε, ∂E) ≤ ε supz |χ(z)|.

Proof : We start by establishing some properties.
– E is forward invariant by χ. This is a direct consequence of points 1 and 3 of the condition
(C).
– Σ is closed. Take a sequence (zk) of points in Σ converging to z∗. By definition, there exists
a sequence (tk), such that :

tk ∈ [0, ε] and Z(zk,−tk) ∈ ∂E ∀k ∈ N .

Since [0, ε] is compact, one can extract a subsequence (tσ(k)) converging to t∗ in [0, ε], and by
continuity of the function (z, t) 7→ Z(z,−t), (Z(zσ(k), tσ(k))) tends to Z(z∗,−t∗) which is in
∂E, since ∂E is closed. Finally, because t∗ is in [0, ε], z∗ is in Σ by definition.
– Σ is contained in cl(E). Since, E is forward invariant by χ, and so is cl(E) (see [4, Theorem
16.3]). This implies

∂E ⊂ Σ =
⋃
t∈[0,ε]

Z(∂E, t) ⊂ cl(E) = E ∪ ∂E .

At this point, it is useful to note that, because Σ is a closed subset of the open set E, we have
Σ ∩ E = Σ\∂E. This implies :

E\Eε = (Eε)
c ∩ E = (Ec ∪ Σ) ∩ E = Σ ∩ E = Σ\∂E, (1)

and E = Eε ∪6= (Σ\∂E).
With all these properties at hand, we define now two functions tz and θz. The assumptions

of global attractiveness of the closed set K0 contained in E open, of transversality of χ to ∂E,
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and the property of forward-invariance of E, imply that, for all z in Ec, there exists a unique
non negative real number tz satisfying:

κ (Z(z, tz)) = 0 ⇐⇒ Z(z, tz) ∈ ∂E.

The same arguments in reverse time allow us to see that, for all z in Σ, tz exists, is unique
and in [−ε, 0]. This way, the function z → tz is defined on (Eε)

c. Next, for all z in (Eε)
c, we

define :
θz = Z(z, tz).

Thanks to the transversality assumption, the Implicit Function Theorem implies the functions
z 7→ tz and z 7→ θz are Cs on (Eε)

c.

Remark 1 κ having constant rank 1 in a neighborhood of ∂E, this set is a closed, regular
submanifold of Rm. The arguments above show that z 7→ (θz, tz) is a diffeomorphism between
Ec and ∂E × [0,+∞[. Since ∂E is a deformation retract of Ec and the open unit ball is
diffeomorphic to Rm [?], if E were bounded, Ec could be seen as a h-cobordism between ∂E
and the unit sphere Sm−1 and tz as a Morse function with no critical point in Ec. See [5] for
instance.

Now we evaluate tz for z in ∂Σ. Let z be arbitrary in ∂Σ and therefore in Σ which is
closed. Assume its corresponding tz is in ]− ε, 0[. The Implicit Function Theorem shows that
z 7→ tz and z 7→ θz are defined and continuous on a neighborhood of z. Therefore, there exists
a strictly positive real number r satisfying

∀y ∈ Br(z) , ∃ty ∈]− ε, 0[ : Z(y, ty) ∈ ∂E .

This implies that the neighborhood Br(z) of z is contained in Σ, in contradiction with the fact
that z is on the boundary of Σ.

This shows that, for all z in ∂Σ, tz is either 0 or −ε. We write this as ∂Σ = ∂E ∪ (∂Σ)i,

with the notation (∂Σ)i =
{
z ∈Σ : tz = −ε

}
.

Now we want to prove ∂Eε ⊂ (∂Σ)i. To obtain this result, we start by showing :

∂Eε ∩ ∂E = ∅ and ∂Eε ⊂ ∂Σ . (2)

Suppose the existence of z in ∂Eε ∩ ∂E. z being in ∂E, its corresponding tz is 0. By the
Implicit Function Theorem, there exists a strictly positive real number r such that,

∀y ∈ Br(z) , ∃ty ∈
]
− ε

2
, ε
2

[
: Z(y, ty) ∈ ∂E .

But, by definition, any y, for which there exists ty in ]−ε
2
, 0], is in Σ. If instead ty is strictly

positive, then necessarily y is in Ec, because E is forward-invariant by χ and a solution starting
in E cannot reach ∂E in positive finite time. We have obtained : Br(z) ⊂ Σ ∪ Ec = (Eε)

c.
Br(z) being a neighborhood of z, this contradicts the fact that z is in the boundary of Eε.

At this point, we have proved that ∂Eε ∩ ∂E = ∅, and, because Eε is contained in E, this
implies ∂Eε ⊂ E. With this, (2) will be established by proving that we have ∂Eε ⊂ ∂Σ. Let
z be arbitrary in ∂Eε and therefore in E which is open. There exists a strictly positive real
number r such that we have :

Br(z) ∩ Eε = Br(z) ∩ (E ∩ Σc) 6= ∅ , Br(z) ∩ Ec
ε = Br(z) ∩ (Ec ∪ Σ) 6= ∅ , Br(z) ⊂ E .
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This implies Br(z) ∩ Σc 6= ∅ and Br(z) ∩ Σ 6= ∅ and therefore that z is in ∂Σ.
We have established ∂Eε ∩ ∂E = ∅, ∂Eε ⊂ ∂Σ and ∂Σ = ∂E ∪ (∂Σ)i. This does imply :

∂Eε ⊂ (∂Σ)i = {z ∈ E : tz = −ε} . (3)

This allows us to extend by continuity the definition of tz to Rm by letting tz = −ε for all
z ∈ Eε.

Thanks to all these preparatory steps, we are finally ready to define a function φ : Rm → E
as:

φ(z) =

{
Z (z, tz + ν(tz)) , if z ∈ (Eε)

c ,

z, if z ∈ Eε ,
(4)

where ν is an arbitrary Cs and strictly decreasing function defined on R satisfying:

ν(t) = −t ∀t ≤ −ε , lim
t→+∞

ν(t) = 0.

The image of φ is contained in E since we have Eε ⊂ E and :

tz + ν(tz) > tz ∀z ∈ Ec
ε ,

Z(z, tz) ∈ ∂E ,

Z(z, t) ∈ E ∀(z, t) ∈ ∂E × R>0 .

The continuity of the functions (z, t) ∈ Rm×R 7→ Z(z, t) ∈ R and z ∈ Ec
ε 7→ tz ∈ [−ε,+∞[

implies that this function φ is continuous at least on Rm\∂Eε. Also, for any z in ∂Eε, tz is
defined and equal to −ε (see (3)). So, for any strictly positive real number η, there exists a
real number r such that :

|ty + ε| ≤ η ∀y ∈ Br(z) ,
ν(ty) + ε ≤ η ∀y ∈ Br(z) ,

φ(y) = y ∀y ∈ Br(z) ∩ Eε ,
φ(y) = Z(y, ty + ν(ty)) ∀y ∈ Br(z) ∩ Ec

ε .

Since we have :
φ(z) = Z (z, tz + ν(tz)) = Z (z,−ε+ ν(−ε)) = z ,

we conclude that φ is also continuous at z.
By differentiating, we obtain :

– at any interior point z of (Eε)
c

∂φ

∂z
(z) =

∂Z

∂z
(z, tz + ν(tz)) + χ(Z(z, tz + ν(tz)))

∂tz
∂z

(z)(1 + ν ′(tz)) ;

– at any z in Eε (which is open) ∂φ
∂z

(z) = I. Also, for any z in ∂Eε, we have :

∂Z

∂z
(z, tz + ν(tz)) + χ(Z(z, tz + ν(tz)))

∂tz
∂z

(z)(1 + ν ′(tz)) =
∂Z

∂z
(z, 0) + χ(Z(z, 0))

∂tz
∂z

(z)(1− 1) ,

= I .

This implies that φ is C1 on Rm.
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We now show that φ is invertible. Let y be arbitrary in E ∩ Ec
ε = E ∩ Σ. There exists ty

in [−ε, 0[. The function ν being strictly monotonic, ν−1(ty) exists and is in [−ε,+∞[. This
allows us to define properly φ−1 as :

φ−1(y) =

{
Z (y, ty − ν−1(−ty)) , if y ∈ E\Eε
y, if y ∈ Eε

(5)

This function is an inverse of φ as can be seen be reverting the flow induced by χ when needed.
Also, with the same arguments as before, we can prove that it is C1.

This implies that φ is a diffeomorphism from Rm to E.
Besides, the functions z 7→ Z(z, t) for t > 0, z 7→ tz and ν being Cs, φ is Cs at any interior

point of (Eε)
c. By continuity of ν(r) for r ≤ s, it can be verified that φ is also Cs on the

boundary ∂Eε. So, φ is a Cs-diffeomorphism from Rm to E.
Finally, we note that, for any point zε in ∂Eε, there exists a point z in ∂E satisfying :

|zε − z| =

∣∣∣∣∫ ε

0

χ(Z(z, s))ds

∣∣∣∣ ≤ ε sup
ζ
|χ(ζ)| .

And conversely, for any z in ∂E, there exist zε in ∂Eε satisfying :

|zε − z| =

∣∣∣∣∫ ε

0

χ(Z(z, s))ds

∣∣∣∣ ≤ ε sup
ζ
|χ(ζ)| .

It follows that
dH(∂Eε, ∂E) ≤ ε sup

ζ
|χ(ζ)| (6)

and ε may be chosen as small as needed. 2

Two direct consequences of Lemma 1 are :

Corollary 1 Let ψ : E → ψ(E) be a diffeomorphism, with E satisfying (C). For any ε strictly
positive, there exist an open subset Eε of E and a diffeomorphism ψe: Rm → ψ(E) satisfying :

dH(∂Eε, ∂E) ≤ ε ,

ψe(z) = ψ(z) ∀z ∈ Eε .

Proof : With φ given by Lemma 1, we pick ψe = ψ ◦ φ. 2

Corollary 2 Let ψ : E → ψ(E) be a diffeomorphism, with ψ(E) satisfying (C). For any ε
strictly positive, there exist an open subset ψ(E)ε of ψ(E) and a diffeomorphism ψe: E → Rn
satisfying :

dH(∂ (ψ(E)ε) , ∂ψ(E)) ≤ ε ,

ψe(z) = ψ(z) ∀z ∈ ψ−1 (ψ(E)ε) .
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Proof : With φ given by Lemma 1 from Rn to ψ(E), we pick ψe = φ−1 ◦ ψ. 2

Remark 2 In Corollary 2, ψ being a diffeomorphism on an open set E, we know that the
image of any compact subset K of E is a compact subset of ψ(E) which is also open by
Brouwer’s invariance theorem. Therefore, with (6), we can find ε such that ψ(K) ⊂ (ψ(E))ε
and thus, ψe(z) = ψ(z) for all x in K.

1.2 Diffeomorphism extension from a ball

Let R > 0. We denote BR the open ball in Rn of radius R and centered at 0.

Lemma 2 Consider a C2 diffeomorphism ψ : BR → ψ(BR) ⊂ Rn. For any ε strictly positive,
there exists a diffeomorphism ψe : Rn → Rn such that ψe(x) = ψ(x) for all x in cl(BR−ε).

Proof : Without loss of generality we may assume that ψ(0) = 0. Consider the mapping
ϕ : BR × [0, 1]→ Rn defined as

ϕ(x, t) =

(
∂ψ

∂x
(0)

)−1
ψ(xt)

t
, ϕ(x, 0) = x .

Note that for all t the mapping ϕt(x) = ϕ(x, t) is a diffeomorphism from BR toward ϕt(BR).
Indeed, given xa and xb such that ϕ(xa, t) = ϕ(xb, t) it yields ψ(xat) = ψ(xbt). Note that the
couple (xat, xbt) is in BR. The mapping ψ being injective on this set, it yields xa = xb.
Moreover,

∂ϕt
∂x

(x) =

(
∂ψ

∂x
(0)

)−1
∂ψ

∂x
(xt) , t > 0 ,

∂ϕ0

∂x
(x) = Id

Hence, this mapping is full rank in BR. Consequently, for all t in [0, 1], this mapping is a
diffeomorphism BR toward ϕt(BR). Consequently, for all t in [0, 1] we can introduce ϕ−1t its
inverse map.

Note moreover that

˙︷ ︷
ϕ(x, t) =

∂ϕ

∂t
(x, t) =

(
∂ψ

∂x
(0)

)−1
ρ(x, t)

where ρ is the function given as

ρ(x, t) =
1

t2

[
∂ψ

∂x
(xt)xt− ψ(xt)

]
, ρ(x, 0) =

1

2
x′
(
∂2ψ

∂x∂x
(0)

)
x

The mapping ψ being C2, and ψ(0) = 0 it yields,

ψ(xt) =
∂ψ

∂x
(0)xt+ x′

(
∂2ψ

∂x∂x
(0)

)
x
t2

2
+ ◦(t2)

and,

lim
t→0

∂ψ
∂x

(xt)x− ∂ψ
∂x

(0)x

t
= x′

(
∂2ψ

∂x∂x
(0)

)
x
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Hence, the function ρ is well defined and locally Lipschitz. Consequently, ϕ(x, t) is (the unique)
solution of the time varying system defined for (z, t) in ϕt(BR)× [0, 1] as

ż =

(
∂ψ

∂x
(0)

)−1
ρ
(
ϕ−1t (z), t

)
This time varying system can be extended to Rn as

ż =

{
0 , z /∈ ϕt (BR)

χ
(
ϕ−1t (z)

) (
∂ψ
∂x

(0)
)−1

ρ
(
ϕ−1t (z), t

)
, z ∈ ϕt (BR)

(7)

where χ : Rn → R+ is a C1 function such that

χ(x) =

{
0 , x /∈ BR
1 , x ∈ BR−ε

Notice that the vector field is zero outside S =
⋃

z∈BR
t∈[0,1]

ϕt(z), which is a compact set. Indeed, if

it is not, one can construct (xn) and (tn), such that for all n ∈ N,

|ψ(xntn)|
tn

≥ n.

Since cl(BR) is compact, we extract xσ(n)tσ(n) tending towards x∗ ∈ cl(BR). Necessarily,

tσ(n) tends to 0 and x∗ = 0 since (xn) is bounded. But this is impossible because, ψ(xntn)
tn

is

equivalent to ∂ψ
∂x

(0)xn around zero.
Therefore,the maximal solutions to this system are defined (at least) in [0, 1] for all initial
conditions, and through backward integration, we obtain that ϕ(Rn, 1) = Rn.

We finally consider

ψe(x) =
∂ψ

∂x
(0)Z(x, 1)

where Z(x, 1) is the solution of the system (7) evaluated at time 1 and initiated from x at time
0. This mapping being a linear transformation of a (time varying) flow, it is a diffeomorphism,
and ψe(Rn) = Rn. Note moreover that for all x ∈ BR−ε, we have

ψe(x) =
∂ψ

∂x
(0)ϕ(x, 1) = ψ(x) .

2

2 Proof of Theorem 1

Consider a diffeomorphism ψ: D → ψ(D)  Rm. We want to extend the image of ψ to Rm,
i-e find a diffeomorphism ψe : D → Rm such that:

- ψe(D) = Rm
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- ψe(z) = ψ(z) for all z in K ⊂ D, where K is any compact subset of D.

Let us successively study the following two cases :

• First case: ψ(D) satisfies (C) The result follows directly from Corollary 2 and Remark
2. In practice, the reader may find an explicit construction of such an extension in the
proof of Lemma 1.

• Second case: D is C2-diffeomorphic to Rm and ψ is C2:

Let φ1 : D → Rm denote the corresponding diffeomorphism. Let R1 be a strictly positive
real number such that the open ball BR1(0) contains φ1(K). Let R2 be a real number
strictly larger than R1. With Lemma 1 again, and since BR2(0) verifies condition (C),
there exists of C2-diffeomorphism φ2 : BR2(0)→ Rm satisfying

φ2(z) = z ∀z ∈ BR1(0) .

At this point, we have obtained a C2-diffeomorphism φ = φ−12 ◦ φ1 : D → BR2(0).
Consider λ = ψ ◦ φ−1 : BR2(0) → ψ(D). According to Lemma 2, we can extend λ to
λe : Rm → Rm such that λe = ψ◦φ−1 on BR1(0). Finally, consider ψe = λe◦φ1 : D → Rm.
Since, by construction of φ2, φ = φ1 on φ−11 (BR1(0)) which contains K, we have ψe = ψ
on K.

Remark 3 Note that the second construction is more complex than the first one, for it
contains several extensions and in particular that of Lemma 2 which is difficult to implement.
For this reason, one may prefer applying the first case whenever it is possible.
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