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Abstract

The aim of this paper is to discuss the advantages and difficulties linked with the experimental

application of the momentum equation approach as a non-intrusive way to predict the unsteady

loads experienced by an airfoil in motion. First, in order to evaluate the influence of the

varying parameters relative to the calculation of the corresponding drag and lift coefficients,

numerical flow fields obtained by means of DNS are used. The comprehension of the impact

of the spatial and temporal resolutions, velocity accuracy or third velocity component on the

estimation of forces allows us to quantify the accuracy of the approach and helps in specifying

the parameters setting which could lead to a consistent experimental application. In a second

step, the approach is applied to experimental flow fields measured through the use of time

resolved particle image velocimetry (TR-PIV). A low Reynolds number flow around an

impulsively started airfoil is considered. The loads and vorticity flow fields are correlated and

compared with those obtained by DNS.

Keywords: aerodynamics, lift, drag, momentum equation

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Measuring the aerodynamic forces experienced by a body is of

major interest when dealing with flow control applications, lift

device optimization or energetic performance enhancement.

Strain gauges are widely used for steady flow configurations

whereas piezo-electric devices appear as an alternative

solution for unsteady flow configurations. Nevertheless, such

techniques are not universal as they are limited to a specific

range of loads. Low Reynolds flows, as encountered in

micro-air vehicles (MAVs) applications, cannot easily rely on

these methods, the resulting aerodynamic forces being weak,

hence leading to strong relative errors. Moreover, for specific

applications (flow control with splitter element or with profile

in motion, force measurement with more than one obstacle),

* This article is based on work presented at the EWA International Workshop

on Advanced Measurement Techniques in Aerodynamics, held at Delft

University of Technology, the Netherlands, 31 March–1 April 2008.

the devices begin to be somewhat complex and may present

some drawbacks. Note that the integration of the surface

pressure distribution can be achieved for the lift and pitching

moment evaluation with pressure taps or pressure sensitive

paint, and a pitot-tube wake rake could be used far downstream

of the obstacle to determine the drag, as described by Jones

(1936).

An alternative method is to deduce the unsteady forces

from velocity flow fields by applying the momentum equation

to a control volume enclosing the profile. The approach (Noca

et al 1997, 1999, Unal et al 1997) discussed in this paper

allows non-intrusive steady (van Oudheusden et al 2006) and

unsteady (Kurtulus et al 2007) loads measurement using the

velocity flow fields determined by particle image velocimetry

(PIV) and time resolved PIV, respectively. This method is

particularly powerful in the sense that it permits a direct

link between the flow behaviour and the force generating

mechanisms, which is not a priori the case when separate

1



Figure 1. Control volume, surface definitions and pressure weighting process.

techniques are used to extract this information. Thanks to

the recent development of high-rate imaging techniques, the

momentum equation approach may be applied to relatively

high Reynolds number configurations and is particularly

convenient for low Reynolds flows. Furthermore, when a

moving body is considered, the forces obtained through the

use of gauges are the sum of both fluid and inertial forces.

In other terms, the fluid forces are deduced by subtracting

the inertial forces from the measured forces, increasing the

relative error. Thus, the present method appears as a way to

avoid such uncertainties.

In this paper, we focus on the practical application of

the momentum equation using numerical and experimental

data. The first part will present the concept of non-intrusive

loads evaluation. The second part will discuss the influence

of different parameters such as the spatial and temporal

resolutions, velocity accuracy or the presence of a third

velocity component using data obtained from a simulated

flow. In the last section, loads evaluation will be applied

to experimental data and compared with DNS results, leading

to a concluding discussion.

2. Loads evaluation

Different approaches of the momentum equation can be

proposed, based on the integration of flow variables inside a

control volume surrounding a body. Lin and Rockwell (1996)

apply the impulse concept, described by Moreau (1952a,

1952b) and Lighthill (1986), which needs the knowledge

of the full vorticity field around the body. Starting an

oscillating cylinder from rest, they study the flow field during

the first instants in order to ensure the confining of the

vorticity to a small domain close to the body. Later, Noca

et al (1997) suggest a solution based on the vorticity field

in a finite control volume. By this means, the vorticity

field does not have to be evaluated everywhere. The

interest of this chosen formulation is the absence of the

pressure term, eliminated from the momentum equation by

algebraic manipulations. Furthermore, the authors mention

the possibility of calculating only surface integrals. The

approach is numerically validated and applied experimentally

on an oscillating cylinder configuration. The comparison with

the measurements by gauges reveals a bad agreement both

on the amplitude and on the phase of the signal, justified by

the two-dimensional approximation of the momentum balance

applied to a three-dimensional flow. In the same way, Protas

et al (2000) successfully implement their numerical flow solver

with the approach proposed by Quartapelle and Napolitano

(1982) in which the pressure term is eliminated by introducing

a newvariable depending only on the control volumegeometry.

Unal et al (1997) present an equivalent formulation which

tends to minimize the evaluation of the spatial derivatives.

In this case, the pressure term is calculated from the

integration of the momentum equation. The experimental

lifts (oscillating cylinder configuration) estimated by gauges,

circulation measurements and momentum equation seem to be

in good agreement despite some variations due to both three-

dimensional effects and low spatio-temporal resolution. In a

parametrical and numerical study, Noca et al (1999) show the

insensitivity of the results to the dimension of the control

volume and to the different approaches of the momentum

balance.

As previously introduced, the approach discussed in this

paper allows non-intrusive steady (van Oudheusden et al

2006) and unsteady (Kurtulus et al 2007) loads measurement

using the velocity flow fields determined by particle image

velocimetry (PIV) or, respectively, time resolved PIV. The

measurement of time resolved velocity flow fields reveals

the unsteady behaviour of the physical structures. Moreover,

the knowledge of the acceleration fields permits the application

of the complete momentum equation approach to the velocity

flow fields. The equation under integral form gives the

instantaneous force EF(t) experienced by the airfoil in function

of four components,

EF(t) = −ρ

∫∫

V

∫

∂ EV

∂t
dV − ρ

∫

S

∫

( EV · En)( EV − EV s) dS

−

∫

S

∫

p En dS +

∫

S

∫

τ · En dS, (1)

where En is the normal to the control surface S as shown in

figure 1, ρ is the fluid density, EV is the fluid velocity vector, EV s

is the control volume velocity and τ is the viscous stress tensor.

The two first terms (unsteady and convective contributions) are

directly deduced from the TR-PIV velocity flow fields. Note

that the latter is not integrated over the airfoil surface since
EV − EV s is null for a no through flow boundary condition.

In order to evaluate the third term (pressure contribution),

pressure p along the control surface needs to be determined.

2



This flow property is obtained by spatially integrating the

pressure gradient derived from the velocity flow field:

D EV

Dt
= −

1

ρ
∇p + ν∇2 EV . (2)

Numerically integrating the pressure gradient induces error

propagation (affected by the measurement error, round-off

errors or integration algorithms) which may lead to a wrong

evaluation of the pressure. The offset linked to this propagation

phenomenon increases with the number of integration steps.

Thus, it is convenient to evaluate the pressure as the weighted

value of the pressures deduced by integrating the pressure

gradients both clockwise and counter-clockwise. Figure 1

illustrates the pressure weighting process between points A

and B. A complementary approach is to introduce the potential

flow assumption in regions where the vorticity magnitude is

below a specified threshold, allowing the use of the Bernoulli

equation instead of equation (2) for the deduction of the

pressure (Kurtulus et al 2007). The use of both models

may be appropriate when the contour surface is long or

when the deduction of the pressure is extended to the entire

volume, which is currently under much consideration (Kat

et al 2008). Tests on numerical data demonstrated that the

error propagation linked to the introduction of a 2.5% random

noise is approximately 0.2% of the pressure contour integral.

Finally, the last term represents the action of viscous stresses

around the control volume and is deduced from the following

expression:

τ = µ( E∇ ⊗ EV + E∇ ⊗ EV t ). (3)

It is usually neglected if the control surface is sufficiently

far away from the airfoil. Note that in our numerical and

experimental cases, the latter roughly contributes 0.1% of the

total force.

Consequent to the previous remarks, we use equation (1),

neglecting the viscous term and deducing the weighted

pressure around the control volume from the second-order

integration of the pressure gradients. Spatial/temporal

derivations and volume/surface integrals are performed using

respectively second-order central differences and the Simpson

formula. In all cases (see the following section), the control

volume translates along with the airfoil. The aerodynamic

coefficients CD and CL are derived from the normalization of

the horizontal and vertical components (FD andFL) of resulting

force EF(t) for one planar section, with respect to the chord of

the airfoil and translational speed V0:

Ci = 2Fi

/

ρcV 2
0 . (4)

3. Parametrical analysis

The spatial and temporal resolutions, the velocity accuracy or

the presence of a third velocity component highly affect the

resulting force EF(t). In order to evaluate the influence of each

of these parameters, avoiding the presence of experimental

uncertainties, the method is applied to numerical velocity

flow fields computed by directly solving the Navier–Stokes

equations (DNS) according to a finite volume method. The

knowledge of both numerical velocity and pressure flow

fields allows a comparison between the drag and lift deduced

from the momentum equation approach and the drag and lift

returned by theDNS solver (i.e. calculated from the integration

of the pressure distribution and the viscous stresses along the

body surface).

The first test case consists of an impulsively starting

2D NACA0012 airfoil, undergoing constant translation at a

Reynolds number of 1000 and with a 45◦ angle of attack. In

this particular case, the fact that the translation is performed

at constant speed ensures that no contribution of the force

arises from a change in inertia due to the acceleration of

the airfoil. The laminar and incompressible flow around

the airfoil is computed using a moving non-conformal OH-

type computational domain. The latter is divided into two

parts: an inner mesh of radius R = 4 chords defined with

32 256 cells (144 × 224) and a coarser mesh of radius R =
15 chords defined with 6272 cells (56 × 112) such that the

influence of the far-field boundary condition is negligible.

A no-slip boundary condition is applied at the body surface

and a Dirichlet condition for pressure is applied at the far

field, allowing the local flow to be outwards or inwards.

Both sides of the computational domain are subjected to a

symmetry condition. The time step is set to 1t = 10−4 s,

which corresponds to 1t∗ = 0.0145, where t∗ = V0t/c, with

c being the chord of the airfoil (0.01 m) and V0 being the

translational speed (1.45 m s−1). Previous tests demonstrated

the insensitivity of the results to the number of cells, the

position of the external bound and the time step. We specify

that first-order upwind and second-order central differencing

schemes are respectively used for the spatial discretization

of the momentum and continuity equations. The pressure–

velocity coupling is treated with a PISO algorithm coupled

with a fully temporal implicit discretization scheme. The

numerical simulation is performed for 10 t∗.

The second test case is the three-dimensional extension of

the previous two-dimensional case. The 2D grid is extruded

along the off-plane axis to define the wing span. The aspect

ratio is set to λ = 4. A cylindrical extrusion is then applied to
define the wing tip. The final mesh is composed of 1541 120

cells. The resolution of the Navier–Stokes equation is as

described for the first test case. Note that one end of the wing

is subjected to a symmetry condition whereas the other one is

free.

For the third test case, we decelerate and rotate the 2D

airfoil after t∗ = 10 (the first test case) such that it reaches a

90◦ angle of attack and a zero translational speed. This case

is considered so as to take into account the contribution of the

inertial component or added mass effects.

In order to work with a spatial resolution comparable to

that achieved using TR-PIV, the resulting velocity flow fields

obtained on a non-conformal OH-type grid are interpolated to

a Cartesian grid. The final resolution is 60 cells per chord for

a full domain of 10 × 10 c2.

3.1. Lift and drag evaluation

Figure 2 displays the non-dimensional vorticity flow fields

relative to the first test case. Figure 3 shows a comparison
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(a)

(c)

(b)

(d )

Figure 2. Non-dimensional spanwise vorticity flow fields and stream lines at times t∗ = 2 (a), 4 (b), 6 (c) and 8 (d).

Figure 3. Comparison between the coefficients obtained by integrating the pressure and the viscous stresses along the airfoil surface (DNS)
and by applying the momentum equation (momentum) to the 2D velocity fields—first test case.

Table 1. Mean values of the drag and lift coefficients and their respective unsteady, convective and pressure contributions computed with
different spatio-temporal resolutions and introduction of random noise.

CD Unst. Conv. Press. CL Unst. Conv. Press.

Ref. (600 × 600) 1.396 0.077 −1.402 2.721 1.256 −0.074 1.332 −0.003
400 × 400 1.390 0.077 −1.394 2.707 1.254 −0.072 1.328 −0.002
200 × 200 1.372 0.073 −1.471 2.770 1.213 −0.072 1.304 −0.019
Noise 1t∗ = 0.12 1.400 0.077 −1.404 2.728 1.258 −0.073 1.333 −0.002
Noise 1t∗ = 0.35 1.398 0.077 −1.404 2.726 1.257 −0.073 1.333 −0.003
Noise 1t∗ = 1.40 1.502 0.144 −1.404 2.762 1.315 −0.008 1.333 −0.010

between the unsteady lift and drag coefficients CL and

CD obtained by means of the momentum equation and by

integrating the pressure and the viscous stresses along the

airfoil surface. For a better comprehension, the corresponding

unsteady, convective and pressure contributions are added.

The comparison reveals that both lift and drag estimations

are correct despite slight discrepancies probably arising from

discretization errors and grid interpolation step. The mean

values of the respective contributions are computed over

the interval t∗ = [1; 10] and given in table 1 so as to

facilitate comparisons with the lift and drag obtained using

flowfields subjected to a lower spatial resolution or to a random

noise. The mean absolute errors computed for such varying

parameters are listed in table 2.

Two simple remarks are addressed: the unsteady

term exhibits weak amplitude oscillations around zero (by
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Table 2. Mean absolute errors (relative to reference case) committed on the drag and lift coefficients and their respective unsteady,
convective and pressure contributions computed with different spatio-temporal resolutions and introduction of random noise.

CD Unst. Conv. Press. CL Unst. Conv. Press.

Ref. (600 × 600) – – – – – – – –
400 × 400 0.006 0 0.012 0.015 0.010 0.014 0.011 0.004
200 × 200 0.023 0.011 0.098 0.093 0.043 0.011 0.028 0.016
Noise 1t∗ = 0.12 0.437 0.025 0.014 0.440 0.063 0.057 0.011 0.020
Noise 1t∗ = 0.35 0.274 0.008 0.014 0.273 0.033 0.020 0.011 0.017
Noise 1t∗ = 1.40 0.308 0.071 0.014 0.241 0.079 0.081 0.011 0.024

Figure 4. Influence of a 2.5% uniformly distributed random noise on the deduction of drag (left) and lift (right) and their respective
unsteady, convective and pressure contributions with 1t∗ set to 0.35.

definition, its mean value tends to zero); the pressure term

relative to the lift evaluation is negligible. The latter

arises from the fact that the upper and lower limits of the

control volume, from which the pressure contribution to

lift is integrated, are not subjected to steep velocity and

pressure gradients. As we will see in the following sections,

both observations are favourable to the consistency of the

experimental loads prediction as it minimizes the difficulties

linked to (1) the temporal resolution and (2) the pressure

evaluation.

3.2. Spatial resolution

In order to evaluate the influence of the spatial resolution on

the forces obtained by the momentum balance, the previous

calculation is reiterated for Cartesian grids of lower resolution

(400× 400 and 200× 200 cells, the resolution of the reference
case being 600 × 600 for a 10 × 10 c2 field). In table 2, the

mean absolute errors (over the interval t∗ = [1; 10]) introduced
on the different contributions are given. It is shown that the

convective and pressure terms relative to the drag prediction

are affected in a stronger way than those relative to the lift

prediction. Respectively, for the lower resolution (200 ×
200), the mean absolute errors are 0.098, 0.093 and 0.028,

0.016. This remark is attributable to the fact that the zones

of integration for the convective and pressure terms relative

to the lift (upper and lower limits of the control volume) are

far away from the wake and consequently not very prone to

the velocity and pressure gradients. In addition, it is noticed

that the resolution has little influence on the unsteady term, the

error related to it being minimized by the dimensions of the

integration domain (integration on the control volume and not

the surface). Note that these deviations compensate for each

other in the case of drag prediction, leading to a weak mean

absolute error of 0.023.

3.3. Velocity noise

The velocity vectors determined by DNS are here disturbed

by a random error. Considering the spatial resolution

used in both numerical and experimental data, a uniform

distribution leading to a mean absolute uncertainty of 0.1 pixel

(as commonly measured in PIV experiments, e.g. Stanislas

et al 2005) is introduced in order to assess the influence of

experimental errors on the evaluation of lift and drag. Note

that, with respect to the airfoil translational speed, 0.1 pixel

corresponds to a relative error of 2.5%.

Figure 4 illustrates the influence of noise on the drag

and lift predictions and their respective contributions. On the

one hand, it is shown that the introduction of a random error

significantly affects the drag component. This effect comes

from the fact that the pressure term, whose contribution is here

substantial, is strongly degraded due to (1) the presence of

differential operators in equation (2) which tend to amplify

the measurement error and (2) the phenomenon of error

propagation discussed in section 2. Conversely, the unsteady
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Figure 5.Mean values and mean absolute errors of the drag coefficient and its contributions as a function of 1t∗.

and convective terms are quasi-insensitive to the presence of

noise. One can note from equation (1) that their analytical

formulations require respectively no and only one derivation

step. Results in table 2 demonstrate that the mean error

committed on the pressure term accounts for roughly all of the

total mean absolute error committed on the drag component.

On the other hand, the lift evaluation appears more robust

to the presence of noise. As previously put into evidence,

both unsteady and convective terms are quasi-unaffected.

Furthermore, the instantaneous contribution of the pressure

term does not exceed 2% of the lift component. Hence, the

mean error committed on the latter is nearly equally shared

among the unsteady, convective and pressure terms. For

an adequate value of 1t∗ (see the following section), the

introduction of a 2.5% uniformly distributed random noise

leads to a mean error of respectively 15.6% and 1.6% on the

drag and lift predictions.

3.4. Temporal resolution

If the error relative to the introduction of a random noise is

directly transmitted to the convective term of equation (1),

its influence on the unsteady and pressure terms indirectly

depends on the value of 1t used in equations (1) and (2).

Theoretically, an increase of1t tends to minimize the parasitic

temporal variations induced by the presence of noise but, in

parallel, causes a loss of information on the intensity of the

acceleration fields. Figure 5 plots the mean values and mean

absolute errors of the drag coefficient and its contributions

as a function of 1t∗. Specific values are listed in table 2.

The results demonstrate that increasing the time step from

1t∗ = 0.12 to 1t∗ = 0.35 decreases the mean absolute error

committed on the unsteady and pressure terms relative to

the drag evaluation by respectively 68% and 38%, without

affecting their mean values. Analogous effects are put into

evidence for the unsteady and pressure terms relative to the

lift evaluation with a reduction of respectively 65% and 15%.

This improvement is optimum on the interval [0.5; 1], after

which the loads evaluation is degraded. It is shown that

further increasing the time step to1t∗ = 1.40 leads to a wrong

evaluation of the acceleration. As a result, the mean lift and

drag are overestimated by respectively 4.7% and 7.6%. This

overestimation does not seem critical though; the contributions

of the unsteady term and the unsteady part of the pressure term

being weak for both lift and drag components.

For this first test case, fixing 1t∗ to approximately 0.5

appears to be a suitable parameterization. The theoretical

analysis of the stability behind a NACA0012 airfoil (Dergham

et al 2009) brings St = fcsin(α)/V0 = 0.124, where St is the

non-dimensional vortex shedding frequency f and α is the

angle of attack. According to this value, a sufficient temporal

resolution is obtained by discretizing the characteristic time

scale of the flow in approximately 10 instants, which is

surprisingly low.

3.5. Spanwise component

The experimental reproduction of two-dimensional

configurations is particularly delicate due to the influence

of the boundary conditions (e.g. end plates) which may imply

the presence of a three-dimensional velocity component. In

other words, the velocity flow fields obtained by PIV2D-2C

may not be strictly free of divergence. Thus, the aim of this

section is to evaluate the influence of such a 3D component

on the determination of loads by means of the momentum

equation approach. The second test case is here considered.

The momentum equation approach is applied to the planar

velocity flow fields obtained at mid-span λ/2. The resulting

aerodynamic loads are compared to those deduced from the

integration of the pressure and the viscous stresses along the

airfoil surface in the same plane (figure 6).

In contrast to the lift coefficients, it is shown that the

unsteady behaviour of the drag coefficients significantly differs

from t∗ = 2. The representation of the third velocity

component contours (figure 7) suggests that there might be a

link between this offset and the interaction spanwise velocity

regions/control volume limits. Some specifications may be

addressed. First, physical features exhibiting substantial

spanwise velocities do not interact with the upper and

lower limits of the control volume. Consequently, the
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Figure 6. Comparison between the coefficients obtained by integrating the pressure and the viscous stresses along the airfoil surface (DNS)
and by applying the momentum equation (momentum) to the 2D velocity fields at mid-span—second test case.

(a)

(c)

(b)

(d )

Figure 7. Non-dimensional spanwise velocity flow fields and iso-vorticity magnitude contour |ω∗| = 4 in the mid-span plane at times t∗ = 2
(a), 4 (b), 6 (c) and 8 (d).

convective and pressure terms relative to the lift coefficient

are not significantly affected. Furthermore, considering the

conformity between momentum and DNS lift coefficients, the

presence of a third component does not seem to significantly

alter the unsteady term. In contrast, spanwise velocity

structures continually cross the downstream limit of the control

volume from t∗ = 2. The convective and pressure terms relative

to the drag coefficient are hence significantly affected. The

resulting error committed on the latter may reach 50% for

spanwise velocities of the order of 0.5 V0. Such observations

suggest that, besides the obviousness that a two-dimensional

approach is not adapted to three-dimensional flows, a coherent

lift force may still be obtained if a suitable control volume is

used. Furthermore, one may have a quantitative estimation of

the accuracy of the results if the magnitude of the spanwise

component is known.

3.6. Inertial component

When non-constant motion laws are prescribed, an inertial

contribution arises from the addedmass or virtual mass effects.

In order to ensure that the latter is correctly taken into account,

the momentum balance is applied to the third test case. Note

that the inertial contribution is simply deduced from the

knowledge of the airfoil boundary conditions and is contained

in the convective term of equation (1). Figure 8 compares

the unsteady lift and drag coefficients obtained by means of

the momentum equation and by integrating the pressure and

the viscous stresses along the airfoil surface. For the sake of

7



Figure 8. Comparison between the coefficients obtained by integrating the pressure and the viscous stresses along the airfoil surface (DNS)
and by applying the momentum equation (momentum) to the 2D velocity fields—third test case.

clarity, the inertial part (after 10 t∗) is darkened. Note that the

rotation of the airfoil induces a lift bump through the Kramer

effect. The latter is followed by a sharp decrease of both lift

and drag due to the airfoil deceleration.

4. Application on experimental data

Although the momentum balance theory appears relatively

simple, its application on experimental data is delicate as

submitted to experimental uncertainties, principally affecting

the deduction of the pressure along the control surface.

However, the approach is particularly convenient when

considering low Reynolds flows or moving bodies which limit

the use of gauges. Here, the momentum equation is applied

to the experimental flow fields measured by TR-PIV on a 2D

NACA0012 airfoil at Reynolds 1000. Specifically, we focus

on the flow generated by the impulsive start of the airfoil at

high angle of attack, as described in section 3. The correlation

between vorticity flow fields and aerodynamic coefficients is

addressed.

4.1. Experimental set-up

The instruments and procedures used in the experiments have

been described elsewhere (Jardin et al 2009). A transparent

NACA0012 profile of chord 60 mm and span 50 cm, placed

between two end plates in a 1 × 1 × 2 m3 water tank, is

translated by means of a servo-controlled motor. TR-PIV

measurements are performed on the spanwise symmetry plane

using two JAI 8-bits cameras placed side by side. The laser

sheet is provided by a continuous argon laser system. Thirty

per cent of the laser illuminates one side of the profile while

70% is transported through an optical fibre to illuminate the

other side. Such an experimental set-up allows access to all

regions of the flow that might have been hidden by perspective

or shadow effects. This aspect appears as essential when

dealing with the momentum equation approach. The two-

dimensional velocity flow fields are deduced every 1t∗ =
0.014 (where 1t∗ is the non-dimensional time step between

two images used for the cross correlation) using a multipass

algorithm with a final interrogation window size of 16 × 16

pixels (LaVision software). The 2% spurious velocities are

identified and replaced using both peak ratio andmedian filters.

The NACA0012 airfoil is impulsively started at a constant

speed V0 = 1.67 cm s−1 and with a fixed angle of attack α0 =
45◦. The pure translational motion is maintained throughout 6

chords, corresponding to an adimensional travel time of 6 t∗.

Here, the inertial effects arising from the mechanical set-up

and motors may be considered negligible.

4.2. Parameters setting

Theoretically, the aero-hydrodynamic loads determined by

means of the momentum equation approach are insensitive

to the dimensions and size of the control volume. Practically,

its definition requires attention as it directly affects the relative

contributions of the unsteady, convective and pressure terms.

Keeping in mind that the evaluation of the pressure around

the control volume is subjected to some difficulties, it is here

convenient to use a control volume which minimizes both the

contribution of the pressure term and the error propagation

phenomenon. For the lift evaluation, the first condition is

ensured by placing the upper and lower limits away from the

wake, i.e. away from steep velocity and pressure gradients

regions (e.g. CV3 in figure 9). For the drag evaluation,

the downstream limit being subjected to significant gradients

in all cases, a relatively small domain is used in order to

lower the effect of error propagation (e.g. CV1 in figure 9).

Figure 9 shows the influence of the control volume on the

deduction of the instantaneous drag coefficient generated by

the impulsive start of a NACA0012 airfoil at Reynolds 1000.

The corresponding control volumes are displayed.

Moreover, in accordance with the previous analysis

carried out on the temporal resolution, figure 10 shows that the

dispersion is significantly weakened with increasing time step

1t∗. Consequently, its value is fixed to1t∗ = 0.68, i.e. above
the threshold value of 0.5 defined in section 3. A polynomial

fitting function is then defined, based on the corresponding

8



Figure 9. Influence of the control volume on the drag evaluation.

Figure 10. Experimental unsteady drag (left) and lift (right) coefficients calculated with different time steps.

results. Besides, as reported earlier, one can note that the

typical dispersion of the drag is significantly stronger than that

of lift.

4.3. Flow dynamics/loads correlation

In this section, we put into evidence the correlation between

the vorticity flow fields (figure 11) and the resulting lift

and drag coefficients (figure 12) obtained experimentally

on an impulsively started NACA0012 airfoil at Reynolds

1000.

Themotion starts at t∗ = 0. Due to the high angle of attack,
the flow instantly stalls at the leading edge, forming the so-

called leading edge vortex or LEV (blue vorticity in figure 11).

In parallel, one can clearly observe the formation of the starting

vortex, denoted as a red vorticity spot in the vicinity of the

airfoil trailing edge. The circulation establishment is here

quasi-immediate, the Wagner effect being negligible at such

Reynolds numbers. The production of vorticity at the leading

edge is continuously fostered by the translation, resulting in

the formation of a low-pressure suction region on the upper

surface of the airfoil. Hence, both lift and drag rapidly reach

substantial levels. The latter is maintained between t∗ = 0

and t∗ ≈ 1.5, corresponding to the close attachment of the

LEV. Nevertheless, after t∗ ≈ 1.5, the further accumulation

of vorticity, combined with the action of the trailing edge

vortex (TEV) formation, leads to the LEV instability. As a

consequence, the latter is progressively shed into the wake,

resulting in a sharp decrease of both lift and drag. The

drag exhibits a local minimum near t∗ ≈ 2.6, followed by a

bump at t∗ ≈ 3.7 deriving from the formation of the TEV.

In contrast, the latter does not significantly affect the lift

whose local minimum is thus reached near t∗ ≈ 3.2. As the

first LEV is convected downstream, a second LEV is formed

alternatively with the previous TEV, inducing the so-called

von Karman street. The presence of this second LEV on

the airfoil upper surface sustains the production of lift and

drag whose coefficients reach another local maximum at t∗ ≈
5.4. Afterwards, the loads decrease again, leading to a periodic

shedding state which cannot be put into evidence in this

study since the translation length is limited to 6 chords. One

important feature here is that substantial levels of lift and

drag are reached during a longer period at the onset of the

motion. This phenomenon, also referred to as the dynamic

stall mechanism, is a common feature in rotating blades and

flapping wings aerodynamics.
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(c)

(b)

(a)

Figure 11. Non-dimensional experimental vorticity flow fields and
stream lines resulting from the impulsive start of a NACA0012
airfoil at t∗ = 2 (a), 4 (b) and 6 (c) from top to bottom.

Therefore, it is demonstrated that the temporal behaviour

of the loads matches the spatio-temporal evolution of the

vortical structures. In the range t∗ = 1–6, typical levels of

Figure 12. Experimental drag (left) and lift (right) coefficients and their respective unsteady, convective and pressure contributions resulting
from the impulsive start of a NACA0012 airfoil—filtered data.

Figure 13. Experimental unsteady, convective and pressure
contributions of the drag coefficient resulting from the impulsive
start of a NACA0012 airfoil—raw data.

lift and drag corresponding to the development of vortical

structures in the vicinity of the airfoil are comparable in

both experimental and numerical cases. However, some

discrepancies exist. First, we can observe a time offset

attributable to a delay in the formation and development of

vortical structures. Second, differences in amplitudes deriving

from both experimental errors and numerical diffusivity are

noticed. Focusing on the influence of experimental errors,

it is here convenient to display the unsteady, convective and

pressure contributions of the lift and drag components. It is

shown that relatively strong differences between experimental

and numerical results are put into evidence when the pressure

contribution is preponderant, as illustrated by the surprising

levels reached by the drag near t∗ = 3.7, i.e. due to the

formation of the TEV. In addition, the presence of spurious

vectors at this specific instant may affect the measurement

accuracy and further alter the results. Figure 13 confirms

that this instant is critical and suggests that, throughout the

whole motion, the main dispersion comes from the unsteady
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and pressure term, as previously described in section 3. In

contrast, in accordance with the numerical tests, the pressure

contribution of the lift coefficient is negligible, making its

evaluation more robust.

5. Conclusion

Measuring the loads experienced by an airfoil through the

momentum equation approach appears a powerful method

for several reasons. Besides the fact that the approach is

non-intrusive as applied on TR-PIV velocity flow fields, it is

particularly convenient for low Reynolds flows or for moving

airfoil configurations (as encountered for flapping wingMAVs

applications), whose resulting forces have strong uncertainties

due either to their weak values or to the influence of an

inertial component. Moreover, it allows an accurate temporal

correlation between the loads and the vortex structures,

hence giving further insight into the force generating

mechanisms.

First, the present work evaluates the influence of

the different parameters specific to the calculation of the

momentum equation and validates the method using DNS

velocity flow fields around an impulsively started 2D

NACA0012 airfoil at Reynolds 1000. It is found that the spatial

resolution principally affects the convective and pressure

contributions to drag since the limits of integration relative to

their calculation are subjected to steep velocity and pressure

gradients. Nevertheless, its global influence on the resulting

force is weak; the discrepancy between the reference case and

the lower resolution case does not exceed 5%. Furthermore,

the introduction of a 2.5% random noise demonstrates that the

principal errors attributable to the measurement uncertainties

derive from the pressure term. This effect is due to the use of

differential operators and, to a minor extent, the phenomenon

of error propagation. Consequent to this remark, the lift

evaluation appears more robust to the presence of noise than

the drag evaluation, the contribution of the pressure term being

negligible in this case. In addition, it is worth highlighting that

the error induced by a randomnoise highly depends on the time

step used to compute the acceleration fields. For an adequate

value of this time step, the mean errors committed on the drag

and lift coefficients are respectively 15.6% and 1.6%. The

analysis of the influence of the temporal resolution surprisingly

suggests that discretizing the characteristic time scale in 10

instants is sufficient to accurately describe the flow dynamics.

Besides, it is shown that the two-dimensional approximation of

the momentum equation approach is not valid when applied to

three-dimensional flows. This observation is notably verified

when the positions of spanwise velocity regions coincide with

the positions of the integration limits.

Second, themomentumbalance is applied to experimental

TR-PIV velocity flow fields. A similar configuration

as previously considered for the parametrical study is

analysed. Despite discrepancies resulting from experimental

uncertainties and a time delay denoted between both

experimental and numerical approaches, the resulting lift

and drag demonstrate a clear correlation with the spatio-

temporal behaviour of the vortical structures. Moreover, the

influence of their respective unsteady, convective and pressure

contributions augments the previous conclusions on numerical

data.

Future work will concentrate on adapting the momentum

equation method to three-dimensional flows.
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