Edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition-generating trees - Archive ouverte HAL
Article Dans Une Revue International Journal of Computer Mathematics Année : 2014

Edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition-generating trees

Résumé

The Cayley graphs on the symmetric group plays an important role in the study of Cayley graphs as interconnection networks. Let $Cay(S_n, B)$ be the Cayley graphs generated by transposition-generating trees. It is known that for any $F \subset E(Cay(S_n, B))$, if $|F|\leq n−3$ and $n\geq 4$, then there exists a hamiltonian cycle in $Cay(S_n, B)−F$. In this paper, we show that $Cay(S_n, B)−F$ is bipancyclic if $Cay(S_n, B)$ is not a star graph, for $n\geq 4$ and $|F|\leq n−3$.
Fichier non déposé

Dates et versions

hal-01132311 , version 1 (17-03-2015)

Identifiants

Citer

Weihua Yang, Hengzhe Li, Weihua He. Edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition-generating trees. International Journal of Computer Mathematics, 2014, pp.1-8. ⟨10.1080/00207160.2014.953942⟩. ⟨hal-01132311⟩
44 Consultations
0 Téléchargements

Altmetric

Partager

More