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On diffeomorphism extension

We state and prove a result concerning the fact that a diffeomorphism can be "extended" in such a way that its image is R n .

Before stating the theorem, we introduce the following property :

there exist a C 1 function κ : R m → R, a bounded 1 C 1 vector field χ, and a closed set K 0

1. E = {z ∈ R n , κ(z) < 0} 2. K 0 is globally attractive for χ 3. we have the following transversality assumption: ∂κ ∂z (z)χ(z) < 0 ∀z ∈ R m : κ(z) = 0.

We now state the main theorem of this note :

Theorem 1 (Image extension) Let ψ: D ⊂ R m → ψ(D) ⊂ R m be a diffeomorphism. If ψ(D) verifies condition (C) or D is C 2 -diffeomorphic to R m and ψ is C 2 , then for any compact set K in D there exists a diffeomorphism ψ e : D → R m satisfying :

ψ e (D) = R m , ψ e (z) = ψ(z) ∀z ∈ K.
The proof of this theorem, given in Section 2, relies on two preliminary lemmas presented in Section 1.

Technical lemmas 1.Construction of a diffeomorphism from an open set to R m

In this section, we give sufficient conditions to build a diffeomorphism from R m to an open subset E which leaves E ε ⊂ E unchanged. This construction is made explicit in the proof.

The complementary, closure, interior and boundary of a set S are denoted S c , S, The Hausdorff distance d H between two sets A and B is defined by :

d H (A, B) = max sup x A ∈A inf x B ∈B |x A -x B | , sup x∈A inf x B ∈B |x A -x B |
With Z(z, t) we denote the (unique) solution, at time t, to ż = χ(z) going trough z at time 0.

Lemma 1 Let E be an open strict subset of R m verifying (C), with a C s vector field χ. Then, for any strictly positive real number ε, there exists a C s -diffeomorphism φ: R m → E, such that, with

Σ = t∈[0,ε] Z(∂E, t) , we have φ(z) = z for all z ∈ E ε = E ∩ Σ c and d H (∂E ε , ∂E) ≤ ε sup z |χ(z)|.
Proof : We start by establishing some properties.

-E is forward invariant by χ. This is a direct consequence of points 1 and 3 of the condition (C).

-Σ is closed. Take a sequence (z k ) of points in Σ converging to z * . By definition, there exists a sequence (t k ), such that :

t k ∈ [0, ε] and Z(z k , -t k ) ∈ ∂E ∀k ∈ N . Since [0, ε] is compact, one can extract a subsequence (t σ(k) ) converging to t * in [0, ε],
and by continuity of the function (z, t)

→ Z(z, -t), (Z(z σ(k) , t σ(k) )) tends to Z(z * , -t * ) which is in ∂E, since ∂E is closed. Finally, because t * is in [0, ε], z * is in Σ by definition. -Σ is contained in cl(E).
Since, E is forward invariant by χ, and so is cl(E) (see [START_REF] Hahn | Stability of Motion[END_REF]Theorem 16.3]). This implies

∂E ⊂ Σ = t∈[0,ε] Z(∂E, t) ⊂ cl(E) = E ∪ ∂E .
At this point, it is useful to note that, because Σ is a closed subset of the open set E, we have Σ ∩ E = Σ\∂E. This implies :

E \E ε = (E ε ) c ∩ E = (E c ∪ Σ) ∩ E = Σ ∩ E = Σ\∂E, (1) 
and E = E ε ∪ = (Σ\∂E). With all these properties at hand, we define now two functions t z and θ z . The assumptions of global attractiveness of the closed set K 0 contained in E open, of transversality of χ to ∂E, and the property of forward-invariance of E, imply that, for all z in E c , there exists a unique non negative real number t z satisfying:

κ (Z(z, t z )) = 0 ⇐⇒ Z(z, t z ) ∈ ∂E.
The same arguments in reverse time allow us to see that, for all z in Σ, t z exists, is unique and in [-ε, 0]. This way, the function z → t z is defined on (E ε ) c . Next, for all z in (E ε ) c , we define :

θ z = Z(z, t z ).
Thanks to the transversality assumption, the Implicit Function Theorem implies the functions z → t z and z → θ z are C s on (E ε ) c .

Remark 1 κ having constant rank 1 in a neighborhood of ∂E, this set is a closed, regular submanifold of R m . The arguments above show that z → (θ z , t z ) is a diffeomorphism between

E c and ∂E × [0, +∞[. Since ∂E is a deformation retract of E c and the open unit ball is diffeomorphic to R m [?]
, if E were bounded, E c could be seen as a h-cobordism between ∂E and the unit sphere S m-1 and t z as a Morse function with no critical point in E c . See [START_REF] Milnor | Lectures on the h-cobordism Theorem[END_REF] for instance.

Now we evaluate t z for z in ∂Σ. Let z be arbitrary in ∂Σ and therefore in Σ which is closed. Assume its corresponding t z is in ] -ε, 0[. The Implicit Function Theorem shows that z → t z and z → θ z are defined and continuous on a neighborhood of z. Therefore, there exists a strictly positive real number r satisfying

∀y ∈ B r (z) , ∃t y ∈] -ε, 0[ : Z(y, t y ) ∈ ∂E .
This implies that the neighborhood B r (z) of z is contained in Σ, in contradiction with the fact that z is on the boundary of Σ.

This shows that, for all z in ∂Σ, t z is either 0 or -ε. We write this as ∂Σ = ∂E ∪ (∂Σ) i , with the notation (∂Σ

) i = z ∈ Σ : t z = -ε .
Now we want to prove ∂E ε ⊂ (∂Σ) i . To obtain this result, we start by showing :

∂E ε ∩ ∂E = ∅ and ∂E ε ⊂ ∂Σ . (2) 
Suppose the existence of z in ∂E ε ∩ ∂E. z being in ∂E, its corresponding t z is 0. By the Implicit Function Theorem, there exists a strictly positive real number r such that,

∀y ∈ B r (z) , ∃t y ∈ -ε 2 , ε 2 : Z(y, t y ) ∈ ∂E .
But, by definition, any y, for which there exists t y in ] -ε 2 , 0], is in Σ. If instead t y is strictly positive, then necessarily y is in E c , because E is forward-invariant by χ and a solution starting in E cannot reach ∂E in positive finite time. We have obtained :

B r (z) ⊂ Σ ∪ E c = (E ε ) c . B r (z) being a neighborhood of z, this contradicts the fact that z is in the boundary of E ε .
At this point, we have proved that ∂E ε ∩ ∂E = ∅, and, because E ε is contained in E, this implies ∂E ε ⊂ E. With this, (2) will be established by proving that we have ∂E ε ⊂ ∂Σ. Let z be arbitrary in ∂E ε and therefore in E which is open. There exists a strictly positive real number r such that we have :

B r (z) ∩ E ε = B r (z) ∩ (E ∩ Σ c ) = ∅ , B r (z) ∩ E c ε = B r (z) ∩ (E c ∪ Σ) = ∅ , B r (z) ⊂ E .
This implies B r (z) ∩ Σ c = ∅ and B r (z) ∩ Σ = ∅ and therefore that z is in ∂Σ.

We have established ∂E ε ∩ ∂E = ∅, ∂E ε ⊂ ∂Σ and ∂Σ = ∂E ∪ (∂Σ) i . This does imply :

∂E ε ⊂ (∂Σ) i = {z ∈ E : t z = -ε} . (3) 
This allows us to extend by continuity the definition of t z to R m by letting t z = -ε for all z ∈ E ε . Thanks to all these preparatory steps, we are finally ready to define a function φ : R m → E as:

φ(z) = Z (z, t z + ν(t z )) , if z ∈ (E ε ) c , z, if z ∈ E ε , (4) 
where ν is an arbitrary C s and strictly decreasing function defined on R satisfying:

ν(t) = -t ∀t ≤ -ε , lim t→+∞ ν(t) = 0.
The image of φ is contained in E since we have E ε ⊂ E and :

t z + ν(t z ) > t z ∀z ∈ E c ε , Z(z, t z ) ∈ ∂E , Z(z, t) ∈ E ∀(z, t) ∈ ∂E × R >0 .
The continuity of the functions (z,

t) ∈ R m ×R → Z(z, t) ∈ R and z ∈ E c ε → t z ∈ [-ε
, +∞[ implies that this function φ is continuous at least on R m \∂E ε . Also, for any z in ∂E ε , t z is defined and equal to -ε (see (3)). So, for any strictly positive real number η, there exists a real number r such that :

|t y + ε| ≤ η ∀y ∈ B r (z) , ν(t y ) + ε ≤ η ∀y ∈ B r (z) , φ(y) = y ∀y ∈ B r (z) ∩ E ε , φ(y) = Z(y, t y + ν(t y )) ∀y ∈ B r (z) ∩ E c ε .
Since we have :

φ(z) = Z (z, t z + ν(t z )) = Z (z, -ε + ν(-ε)) = z ,
we conclude that φ is also continuous at z. By differentiating, we obtain :

-at any interior point z of (E ε ) c ∂φ ∂z (z) = ∂Z ∂z (z, t z + ν(t z )) + χ(Z(z, t z + ν(t z ))) ∂t z ∂z (z)(1 + ν (t z )) ;
-at any z in E ε (which is open) ∂φ ∂z (z) = I. Also, for any z in ∂E ε , we have :

∂Z ∂z (z, t z + ν(t z )) + χ(Z(z, t z + ν(t z ))) ∂t z ∂z (z)(1 + ν (t z )) = ∂Z ∂z (z, 0) + χ(Z(z, 0)) ∂t z ∂z (z)(1 -1) , = I .
This implies that φ is C 1 on R m .

We now show that φ is invertible. Let y be arbitrary in E ∩ E c ε = E ∩ Σ. There exists t y in [-ε, 0[. The function ν being strictly monotonic, ν -1 (t y ) exists and is in [-ε, +∞[. This allows us to define properly φ -1 as :

φ -1 (y) = Z (y, t y -ν -1 (-t y )) , if y ∈ E \E ε y, if y ∈ E ε (5) 
This function is an inverse of φ as can be seen be reverting the flow induced by χ when needed. Also, with the same arguments as before, we can prove that it is C 1 . This implies that φ is a diffeomorphism from R m to E.

Besides, the functions z → Z(z, t) for t > 0, z → t z and ν being C s , φ is C s at any interior point of (E ε ) c . By continuity of ν (r) for r ≤ s, it can be verified that φ is also C s on the boundary

∂E ε . So, φ is a C s -diffeomorphism from R m to E.
Finally, we note that, for any point z ε in ∂E ε , there exists a point z in ∂E satisfying :

|z ε -z| = ε 0 χ(Z(z, s))ds ≤ ε sup ζ |χ(ζ)| .
And conversely, for any z in ∂E, there exist z ε in ∂E ε satisfying :

|z ε -z| = ε 0 χ(Z(z, s))ds ≤ ε sup ζ |χ(ζ)| . It follows that d H (∂E ε , ∂E) ≤ ε sup ζ |χ(ζ)| (6) 
and ε may be chosen as small as needed. 2

Two direct consequences of Lemma 1 are :

Corollary 1 Let ψ : E → ψ(E) be a diffeomorphism, with E satisfying (C). For any ε strictly positive, there exist an open subset E ε of E and a diffeomorphism ψ e : R m → ψ(E) satisfying :

d H (∂E ε , ∂E) ≤ ε , ψ e (z) = ψ(z)
∀z ∈ E ε .

Proof : With φ given by Lemma 1, we pick

ψ e = ψ • φ. 2 
Corollary 2 Let ψ : E → ψ(E) be a diffeomorphism, with ψ(E) satisfying (C). For any ε strictly positive, there exist an open subset ψ(E) ε of ψ(E) and a diffeomorphism ψ e : E → R n satisfying :

d H (∂ (ψ(E) ε ) , ∂ψ(E)) ≤ ε , ψ e (z) = ψ(z) ∀z ∈ ψ -1 (ψ(E) ε ) .
Proof : With φ given by Lemma 1 from R n to ψ(E), we pick ψ e = φ -1 • ψ.

2

Remark 2 In Corollary 2, ψ being a diffeomorphism on an open set E, we know that the image of any compact subset K of E is a compact subset of ψ(E) which is also open by Brouwer's invariance theorem. Therefore, with (6), we can find ε such that ψ(K) ⊂ (ψ(E)) ε and thus, ψ e (z) = ψ(z) for all x in K.

Diffeomorphism extension from a ball

Let R > 0. We denote B R the open ball in R n of radius R and centered at 0.

Lemma 2 Consider a C 2 diffeomorphism ψ : B R → ψ(B R ) ⊂ R n .
For any ε strictly positive, there exists a diffeomorphism ψ e : R n → R n such that ψ e (x) = ψ(x) for all x in cl(B R-ε ).

Proof : Without loss of generality we may assume that ψ(0) = 0. Consider the mapping

ϕ : B R × [0, 1] → R n defined as ϕ(x, t) = ∂ψ ∂x (0) -1 ψ(xt) t , ϕ(x, 0) = x .
Note that for all t the mapping ϕ

t (x) = ϕ(x, t) is a diffeomorphism from B R toward ϕ t (B R ). Indeed, given x a and x b such that ϕ(x a , t) = ϕ(x b , t) it yields ψ(x a t) = ψ(x b t). Note that the couple (x a t, x b t) is in B R . The mapping ψ being injective on this set, it yields x a = x b . Moreover, ∂ϕ t ∂x (x) = ∂ψ ∂x (0) -1 ∂ψ ∂x (xt) , t > 0 , ∂ϕ 0 ∂x (x) = Id
Hence, this mapping is full rank in B R . Consequently, for all t in [0, 1], this mapping is a diffeomorphism B R toward ϕ t (B R ). Consequently, for all t in [0, 1] we can introduce ϕ -1 t its inverse map.

Note moreover that

˙ ϕ(x, t) = ∂ϕ ∂t (x, t) = ∂ψ ∂x (0) -1 ρ(x, t)
where ρ is the function given as

ρ(x, t) = 1 t 2 ∂ψ ∂x (xt)xt -ψ(xt) , ρ(x, 0) = 1 2 x ∂ 2 ψ ∂x∂x (0) x
The mapping ψ being C 2 , and ψ(0) = 0 it yields,

ψ(xt) = ∂ψ ∂x (0)xt + x ∂ 2 ψ ∂x∂x (0) x t 2 2 + •(t 2 )
and,

lim t→0 ∂ψ ∂x (xt)x -∂ψ ∂x (0)x t = x ∂ 2 ψ ∂x∂x (0) x
Hence, the function ρ is well defined and locally Lipschitz. Consequently, ϕ(x, t) is (the unique) solution of the time varying system defined for (z, t)

in ϕ t (B R ) × [0, 1] as ż = ∂ψ ∂x (0) -1 ρ ϕ -1 t (z), t
This time varying system can be extended to R n as

ż = 0 , z / ∈ ϕ t (B R ) χ ϕ -1 t (z) ∂ψ ∂x (0) -1 ρ ϕ -1 t (z), t , z ∈ ϕ t (B R ) (7) 
where χ : R n → R + is a C 1 function such that

χ(x) = 0 , x / ∈ B R 1 , x ∈ B R-ε
Notice that the vector field is zero outside S = z∈B R t∈[0,1] ϕ t (z), which is a compact set. Indeed, if it is not, one can construct (x n ) and (t n ), such that for all n ∈ N,

|ψ(x n t n )| t n ≥ n. Since cl(B R ) is compact, we extract x σ(n) t σ(n) tending towards x * ∈ cl(B R ). Necessarily, t σ(n) tends to 0 and x * = 0 since (x n ) is bounded. But this is impossible because, ψ (xntn) 
tn is equivalent to ∂ψ ∂x (0)x n around zero. Therefore,the maximal solutions to this system are defined (at least) in [0, 1] for all initial conditions, and through backward integration, we obtain that ϕ(R n , 1) = R n .

We finally consider

ψ e (x) = ∂ψ ∂x (0)Z(x, 1)
where Z(x, 1) is the solution of the system (7) evaluated at time 1 and initiated from x at time 0. This mapping being a linear transformation of a (time varying) flow, it is a diffeomorphism, and ψ e (R n ) = R n . Note moreover that for all x ∈ B R-ε , we have -ψ e (D) = R m -ψ e (z) = ψ(z) for all z in K ⊂ D, where K is any compact subset of D.

ψ e (x) = ∂ψ ∂x (0)ϕ(x, 1) = ψ(x) .
Let us successively study the following two cases :

• First case: ψ(D) satisfies (C) The result follows directly from Corollary 2 and Remark 2. In practice, the reader may find an explicit construction of such an extension in the proof of Lemma 1.

• Second case: D is Remark 3 Note that the second construction is more complex than the first one, for it contains several extensions and in particular that of Lemma 2 which is difficult to implement. For this reason, one may prefer applying the first case whenever it is possible.

  respectively, with ∂S = S \ • S.

2 2of Theorem 1

 21 ProofConsider a diffeomorphism ψ: D → ψ(D) R m . We want to extend the image of ψ to R m , i-e find a diffeomorphism ψ e : D → R m such that:

C 2 - 2 :

 22 diffeomorphic to R m and ψ is C Let φ 1 : D → R m denote the corresponding diffeomorphism. Let R 1 be a strictly positive real number such that the open ball B R 1 (0) contains φ 1 (K). Let R 2 be a real number strictly larger than R 1 . With Lemma 1 again, and since B R 2 (0) verifies condition (C), there exists ofC 2 -diffeomorphism φ 2 : B R 2 (0) → R m satisfying φ 2 (z) = z ∀z ∈ B R 1 (0) . At this point, we have obtained a C 2 -diffeomorphism φ = φ -1 2 • φ 1 : D → B R 2 (0). Consider λ = ψ • φ -1 : B R 2 (0) → ψ(D). According to Lemma 2, we can extend λ to λ e : R m → R m such that λ e = ψ•φ -1 on B R 1 (0). Finally, consider ψ e = λ e •φ 1 : D → R m . Since, by construction of φ 2 , φ = φ 1 on φ -11 (B R 1 (0)) which contains K, we have ψ e = ψ on K.