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ASYMPTOTIC EQUIVALENCE FOR DENSITY ESTIMATION

AND GAUSSIAN WHITE NOISE: AN EXTENSION

ESTER MARIUCCI

Abstract. The aim of this paper is to présent an extension of the well-known
asymptotic équivalence between density estimation experiments and a Gauss-
ian white noise model. Our extension consists in enlarging the nonparametric
class of the admissible densities. More precisely, we propose a way to allow
densities defined on any subinterval of M, and also some discontinuous or un-
bounded densities are considered (so long as the discontinuity and unbounded-
ness patterns are somehow known a priori). The concept of équivalence that we
shall adopt is in the sense of the Le Cam distance between statistical models.
The results are constructive: ail the asymptotic équivalences are established
by constructing explicit Markov kernels.

1. Introduction

When looking for asymptotic results for some statistical model it is often useful
to profit from a global asymptotic équivalence, in the Le Cam sense, in order to be
allowed to work in a simpler but équivalent model. Indeed, proving an asymptotic
équivalence resuit means that one can transfer asymptotic risk bounds for any
inference problem from one model to the other, at least for bounded loss functions.
Roughly speaking, saying that two models, and <0^2> are équivalent means that
they contain the same amount of information about the parameter that we are
interested in. For the basic concepts and a detailed description of the notion of
asymptotic équivalence, we refer to [6, 7]. A short review of this topic will be given
in the Appendix.

In recent years, numerous papers hâve been published on the subject of non-
parametric asymptotic équivalence. For a non exhaustive list of the main ones
among them, see, for example, the introduction in [8]. In this paper, we will focus
on nonparametric density estimation experiments.

The séminal paper in this subject is due to Nussbaum [9]. There, the asymptotic
équivalence between an experiment given by n observations of a density / on [0,1]
and a Gaussian white noise model:

dyt = Vf (t)dt + —=dWt, t e [0,1],
Isjn

was established. Over the years several generalizations of this resuit hâve been
proposed such as [1, 5, 2]. In [1], the authors obtained the global asymptotic equiv-
alence between a Poisson process with variable intensity and a Gaussian white noise
experiment with drift problem. Via Poissonization, this resuit was also extended
to density estimation models. In [5] the authors proved the global asymptotic
équivalence between a nonparametric model associated with the observation of in-
dépendent but not identically distributed random variables on the unit interval and
a bivariate Gaussian white noise model. More closely related to our work is the
resuit of Carter in [2]. In that paper, he proposed a new approach to establish the
same normal approximations to density estimations experiments as in [9]. While the
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resuit in [9] is obtained by means of Poissonization, in [2] the key step is to connect
the density estimation problem to a multinomial experiment and to simplify the
latter with a multivariate normal experiment.

The purpose of the présent work is to generalize [9] and [2]. More precisely, the
density estimation experiments that we consider consist of n independent obser-
vations (Yi)f=1 defined on a interval J Ç R from some unknown distribution PH

dp9
having density (with respect to the Lebesgue measure on /) = f(x)g(x).
In particular, we do not require / Ç R to be bounded as is generally done in the
existing literature. The function g is supposed to be known whereas / is unknown
and belongs to a certain nonparametric functional class P. Formally, the statistical
model we consider is

(1) = (Rn,*(R”), : / € JF}).
The exact assumptions on / and g will be specified in Section 2. Here, let us only
stress the fact that / has to be bounded away from zéro and infinity and sufficiently
regular, whereas g can be both unbounded and discontinuous. The advantage with
respect to the earlier works is that this framework allows us to treat densities of the
form h = fg not necessarily bounded nor smooth. See Section 3.1 for a discussion
about the hypothèses.

Finally, let us introduce the Gaussian white noise model. For that, let us dénoté
by (C, cé?) the space of continuons mappings from I into R endowed with its standard
filtration and by the law induced on (C,<L?) by a stochastic process satisfying:

(2) dYt = \/f(t)g(t)dt + t G /,
Tl

where (VFf)teR is a Brownian motion on R conditional on Wo = 0. Then we set

(3) ^ = (C,*,,{W»:/e^}).
Let A be the Le Cam pseudo-distance between statistical models having the same
parameter space. For the convenience of the reader a formai définition is given in
Section 4.2. Our main resuit is then as follows (see Theorem 3.1 for the précisé
statement):

Main resuit 1.1. Let I be a possibly infinité subinterval of R and let LP consist of
functions bounded away from 0 and oo, satisfying the regularity assumptions stated
in Section 2. Then, we hâve

(4) lim A(£W *£) = 0.
n—>oo

In some spécial cases an explicit upper bound for the rate of convergence in (4) is
available; see, e.g. Corollary 3.2. The structure of the proof follows Carter’s in [2],
but we detach from it on several aspects. The basic idea is to use his multinomial-
multivariate normal approximation, but some technical points hâve to be taken
into account. One of these is that I may be infinité, so that, in particular, the
subintervals Ji in which it is partitioned cannot be of equal length. We choose
intervals Ji of varying length, according to the quantiles of uq, the measure having
density g with respect to Lebesgue. This kind of partitions was already considered
in [8].

The paper is organized as follows. Section 2 fixes the assumptions on the param-
eter space LP. Section 3 contains the statement of the main results and a discussion
while Section 4 is devoted to the proofs. The paper includes an Appendix recalling
the définition and some useful properties of the Le Cam distance.
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Fix a finite measure v>q concentrated on a possibly infinité interval / C M, admit-
ting a density g > 0 with respect to Lebesgue. The class of functions & will be con-
sidered as a class of probability densities with respect to vq, i.e. fT f(x)g(x)dx = 1.
For each / G &, let v (resp. ùm) be the measure having / (resp. /m) as a density
with respect to uq where, for every / G fm(x) is defined as follows. Given a
positive integer m, let J± = I D (—oo, v\\, Jj := (vj-i, Vj] for j = 2,..., m — 1 and
Jm = I fl (v-m, oo) where the Vj's are the quantiles for u0, i.e.

(5) gn := vo{Jj) = » Vj = l,...,m.

/j xi/o(dx)
Define ce*; := —2 , j = and introduce a sequence of continuousJ Mn

functions 0 < Vj < j = 1,..., m, defined in the following way.
• V\ is supported on / fi (—oo,^] and:

1 fX* v ( \ /j \ ^o((*î,Vi]) w
— ; / Vi(x)uo{dx) = y ; Vi(a;2)
G Jxï

Ll1ID( — oo,x? ] . ....1
Mn Jxï Mn

For j = 2,..., m — 1, V) is supported in [a;|_l5 a:|+1] and:

0.

fX3 + l
Vj \[xï_ltx%] = 1~~ ^/J-l|[x^_1,xJ+1] i / Vj(x)uo(dx) =J xï l^n vj(xÎ+J = a

• For j = m, VÇn is supported on / \ (—oo,a:^i_1) and:

Lm I
— i = ^ Vm~l | [x^_i,x£j a.nd bm|/n( —oo,x^) — •

(It is immédiate to check that such a choice is always possible). Observe that, by
construction,

Define

m /»

V] Vj(x)/j,n = 1, VxG/ and Vj(y)v0(dy) = 1.
a=i Jl

m r.

^2vj(x) / f{y)vo{dy).
.7 = 1

/mO)

The same construction of the V^-’s already appeared in our previous work [8].
Their définition is modelled on the following example:

Example 2.1. Let be the Lebesgue measure on [0,1]. Then Vj = and
= 2^rn ’ J = !)•••;The standard choice for Vj (based on the construction by

[2]) is given by the piecewise linear functions interpolating the values in the points
Xj specified above:

We now explain the assumptions we will need to make on the parameter /. We
require that:
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(Hl) There exist constants K, M > 0 such that k < f(y) < M, for ail y G / and
fe&.

The m introduced above will be considered as a function of n, m — mn. We
can thus consider y/fm, the approximation of \ff constructed as fm above and
introduce the quantities:

HmU) := J (V/0) - \//mO)) v0(dx),
Ah(f) '■= Ji - Vf (y)) "o (dy),

We will assume the existence of a sequence of discretizations m = mn and functions
Vj, j = 1,... , m, such that:

3. Main results and discussion

Using the notation introduced in Section 2, we now state our main resuit in
terms of the models and defined in (1) and (3), respectively.

Theorem 3.1. Let uq be a finite measure concentrated on an (possibly infinité)
interval I C M. having density g > 0 with respect to Lebesgue. Suppose that there
exist a sequence m = mn and functions Vj, j = 1,..., m, such that every f G &
satisfies conditions (Hl) and (Cl). Then, for n big enough we hâve:

A(£SM W>) = O (v^sup (Am(f) + Bm(f) + Hm(f)) + •
Corollary 3.2. Let I be a compact subset of R and let uq be the Lebesgue measure
on I. For fixed 7 G (0,1] and K, n, M strictly positive constants, consider the
functional class

^(7,K,n,M) = {/ € C\I) : k < f{x) < M, \f\x)-f\y)\ < K\x-yp, Væ, y G /}.
Suppose & C Then

Wf*) = O t'+2 logro^.
3.1. Existing literature and discussion. As it has already been highlighted in
the introduction, our resuit is a generalization of those in [9] and [2]. In order
to discuss the link between our work and the previous ones, we recall the results
contained in these papers.

• Asymptotic équivalence of density estimation and Gaussian white noise, [9].
In this paper Nussbaum establishes a global asymptotic équivalence

between the problem of density estimation from an i.i.d. sample and a
Gaussian white noise model. More precisely, let (Tï)^=1 be i.i.d. random
variables with density / on [0,1] with respect to the Lebesgue measure.
The densities / are the unknown parameters and they are supposed to
belong to a certain nonparametric class JF subject to a Hôlder restric-
tion: |f(x) — f(y)\ < C\x — y\a with a > \ and a positivity restriction:
f{x) > e > 0. Let us dénoté by <^i,n the statistical model associated with
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the observation of the Y^s. Furthermore, let ,n be the experiment in
which one observes a stochastic process (Yt)i6[o,i] such that

dYt = yfmdt + ^dWt, t G [0, 1],2y/n

where (Wt)t6[oji] is a standard Brownian motion. Then the main resuit in
[9] is that A(«0^1 >n, >n) —» 0 as n —* oo.

This is done by first showing that the resuit holds for certain subsets
^n(fo) of the class AF described above. Then it is shown that one can
estimate the /0 rapidly enough to fit the various pièces together. With-
out entering into any detail, let us just mention that the key steps are a
Poissonization technique and the use of a functional KMT inequality.

• Deficiency distance between multinomial and multivariate normal experi-
ments, [2].

In this paper Carter establishes a global asymptotic équivalence between
a density estimation model and a Gaussian white noise model by bounding
the Le Cam distance between multinomial and multivariate normal ran-

dom variables. More precisely, let us dénoté by A4(n,6) the multinomial
distribution, where 6 (0i,..., #m). Dénoté the covariance matrix nVe:
Its (i, j)th element equals to n#;( 1 — — ndiOj.

The main resuit is an upper bound for the Le Cam distance A(A4,Af)
between the models A4 := {A4(n, 6) : 9 G ©} and Af := {M''(nQ,nVo) : 0 G
©}, under some regularity assumptions on ©. In particular, Carter proves
that

A(M,AT) < C'&
mlnm

provided
maxj 6i

SUP —: 7T
6>e© mm* 6i

< C© < oo,

for a constant C'& that dépends only on C©. From this inequality Carter can
recover mostly the same results as [9] under stronger regularity assumptions
on & is a class of smooth, différentiable densities / on the interval [0,1]
such that there exist strictly positive constants e, M, 7 such that e < f < M
and

\f'(x) - f(y)| < M\x - y|7, for ail x,y G [0,1].
Let us briefly explain how one can use a bound on the distance between
multinomial and multivariate normal variables to make assertions about

density estimation experiments. The idea is to see the multinomial experi-
ment as the resuit of grouping independent observations from a continuous
density into subsets. Using the square root as a variance-stabilizing trans-
formation, these multinomial variables can be asymptotically approximated
by normal variables with constant variances. These normal variables, in
turn, are approximations to the incréments of the Brownian motion pro-
cesses over the sets in the partition.

Our work can be seen as a generalization of these two works: to see that it is enough
to take g(x) = 3[o,i](ic) as in Corollary 3.2. However, it differs from Nussbaum and
Carter’s results in several aspects. First of ail, we do not need to ask the random
variables to be defined on [0,1], allowing the observations to be defined on a possibly
infinité interval / of R. Secondly, in our setting the positivity restriction on the
densities can be removed. Indeed, as an example, we can consider the class of
densities of the form

= 0)0*0» > 0
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where / belongs to the functional class as defined in Corollary 3.2. A
proof that this kind of densities satisfies Hypothèses (Hl) and (Cl) can be found
in [8], Section 5.2.

More generally, density functions h that can be written in form of a product
are commonly used in statistics. One could cite as a simple case the problem of
a parametric estimation for a Weibull density, see, e.g. [4, 3]. Generally speaking,
the présent work can be useful whenever the random variables Yf s do not admit a
smooth density h with respect to Lebesgue, but nevertheless one has some infor-
mation on the discontinuity structure, namely one knows g in the décomposition
h(x) = f(x)g(x).

4. P ROOFS

4.1. Proof of Theorem 3.1. We will proceed in four steps.
Step 1. By means of Facts 4.4 and 4.5, we get

< yWf2(p;,P|J.
Hence, denoting by the statistical model associated with the family of proba-
bilities { ®™=1 P? : / G 4^"}:

(6) A(^, <#£) < sup \jn j^(^/f(x) ~ g(x)dx.
Step 2. Following the same approach as in [2], we introduce an auxiliary multino-

mial experiment to get doser to a normal one representing the incréments of (Yt)tej
defined as in (2). The multinomial experiment is linked with the density estimation
model in the following way: Let (Fi)™—! be a sequence of i.i.d. random variables
with density fg with respect to Lebesgue and define the multinomial experiment
by grouping their observations into subsets. More precisely, let us introduce the
random variables:

n

Zi = y^Jj.jYj), i = l,...,m.
3=1

Observe that the law of the vector (Z\,..., Zm) is multinomial A4 (n; 71,..., ym)
where

Let us dénoté by A4m the statistical model associated with the observation of
(Zi,..., Zm). Clearly ô(A?%, A4m) = 0. Indeed, A4m is the image experiment by
the random variable S : In —> {1,..., n}m defined as

S(x\, .. . , Xn) — 1 : Xj G J\ j- ;... ; • Xj G Jm ,

where dénotés the cardinal of the set A. To conclude the second step we now

prove that the multinomial experiment is as informative as

Lemma 4.1.

= 0.

Proof. We need to produce an explicit Markov kernel that allows to approximate
the density fmg given an observation from the multinomial model which is given
by

K((ki,... ,fcm), A) = J E^VX(kl krn) (#)] u0(dx), V(fci,..., km) G N, k% = n, A C
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where X(fcl)_;fcm) G {1,.. . , m} is a randomly chosen integer obtained assigning to
j the weight □

Step 3. Let us dénoté by Mm the statistical model associated with the observation
of m independent Gaussian variables M(-/rvÿî, ^), i = 1,..., m. Since
one can apply Théorem 4.9 obtaining

a/», k r \ „ / m ln ra \A(A4m,./Vm) — ^ )'
Here the O dépends only on M and k.

Step 4. Finally, we conclude the proof of Theorem 3.1, by showing that

(T) A(MÇn, < 2y/n sup (Am(/) + £m(/)).
fe^

As a preliminary remark note that is équivalent to the model that observes
a trajectory from:

dÿt = Vf(t)g (t)dt + dWt, tel.

In order to prove (7) we proceed in the following way: First of ail, we prove that
Mm is équivalent to the model that observes the incréments on the intervals / of
(Vt)tei■ Secondly, we show that the incréments of (ÿt)tel are more informative than
another Gaussian process, say (Yt*)tei, that turns out to be very close to (ÿt)tei m
the total variation distance. We then conclude the asymptotic équivalence between
Mm and Wfi observing that the incréments of (ÿt)tei are obviously less informative
than

Let us dénoté by Ÿj the incréments of the process (ÿt) over the intervals Jj,
j = 1,... ,m, i.e.

Ÿj := Vvj - Vvj-! ~ YK ^ Jj y/f{y)uQ{dy), —^
and dénoté by Mm the statistical model associated with the distributions of these
incréments. As announced we start by bounding the Le Cam distance between Mm
and Mm showing that

(8) A {Mm, Mm) < 2 y/n sup Bm(f), for ail m.

In this regard, remark that the experiment Mm is équivalent to another experiment,
say M/jj, that observes m independent Gaussian random variables of means equal
to M/l— J y/f(y)uo(dy), j = 1,..., m and variances identically 1. Hence, using

V "o (Jj) Jj
also Property 4.3, Facts 4.4-4.6 we get:

A (Mm, Mm) < A (Mm,M*) < SUp

Using similar ideas as in Section 8.2 of [2] and Lemma 3.2 of [8], we introduce
a new stochastic process constructed from the random variables Ÿj’’s. To that end
define

m m

(9) Yt = J2Yi Vife)^o(dy) + §-^ Yj MW)Bj(t),C teli
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1

where the (Bj(t))t are independent centered Gaussian processes conditional on

Bj (0) = 0 with variances

Var(Bj(t))= [ V,(y)uQ(dy) - ( [ Vj(y)v0(dy) \ .J in(—oo,t] \ JIC\{—oo,t] /

By construction, (Yt*) is a Gaussian process with mean and variance given by,
respectively:

TTh
ç, TTi / (* f*

E|y/] = ^K[ÿj] Vj(y)v0(dy) = J2( VmMdy)) Vj
j—i Jin(—oo,t] \Jjj J Jin(-oo,t]

Var[y,*] = Variai ( / Vj(y)Mdy)) + T: E
j=i V Jin(-oo,t\ J

=

J- [ ^Z^o(Jj)Vjiy)Mdy) = J- [ lis0(dy) =4n Jin(-oo,t] 4n Jin(-oo,t\
>

K = [ VfmWMdy) + / ^n=rwf ‘ e T

(y)vo(d\
30,t]

v0(i n ( oo, t])
4n

Therefore,

where

\^fm(x) := ( [ Vf(y)Mdy])vj(x).
j=i /

Applying Fact 4.7, we get that the total variation distance between the process
(Yt*)teI constructed from the random variables Ÿj, j = 1,... ,m and the Gaussian
process (ÿt)tel is bounded by

4nh ^ ~ v/f(y))2"o(dy),
as wanted.

4.2. Proof of Corollary 3.2. We start by proving a Lemma needed for the proof
of Corollary 3.2. Since we are supposing that g(x) = H/(x), we may take for the
Vj the standard choice of triangular-trapezoidal functions (see Example 2.1 for a

picture). Furthermore, yn = uq(Jj) = ^\I\- For easiness of notations, in the proof
we will also assume / = [0,1].
Lemma 4.2. If f G and uq is the Lebesgue measure on [0,1], then

11/ - fmlfi/2(i/0) < o[rn~3 + m-2-27),
with the O depending on K, M and k.

Proof. Let us consider the Taylor expansion of / at points x*, where x dénotés a

point in , i — 1,.. . , m:

(10) f(x) = /(;r*) + f'(x*)(x - x*) + R(x).
The smoothness condition on / allows us to bound the error R as follows:

|Æ(*)I = | f(x) ~ f(xï) ~ f'(xi)(x ~ xi) |
= |/'te) - /'«)ll& - xt\< Km

where & is a certain point in Jj.
By the linear character of /m, we can write:

fm(x) = fm{x*) + f'm{x*){x - X*)
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where dénotés the left or right dérivative of fm in x* depending whether x < x*
or x > x*. Let us observe that /OO?) = f'iXi) f°r some G Ji U Ji+i (here, we
are considering right dérivatives; for left ones, this would be Ji-i U Ji). To see that,
take x E Ji H [x*,x*+l] and introduce the function h(x) := f{x) — l(x) where

*0) = JJ ^br(/m«+1) _ An O*)) + fm(x*) =,(x- X*)f^(x*) + fm(xi)-xi+1 xi

Then, using the fact that fj (x — x*)uo(dx) = 0 together with Jj ^ (x — x*)i/o(dx) =
Oj4-i - x*j)Hn, we get

/ h(x)uo(dx) = 0 = / h(x)vo(cLx).
J J 7 JJ ; 4-1

In particular, by means of the mean theorem, one can conclude that there exist two
points pi E Ji and pi+± G Ji+i such that

Jj. h(x)u0(dx) fj h(x)u0(dx)
HPi) = HPi+1)-

U) (Ji) V0(Ji+i)
As a conséquence, we can deduce that there exists Xi £ \pi,Pi+1] Q Ji U Ji+i such
that h'ixi) = 0, hence f(xi) = l'(Xi) = /mO<)-

The fact that fm(.xî) = f'(f) f°r some t E Ji U Ji+i, allows us to exploit the
Hôlder condition. Indeed, if x G Ji, i = 1,..., m, then there exists t E Ji U Ji+i
such that:

I/O) - /mO)l < I/O*-) - fm(x*i)\ + l/'Oi) - f'itW - xi I + 1^0)1
< I/O?) -./m0i)l + K\t-x*i\1+1 + Ara-1-7 < |/0**)-/m0I)l + 3i^m-1-T

Using (10) and the fact that fj (x — x*)uq{Jx) = 0, one gets:
1 ' '

< Km~1~'y.|/0*) - frn(xi)\ = )Ts f (/O*) - f(x))v0(dx)U) \Ji) J Ji

Moreover, observe that, for ail x G Ji, i = 1,..., m, | f(x) — |, is bounded
by 3+ m~1M, indeed:

u(Ji
fO) - MJi)

= I/O) - fm0*)l < I/O) - /mO)l + 1/mO) ~ /mO*)l

< 3Km~1~'y + | fm(xî)(x ~ ^1)1 A 3ATm-1-7 + Mm-1.
Collecting ail the pièces together we find

J (f(x) — fm(x))2îso(dx) < 2ra~1n^3A'm_1~7 + Mra-1^ + 18.A2m -2-27

□

Proof of Corollary 3.2. By means of the fact that f(x) > k for ail x E I one can
write:

Ji (V/O) - //mO)j dx = Jt ( /O) - /mO)

<

\//0) + V7m O)

^ J (/O) - fm{x))2dx.
A straightforward application of Lemma 4.2 gives

Ht ,(/) = »(m + m' -2-27 )•
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The same bound holds for A^(/) since if / G then v7 G
Moreover, one can see that Bm converges with the same rate as Am. This may be
done by explicit computations, see [8], Lemma 3.10 for more details. □

Background

Le Cam theory of statistical experiments. A statistical model or experiment is
a triplet &j = («$£}, srfj, {Pj,e\ 9 G ©}) where {Pj,o', 9 G 0} is a family of probability
distributions ail defined on the same cr-field srfj over the sample space STj and
0 is the parameter space. The deficiency éP2) of with respect to ^2
quantifies “how much information we lose” by using instead of ^2 and it is
defined as J(«£^i, ^2) — inf^- supe6@ \\KP\p — P2,q\\tv , where TV stands for “total
variation” and the infimum is taken over ail “transitions” K (see [6], page 18). The
general définition of transition is quite involved but, for our purposes, it is enough
to know that (possibly randomized) Markov kernels are spécial cases of transitions.
By KP\p we mean the image measure of P\,o via the Markov kernel K, that is

KPh0(A) = [ K(x, A)Pip(dx), VA G
J 1

The experiment K— (^2,^2, {KPi,e\Q G 0}) is called a randomization of
by the Markov kernel K. When the kernel K is deterministic, that is K(x,A) =

Ï5(x)ga for some random variable S : (ÜTi,æ0i) —¥■ (^2,^2), the experiment KTP\
is called the image experiment by the random variable S. The Le Cam distance is
defined as the symetrization of ô and it defines a pseudometric. When A(^2’i, &2) =
0 the two statistical models are said to be équivalent. Two sequences of statistical
models (^f)neN and (<^2*)neN are cahed asymptotically équivalent if , éPQ)
tends to zéro as n goes to infinity. A very interesting feature of the A-distance is
that it can be also translated in terms of statistical decision theory. Let be any
(measurable) decision space and let L : © x $> > [0, 00) dénoté a loss function. Let
||Z/|| = sup^)Zj€0x^ L(9, z). Let 7Ti dénoté a (randomized) decision procedure in
the ï-th experiment. Dénoté by i?j(7q, L, 9) the risk from using procedure 7r* when
L is the loss function and 9 is the true value of the parameter. Then, an équivalent
définition of the deficiency is:

^2) — inf sup sup sup \Ri(ni, L, 9) — R2(n'2, L, 9)\.ni tt2 6»e© L:\\L\\ = 1

Thus A (^1,^2) < £ means that for every procedure 7r* in problem i there is
a procedure nj in problem j, {i,j} = {1,2}, with risks differing by at most e,
uniformly over ail bounded L and 9 G 0. In particular, when minimax rates of
convergence in a nonparametric estimation problem are obtained in one experiment,
the same rates automatically hold in any asymptotically équivalent experiment.
There is more: When explicit transformations from one experiment to another are

obtained, statistical procedures can be carried over from one experiment to the
other one.

There are various techniques to bound the Le Cam distance. We report below
only the properties that are useful for our purposes. For the proofs see, e.g., [6, 10].
Property 4.3. Let LPj = (J2T, æ/, {Pj,e] 9 G ©}), j — 1,2, be two statistical models
having the same sample space and define Ao(^i, ^2) := sup^Q \\P\,e — P2,q\\tv-
Then, A(^*i,^,2) < A0(^2’i, &2)-

In particular, Property 4.3 allows us to bound the Le Cam distance between
statistical models sharing the same sample space by means of classical bounds for
the total variation distance. To that aim, we collect below some useful results.
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Fact 4.4. Let Pi and Pi be two probability measures on SP, dominated by a common
measure £, with densities gi = i — 1,2. Define

Li(Pi,P2)= [ \gi(x) - g2(x)\Ç(dx),
J SC

/ r 2 \ 1/2
H(PuP2) = ( j (VpiO) - s/g2(xŸ) ç,(dx)\

Then,

//3(Q-/-- < \\Pi-P2\\tv-~L1(P1,P2) <H(PuP2).
Fact 4.5. Let P and Q be two product measures defined on the same sample space:
P = ®i=1Pi, Q — <8>”=iQi- Then

h2(p,q) <J2H2(p^Qi)-
i= 1

Fact 4.6. Let Q\ ~ PF(gi, crf) and Q2 ~ ^/F(p,2, of) ■ Then

IIQl — Q2 ||TV <
Ql ~ h2)2

2cri
Fact 4.7. For i = 1,2, let Qi, i — 1,2, &e £/ie law on (C, of two Gaussian
processes of the form

hi(s)ds + f o(s)dWs, t£l
J 0

where hi G L2(M) and o G IR>o- Then:

r (^ \ / . I f (MS) ~ ^2(s))2 js y f —jî(jj *■
Property 4.8. Let LPi = (SL], s^i, {Pi,g, 9 £ ©}), i = 1, 2, be two statistical models.
Let S : 3P\ —» ^2 be a sufficient statistics such that the distribution of S under Pi,g
is equal to P2,g. Then A(^i, SP2) = 0.

Finally, we recall the following resuit that allows us to bound the Le Cam distance
between multinomial and Gaussian variables. According with the notation used
throughout the paper, ^#(n, 0) stands for a multinomial distribution of parameters
(n,6>).
Theorem 4.9. (See [2], Theorem 1 and Sections 7.1, 7.2) Let LP = {Pg : 9 G ©i?},
where Pg = n,9) and QR C Rm consists of ail vectors of probabilities such that

max 9i
.

q _
mm

Let J2 = {Qg : 6 G ©#} where Qg is the multivariate normal distribution with
vector mean (\/n9ï,..., \Jn9m) and diagonal covariance matrix \lm■ Then

. . .—1 \ ^ mlnm
A(^,^) < CR—-=-

y/n

for a constant CR that dépends only on R.
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