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Abstract

The TRIM group is a consortium of French teams sup-
ported by the GDR ISIS and working on Multimedia
Indexing and Retrieval. This paper describes its partic-
ipation to the TRECVID 2014 semantic indexing (SIN)
and instance search (INS) tasks. For the semantic in-
dexing task, our approach uses a six-stages processing
pipelines for computing scores for the likelihood of a
video shot to contain a target concept. These scores
are then used for producing a ranked list of images or
shots that are the most likely to contain the target con-
cept. The pipeline is composed of the following steps:
descriptor extraction, descriptor optimization, classifi-
cation, fusion of descriptor variants, higher-level fusion,
and re-ranking. We evaluated a number of different de-
scriptors and tried different fusion strategies. The best
IRIM run has a Mean Inferred Average Precision of
0.2796, which ranked us 5th out of 15 participants.

For INS 2014 task IRIM participation, the classical
BoW approach was followed, trained only with east-
enders dataset. Shot signatures were computed on one
key frame, or several key frames (at 1fps) and average
pooling. A dissimilarity, computing a distance only for
words present in query, was tested. A saliency map,
build from object ROI to incorporate background con-
text, was tried. Late fusion of two individual BoW
results, with different detectors/descriptors (Hessian-
Affine/SIFT and Harris-Laplace/Opponent SIFT), was
used. The four submitted runs were the following:
e Run F_D_IRIM_1 was the late fusion of BOW with
SIFT, dissimilarity Lop, on several key frames per

shot, with context for queries, and BOW with Op-
ponent SIFT, dissimilarity L;p, on one key frame
per shot.
e Run F_D_IRIM_2 was similar to F_D_IRIM_1 but
context for queries used also for second BoW.
e Run F_D_IRIM_3 was similar to F_D_IRIM_1 but
no context for queries used.
e Run F_D_IRIM 4 was similar to F_D_IRIM_2 but
using 07 dissimilarity[46] (from INS 2013 best run).
We found that extracting several key frames per shot
coupled with average pooling improved results. We
confirmed than including context in queries was also
beneficial. Surprisingly, our dissimilarity performed
better than d;.

1 Semantic Indexing

1.1 Introduction

The TRECVID 2014 semantic indexing task is de-
scribed in the TRECVID 2014 overview paper [1, 2].
Automatic assignment of semantic tags representing
high-level features or concepts to video segments can
be fundamental technology for filtering, categoriza-
tion, browsing, search, and other video exploitation.
New technical issues to be addressed include meth-
ods needed/possible as collection size and diversity in-
crease, when the number of features increases, and
when features are related by an ontology. The task
is defined as follows: “Given the test collection, master
shot reference, and concept/feature definitions, return
for each feature a list of at most 2000 shot IDs from the



test collection ranked according to the possibility of de-
tecting the feature.” 60 concepts have been selected for
the TRECVID 2014 semantic indexing task. Annota-
tions on the development part of the collection were
provided for 346 concepts including the 60 target ones
in the context of a collaborative annotation effort [17].

Eight French groups (CEA-LIST, ETIS, EURECOM,
LABRI, LIF, LIG, LIRIS, LISTIC) collaborated to par-
ticipate to the TRECVID 2014 semantic indexing task.
Xerox (XRCE), though not being member of IRIM, also
shared descriptors with us.

The IRIM approach uses a six-stages processing
pipeline that computes scores reflecting the likelihood
of a video shot to contain a target concept. These
scores are then used for producing a ranked list of im-
ages or shots that are the most likely to contain the
target concept. The pipeline is composed of the follow-
ing steps:

1. Descriptor extraction. A variety of audio, image
and motion descriptors have been produced by the
participants (section 1.2).

2. Descriptor optimization. A post-processing of the
descriptors allows to simultaneously improve their
performance and to reduce their size (section 1.3).

3. Classification. Two types of classifiers are used as
well as their fusion (section 1.4).

4. Fusion of descriptor variants. We fuse here vari-
ations of the same descriptor, e.g. bag of word
histograms with different sizes or associated to dif-
ferent image decompositions (section 1.5).

5. Higher-level fusion. We fuse here descriptors of
different types, e.g. color, texture, interest points,
motion (section 1.6).

6. Re-ranking. We post-process here the scores using
the fact that videos statistically have an homoge-
neous content, at least locally (section 1.7).

This approach is quite similar to the one used by the
IRIM group last year [16]. The main novelties are the
inclusion of new deep learning based descriptors and
improvements in the automatic fusion methods.

1.2 Descriptors

Eight IRIM participants (CEA-LIST, ETIS, EURE-
COM, LABRI, LIF, LIG, LIRIS and LISTIC) provided
a total of 71 descriptors, including variants of a same
descriptors. Xerox (XRCE) also provided two descrip-
tors with us. These descriptors do not cover all types
and variants but they include a significant number of
different approaches including state of the art ones and
more exploratory ones. The relative performance of

these descriptors has been separately evaluated using
a combination of LIG classifiers (see LIG paper [19]).
Here is a description of these descriptors:

CEALIST /tlep: texture local edge pattern [3] +
color histogram ~» 576 dimensions.

CEALIST /bov_dsiftSC_8192: : bag of visterm|[38].
Dense SIFT are extracted every 6 pixels. The
codebook of size 1024 is built with K-means. Bags
are generated with soft coding and max pooling.
The final signature result from a three levels spa-
tial pyramid ~» 1024 x (1 +2 x 2+ 3 x 1) = 8192
dimensions: see [18] for details.

CEALIST /bov_dsiftSC_21504: : bag  of
visterm[38]. Same as CEALIST /bov_dsiftSC_8192
with a different spatial pyramid ~» 1024 x (1 +
2 x 244 x 4) = 21504 dimensions.

ETIS /global_<feature>[<type>|x<size>:
(concatenated) histogram features[4], where:

<feature> is chosen among lab and qw:

lab: CIE L*a*b* colors

qw: quaternionic wavelets (3 scales, 3 orien-
tations)

<type> can be:

mlx1: histogram computed on the whole
image

m1x3: histogram for 3 vertical parts

m2x2: histogram on 4 image parts

<size> is the dictionary size, sometimes different
from the final feature vector dimension.

For instance, with <type>=m1x3 and <size>=32,
the final feature vector has 3 x 32 = 96 dimensions.

ETIS/vlat_<desc type>_dict<dict size>_<size>:
compact Vectors of Locally Aggregated Tensors
(VLAT [6]). <desc type> = low-level descriptors,
for instance hog6s8 = dense histograms of gradient
every 6 pixels, 88 pixels cells. <dict size> = size
of the low-level descriptors dictionary. <size>
= size of feature for one frame. Note: these
features can be truncated. These features must
be normalized to be efficient (e.g. Lo unit length).

EUR/sm462: The Saliency Moments (SM) feature
[5] is a holistic descriptor that embeds some
locally-parsed information, namely the shape of
the salient region, in a holistic representation of
the scene, structurally similar to [7].

EUR /caffe1000: We used the CAFFE Deep Neural
Net [44] developped by the Vision group of the
University of Berkeley, for which both the source
code and the trained parameter values have been



made available. The network has been trained on
the ImageNet data only, and provides scores for
1000 concepts. The network is applied unchanged
on the TRECVID key frames, both on training and
test data. The resulting scores are accumulated in
a 1000 dimension semantic feature vector for the
shot.

LABRI/faceTracks: OpenCV+median temporal fil-
tering, assembled in tracks, projected on key frame
with temporal and spatial weighting and quantized
on image divided in 16 x 16 blocks ~» 256 dimen-
sions.

LIF /percepts_<x>_<y>_1_15: 15 mid-level con-
cepts detection scores computed on x x y grid
blocks in each key frames with (x,y) = (20,13),
(16,6), (5,3), (2,2) and (1,1), ~ 15 x x x y di-
mensions.

LIG/h3d64: normalized RGB Histogram 4 x 4 x 4
~» 64 dimensions.

LIG/gab40: normalized Gabor transform, 8 orienta-
tions x 5 scales, ~» 40 dimensions.

LIG/hgl04: early fusion (concatenation) of h3d64
and gab40 ~» 104 dimensions.

LIG /opp-sift_<method>[_unc]_1000: bag of
word, opponent sift, generated using Koen Van
de Sande’s software[8] ~» 1000 dimensions (384
dimensions per detected point before clustering;
clustering on 535117 points coming from 1000
randomly chosen images). <method> method
is related to the way by which SIFT points are
selected: har corresponds to a filtering via a
Harris-Laplace detector and dense corresponds
to a dense sampling; the versions with _unc
correspond to the same with fuzziness introduced
in the histogram computation.

LIG/caffeb1000: This descriptor is equivalent to the
EUR/caffe1000 one and was also computed using
the CAFFE Deep Neural Net [44] but with a dif-
ferent (later) version.

LIG /caffe_fc[6|7]-4096 : This descriptor correspond
to the LIG/caffeb1000 one and was also computed
using the CAFFE Deep Neural Net [44] but is
made of the 4096 values of the last two hidden
layers, see [19] for more details.

LIG/concepts: detection scores on the 346
TRECVID 2011 SIN concepts using the best
available fusion with the other descriptors, ~ 346
dimensions.

LIRIS/OCLPB_DS_4096 : Dense  sampling
OCLBP [39] bag-of-words descriptor with 4096

k-means clusters. We extract orthogonal com-
bination of local binary pattern (OCLBP) to
reduce original LBP histogram size and at the
same time preserve information on all neighboring
pixels. Instead of encoding local patterns on 8
neighbors, we perform encoding on two sets of 4
orthogonal neighbors, resulting two independent
codes. Concatenating and accumulating two codes
leads to a final 32 dimensional LBP histogram,
compared with original 256 dimensions. The 4096
bag-of-words descriptors are finally generated by
the pre-trained dictionary.

LIRIS/MFCC_4096: MFCC bag-of-words descrip-
tor with 4096 k-means clusters. To reserves video’s
sequential information, we keep 2 seconds audio
wave around the key frame, 1 second before and af-
ter. 39 dimensional MFCC descriptors with delta
and delta delta are extracted with 20ms window
length and 10ms window shift. The 4096 bag-of-
words descriptors are finally generated by the pre-
trained dictionary.

LISTIC/SIFT_*: Bio-inspired retinal preprocessing
strategies applied before extracting Bag of Words
of Opponent SIFT features (details in [26]) using
the retinal model from [9]). Features extracted on
dense grids on 8 scales (initial sampling=6 pix-
els, initial patch=16x16pixels, using a linear scale
factor 1.2). K-means clusters of 1024 or 2048 vi-
sual words. The proposed descriptors are simi-
lar to those from [26] except the fact that multi-
scale dense grids are used. Despite showing equiv-
alent mean average performance, the various pre-
filtering strategies present different complemen-
tary behaviors that boost performances at the fu-
sion stage [58].

LISTIC/trajectories_*: Bag of Words of trajecto-
ries of tracked points. Various ways of describing a
trajectory are used, such as the spatial appearance
along a trajectory, the motion along a trajectory
or a combination of both. Each type of trajectory
description generates its own Bag of Words repre-
sentation. K-means clustering of 256-1024 visual
words, depending on the type of description [61].

XEROX /ilsvrc2010: Attribute type descriptor con-
stituted as vector of classification score obtained
with classifiers trains on external data with one
vector component per trained concept classi-
fier. For XEROX/ilsvrc2010, 1000 classifiers were
trained using annotated data from the Pascal VOC
/ ImageNet ILSVRC 2010 challenge. Classification
was done using Fisher Vectors [12].

XEROX/imagenet10174: Attribute type descrip-
tor similar to XEROX/ilsvrc2010 but with 10174
concepts trained using ImageNet annotated data.



1.3 Descriptor optimization

The descriptor optimization consists of a principal com-
ponent analysis (PCA) based dimensionality reduction
with pre and post power transformations [25]. A L; or
L5 unit length normalization can optionally by applied
after the first power transformation.

1.4 Classification

The LIG participant ran two types of classifiers on the
contributed descriptors as well as their combination,
see /citetrecl4a for details.

LIG_KNNB: The first classifier is kNN-based.

LIG_MSVM: The second one is based on a multiple
learner approach with SVMs.

LIG_FUSEB: Fusion between classifiers. The fusion
is simply done by a MAP weighted average of the
scores produced by the two classifiers.

All the descriptors contributed by the TRIM partici-
pants have been evaluated for the indexing of the 346
TRECVID 2012 concepts. This has been done by the
LIG participant and is reported in the TRECVid 2014
LIG paper /citetrecl4a.

1.5 Performance improvement by fu-
sion of descriptor variants and clas-
sifier variants

As in previous years, we started by fusing classification
scores from different variants of a same descriptor and
from different classifiers of a same variant of a same
descriptor. This is done as first levels of hierarchical
late fusion, the last ones being done using dedicated
methods as described in section 1.6. Three levels are
considered when applicable: fusions of different clas-
sifiers of a same variant of a same descriptor, fusion
of different variants of a same descriptor according to
a dictionary size, and fusion of different variants of a
same descriptor according to a pyramidal decomposi-
tion. While the last levels of fusion attempt to improve
the overall performance by fusing information of differ-
ent types (e.g. color, texture, percepts or SIFT), the
first fusion levels attempt to improve the robustness of
the classification from a given type. More details on
this approach can be found in the previous TRECVid
IRIM papers [21, 16].

1.6 Final fusion

The IRIM participant LISTIC worked on the automatic
fusion of the classification results (experts). The fusion
started with the original classification scores and/or

with the results of previous fusions of descriptor vari-
ants and/or classifier variants as described in the pre-
vious section. A comparison of the LISTIC and LIMSI
automatic fusion methods, along with another fusion
method tried in the context of the Quaero group using
some of the same classification results, and an arith-
metic mean and the best attribute per concept, is given
in [37].

We combine all of the available FUSEB experts (71 ex-
perts in total) as well as 13 KNNB experts (correspond-
ing to retina-enhanced SIFT/SURF/FREAK Bags of
Words [58]), in a concept-per-concept manner, by per-
forming five late fusions in parallel. The first fusion is
the agglomerative clustering approach which we have
previously seen in [37] and in [15]. The second fusion
is based on optimising classification scores by using
AdaBoost. The third fusion also uses AdaBoost, but
this time attempting to optimize the rankings of video
shots instead of their scores. The fourth fusion is a
weighted arithmetic mean of the input experts, with
weights given by the average precisions of the expert
for the semantic concept in question. The fifth fusion
consists in taking just the best expert for the concept
in question. All of these five fusions are combined, by
choosing for the concept in question, the late fusion ap-
proach that worked best on the training set. The fusion
approach is described in more detail in [62].

1.7 Temporal re-scoring (re-ranking),
conceptual feedback and uploader
model

At the end, conceptual feedback [27] and temporal re-
scoring [24] are performed. For reasons of time con-
straints, conceptual feedback is performed using infor-
mation from a manual hierarchical late fusion [17] in-
stead of our own fusions. At the end, information about
the uploader of each shot is also included, although
with a low weight [63].

1.8 Evaluation of the submitted runs

We submitted 4 runs, each using the same 84 input
experts:

e M_D_IRIM.14_1 - the best of the 5 fusion ap-
proaches for each concept, followed by conceptual
feedback and temporal re-scoring;

e M_D_IRIM.14_2 - similar to the above system, with
the addition of the uploader model

e M D IRIM.14.3 - the best of the 5 fusion ap-
proaches for each concept, followed only by tem-
poral re-scoring;

e M_D_IRIM.14_4 - similar to the above system, with
the addition of the uploader model



IRIM officially submitted the four M_D_IRIM.14_1 to
M_D_IRIM.14_4 runs that are described in section 1.6.
Table 1 presents the result obtained by the four runs
submitted as well as the best and media runs for com-
parison. The best IRIM run corresponds to a rank of 5
within the 15 participants to the TRECVID 2014 main
SIN task.

Table 1: InfMAP result and rank on the test set for all
the 30 TRECVID 2014 evaluated concepts (main task).

System/run MAP | rank
Best run 0.3320 1
M_D_IRIM.14_1 | 0.2590 14
M_D_IRIM.14_2 | 0.2587 15
M_D_IRIM.14_3 | 0.2449 20
M_D_IRIM.14_4 | 0.2460 19
Median run 0.2075 28
Random run 0.0009 -

Table 1 shows the results of our submitted runs.
The best run is IRIM.14_1, which is the concept-per-
concept selection of the best of the 5 late fusion ap-
proaches, with added conceptual feedback and tem-
poral re-scoring. The result is almost identical to
TRIM.14_2, which adds the uploader model, The up-
loader was only given a small weight, hence the close
result, because preliminary testing showed that the up-
loader can sometimes decrease results.

Thanks to the conceptual feedback, TRIM.14_1 and
IRIM.14_2 perform 5.7% better than IRIM.14_3 and
5.2% better than IRIM.14_4. Between IRIM.14_3 and
IRIM.14 4, the results differ by less than 0.5%, again
due to the small weight of the uploader model. This
time however, the run using the uploader model per-
forms slightly better.

2 Instance Search

Given visual examples of entities of limited number of
types: person, object or location, Instance Search (INS)
task [2] consists in finding shots which contain instances
of these entities. Each instance is represented by a few
(4) example images. Hence if we can consider the set of
video clips as a visual database, the problem consists
in retrieval of each instance in this database.

2.1 Related work

The bag-of-words (BoW) model [29] is one of the most
effective content-based approaches for large scale image
and visual object retrieval. First features are detected
on regions of each image and described by a feature
descriptor. Feature descriptors are then quantized into

visual words, creating a visual vocabulary. A similar-
ity is then computed between quantized vector of query
image and database images. At last, a spatial verifica-
tion step may be performed on the top results ranked
by similarity. It may be optionally followed by an au-
tomatic query expansion step that uses the verified re-
sults to build a new query. BoW is the approach the
most often followed by INS participants. To be applied
to videos, it requires first to extract key frames from
shots. The various aspects of the BoW method have
been intensively studied.

For features detection, various detectors are available.
The most frequently used and effective detectors are
the Harris-affine, Hessian-affine and MSER [45]. For
INS 2013, NII [47], participant with best run, used sev-
eral detectors: Hessian-affine, Harris-Laplace, MSER.
PKU [48] also used these three descriptors (and also
a Laplace of Gaussian detector). Detected interest re-
gions are then most often described by the SIFT de-
scriptor [40]. Arandjelovi¢ and Zisserman [49] propose
a small modification, RootSIFT, that improves perfor-
mances at virtually no cost. NII [47] used RootSIFT for
INS 2013. SIFT descriptors also have been extended to
color. Among these color descriptors, OpponentSIFT
have been found to perform well on some benchmarks
[8]. For INS 2013, NII [47] and NTT [51] used a com-
pact color SIFT of dimension 192 (128 for luminance
SIFT and 64 for chrominance), PKU [48] used CSIFT.

For vocabulary construction, the method of choice is
the approximate k-means, introduced by Philbin et al.
[34]. Approximate K-means optimizes the step of re-
trieving nearest neighbors between feature points and
cluster centers by using an approximate nearest neigh-
bor technique, such as FLANN [35]. A forest of multi-
ple randomized kd-trees is built over the cluster centers
at the beginning of each iteration. This Approximate
K-means gives similar results to exact K-means, at a
fraction of the computational cost. Most often a vo-
cabulary size of 1 million words is chosen [49, 52]. NII
[47, 46] used a vocabulary of 1 million words for INS
2013. Indeed, Philbin et al. predicted a drop in perfor-
mance with vocabularies larger than 1 million. Mikulik
et al. [53] attribute this result to a too small dataset
(16.7M descriptors). They propose an hybrid approach:
approximate hierarchical k-means. They test dictionar-
ies up to 64 million words (on 11 billion descriptors),
and show that object retrieval performance increase
with the size of the vocabulary.

To apply BoW approach to videos, it is first neces-
sary to extract key frames from video shots [29]. For
INS 2013, NII [47, 46] extracted key frames uniformly
at the rate of 5 frames per second. Other partici-
pants with good runs also extracted several frames per
shot but a lower rates ( 2.6fps for NTT [51], 0.3fps for
VIREO). Zhu et al. [55] also showed performance in-
creases on past INS datasets with increasing sampling



rates (tested up to 3fps). Using multiple key frames
requires a fusion operation. NII [47, 46] did an early
fusion and used a joint-average scheme or average pool-
ing: each shot is represented by a single BoW vector
that is the average of the BoW vectors of its multiple
key frames. In [55], they compare different aggregation
methods, and find that these early fusion by average
pooling gives the best results.

Various methods are also used to compute similarity
between BoW vectors of query and database images or
shot. Zhu et al. [46] introduces a query-adaptive asym-
metrical dissimilarity. NII [47] used this dissimilarity
for the best 2013 run.

The spatial verification step, followed by automatic
query expansion, is a well-studied way to improve re-
sults [29, 34, 49, 52]. For INS 2011 and 2012, spatial
checking did improve retrieval results on some but not
all queries [15, 59]. For INS 2013, few of the best runs
used this step favorably. Maybe due to the versatil-
ity of queried objects, that may be non-rigid, taken
from fairly different viewpoints; it seems that spatial
re-ranking did not perform so well. The NII [47] run
with spatial re-ranking is their weakest one. CEA-
List and IRIM spatial verification tests on INS 2013
also showed no improvement. Zhang et al. [59, 57]
propose instead a topology checking technique. It im-
proved VIREO results on INS2013. Due to this spatial
verification step not working so well and interactive
time nature of INS task, few of the best runs in INS
2013 used automatic query expansion. Besides, for INS
task, several (four) example images are already avail-
able for query. Arandjelovi¢ and Zisserman [56] inves-
tigated various fusion methods when multiple queries
are available. They found that having multiple queries
is always beneficial, and late fusion of individual scores
obtained for each example image gave the best results.
They did only a qualitative evaluation on TRECVID
Known-item search 2011 dataset, and found that late
fusion with maximum of individual scores (CombMax
operator) performed best. On the other hand, Zhu et
al. [46, 55] found, on various INS datasets, that early
fusion of BoW vectors of query images gave better re-
sults than late fusion. NII [47] used late fusion with av-
erage pooling for queries vectors (similar to what they
did on shots key frames).

Another problem when doing visual object retrieval,
where we have a Region-Of-Interest (ROI), is to model
the background context of the object. Indeed, for cer-
tain objects, static objects or locations in particular,
the whole image may show the context of the object
and thus it may be better to not use only the ROI for
the query. For other objects, thus appearing in various
contexts, like cars or people, limiting the query to the
ROI may be more precise and using the whole image
would only bring more noise. Based on human percep-
tion, Zhang et al. [59, 57] propose a simple weighting

model. Features inside ROI are considered in focus
and affected a weight of 1. Features outside the ROI
are considered out of focus when they are distant from
the ROI and thus are down-weighted according to their
distance to the center of the ROI. Mikulik [54] also tries
to model the context before query expansion, from spa-
tially verified first results.

2.2 IRIM approach

All TRIM members participating in the INS task pro-
vide individual results for their methods. They produce
an intermediary result where with a similarity Sc; s
computed between each example image (e) of each in-
stance (i) and each video shot (s). We then do a late
fusion of these intermediary results to obtain a final
result that is similarity S; s between each instance (i)
and each shot (s)

2.3 Members methods

This year only two members of IRIM Consortium,
LaBRI and LISTIC, participated in INS task. Their
methods are all based on the BoW approach.

2.3.1 LISTIC

Experts detailed in [58] were experimented in the INS
task as well as the SIN task. All those experts are
Bag of Visual Words based on the Opponent color
SIFT signature but applied on a preprocessed video
key frame or sequence around the key frame. Prepro-
cessing consists in applying a retina model able to en-
hance both details (foveal vision) and transient signals
(peripheral vision) with various strategies. Key frame
preprocessing (SIFT_1024* and SIFT_retina_1024%)
and video preprocessing (SIFT_retinaMasking*and
SIFT _multiChannels*) appear to provide similar in-
dividual average performance (around 0.10 infAp on
SIN task, REFER TO PAPER TABLE VALUES) and,
when fused, show efficient complementary (0.16 infAp,
i.e. +60% improvement, refer to paper table values).
Experiments show that such descriptors using a low
number of visual words (1024) perform well on the SIN
task while keeping a reasonable computational cost.
However, this low dimensionality limits efficiency on
the INS task thus not being a competing approach.
Further visual word clustering strategies must be ex-
perimented to adapt to this task.

2.3.2 LaBRI

LaBRI BoW system uses two types of descriptors:
SIFT descriptors (of dimension 128) extracted with
Hessian-Affine detector [60] and Opponent SIFT de-
scriptors (of dimension 384) extracted with Harris-



Laplace detector [50].
processing step is applied.

Approximate k-means algorithm [34] is then used to
compute a vocabulary of k=1 million visual words, for
each type of descriptor. The size of the random forest
was set to 8 kd-trees. Vocabularies on SIFT and Op-
ponent SIFT descriptors were computed respectively
on 117K and 24K randomly selected images from the
shots, with one image extracted per shot (that is re-
spectively 25% and 5% of the 470K shots). Hard as-
signment is used to compute the histogram of visual
words occurrences. This vector is then weighted by the
tf-idf scheme.

To represent a shot, two approaches were tested.
First, only one key frame is extracted per shot. This
key frame is chosen arbitrary at the middle of the shot.
A BoW vector is computed only for this image. For
INS 2013, it represents ~830M of SIFT for the 470K
shots, that is a mean of ~1.7K SIFT per image, and
~694M Opponent SIFT for all the shots, that is a mean
of ~1.5K Opponent SIFT per image. Otherwise, sev-
eral key frames are uniformly extracted per shot, at
a given frame rate. A global histogram is computed
for all the key frames of the shot and averaged. This
is the joint average scheme or average pooling used in
[46, 47]. We tested only a frame rate of 1 frame per sec-
ond. It corresponds to ~1.57TM images. It represents
~2.96G of SIFT for all the shots, that is a mean of
~1.8K SIFT per image, and ~2.59G Opponent SIFT,
that is ~1.6K Opponent SIFT per image. It is notewor-
thy that NII [47] used a similar approach in INS 2013,
but with a much higher frame rate of 5 fps. It corre-
sponds to ~7.7G images, that would represent between
12.7G and 14.5G features.

In the standard BoW method, each signature vector
is first L,,-normalized (with m =1 or m = 2). Then a
similarity or a distance is computed between the query
BoW vector and the database BoW vector to obtain the
final ranking. Various similarities have been employed:
cosine similarity, histogram intersection, or a similar-
ity computed from a distance. We have tested various
combination of L,,-normalization and a L, distance
metric (with 1 <= m,n <= 2). We used a dissimilar-
ity, noted L, p with n = 1 or n = 2, that correspond to
the L,, distance computed on the non-zero space of the
query. The L,, distance is only computed for the words
present in the query, that is between the non-zero bins
of the query BoW vector and the corresponding bins
of the shot BoW vector. Then a similarity s = ﬁ is
computed from this dissimilarity. We also tested the
query-adaptive asymmetrical dissimilarity §1 proposed
by Zhu et al. [46], and used in best INS 2013 NII run
[47]. See equations 1 and 2 where T; and @Q; repre-
sent respectively test image and query image vectors,
weighted by idf term. The rationale of this dissimilar-
ity is to penalize features that are detected in the query
object region and have no corresponding features in the

The RootSIFT [49] post-

Figure 1: Example of instance: original image (pro-
gramme material copyrighted by BBC), mask, saliency
map generated from mask to weight the features.

database image. W balances the impact of clutter and
positive matches in the scoring. It is computed on-the-
fly, to adapt to the database and to the query. We used
a1 = 0.5 in our tests. Both é1 and our L,p dissimi-
larity can be computed efficiently with the help of an
inverted file.

51(Qus Tj@) = T3], - @lmin(Qu, T, (1)
> 1Tl
S5 lmin(Qi Ty,

For various instances, locations or static objects in
particular, it may be interesting to take into account
the background context in which they appear. It is
expected that using the background context will bring
more information than using only the ROI but also
more noise. We build a saliency map, or a stare model
as called in [59, 57], that will weigh the contribution of
points detected on the query image. Similar to [59], we
define a function to down-weight the features distant
from the object mask or ROI. A point outside the ROI
has its weight computed according to its distance to the
ROI contour. The further away from the ROI contour,
the less its weight. The weighting function is described
in 3, where §%2 = — 4%%‘.7;8 and diag is the diagonal axis
of the query image. For a point x, p is its projection on
the ROI contour. That is, p is the closest point of the
ROI contour to point x. A point detected inside the
ROI has a weight of 1. The figure 1 shows the saliency
map obtained with this weighting function on a 2014
topic example image. As we do not use the center of
object ROI to compute our weighting function, it will
give a more even saliency map that the one described
in [59] for elongated objects and/or ROI composed of
several connected components.

k(x){ !

2
e:cp(f”w%’;” )

w=qQ]

(2)

if x € ROI
otherwise

3)

2.4 Late fusion

Each described members method produces intermedi-
ary results. Thus for each method (m), we have a sim-
ilarity Sp.e,i,s between each example image (e) of each



Name Formula

CombMAX MAX (individual similarities)
CombSUM SUM(individual similarities)
CombANZ | CombSUM / Number of non zero similarities
CombMNZ | CombSUM * Number of non zero similarities
CombProd Geometric Mean of individual similarities

Table 2: Definitions of different combination operators

instance (i) and each shot (s). We have to fuse these
similarities to obtain a similarity S; s for an instance
(i) and a shot (s). We considered only queries where
all the four example images were used. Thus, with four
example images (e) for each instance (i), it means that
we have to fuse 4m similarity to get the similarity S; s
for an instance (i) and a shot (s).

We have tested a limited number combination opera-
tors: CombMAX, CombSUM, CombANZ, CombMNZ,
CombProd [43], defined in table 2.

These fusion operators can be applied to similarity
scores or ranks. A Combination operator will be noted
Comb[S] if applied to score, and Comb[R] if applied to
rank.

2.5 Results

Here we present various results for different parameters
of our methods. The results noted INS 2013 concern
2013 topics on eastenders dataset. They were com-
puted (unless otherwise noted) before the submission
of our 2014 runs, and helped to define those runs. The
results noted INS 2014 concern 2014 topics evaluated,
on the same dataset, after 2014 runs submission. They
were computed once the ground truth for 2014 topics
has been provided by NIST.

Table 3 shows results of LaBRI BoW approach, in-
dividually for SIFT and Opponent SIFT descriptors
(with RootSIFT applied, 1M vocabulary, tf-idf applied
and L1 normalization), computed only on 1 key frame
per shot (noted 1kf). As we use the four available query
images per topic, we have to fuse their individual re-
sults. We tested different fusion operators, both on
similarity scores and ranks. CombProd[S] and Comb-
SUM[R] gave the best results. Here we will only refer-
ence CombProd|S] results.

Table 3 allows comparing results using different dis-
similarities for different types of query. Results ref-
erenced a{l..9} correspond to our BoW approach ap-
plied on SIFT descriptors (noted SIFT). For al, a2, a3,
we use our dissimilarity Lip with distance L1 respec-
tively with the whole image, only the ROI, or the ROI
with context obtained with our saliency map used for
the queries (respectively noted image, ROI and ctat).
For a4,ab, a6, we use our dissimilarity Lop with the
distance L2 squared. Results referenced b{1..9} corre-

ref. | description INS 2013 | INS 2014
al SIFT 1kf L1p image 0.0920 0.0811
a2 | SIFT 1kf Lip ROI 0.0456 0.0004
a3 | SIFT 1kf Lip ctxt 0.0884 0.0879
a4 SIFT 1kf Lop image 0.0897 0.0860
ad SIFT 1kf Lsp ROI 0.0584 0.0008
ab SIFT 1kf Lop ctxt 0.1045 0.1023
a7 | SIFT 1kf §; image 0.0765 0.0708
a8 | SIFT 1kf §; ROI 0.0392 0.0006
a9 SIFT 1kf §; ctxt 0.0812 0.0811
bl OppSIFT 1kf Lip image || 0.1171 0.1041
b2 | OppSIFT 1kf Lip ROI 0.0683 0.0868
b3 | OppSIFT 1kf Lip ctxt 0.1110 0.1148
b4 | OppSIFT 1kf Lop image || 0.1037 0.0949
b5 | OppSIFT 1kf Lop ROI 0.0777 0.0884
b6 | OppSIFT 1kf Lop ctxt 0.1156 0.1195
b7 | OppSIFT 1kf §; image 0.1084 0.0981
b8 | OppSIFT 1kf §; ROI 0.0829 0.0891
b9 | OppSIFT 1kf §; ctxt 0.1266 0.1105

Table 3: Results on individual methods for descrip-
tors computed on 1 key frame per shot. We com-
pare SIFT and Opponent SIFT descriptors (a{1..9} vs
b{1..9}), L1p, Lop and §; dissimilarities ({a,b}{1,2,3}
vs {a,b}{4,5,6} vs {a,b}{7,8,9}), and queries with
whole image, only ROTI or ROI and context ({a,b}{3i}
vs {a,b}{3i 4+ 1} vs {a,b}{3i + 2} Vi € {1,2,3}).

spond to the same methods but applied to Opponent
SIFT descriptors (noted OppSIF'T).

We see in table 3 that results with Opponent SIFT
(b{1..9}) are systematically better than those for SIFT
(a{1..9}). Results for query with whole image or with
context ({a,b}{1,4} & {a,b}{3,6}) are better than
ROI only ({a,b}{2,5}). Context does not always im-
prove the results. Lip and Lop give similar results.
However Lop with context (a6 & b6) is always better
than Lip with context (a3 & b3), and often better over-
all.

Query adaptive asymmetrical dissimilarity d; did not
perform well. Results are always inferior to our re-
sults using Lyp or Lop dissimilarities ({a,b}{7,8,9} vs
{a,b}{6..7}). It is in contradiction with Zhu et al. [46]
findings. We have to investigate further.

Table 4 shows results with the same approaches but
with descriptors extracted on several key frames per
shot, at the rate of 1fps and average pooled to build
the BoW vector of the shot (noted Ifps).

Results for Opponent SIFT (d{1..9}) on INS 2013
were not computed on time for runs submission.

Comparing results in tables 3 and 4, we see that re-
sults with several key frames per shot are always bet-
ter than with only one key frame per shot. It is con-
sistent with observations by Zhu et al. [55] that in-
creasing number of key frames per shot (to at least
to 3 fps) increases performances. Otherwise, same
observations made for table 3 may be done for table



ref. | description INS 2013 | INS 2014
cl SIFT 1fps Lip image 0.1370 0.1243
c2 SIFT 1fps Lip ROI 0.0617 0.0010
c3 SIFT 1fps Lip ctxt 0.1435 0.1450
c4 SIFT 1fps Lop image 0.1357 0.1411
ch SIFT 1fps Lop ROI 0.0828 0.0029
c6 SIFT 1fps Lop ctxt 0.1682 0.1640
c7 SIFT 1fps 0; image 0.0991 0.1021
c8 SIFT 1fps 61 ROI 0.0659 0.0019
c9 SIFT 1fps 61 ctxt 0.1020 0.1067
d1 OppSIFT 1fps Lip image || 0.1610 0.1648
d2 | OppSIFT 1fps Lip ROI 0.0915 0.1096
d3 | OppSIFT 1fps Lip ctxt 0.1610 0.1829
d4 | OppSIFT 1fps Lop image || 0.1473 0.1545
d5 | OppSIFT 1fps Lap ROI 0.1096 0.1176
d6 | OppSIFT 1fps Lap ctxt 0.1675 0.1829
d7 | OppSIFT 1fps §1 image 0.1347 0.1300
d8 | OppSIFT 1fps 61 ROI 0.1110 0.1193
d9 | OppSIFT 1fps ;1 ctxt 0.1522 0.1409

Table 4: Results on individual methods for descriptors
computed on several key frames per shot, extracted at
1fps. We compare SIFT and Opponent SIFT descrip-
tors (¢{1..9} vs d{1..9}), L1p and Lop and §; dissimilar-
ities ({¢,d}{1,2,3} vs {c,d}{4,5,6}), and queries with
whole image, only ROI or ROI and context ({c,d}{3i}
vs {c,d}{3i + 1} vs {¢,d}{3i + 2} Vi € {1,2,3}).

4: Opponent SIFT is better than SIFT, and queries
with whole image or context are better than with ROI
only. However, here, using context for query always im-
proves the results ({c¢,d}3 vs {c,d}{1,2}, and {¢,d}6 vs
{c,d}{4,5}). Once again Lop with context (c6 & d6)
gives the best overall results.

We then tried to fuse these individuals results two
by two, using one result on SIFT and one on Oppo-
nent SIFT. As we used all four example images for
each query, it means that for each shot we had (at
most) eight results to fuse. In table 5 we present some
of these results. First we present results of fusions on
individual methods obtained with one key frame per
shot (f1 to f4). Then, results of fusion of individual
methods obtained for key frames extracted at 1fps for
SIFT and 1 key frame per shot for Opponent SIFT (f5
to f8). At last, we display results of fusion of meth-
ods obtained for key frames extracted at 1fps for both
SIFT and Opponent SIFT (f9 to f12). As d{1..9} re-
sults were obtained after submission deadline, f9 to
f12 results could not be submitted as runs. We used
f5 to f8 as runs : respectively as run3, run2, runl and
rund.

For all the fusion results presented in ta-
ble 5, except the first one, the late fusion
of two results is better than the individual re-
sults.  That is, fx = CombProd[s|(m;,m;) >
MAX (CombProd[s|(m;), CombProd[s](m;)).

The use of context is systematically better than using

ref. | description INS 2013 | INS 2014
f1 al+bl 0.1156 0.1067
2 a3+b3 0.1162 0.1154
3 a4+b4 0.1056 0.1047
4 a6+b6 0.1321 0.1303
5 c4+bl = run3 || 0.1443 0.1556
6 c6+b3 = run2 || 0.1766 0.1741
7 c6+bl = runl || 0.1884 0.1763
8 c¢9+b9 = rungd || 0.1190 0.1381
9 cl+dl 0.1614 0.1681
f10 | c3+d3 0.1751 0.1840
f11 | c4+d4 0.1510 0.1704
f12 | c6+d6 0.1964 0.2054

Table 5: Results of fusion of two individual methods.

the whole image (f2;4+1 vs fa;, but not for {7 & 8).

2.6 Conclusions

This year IRIM participation to INS task brought use-
ful information

e As highlighted by NII 2013 participation, extract-
ing several key frames per shot and doing an early
fusion on their BoW vectors, by average pooling
for example, at the shot level, allows to greatly im-
proves retrieval results on videos. As we extracted
only one frame per second this year, we want to
investigate further the use of more key frames per
shot. It will however depend on the availability of
larger computing resources. Indeed, extracting key
frames at a rate of 5 fps, like NII [47] did in 2013,
would require to handle around five more features
that we have. It would represent around 15 bil-
lion features. Therefore, it would certainly also be
beneficial to use a larger vocabulary. Mikulik et
al. [53] tested vocabularies up to 64 million words
for 11 billion features, and found that large vocab-
ularies always improved performances.

e Using the background context of the query object
also proved to bring better retrieval performance.
The proposed simple weighting function, allowing
to incorporate some of the background features in
the query BoW, showed better results that ROI
only or whole image queries. We have to look more
precisely for which topics it improved results, and
for which it did not help.

e Surprisingly, our dissimilarity, constructed from
a distance applied only on non-zero query space,
gave better results than d; query adaptive dissim-
ilarity by Zhu et al. [46]. We have to investigate
further and in particular check on other datasets.



3 Data sharing

As in previous years, we propose to reuse and extend
the organization that has been developed over five years
within the members of the IRIM project of the French
ISIS national Research Group (see [15] and section 1 of
this paper). It is based on a limited number of simple
data formats and on a (quite) simple directory organi-
zation. It also comes with a few scripts and procedures
as well as with some sections for reporting intermedi-
ate results. The supporting structure is composed of
a wiki (http://mrim.imag.fr/trecvid/wiki) and a data
repository (http://mrim.imag.fr/trecvid/sin12). The
wiki can be accessed using the TRECVid 2013 active
participant username and password and the data repos-
itory can be accessed using the TRECVid 2013 TACC
collection username and password.

A general rule about the sharing of elements is that:

e any group can share any element he think could
be useful to others with possibly an associated ci-
tation of a paper describing how it was produced;

e any group can use any element shared by any other
group provided that this other group is properly
cited in any paper presenting results obtained us-
ing the considered element,

exactly as this was the case in the previous years for the
shared elements like shot segmentation, ASR transcript
or collaborative annotation. Groups sharing elements
get “rewarded” via citations when their elements are
used.

Shared elements can be for instance: shot or key frame
descriptors, classification results, fusion results. For
initiating the process, most IRIM participants agreed
to share their descriptors. Most classification and fu-
sion results obtained are also shared. These are avail-
able on the whole 2010-2015 TRECVID SIN collection.
Descriptors, classification scores or fusion results from
other TRECVid participants are most welcome. See
the wiki for how to proceed.
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