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AN ITERATIVE HARD THRESHOLDING ALGORITHM WITH IMPROVED

CONVERGENCE FOR LOW-RANK TENSOR RECOVERY

José Henrique de M. Goulart,∗ Gérard Favier

I3S Laboratory, Université de Nice Sophia Antipolis, CNRS, France

ABSTRACT

Recovering low-rank tensors from undercomplete linear mea-

surements is a computationally challenging problem of great

practical importance. Most existing approaches circumvent

the intractability of the tensor rank by considering instead the

multilinear rank. Among them, the recently proposed ten-

sor iterative hard thresholding (TIHT) algorithm is simple and

has low cost per iteration, but converges quite slowly. In this

work, we propose a new step size selection heuristic for accel-

erating its convergence, relying on a condition which (ideally)

ensures monotonic decrease of its target cost function. This

condition is obtained by studying TIHT from the standpoint

of the majorization-minimization strategy which underlies the

normalized IHT algorithm used for sparse vector recovery.

Simulation results are presented for synthetic data tensor re-

covery and brain MRI data tensor completion, showing that

the performance of TIHT is notably improved by our heuris-

tic, with a small to moderate increase of the cost per iteration.

Index Terms— Low-rank Tensor Recovery, Tensor Com-

pletion, Iterative Hard Thresholding

1. INTRODUCTION

Tensors having (approximately) low rank arise in many prac-

tical applications. Whenever true, this property can in princi-

ple be exploited to recover a tensor of interest from undercom-

plete information given by linear observations, a task which is

ill-posed in general. An important special case of this setting

is the completion of a data tensor having missing entries under

the low-rank assumption. These problems, called low-rank

tensor recovery (LRTR) and tensor completion (TC), respec-

tively, are extensions of low-rank matrix recovery (LRMR)

and matrix completion [1], and find several applications such

as image inpainting [2], seismic signal processing [3], spec-

tral data recovery [4] and machine learning [5].

However, despite being a natural generalization of the ma-

trix rank, the tensor rank is not completely understood and is

computationally intractable [6]. Consequently, many existing

LRTR techniques rely instead on the multilinear rank, which

is a multi-valued quantity composed by the ranks of all mode-
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n matrix unfoldings [7,8]. This choice is motivated by the fact

that the tensor rank upper bounds the rank of each unfolding.

Among the major approaches, a common one is to seek

the joint minimization of the nuclear norms (NN) of the

mode-n unfoldings, instead of their ranks. Its popularity

stems from the effectiveness of the NN minimization (NNM)

approach for LRMR [1, 9]. In the tensor case, one usually in-

troduces a regularization functional given by a weighted sum

of the nuclear norms of these unfoldings [2, 4, 10]. Yet, [9]

shows that this cannot be more efficient, in terms of the mini-

mal number of measurements needed, than solely minimizing

the NN of the “best” unfolding in that sense, which is quite

far from the theoretical optimal [11]. Although the NNM

of a more “balanced” matrix unfolding can get closer to the

optimal number of necessary measurements [11], this applies

only to tensors of order P > 3, and a significant gap still

remains. Another possibility consists in directly estimating

a low-rank tensor model via alternating minimization of a

data-based error criterion, as in [5]. This performs often well

in practice, but can be quite difficult to analyze—to the best

of our knowledge, no global convergence proofs are known

for the alternating estimation of standard low-rank models,

unless additional regularization is used [12].

Recently, [13] has proposed a simple and effective algo-

rithm called tensor iterative hard thresholding (TIHT). Basi-

cally, it can be seen as a multilinear-rank-based variant of the

normalized IHT (NIHT) algorithm proposed in [14] for sparse

vector recovery. Even though no convergence proofs and per-

formance bounds exist yet for TIHT, it is simple to imple-

ment and is less costly than the above mentioned approaches.

However, its convergence speed observed in numerical exper-

iments is quite slow.

In this paper, we study the TIHT algorithm from the stand-

point of the majorization-minimization (MM) strategy pro-

posed in [14]. This enables us to obtain an upper bound for

the step size which guarantees that the iterates have monoton-

ically decreasing cost function values in the ideal case where

the best low-rank approximation computed at each iteration

is exact. Then, by exploiting this bound, we propose an algo-

rithm named improved-step-selection TIHT (ISS-TIHT) con-

taining a heuristic subroutine which attempts to find a step

size within a constant factor of its upper bound. Our sim-

ulation results show that this remarkably improves conver-



gence speed, which significantly compensates for the increase

in computational cost.

2. TENSOR ITERATIVE HARD THRESHOLDING

Let T ∈ U = R
N1×···×NP be a P th-order tensor and de-

note by Tp the mode-p unfolding (matricization) of T [7].

The multilinear rank (m-rank) of T is a P -tuple given by

m-rank(T ) = (rank(T1), . . . , rank(TP )) [8].

In view of the computational difficulty of minimizing the

tensor rank, the LRTR problem is tackled in [13] by imposing

a component-wise bound r = (R1, . . . , RP ) on the m-rank

of the solution, which is sought in the least-squares sense in

Lr = {T ∈ U : rank(Tp) ≤ Rp, p = 1, . . . , P}. This leads

to the constrained formulation

min
T ∈Lr

J(T ), with J(T ) = ‖y − A (T )‖22 , (1)

where A : U 7→ R
M is a linear measurement operator and

y ∈ R
M is a given vector of measurements. Note that (1)

applies in particular to the TC problem, where A is con-

strained to be a sampling operator. In other words, in that case

the matrix representation A of A which satisfies A (T ) =
A vec(T1), where vec(·) stacks the columns of its argument,

has M canonical vectors of RN1...NP as rows.

To solve (1), [13] proposes the TIHT algorithm, whose

iterates have the form

Tk = Hr (Tk−1 + µkA
∗ (y − A (Tk−1))) , (2)

where A
∗ : RM 7→ U is the adjoint of A , µk > 0 is a step

size parameter and Hr : U 7→ Lr maps a tensor T into the

r-truncation of its higher-order SVD (HOSVD). More con-

cretely, writing this HOSVD as T = S ×1U
(1) · · ·×P U(P ),

where S ∈ U is the core tensor and U(p) ∈ R
Np×Np is

the matrix of pth-mode singular vectors, Hr(T ) = S̄ ×1

Ū(1) · · · ×P Ū(P ), where Ū(p) contains the first Rp columns

ofU(p) and S̄ ∈ R
R1×···×RP satisfies [S̄]r1,...,rP = [S]r1,...,rP

for all rp ∈ {1, . . . , Rp}. The formula given in [13] for µk

can be written as

µk = ‖Gk−1‖2F ‖A (Gk−1)‖−2
2 , (3)

where Gk−1 , −A
∗ (y − A (Tk−1)). It is easy to show

that, in the TC setting, µk = 1 and the TIHT algorithm is

equivalent to the HOSVD-based scheme proposed in [3] (with

a = 1), because of the special form of A .

As Gk−1 is the gradient of J at Tk−1, one can see that

TIHT first updates the current estimate Tk−1 with a gradient

descent step and then computes an approximation of the result

in the feasible set. This is therefore very similar in spirit to

the projected gradient algorithm [15], in which such approx-

imation is the projection onto the feasible set. Yet, as pro-

jecting onto Lr amounts to solving a best rank-(R1, . . . , RP )
approximation problem, which is generally costly in practice

(see, e.g., [16]), a low-rank approximation given by the trun-

cated HOSVD is used instead. This is a widely used tech-

nique which, despite being suboptimal, gives an approximant

satisfying ‖Hr(T ) − T ‖F ≤
√
P‖T b − T ‖F , where T b is

a minimizer of the Euclidian distance to T in Lr [8]. Apart

from the suboptimality of Hr, it is important to point out that

the optimality condition underlying the projected gradient al-

gorithm applies only to convex feasible sets [15], which is not

the case of Lr. One might then wonder how TIHT actually

achieves recovery.

In the following, relying on the optimization strategy de-

veloped by [14], we further study the TIHT algorithm. This

study will then serve as a basis for devising a new step size

selection routine in order to improve its convergence speed.

3. MONOTONICALLY DECREASING OBJECTIVE

VALUES VIA MAJORIZATION-MINIMIZATION

The NIHT algorithm proposed in [14] is based on a clever

MM strategy devised to minimize ‖y −Ax‖22 subject to x ∈
Vs ⊂ R

N , where Vs is the subset of s-sparse vectors of RN

and y ∈ R
M is the linear measurement of an s-sparse vec-

tor of interest given by A ∈ R
M×N . As shown in [14], the

NIHT iterates have monotonically decreasing cost function

(or objective) values and are convergent. Yet, whether this

strategy promptly carries over to other similar problems, as

(1), is not immediately clear. In what follows, we show that

this is true for problem (1) and that the TIHT algorithm can

be interpreted as an extension of this MM approach.

Recall that, to minimize a cost function J , an MM algo-

rithm proceeds by minimizing instead at each iteration k a

surrogate function Jk which majorizes J and coincides with

it at the current estimate. It is not difficult to see that iterates

computed in that manner are driven downhill with respect to

J . The interest lies in the possibility of constructing surro-

gate functions Jk which are easier to minimize than J under

the considered constraints.

In the case of TIHT, given the current estimate Tk−1 and

a constant µk such that

Jk(T ) , µkJ(T ) + ‖T − Tk−1‖2F − µk ‖A (T − Tk−1)‖22
(4)

satisfies µkJ(T ) < Jk(T ) for all T 6= Tk−1, we minimize

Jk over Lr to obtain a new estimate Tk. Note that such a

µk always exists, for we can choose it such that 0 < µk <
‖A ‖−2. Hence, if the minimizer Tk of Jk over Lr satisfies

Tk 6= Tk−1, then we have µkJ(Tk) < Jk(Tk) ≤ Jk(Tk−1) =
µkJ(Tk−1), thus yielding J(Tk) < J(Tk−1).

Let us now consider the minimization of Jk over Lr.

Rewriting (4) as Jk(T ) = ‖T − Tk−1‖2F+µk‖y‖22−2µk〈y−
A (Tk−1),A (T )〉 − µk‖A (Tk−1)‖22, it is easy to see that

Jk(T ) is strictly convex. Therefore, solving J ′
k(T ⋆) = 0

yields the unique unconstrained minimizer

T ⋆ = Tk−1 + µkA
∗(y − A (Tk−1)). (5)



Now, for any S ⊂ U and all T ∈ U , let us define ΠS :
U 7→ 2S , where 2S denotes the power set of S, as ΠS(T ) =
argminX∈S ‖X − T ‖F . Clearly, if S is a closed nonempty

convex set, ΠS(T ) contains exactly one element: the pro-

jection of T onto S. If S is not convex but is closed and

nonempty, then ΠS(T ) is still nonempty (by the extreme

value theorem, coercivity and continuity of ‖X − T ‖F ), but

might contain multiple elements. Relying on the definition of

ΠS , the next result shows how a minimizer of Jk over Lr can

be obtained from T ⋆.

Proposition 3.1. Let S ⊂ U be a closed nonempty set. Then,

ΠS(T ⋆) is the set of minimizers of Jk(T ) over S, where T ⋆

is given by (5).

Proof. Since S is closed and nonempty, Jk is continuous and

Jk(T ) → ∞ for ‖T ‖F → ∞, Jk admits at least one mini-

mum in S. Also, for any T ∈ S, we can write T = T ⋆ + Z
for some Z ∈ U and then rewrite Jk as

Jk(T ⋆ + Z) = Jk(T ⋆) + ‖Z‖2F + 2〈Z, T ⋆ − Tk−1〉
− 2µk〈A (Z),y − A (Tk−1)〉

= Jk(T ⋆) + ‖Z‖2F + 2〈Z, T ⋆ − Tk−1〉+ 2µk〈Z,Gk−1〉
= Jk(T ⋆) + ‖Z‖2F ,

where the last equality follows directly from (5). Hence, as

Z = T − T ⋆, we have the equivalence

argmin
T ∈S

Jk(T ) = argmin
T ∈S

‖T − T ⋆‖2F = ΠS(T ⋆).

Since Lr is closed and nonempty, we have from Propo-

sition 3.1 that, if there is some µk such that Jk(T ) ma-

jorizes µkJ(T ) and for which there exists Tk ∈ ΠLr
(Tk−1 +

µkGk−1) satisfying Tk 6= Tk−1, then J(Tk) < J(Tk−1). It

turns out, however, that the requirement of having a Jk(T )
that majorizes µkJ(T ) for all T can be relaxed to improve

convergence speed, as discussed in the next section.

It should be noted that it is hard to ensure in practice that

Tk is indeed a minimum of Jk over Lr, because projecting

onto Lr is not an easy task. To avoid an excessive compu-

tational cost per iteration, TIHT employs the quasi-optimal

projection Hr, and thus Tk is only close to a minimum. Nev-

ertheless, as observed by [13], practical experience suggests

that this suboptimality does not preclude TIHT from converg-

ing. Yet, a more rigorous analysis taking it into account re-

mains as a topic for future investigation.

Remark 3.2. Interestingly, Prop. 3.1 is quite general, being

valid for any closed nonempty subset S. Thus, the above

reasoning clearly serves to other formulations as, e.g., one

based on the rank definition which applies to the tensor train

model (see [8] and references therein). More generally, it

can be extended to any problem of the form (1) in a finite-

dimensional Hilbert space, as long as the feasible set is closed

and nonempty.

4. IMPROVED STEP SELECTION STRATEGY

In spite of the successful recovery results shown in [13], the

suitability of the step size formula (3) for achieving actual

decrease of J is not discussed. This formula provides the

optimal gradient descent step for unconstrained minimization

(i.e., over U ). However, when minimizing over Lr with the

scheme (2), its optimality is lost. Equally importantly from a

practical standpoint, the behavior of the resulting algorithm is

not satisfactory, because it converges quite slowly.

In the previous section, we have used the inequality

µkJ(Tk) < Jk(Tk) to derive J(Tk) < J(Tk−1). Thus, it

suffices to guarantee that this inequality holds at Tk, instead

of requiring that Jk(T ) majorizes µkJ(T ) at all T . To this

end, one can check if µk satisfies

µk < ω(µk) =
‖Tk − Tk−1‖2F

‖A (Tk − Tk−1) ‖22
, (6)

since then µk‖A (Tk − Tk−1)‖22 < ‖Tk − Tk−1‖2F , which

together with (4) implies µkJ(Tk) < Jk(Tk). Note that the

notation ω(µk) emphasizes that the bound for µk depends on

µk itself.

The condition (6) is an extension of that proposed in [14]

for NIHT, which ensures cost function decrease when an op-

timal step cannot be computed with a simple formula. In that

situation, NIHT only accepts a candidate step size if it satis-

fies a condition analogous to (6); otherwise, it is reduced until

that condition is fulfilled. In the case of TIHT, (6) was not

violated by step sizes computed with (3) during our practical

experiments. However, (3) often yields µk ≪ ω(µk), while

empirical evidence suggests that the optimal step lies usually

closer to its bound. This slows down the convergence of the

algorithm. Note that, since any µk satisfying µk < ‖A ‖−2 is

majorized by (3), this observation also justifies the use of the

more relaxed condition (6).

To circumvent this problem, we propose a modified algo-

rithm, named improved-step-selection TIHT (ISS-TIHT), in

which a heuristic step selection routine is added. The idea be-

hind this routine is simple: given a fixed α such that 0 ≪ α <
1, one checks if the candidate µk satisfies

αω(µk) ≤ µk < ω(µk), (7)

keeping its associated estimate Tk when it does. Otherwise,

we simply set µk = βω(µk) for some β ∈ (α, 1), compute a

new Tk and repeat the process. We employ (3) as the starting

candidate µk, which is reasonable since it satisfies (7) at some

iterations. As there is no guarantee of finding a step fulfilling

(7) with this procedure, we establish a maximum number of

trials L, after which we keep the biggest generated step size

satisfying the upper bound of (7). If none of them does, we

take the smallest candidate step and proceed as in the NIHT

[14], reducing it via division by a factor κ > 1 until the upper

bound is verified. A pseudocode describing this scheme is



Algorithm 1 ISS-TIHT

1: for k = 1, 2, . . . ,K do

2: Gk = −A ∗(y − A (Tk))
3: µk,1 = ‖Gk‖2F ‖A (Gk)‖−2

2

4: for l = 1, . . . , L do

5: Tk,l = Hr(Tk−1 − µk,lGk)
6: if αω(µk,l) ≤ µk,l ≤ ω(µk,l) then

7: select µk = µk,l , Tk = Tk,l
8: break

9: end if

10: µk,l+1 = βω(µk,l)
11: end for

12: if no µk,l was selected then

13: if ∃ l such that µk,l < ωk(µk,l) then

14: l⋆ = argmaxl µk,l subject to µk,l < ωk(µk)
15: else

16: l⋆ = argminl µk,l

17: while µk,l⋆ ≥ ω(µk,l⋆) do

18: µk,l⋆ = µk,l⋆/κ
19: end while

20: end if

21: select µk = µk,l⋆ , Tk = Tk,l⋆
22: end if

23: end for

shown in Algorithm 1, where we denote the candidate values

of µk and Tk by µk,l and Tk,l, respectively, for l = 1, . . . , L.

We point out that the idea of choosing a new candidate

for the step size as βω(µk) is suggested in [14] with β = 1,

but only in the case that the current candidate violates the

upper bound ω(µk). In other words, a candidate step size is

never increased in NIHT; rather, it is only shrunk if the upper

bound ω(µk) is not met. In the case of TIHT, enforcing also

the lower bound of (7) substantially accelerates convergence.

5. SIMULATION RESULTS

We now evaluate ISS-TIHT in two simulation scenarios.

First, a LRTR setting with an unconstrained operator and a

synthetic data tensor is considered. To this end, we randomly

generate A and T ∈ R
N1×N2×N3 and apply four algorithms

to recover T from y = A (T ) = A vec(T1). Each element

of A ∈ R
M×N1N2N3 , where M = ρN1N2N3, is indepen-

dently drawn from the standard Gaussian distribution. The

sensed tensor is is given by T = T0 + 10−5N , where T0
is a low-rank tensor generated via T0 = S ×1 V(1) ×2

V(2) ×3 V
(3), with S ∈ R

R1×R2×R3 and V(p) ∈ R
Np×Rp .

All N , S and V(p) have Gaussian i.i.d. elements, and we

normalize T0 and N so that ‖T0‖F = ‖N‖F = 1. The

evaluated algorithms are TIHT, ISS-TIHT, an alternating di-

rection method of multipliers (ADMM) scheme based on

that of [10, Sec. 4.4], which minimizes a weighted sum of

nuclear norms of matrix unfoldings, and a generalized al-
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Fig. 1. Average NMSE measured in a LRTR setting with un-

constrained operator (scenario 1).

Algorithm Scenario 1 (LRTR) Scenario 2 (TC)

TIHT 2.03 ×10−2 2.51×100

ISS-TIHT 3.26 ×10
−2

6.92×10
0

GALS 3.64 ×10
−1 —

ADMM (M ) 2.41 ×10−1 4.36×100

ADMM (2M ) 6.05 ×10−1 —

ADMM (3M ) 1.13 ×100 —

Table 1. Average time measured per iteration (in seconds).

ternating least-squares (GALS) scheme, which consists in

estimating the components of a low-m-rank Tucker model

of T by minimizing J with respect to them in an alternating

fashion. We set the regularization and penalty parameters

of ADMM as λ = 10−2 and η = 2.5, respectively, and

use weights γ1 = γ2 = γ3 = 1/3 (see [10]). Regarding

ISS-TIHT, we use α = 0.5, β = 0.7, κ = 1.2 and L = 5.

We fix R1 = R2 = R3 = 5, N1 = N2 = N3 = 20,

ρ = 0.14 and let all the algorithms run for K = 60 iterations,

measuring at each iteration k the normalized mean-square

error NMSEk = ‖T − Tk‖2F /‖T ‖2F . TIHT, ISS-TIHT and

GALS are run with the true values of R1, R2 and R3. This

procedure is repeated for 30 joint realizations of A, T0 and

N , and the average NMSEk of each algorithm at each k is

displayed in Fig. 1. For reference, we plot also the NMSE

of the (R1, R2, R3)-truncated HOSVD of T . In Table 1,

we report the average computing time per iteration, as mea-

sured in a Intel Xeon ES-2630v2 2.60 GHz with 32 Gb of

RAM. From the curves, we can see that the convergence of

ISS-TIHT is much faster than that of TIHT. GALS converges

slightly faster than ISS-TIHT, but at the expense of a much

higher computational cost. Due to the poor performance of

ADMM for recovery with M measurements, we have also

evaluated it using the same procedure but with A providing

2M and 3M measurements. As the curves show, only with

3M measurements ADMM attains a good performance (at a

high cost), but is still outperformed by ISS-TIHT and GALS.

In the second scenario, we evaluate four algorithms in a

TC setting. The data tensor T ∈ R
128×128×128 now contains

the brain MRI data used in [17]. The evaluated algorithms are
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the ADMM scheme of [10, Sec. 4.4], TIHT and ISS-TIHT.

The approach of [17] is not included since it does not apply to

TC. The ADMM algorithm is employed with the observations

as constraints (λ → 0), as proposed in [10] for the noiseless

case, and we set η = 0.04 and γ1 = γ2 = γ3 = 1. For

ISS-TIHT, we use α = 0.7, β = 0.9, κ = 1.2 and L = 5.

TIHT and ISS-TIHT are run with R1 = R2 = R3 = 19. To

generate A and y, we randomly choose a subset of the in-

dices of T of cardinality M = ρ1283, with ρ = 0.14, fill-

ing y with the corresponding elements. This process was

repeated for 20 realizations of A. The results are shown

in Table 1 and Fig. 2. Again, we plot the NMSE of the

(R1, R2, R3)-truncated HOSVD of T , which is an approxi-

mate lower bound for those of TIHT and ISS-TIHT. The re-

sults show that the performance of TIHT is effectively im-

proved by our step selection heuristic. Also, in this scenario,

both TIHT and ISS-TIHT reach a lower NMSE than ADMM.

Finally, we point out that, in all our experiments, ISS-

TIHT always found at least a candidate step size satisfying

the upper bound of (7). Also, the behavior of the algorithm

was not observed to be too sensitive to the choice of α and β.

6. CONCLUSION

We have studied the TIHT algorithm by relying on the opti-

mization strategy which underlies the NIHT algorithm. This

offers an insightful interpretation of its iterates, whose cost

function values are monotonically decreasing under a certain

upper bound on the step size, assuming the best low-rank ap-

proximation calculated at each iteration is exact. Then, we

have proposed the ISS-TIHT algorithm, which includes a sub-

routine that attempts to find a step within a constant factor of

its bound. Our simulation results show that this simple heuris-

tic leads to a remarkable acceleration of convergence.
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