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Joint Independent Subspace Analysis
Using Second-Order Statistics

Dana Lahat and Christian Jutten, Fellow, IEEE

Abstract—This paper deals with a novel generalization of
classical blind source separation (BSS) in two directions. First,
relaxing the constraint that the latent sources must be statistically
independent. This generalization is well-known and sometimes
termed independent subspace analysis (ISA). Second, jointly
analysing several ISA problems, where the link is due to statistical
dependence among corresponding sources in different mixtures.
When the data are one-dimensional, i.e., multiple classical BSS
problems, this model, known as independent vector analysis
(IVA), has already been studied. In this work, we combine IVA
with ISA and term this new model joint independent subspace
analysis (JISA). We provide full performance analysis of JISA,
including closed-form expressions for minimal mean square error
(MSE), Fisher information and Cramér-Rao lower bound, in
the separation of Gaussian data. The derived MSE applies also
for non-Gaussian data, when only second-order statistics are
used. We generalize previously-known results on IVA, including
its ability to uniquely resolve static mixtures of real Gaussian
stationary data, and having the same arbitrary permutation at all
mixtures. Numerical experiments validate our theoretical results,
and show the gain with respect to two competing approaches that
either use a finer block partition or a different norm.

Index Terms—Blind source separation, independent subspace
analysis, coupled factorizations, data fusion, multiset, perfor-
mance analysis.

I. INTRODUCTION

I n this work, we present a model inspired by two extensions
to blind source separation (BSS) that until recently have

been dealt with only separately: (1) relaxing the constraint
that latent sources within a set of measurements must be
statistically independent, often termed independent subspace
analysis (ISA) or multidimensional independent component
analysis (MICA) [1]–[3], and (2) solving several BSS prob-
lems simultaneously by exploiting statistical dependencies
among latent sources across sets of measurements, a model
known as independent vector analysis (IVA) or joint BSS
(JBSS) [4], [5]. The new model, termed joint independent
subspace analysis (JISA) [6], is a generalization of JBSS to
multidimensional components.

The concept of ISA was first introduced in [1, Section 8],
as the separation of several statistically independent random
vectors. The idea that natural sources may be represented

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

D. Lahat and Ch. Jutten are with GIPSA-Lab, UMR CNRS 5216, Grenoble
Campus, BP46, F-38402 Saint-Martin-d’Hères, France. email:{Dana.Lahat,
Christian.Jutten}@gipsa-lab.grenoble-inp.fr.

This work is supported by the project CHESS, 2012-ERC-AdG-320684.
GIPSA-Lab is a partner of the LabEx PERSYVAL-Lab (ANR–11-LABX-
0025).

by multidimensional components such that only their corre-
sponding subspaces have to be separated was first proposed
in [2], who demonstrated it on fetal electrocardiography (ECG)
recordings using an algebraic approach to independent com-
ponent analysis (ICA). An elaborate geometric framework to
the perspective of multidimensional ICA, whose focus is on
vector-valued components whose representation is based on
unambiguous projections on the sources’ respective subspaces,
was presented in [3]. A prevalent approach for ISA consists of
using ICA-based algorithms followed by a clustering step [7]–
[10]. Algorithms that exploit the true multidimensional nature
of the data can be found, for example, in [11]–[18]. A
theoretical analysis of the advantage, in terms of component
estimation error, of using the true multidimensional model over
the more prevalent two-step approach of BSS followed by a
clustering step, is given in [19] for real Gaussian piecewise-
stationary data. Identifiability and uniqueness of decomposi-
tions into invariant subspaces of dimensions larger than one
are discussed in [20]–[24].

Multidimensional components may occur due to various
complex relations and processes within the underlying phe-
nomena that generate the data. A first example is neurological
activity observed by functional magnetic resonance imaging
(fMRI) [25] and electroencephalography (EEG) [26]. In con-
volutive mixtures, subspaces may represent channel effects
(e.g., [27]). In audio and speech enhancement, subspaces can
be used to model separate conversations, that is, disjoint
groups of speakers [28]. Other types of phenomena that
generate multidimensional components include astrophysical
processes [29], fetal ECG [2] and natural images [11]. For such
data, a one-dimensional model is often just an approximation.
In the above-mentioned examples, the dimension of a depen-
dent group may not always reflect the number of its underlying
physical elements. Therefore, there is not always a physically
meaningful interpretation to further separating the multidi-
mensional components into single-dimensional elements. In
this paper, we focus on separating subspaces that represent
statistically independent multivariate components. Further de-
composition, within a dependent group, if admissible by the
application, is beyond the scope of this work.

One of the earliest frameworks to simultaneously analyse
several data sets through statistical links between their latent
parameters is canonical correlation analysis (CCA) [30]. The
idea to simultaneously solve several ICA problems by exploit-
ing higher-order statistical dependence among latent sources
across sets of measurements was introduced by Kim et al. [4],
and termed IVA. The method has been shown to be able to
resolve the permutation ambiguity that is inherent to classical
ICA up to a single permutation matrix that is common
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to all sets of measurements [4]. Li et al. [5] have shown
that the IVA framework, which they termed JBSS, provides
sufficient constraints for identifying real Gaussian stationary
processes that had been mixed by an invertible matrix, a
problem that is ill-posed with classical BSS/ICA, when each
mixture is processed separately [31]. This observation, that
coupled matrix factorizations enjoy more relaxed uniqueness
conditions, finds its tensor counterpart in [23]. Li et al. [32]
have shown that JBSS can be reformulated as a coupled
matrix diagonalization problem that minimizes a quadratic
criterion, and solved by exploiting either second- or higher-
order statistics (see also [33]). Recently, JBSS algorithms that
minimize the maximum likelihood (ML), mutual information
(MI) and entropy have been proposed [34], [35]. When only
two data sets are involved, second-order statistics (SOS) JBSS
amounts to CCA and can be solved in closed-form using gen-
eralized eigenvalue decomposition (GEVD) [36, Chapter 12].
A comprehensive theoretical analysis of IVA can be found
in [35] and references therein.

Considering the growing evidence of IVA as a helpful tool
in various applications such as multiset data analysis [5],
[32], [35], hyperscanning [37] and dynamic systems [38],
and the fact that natural signals are often better modeled as
multidimensional, it is only natural to take advantage of the
benefits of both.

The JISA model, which is the core of this paper, and a
SOS-based relative gradient (RG) algorithm that achieves the
optimal separation in the presence of real Gaussian data, were
first presented in [6]. A Newton-based algorithm that is based
on the error analysis in this paper has recently been presented
in [39]. We mention that a gradient algorithm that performs
JISA based on the multivariate Laplace distribution has re-
cently been proposed in [40]. The novelty and contribution of
this paper is in providing a comprehensive theoretical analysis
to the SOS approach, including closed-form expressions for
the mean square error (MSE), Fisher information matrix (FIM)
and Cramér-Rao lower bound (CRLB), as well as proposing
a new algebraic formalization that leads to a new, though
suboptimal, JISA algorithm.

In this paper, we adopt the approach that was used in [19],
[41] to analyse the performance of non-stationary multidi-
mensional BSS. Although these two models are essentially
different, exploiting disjoint types of diversity: non-stationarity
vs. multiset [35], [42] [43, Section III], using the same
approach allows some interesting similarities and analogies
between the two models to be manifested. In order to complete
the picture, we discuss in this paper a model that can exploit
these two types of diversity simultaneously.

The following notations and conventions are used through-
out this paper. Regular lowercase, bold lowercase and bold
uppercase letters denote scalars, vectors and matrices, respec-
tively. Regular uppercase letters denote functions or operators;
calligraphic uppercase letters denote sets. For simplicity, we
assume that all values are real. Trace is denoted by tr{·};
(·)> denotes transpose. A−> = (A−1)> whenever the inverse
exists. vec{·} denotes the operator that stacks the columns of
a P ×Q matrix into a PQ × 1 vector. The direct sum of K
rectangular matrices M[k] is denoted by ⊕Kk=1M

[k] and yields

a block-diagonal matrix
[

M[1] 0 0

0
. . . 0

0 0 M[K]

]
with M[k] as its kth

diagonal element. The operator bdiagb{M}, given a P × P
matrix M and a vector b of positive integers that sum up
to P , extracts from M a block-diagonal matrix with block-
pattern b, and zeroes the off-diagonal blocks. bdiag−1b {·}
stands for (bdiagb{·})−1. Bb denotes the subspace of all
invertible block-diagonal matrices with block-pattern b. 0
denotes a one- or two-dimensional array of zeros. 1P de-
notes a P × 1 vector of ones. IP stands for the P × P
identity matrix, with dimensions that are omitted if they
are implicit. E{·} denotes expectation. Cov(a) = E{aa>},
Cov(a,b) = E{ab>} for any stochastic vectors a,b with
E{a} = 0. ‖ · ‖ denotes the Frobenius norm; δij denotes the
Kronecker delta. The Kronecker product is denoted by ⊗. Let
Aij and Bij denote the (i, j)th mi×nj and pi× qj blocks of
partitioned matrices A and B, respectively. Then, the Khatri-
Rao product for partitioned matrices [44], [45] is defined as

A � B =

[
A11⊗B11 A12⊗B12 ···
A21⊗B21 A22⊗B22 ···...

...
. . .

]
, where Aij ⊗ Bij and

A�B are mipi×njqj and (
∑
mipi)×(

∑
njqj), respectively.

A\B denotes the difference between two sets. O(f) stands for
deterministic terms that are bounded above, up to a constant
factor, by f , or zero-mean stochastic terms whose standard
deviation is proportional to f or to higher powers thereof; the
specific interpretation is implicit in the context.

The rest of this paper is organized as follows. In Section II,
we present and define the model that we denote JISA, and
formalize it mathematically. In Section III, we present a SOS
approach to JISA. Sections II–III recall results from [6],
whereas the novelty is in the sections that follow. Section IV
provides a theoretical small-error analysis of the proposed
approach. Section V briefly discusses the well-posedness of the
model. Section VI reformulates JISA as a model-fit problem
with a Frobenius norm. This reformulation leads to a coupled
tensor decomposition that can exploit also non-stationarity
or correlation among samples. Numerical experiments in
Section VII validate our theoretical results, and provide a
comparison with two related approaches. We conclude our
paper in Section VIII.

II. JISA: MODEL AND PROBLEM FORMULATION

Consider T observations of K vectors x[k](t), modeled as

x[k](t) = A[k]s[k](t) 1 ≤ t ≤ T , 1 ≤ k ≤ K , (1)

where A[k] are M ×M invertible matrices that may be dif-
ferent ∀k, and x[k](t) and s[k](t) are M ×1 vectors. For fixed
k, each mixture (1) corresponds to classical BSS. In IVA, the
elements of the K×1 vector sIVA

i (t) = [s
[1]
i (t), . . . , s

[K]
i (t)]>,

i = 1, . . . ,M , are statistically dependent whereas the pairs
(sIVA
i (t), sIVA

j (t)) are statistically independent for all i 6= j ∈
{1, . . . ,M}. Therefore, IVA aims at extracting M mutually
independent vector elements (whence its name) from K sets
of measurements by exploiting not only the statistical indepen-
dence within each set of measurements but also the dependence
across sets of measurements.

Given the partition s[k](t) = [s
[k]>
1 (t), . . . , s

[k]>
N (t)]>,

where N ≤M , s
[k]
i (t) are mi×1 vectors, mi ≥ 1,

∑N
i=1mi =
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M , and the probability density function (pdf) of each mi-
dimensional random vector s

[k]
i irreducible in the sense that

it cannot be factorized into a product of non-trivial pdfs, then
each mixture (1) represents a single ISA problem. The model
that we define1 as JISA corresponds to linking several such
ISA problems via the assumption that the elements of the ni×1
vector si(t) = [s

[1]>
i (t), . . . , s

[K]>
i (t)]>, where ni = Kmi,

are statistically dependent whereas the pairs (si(t), sj(t)) are
statistically independent for all i 6= j ∈ {1, . . . , N}. Figure 1
illustrates this model.
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Fig. 1. Diagram of the basic JISA model. Terms with the same subscript are
statistically dependent. In all other cases, there is no statistical dependence.

Given m = [m1, . . . ,mN ]> and a set of observations
X = {x[k](t)}K ,T

k=1,t=1, the problem of JISA is that of finding
linear transformations A−[k] on X , where A−[k] denotes
(A[k])−1, such that the source vectors s1(t), . . . , sN (t) are
as independent as possible. This notion is given a definite
meaning in Section III, where we set up a simple statistical
model that, via its likelihood function, yields a quantitative
measure of independence.

The above partition of s[k](t) induces a corresponding
partition in the mixing matrices: A[k] = [A

[k]
1 | · · · |A

[k]
N ] with

A
[k]
i the ith M×mi column-block of A[k]. The multiplicative

model (1) may now be rewritten as a sum of N ≤ M
multidimensional components:

x[k](t) =

N∑
i=1

x
[k]
i (t) (2)

where the ith M × 1 component vector x
[k]
i (t) is defined as

x
[k]
i (t) = A

[k]
i s

[k]
i (t) . (3)

In a blind context, the component vector x
[k]
i (t) is better

defined than the source vector s
[k]
i (t). Indeed, for any invert-

ible mi × mi matrix Z
[k]
ii , it is impossible to discriminate

between the representation of a component x
[k]
i (t) by the

pair (A
[k]
i , s

[k]
i (t)) and (A

[k]
i Z

−[k]
ii ,Z

[k]
ii s

[k]
i (t)). This means

that only the column space of A
[k]
i , span(A

[k]
i ), can be

blindly identified. Therefore, JISA is in fact a (joint) subspace
estimation problem.

1This formulation is sufficiently simple to keep notations and derivations
clear and tractable yet at the same time sufficiently rich to encompass the
essential properties of JISA that we present.

Further insights can be obtained by stacking all data sets

in one vector
[

x[1]...
x[K]

]
=

[
A[1] 0 0

0
. . . 0

0 0 A[K]

] [
s[1]...
s[K]

]
, such that (1)

rewrites as

x(t) = As(t) (4)

where s(t) = [s[1]>(t), . . . , s[K]>(t)]> and x(t) =
[x[1]>(t), . . . ,x[K]>(t)]> are L × 1 vectors, L = KM ,
A = ⊕Kk=1A

[k] ∈ Bk, and k = M1K is the block-
pattern of A. Combining (2) and (3) in (4), one obtains

that x(t) =
∑N
i=1

[
A

[1]
i 0 0

0
. . . 0

0 0 A
[K]
i

][
s
[1]
i (t)...

s
[K]
i (t)

]
=
∑N
i=1(IK �

Ai)si(t) =
∑N
i=1 xi(t), where Ai , [A

[1]
i | · · · |A

[K]
i ],

xi(t) = [x
[1]>
i (t), . . . ,x

[K]>
i (t)]>, and IK is partitioned

columnwise. The latter implies that the N latent components
have the same ordering in all the K mixtures. This proves that
the ability of IVA to provide a single M ×M permutation
matrix (i.e, arbitrary ordering) of the N latent sources in all
the involved mixtures (Section I) indeed extends to the mul-
tidimensional case. If all the linear transformations on X that
maximize statistical independence between s1(t), . . . , sN (t)
yield the same unordered set {x1(t), . . . ,xN (t)}, we say that
the JISA model is unique.

Another useful notation is concatenating the dependent
sources si in one vector s̃(t) = Φs(t), where s̃(t) =
[s>1 (t), . . . , s

>
N (t)]>, and Φ is the corresponding L × L per-

mutation matrix between these two alternative representations:

Km1


m1{



s
[1]
1



s1
...

...
m1{ s

[K]
1

...

KmN


mN{ s

[1]
N

sN
...

...
mN{ s

[K]
N︸ ︷︷ ︸
s̃

s̃ = Φs⇐=====⇒

s[1]




s
[1]
1



}m1

M
...

...

s
[1]
N

}mN

...

s[K]


s
[K]
1

}m1

M
...

...

s
[K]
N

}mN︸ ︷︷ ︸
s

As we shall see later, it is useful to introduce the separating
projectors: these are the M ×M oblique projection matrices
P

[k]
i onto span(A

[k]
i ) along span(A

[k]
j ) ∀j 6= i. By definition,

they satisfy P
[k]
i A

[k]
j = δijA

[k]
i , unaffected if A

[k]
i is changed

into A
[k]
i Z

−[k]
ii and, most importantly, allow one to write

x
[k]
i (t) = P

[k]
i x[k](t) . (5)

Finally, note that if B[k] = A−[k] is partitioned into N

horizontal mi ×M blocks B
[k]
i , then the rank-mi ith oblique

projection is given by

P
[k]
i = A

[k]
i B

[k]
i . (6)

Alternatively, one can define oblique projections such that
Pix(t) = xi(t). It is easy to verify that Pi = ⊕Kk=1P

[k]
i .
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In the rest of this paper, we focus on JISA using SOS.
Assuming temporally independent and identically distributed
(i.i.d.) samples, the model assumptions imply that S̃ ,

E{s̃(t)s̃>(t)} =

[
S11 0 0

0
. . . 0

0 SNN

]
= ⊕Ni=1Sii ∈ Bn, where

S̃ is an L × L block-diagonal matrix with block-pattern
n = [n1, . . . , nN ]> and

S̃ = ΦSΦ> ∈ Bn . (7)

The (i, j)th ni × nj block of S̃ is Sij = E{si(t)s>j (t)}
for 1 ≤ i, j ≤ N . Its empirical counterpart is Sij =
1
T

∑T
t=1 si(t)s

>
j (t). The same statistical assumptions im-

ply that the (k, l)th M × M block of S is S[k,l] ,

E{s[k](t)s[l]>(t)} =

[
S

[k,l]
11 0 0

0
. . . 0

0 0 S
[k,l]
NN

]
= ⊕Ni=1S

[k,l]
ii ∈ Bm

for 1 ≤ k, l ≤ K, where S
[k,l]
ij = E{s[k]i (t)s

[l]>
j (t)}

is mi × mj and its empirical counterpart is S
[k,l]

ij =
1
T

∑T
t=1 s

[k]
i (t)s

[l]>
j (t). S

[k,l]
ij is thus the (i, j)th block of S[k,l]

as well as the (k, l)th block of Sij . The linear model (4)
implies that X = ASA> where S = E{s(t)s>(t)} and
X = E{x(t)x>(t)}. For simplicity, we assume that all Sii are
invertible and do not contain zeros; in practice, this assumption
could be relaxed [24], see Section V-B for further details.
Typical structures of A, Φ, S, S̃ and X are illustrated in
Figure 2.
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k, l = 1 : K
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Fig. 2. Typical model parameters used in JISA. In this example, there are K =
4 mixtures. In each mixture, there are N = 3 components with dimensions
(block-pattern) m = [1, 2, 3]>. Hence, M =

∑N
i=1 mi = 6, L = MN =

18, n = Km = [4, 8, 12]>, k = M1K = [6, 6, 6, 6]>. The color scale is
arbitrary and different in each subfigure, except (c) and (d).

III. OPTIMAL COMPONENT SEPARATION USING
SECOND-ORDER STATISTICS

In the following, we consider a Gaussian model in which
si(t) ∼ N (0ni×1,Sii) are mutually independent samples ∀t 6=

t′. The log-likelihood for the model just described is

log p(X ;A,S) , − Tφ(A,S) =
T∑
t=1

log p(x(t)) (8a)

= − 1

2

T∑
t=1

(
log det 2πX + x>(t)X−1x(t)

)
(8b)

= − T

2

(
log det 2πX + tr{XX−1}

)
(8c)

= − TD(X,X)− κ = − TD(X,ASA>)− κ (8d)

= − TD(ΦA−1XA−>Φ>, S̃)− κ (8e)

where A = {A[k]}Kk=1, and X = 1
T

∑T
t=1 x(t)x>(t) is the

empirical counterpart of X. The second equality in (8a) is
due to the assumption of pairwise sample independence for
t 6= t′. Equation (8b) is due to the Gaussian assumption
and (4), which imply x(t) ∼ N (0L×1,X). Equation (8c)
follows from a>Ra = tr{Raa>} for any vector a and matrix
R of appropriate dimensions. The scalar

D(R1,R2) =
1

2
(tr{R1R

−1
2 } − log det(R1R

−1
2 )−Q) , (9)

defined for any two Q × Q symmetric positive-definite ma-
trices R1 and R2, is the Kullback-Leibler divergence (KLD)
between the distributions N (0,R1) and N (0,R2) [46]. The
term κ = T

2 (log det(2πX)+L) is irrelevant to the maximiza-
tion of the likelihood since it depends only on the data and
not on the parameters. Equation (8e) follows from (7), (9)
and (41d). The derivation of (8) follows similar lines as those
used in [41, Section III] and [47, Section 3].

A. Contrast Function

Given the block-diagonal structure of S̃, the last step in (8)
gives rise to its ML estimate [41, Appendix B]

̂̃
SML = bdiagn{ΦA−1XA−>Φ>} (10a)

ŜML = Φ> bdiagn{ΦA−1XA−>Φ>}Φ (10b)

where (10b) is due to (7). Note that the result in [47,
Section 3.3] is a special case of (10b) when mi = 1 ∀i. We
can now write

max
S

log p(X ;A,S) = − TC(A) + κ , (11)

where in the latter we have defined the contrast function [48]

C(A) = D(ΦA−1XA−>Φ>,bdiagn{ΦA−1XA−>Φ>}) .
(12)

It holds that D(R,bdiagb{R}) ≥ 0 with equality if and only
if (iff) R ∈ Bb. Hence, for any positive-definite matrix R,
D(R,bdiagb{R}) is a measure of the block-diagonality of
R. Therefore, minimizing the contrast function2 (12) amounts
to (approximate) block diagonalization of X by a permuted
block-diagonal matrix ΦA−1.

2We assume that an optimum exists.
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B. Estimating Equations

The next step is obtaining an ML estimate of A. For
this purpose, we calculate the derivative of the minus log-
likelihood φ(A,S) with respect to (w.r.t.) each A[k] separately,
for fixed S and A\A[k], as we now explain. Consider a relative
variation A[k] → A[k](I+ δ[k])−1, where δ[k] is M ×M and
has arbitrary values but such that I+ δ[k] is invertible3. Then,
the first-order variation of φ(A,S), when A[k] is replaced
by A[k](I + δ[k])−1 and the other mixing matrices remain
unchanged, can always be expressed by the Taylor expansion

φ(
{
A \A[k],A[k](I + δ[k])−1

}
,S) = φ(A,S) (13)

+ tr{(∇φ[k](A,S))>δ[k]}+ higher-order terms in δ[k] ,

where ∇φ[k](A,S) denotes the M × M RG of φ(A,S)
w.r.t. A[k]. Equation (13) follows from the definition of the RG
in [49, Section III.C]. Derivation similar to [41, Section III.D]
yields

∇φ[k](A,S) = J>k S−1A−1XA−>Jk − IM , (14)

where Jk is the kth L×M block of IL = [J1, . . . ,JK ]. The
K terms ∇φ[k](A,S) in (14) can be collected into

∇φ(A,S) ,
K∑
k=1

Jk∇φ[k](A,S)J>k = ⊕Kk=1∇φ[k](A,S)

= bdiagk{S−1A−1XA−>} − IL . (15)

It can be shown that the first-order variation of C(A)
w.r.t. A[k], derived similarly to (13)–(14), obeys

∇C [k](A) = ∇φ[k](A,S)
∣∣
S=ŜML . (16)

Given (15), (16), (10b) and ∇C(A) = ⊕Kk=1∇C [k](A), we
can now write

∇C(A) = ∇φ(A,S)|S=ŜML = (17)

bdiagk{Φ
> bdiag−1n {ΦA−1XA−>Φ>}ΦA−1XA−>} − I .

Values of A that maximize the likelihood and thus minimize
C(A) also satisfy ∇C(A) = 0. Henceforth, matrices that
satisfy the estimating equations

bdiagk{Φ
> bdiag−1n {ΦA−1XA−>Φ>}ΦA−1XA−>} = I

(18)

are denoted Â[k]ML. The associated oblique projections (6)
are denoted P̂

[k]ML
i . The corresponding component estimates

are given by

x̂
[k]ML
i (t) , P̂

[k]ML
i x[k](t) , (19)

which follows from (5).

3Matrix A is block-diagonal by definition and thus there is no meaning
to perturbing its off-block-diagonal entries. This is the bifurcation point from
which the derivation takes a different path than that in [41].

C. Figure of Merit: Mean Square Error

Our goal is component separation. Therefore, the problem
of JISA consists in estimating x

[k]
i (t) given only X and m.

We define the MSE as the figure of merit in the estimation of
x
[k]
i (t),

M̂SE
[k]

i =
1

T

T∑
t=1

‖x̂[k]
i (t)− x

[k]
i (t)‖2 . (20)

Alternatively, we may be interested in the normalized MSE in
the estimation of xi(t),

M̂SEi =
1

σ2
i

1

T

T∑
t=1

‖x̂i(t)− xi(t)‖2 =
1

σ2
i

K∑
k=1

M̂SE
[k]

i , (21)

where σ2
i = E{‖xi(t)‖2}. For Gaussian data, estimates of

xi(t) obtained via (19) from matrices that satisfy (18) achieve
asymptotically (i.e., T → ∞) the minimal mean square error
(MMSE).

IV. ERROR ANALYSIS

We now turn to the error analysis of our model. This will
lead us to a closed-form expression for the FIM and CRLB in
the estimation of the oblique projections and to the MSE in
component estimation.

A. Error Decomposition

A difficulty in the error analysis of blind subspace esti-
mation stems from the inability to characterize the error in
the mixing matrices, due to severe indeterminacies they suffer
from (Section II). We thus begin by defining convenient error
terms. In order to focus on well-defined quantities, we consider
the errors

δP
[k]
i , P̂

[k]
i −P

[k]
i (22)

in P̂
[k]
i , the estimates of the oblique projectors P

[k]
i . Ac-

cordingly, the estimate of x
[k]
i (t) is x̂

[k]
i (t) = P̂

[k]
i x[k](t) =

x
[k]
i (t) + δP

[k]
i x[k](t), which follows from (5), (19) and (22).

Consequently, the component estimation error is given by

x̂
[k]
i (t)− x

[k]
i (t) = δP

[k]
i x[k](t) . (23)

Equation (20) can now be rewritten as

M̂SE
[k]

i =
1

T

T∑
t=1

‖δP[k]
i x[k](t)‖2

= tr{(X[k,k] ⊗ IM )vec{δP[k]
i }vec

>{δP[k]
i }} (24)

where the last equality uses ‖a‖2 = tr{aa>} and Property A.1
in Appendix A. Matrices X

[k,l]
and X[k,l] denote the (k, l)th

blocks, according to block-partition k, of X and X, respec-
tively. It can be shown (Appendix B) that asymptotically,

MSE
[k]
i , E{M̂SE

[k]

i } (25)

= tr{(X[k,k] ⊗ IM ) Cov(vec{δP[k]
i })}+O( 1

T 3/2 ) .

In the following, we set out to obtain a closed-form expres-
sion for Cov(vec{δP[k]

i }) as a function only of the model
parameters, that will conclude the derivation of the MSE.
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B. First-Order Approximation of δP[k]
i

In general, any estimate or approximation of A[k] can
be rewritten as a product of A[k] and some perturbation
matrix. In addition, as explained in Appendix D, the contrast
function (12) is invariant to right-multiplying each A[k] by any
Λ[k] ∈ Bm. Hence, the most general form of the minimizer
of (12) can be formulated as

Â[k] = A[k](IM + E [k])−1Λ[k] , (26)

where the M ×M matrix E [k] reflects the relative change in
A[k], up to the scale ambiguity which is represented by Λ[k].
In Appendix E we show that

δP
[k]
i = A[k](

∑
j 6=i

EiE [k]
ij E>j −EjE [k]

ji E>i )A
−[k]

+ higher-order terms in E [k] (27)

where Ei is the ith M × mi block of IM = [E1, . . . ,EN ].
The mi ×mj matrix E [k]

ij denotes the (i, j)th block of E [k],
according to partition m. Since Λ[k] has vanished from (27),
we can proceed with our error analysis without worrying about
the scale ambiguity.

C. Influence Function

In order to evaluate the covariance of the error terms,
we begin by establishing the first-order expansion of E [k]

ij

in terms of the sample covariance matrices. In this section,
we develop the error analysis in the regime of small errors;
that is, we analyze the error terms E = {E [k]}Kk=1 at first-
order in S

[k,l]

ij , when asymptotic conditions (Section III-C)
hold. Our source separation method is based on the key
assumption that S

[k,l]
ij = E{S[k,l]

ij } = 0mi×mj
for j 6= i and

any k, l. However, because of finite sample size, its empirical
counterpart, S

[k,l]

ij 6= 0mi×mj , does not hold.
The first-order expansion of the estimating equations (18)

yields (see Appendix F) KN(N − 1) equations that can be
written pairwise, for each i 6= j and all k, as

−[S−1ii Sij ]kk =

K∑
l=1

[S−1ii ]klE [l]
ijS

[l,k]
jj + (E [k]

ji )
> +O( 1

T )

−[S−1jj Sji]kk =

K∑
l=1

[S−1jj ]klE
[l]
jiS

[l,k]
ii + (E [k]

ij )
> +O( 1

T )

(28)

where [·]kl stands for the (k, l)th block of the term in
brackets in the appropriate partition. The pairwise symmetry
of the equations in (28) highlights the fact that asymptoti-
cally, for each pair of components (i 6= j), the error terms
{E [k]

ij ,E
[k]
ji }Kk=1 are related to the corresponding pair of matri-

ces (Sij ,Sji) that represents the error in the decorrelation of
different groups of dependent sources. This type of pairwise
decoupling arises naturally in the asymptotic analysis of source
separation models that exploit pairwise independence, for
example [50, Theorem 11] [19], [41], [51], [52].

Using the vec{·} operator, (28) can be rewritten, for each
pair i 6= j, as

−g = He +O( 1
T ) (29)

where e and g are 2Kmimj × 1 vectors,

e =

[
eij
eji

]
, eij =


vec{E [1]

ij }
...

vec{E [K]
ij }

 , (30)

g =

[
gij
gji

]
, gij =

 vec{[S−1ii Sij ]11}
...

vec{[S−1ii Sij ]KK}

 (31)

and

H =

[
Sjj � S−1ii IK ⊗ T mj ,mi

IK ⊗ T mi,mj
Sii � S−1jj

]
(32)

is a 2Kmimj × 2Kmimj matrix.

Sjj � S−1ii =


S
[1,1]
jj ⊗ [S−1ii ]11 · · · S

[1,K]
jj ⊗ [S−1ii ]11

...
...

S
[K,1]
jj ⊗ [S−1ii ]K1 · · · S

[K,K]
jj ⊗ [S−1ii ]KK


is a Kmimj×Kmimj matrix partitioned into blocks accord-
ing to mimj1K , whose (k, l)th block is S

[k,l]
jj ⊗ [S−1ii ]kl and

has dimensions mimj × mimj . In the transition from (28)
to (29), (30), (31) and (32) we have used the identities (41)
in Appendix A. In (32) we introduce the commutation matrix
TP,Q ∈ RPQ×PQ, where vec{M>} = TP,Qvec{M} for any
M ∈ RP×Q [53]. More properties of the commutation matrix
can be found in Appendix A. Assuming that H is invertible4,
we rewrite (29) as

e = −H−1g +O( 1
T ) i 6= j . (33)

Equation (33) shows how the empirical correlation between the
sources, that is, the fact that Sij is non-zero in finite sample
size, results in non-zero terms E . Equation (33) is the desired
first-order expression for the error terms in (27).

D. Closed-Form Expressions for Cov(vec{δP
[k]
i }) and MSE

The first step in expressing Cov(vec{δP[k]
i }) as a function

of the model parameters is vectorizing (27). Using iden-
tity (41c) we obtain

vec{δP
[k]
i } = (A−[k]> ⊗A[k])

N∑
j 6=i

(
(Ej ⊗Ei)vec{E [k]

ij }

− (Ei ⊗Ej)vec{E [k]
ji }
)
+O( 1

T ) . (34)

The covariance of vec{δP
[k]
i } can be expressed as

Cov(vec{δP
[k]
i }) = (A−[k]> ⊗A[k]) (35)

(M11 + M12 + M21 + M22)(A
−[k] ⊗A[k]>) +O( 1

T 3/2 )

where

M ,

[
M11M12

M21M22

]
,

Nc∑
j 6=i

Fij Cov

([
vec{E [k]

ij }
vec{E [k]

ji }

])
F>ij , (36)

4In this paper, we assume that H in invertible. The invertibility of H is
associated with the uniqueness of the model [24], see Section V-B for further
details.



7

Fij ,

[
Ej ⊗Ei 0

0 −Ei ⊗Ej

]
and

Cov(e) = H−1 Cov(g)H−1 =
1

T
H−1 +O( 1

T 3/2 ) , (37)

as we now explain. Equation (37) follows from Appendix G,
where we show that Cov(g) = 1

TH. Equation (37) fully
characterizes the covariance terms in (36). The asymptotic
error term in (37) and (35), as well as the fact that there
is summation only over one index (j) in (36), follow from
Appendix G, which implies, combined with (33), that the pairs
(E [k]

ij ,E
[k]
ai ) and (E [k]

ij ,E
[k]
ia ) are asymptotically uncorrelated

∀a 6= j. We have thus obtained a closed-form expression (35)
for the covariance of all the entries of δP[k]

i that is a function
only of the model parameters A, S and m and that is invariant
to the arbitrary scaling between A and S. This expression
can be used in (25) for a closed-form expression of the
MSE. Further simplification of the MSE can be obtained by
using property (41d) and the block-diagonal structure of S[k,k].
Hence,

MSE
[k]
i = tr

{
(X[k,k] ⊗ IM )(A−[k]> ⊗A[k])

(M11 + M22)(A
−[k] ⊗A[k]>)

}
+O( 1

T 3/2 ) (38)

where the terms that depend on M12 and M21, defined in (36),
vanish.

E. FIM, CRLB and MMSE

For samples that follow the Gaussian model in Section II,
the results in this section have the following interpretation.
Equation (35) is the asymptotically achievable CRLB on the
estimation of P

[k]
i , and its inverse is the FIM. From (19),

equation (38) is the MMSE in the estimation of x
[k]
i (t).

We point out that all the derivations in Section IV and the
related appendices rely only on SOS and thus hold also for
non-Gaussian observations. That is, (35) and (38) still reflect
the error covariance and MSE if we apply the methods in Sec-
tion III; however, the CRLB, FIM and MMSE interpretation
no longer applies.

V. WELL-POSEDNESS OF THE JISA SOS MODEL

We now discuss conditions under which blind identification
of the component subspaces is possible.

A. Degrees of Freedom

Let us compare the number of degrees of freedom in the
model with the number of constraints in the data, in a similar
manner as in [41, Section V.A]. The data are represented by
a symmetric L × L matrix, such that the model tries to fit
Ndata =

1
2L(L− 1) scalar numbers. The model consists of K

M ×M mixing matrices and N ni × ni source covariance
matrices. These provide Nmodel = K(M2 −

∑N
i=1m

2
i ) +

1
2

∑N
i=1 ni(ni−1) effective free scalar parameters, when scale

ambiguities (Z[k] ∈ Bm in Section II) are taken into account.
It is immediate to verify that

Ndata −Nmodel =
1

2
(K − 2)(M2 −

N∑
i=1

m2
i ) (39)

Hence, as soon as K ≥ 2, there are as many (or more)
distinct data values as free parameters in the model. The
same calculation shows that imposing statistical independence
between all pairs (s[k]i , s

[k′ 6=k]
i ) yields a model that is never

blindly identifiable using SOS. This result is not surprising,
since such a model amounts to K separate BSS/ICA problems.

B. Uniqueness and Identifiability

The previous argument makes it plausible that for randomly
chosen source covariance matrices, the component subspaces
can be uniquely identified. In fact, and generalizing IVA [54],
the uniqueness of the JISA model can be preserved even if not
all entries of si(t) are mutually statistically dependent [24];
further discussion of this point is beyond the scope of this pa-
per. In the following, we assume that the uniqueness conditions
are satisfied. It is only for the simplicity of presentation that,
in this paper, we assume that all corresponding components
are mutually dependent, i.e., Sii do not contain zeros. Since
the mixing matrices are assumed to be invertible, uniqueness
of the decomposition implies identifiability of the model.

VI. ALTERNATIVE ALGEBRAIC REPRESENTATION OF JISA

In Section III-A we established that JISA amounts to (ap-
proximate) block-diagonalization of the (sample) covariance
of the observations by a permuted block-diagonal matrix,
where the permutation and the block structure are assumed
to be known. Due to the invariance of the KLD to rotation
of its parameters, the contrast function can be rewritten
as C(A) = D(X,AΦ> bdiagn{ΦA−1XA−>ΦA>}ΦA>).
Relaxing the measure of divergence from KLD to the Frobe-
nius norm and using (7), A can now be approximated from

min
A,Σ

K∑
k=1

K∑
l=1

‖X[k,l] −A[k]Σ[k,l]A[l]>‖2 (40)

where Σ[k,l] = bdiagm{A−[k]X
[k,l]

A−[l]>} is the (k, l)th
block of Σ. Note that E{Σ[k,l]} = S[k,l]. Therefore, both
criteria, (40) and (12), achieve the same optimum (zero) for in-
finite sample size. Equation (40) is not the only approximation
to (12): other suboptimal model-fit criteria are also possible,
see, e.g., [55] for a recent review. Consistently with Section II,
we require that the set of block-diagonal matrices {S[k,l]}Kk,l=1

be irreducible in the sense that it cannot be further diagonal-
ized into smaller blocks by any coupled linear transformation
of the form {T−[k]S[k,l]T−[l]>}Kk,l=1. Equation (40) gener-
alizes [32], where mi = 1 ∀i, to blocks of arbitrary size.
Equation (40) can be interpreted as a (approximate) coupled
block diagonalization that minimizes the squared Frobenius
norm. As such, (40) falls within the framework of structured
data fusion (SDF) [56] and can be solved, in a straightforward
model-fit approach, using Tensorlab [57].

We now briefly discuss a generalization that highlights the
Tensorlab implementation that will be used in the experimental
Section VII. In general, the IVA framework can exploit not
only the diversity provided by the presence of multiple data
sets, as explained in Sections I–II, but also the diversity among
samples within the same data set; see e.g. [35] for a detailed
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discussion of diversity in IVA. This type of diversity can occur,
for example, due to time correlation or nonstationarity, and
may be expressed mathematically, within a single data set, as
joint diagonalization (JD) of several cumulant matrices; see,
e.g., [42]. Consequently, [32], [33], [37] proposed to address
the multiset scenario of IVA by factorizing several JD prob-
lems simultaneously, one for each pair (k, l). In the presence
of multidimensional components (mi ≥ 1), this approach
generalizes naturally to coupled joint block diagonalization
(JBD). The JBD associated with each pair (k, l) corresponds
to a tensor factorization known as rank-(m[k]

i ,m[l]
i ,·) block

term decomposition (BTD) [20]. In this notation, m[k]
i and

m
[l]
i , i = 1, . . . , N indicate the row and column dimensions,

respectively, of the N blocks in the (k, l)th JBD. Therefore,
the Tensorlab implementation to the model in (40) amounts to
a coupled rank-(mi,mi,·) BTD where m[k]

i = m
[l]
i = mi, and

the third dimension of the tensor that approximates X
[k,l]

is
set to one.

VII. NUMERICAL EXPERIMENTS

In this section, we validate theoretical results presented in
previous sections.

A. Experimental Setup

The experimental setup is as follows. We run multiple
trials for fixed S, A, and Ainit (initial value of A in the
algorithm), where only S is drawn anew at each trial. The
input data are generated such that the analysis in Section IV
holds, including small-errors regime. Therefore, the theoretical
value of the MSE is expected to be an accurate prediction of
its empirical mean. At each trial, we compare our approach
with two competing state-of-the-art methodologies. For this
aim, at each trial, we test three different scenarios on the
same data, as we now explain. The first scenario corresponds
to the theoretical analysis in Section IV. Currently, there
exist two algorithms that minimize (12). The Newton-based
algorithm [39] converges faster than its RG [6] counterpart and
is thus chosen for our numerical experiments. In this scenario,
the input parameter m to the Newton-based algorithm [39]
reflects the true block structure. In the second scenario, the
input value of m to the Newton-based algorithm is set to
1M×1, a vector of all ones. This amounts to applying, in a
first step, the SOS-based IVA algorithm of [47] and assuming
M independent sources instead of N . The latter implies
that the algorithm is ignorant of the true block structure of
the data and instead tries to fit it to smaller, though more
numerous, blocks. Theoretically, this amounts to minimiz-
ing C(A)|n=K1M

, in which every local minimum is also a
global minimum, provided that identifiability conditions are
satisfied [34]. Minimizing C(A)|n=K1M

, however, does not
imply component separation (unless the true data model is
m = 1M ): the M output elements are ordered arbitrarily,
as explained in Section II, and a second step is required in
order to cluster them into the correct N multidimensional
components, as illustrated in Figures 3(a)–3(b). We denote
this two-step procedure “mismodeling” [19]. In the first sce-
nario, the clustering is implicit in the optimization via the

input parameter m. However, this comes at a price: if the
permutation induced by the initialization Ainit is not close
enough to the permutation induced by the trueA, the algorithm
may get stuck in a local minimum which is not global and
fail to properly separate the blocks, in a way that cannot
be compensated by a later clustering step, as illustrated in
Figure 3(c). Further issues related to these two scenarios are
discussed in [39].
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(a)
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(c)
Fig. 3. Example of typical clustering issues at the output of JISA algorithms,
on error-free data. In this example, A = I, and the data structure is as in Fig-
ure 2.Ainit is fully random, generated with p = 1, as explained in Section VII.
Figures 3(a) and 3(b) illustrate a typical output of a “mismodeling” scenario,
before and after clustering, respectively. Since any local minimum is a global
minimum (see explanation in Section VII-A), the correct block structure can
always be reconstructed, once the permutation is found. Figure 3(c) illustrates
a typical output of the algorithm when the input is the correct block structure.
In this case, the random initialization often results in convergence to a local
minimum that does not allow any further reconstruction of the blocks. We
depict log 10| · | in order to enhance small numerical features. White=zero.
The color scale is arbitrary and different in each subfigure.

In the third scenario, the optimization uses the correct block
structure but a different distance measure, as explained in
Section VI. We implement (40) using Tensorlab [57], a Matlab
toolbox that can straighforwardly solve coupled factorizations
with a Frobenius norm. This implementation5 is based on
BTD with the third dimension set to 1, as discussed in
Section VI. We optimize using sdf_minf.m. Due to the
essential difference between the objective functions and algo-
rithms, we take the following measures in order to allow the
optimization of (40) the most favourable conditions w.r.t. (12).
First, we set the stopping criteria in Tensorlab to rather small
values, TolX=10−12 and TolFun=10−12. These thresholds
correspond to the relative step size and difference in objective
function between every two successive iterates, respectively.
Second, Tensorlab currently does not offer a straightforward
positive-definite constraint on factors. Therefore, we suffice
with imposing a symmetric structure on Σ. This is achieved
by optimizing (40) only over k ≤ l and attributing a double
weight to the off block-diagonal factors Σ[k,l 6=k]. We verified
that the symmetric version indeed yields better estimates of
our figure of merit than leaving Σ unconstrained, as expected.
Third, we initialize the algorithm with the output of the first
scenario on the same samples, i.e., ÂML, instead of Ainit.

The source covariance matrices are generated as Sii =

diag−
1
2 {UΛU>}UΛU> diag−

1
2 {UΛU>}, where UΛV>

is the singular value decomposition (SVD) of a Kmi ×Kmi

matrix whose i.i.d. entries ∼ N (0, 1). The corresponding

5The code for the Newton and Tensorlab-based algorithms is available upon
request from the authors. The Tensorlab-based code implements the general
case of rank-(m[k]

i ,m
[l]
i , ·) BTD with A[k] rectangular of possibly different

dimensions ∀k and possibly different third dimension (“depth”) for each pair
(k, l).
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samples are generated by right-multiplying the transpose of
the Cholesky factorization of Sii with Kmi × T i.i.d. zero-
mean, unit-variance numbers, drawn from one of the following
distributions: normal, or Gaussian mixture (GM) with peaks
centred at ±4. The purpose of the non-Gaussian distribution is
to validate that our second-order analysis indeed holds also for
non-Gaussian data. Note that right-multiplying non-Gaussian
numbers with a Cholesky factorization of Sii changes their
distribution; however, it is still non-Gaussian. A[k] is arbitrary
and thus, for simplicity, fixed to I. The stopping threshold is
set to ‖∇C‖ < 10−6, and T = 104.

In order to evaluate the MSE, our numerical validation
requires not only proper reconstruction of the components
but also that their ordering be the same as in the “ground
truth”. Trials in which this requirement is not fulfilled are
easy to detect since they result in a significantly larger MSE.
In this paper, we do not deal with solving these issues. Instead,
and for the sake of performance analysis validation alone, we
choose the initialization as A

[k]
init = pΥ + (1− p)I, where the

entries of Υ are ∼ N (0, 1) i.i.d. and drawn anew for each
mixture k, and p = 0.2. This value avoids, in most cases, the
need for clustering and ordering w.r.t. ground truth. In addition,
for numerical stability, we choose only A

[k]
init whose condition

number< 500. In the following simulations, trials in which
mismodeling required further clustering were discarded. All
other scenarios converged properly with this choice of p.

B. Numerical Results

Our results are summarized in Table I. Table I presents
the normalized empirical MSE for these three scenarios, as
well as its theoretical prediction, for two setups that vary
in m and K, and thus also in S and Ainit. Each setup is
tested once for Gaussian data and once for samples that are
generated from numbers with a GM distribution, as explained
in Section VII-A. We run 300 Monte Carlo (MC) trials; the
number of trials after discarding those that did not cluster
properly is indicated in the last column of Table I. The second
column in Table I states the arbitrary index given to each
component. The third column indicates the dimension of the
ith component. The fourth column presents the theoretical
prediction of the MSE per component, based only on the
model parameters. Naturally, these values are not influenced
by the sample distribution. The fifth column indicates the
type of distribution from which the samples are generated.
Columns 6–8, 9–11 and 12–14 correspond to the first, second
and third scenarios, respectively. Columns 6, 9 and 12 show
the averaged normalized empirical MSE per component, while
columns 7, 10 and 13 provide its corresponding empirical
standard deviation (std). Column 8 shows the ratio between
the empirical and predicted value for the optimal scenario.
Columns 11 and 14 show the ratio between the empirical MSE
in the mismodeling or Frobenius norm scenarios, respectively,
and the empirical MSE in the optimal case. The last row of
Table I summarizes the results of certain columns. Figures 4(a)
and 4(b) visualize two of the experimental configurations that
are summarized in Table I: m = [3, 5, 4]>, K = 6 with
Gaussian data, and m = [6, 5, 1]>, K = 5 with GM data,

respectively. The histograms depict the distribution of the
empirical MSE in MC trials (last column of Table I), as well
as the empirical means and theoretical prediction.

C. Discussion of Numerical Results

The small values of the normalized M̂SEi confirm that the
components have been properly separated, and quantify the
quality of separation. Column 8 validates that the closed-form
MSE indeed predicts the empirical mean, both for Gaussian
and non-Gaussian data, as explained in Section IV-E. This
also serves as an implicit validation that we are indeed in the
small-errors regime. Columns 11 and 14 illustrate the potential
gain in using both the correct block model and optimal norm
in component separation. In particular, we observe that the
gain is significant also for the estimation of one-dimensional
components in the presence of multidimensional data (third
component in setup #2). These observations conform with
previous results on multidimensional components, previously
tested only vs. the mismodeling scenario [19], [41]. When
comparing the two competing methodologies, we observe that
both MSE and std are generally smaller and closer to optimal
in the third scenario, which uses the true block structure in the
optimization but with a more relaxed norm. This observation
provides further motivation for using true multidimensional
methods for component and subspace separation, and devel-
oping such methods for data analysis in general.

VIII. CONCLUSION

In this paper, we presented a new model for simultane-
ous BSS of multidimensional components using SOS. We
derived an ML-based component separation criterion (12).
Error analysis of this criterion has led to a Newton-based
algorithm [39] and to a closed-form expression for the MMSE,
CRLB and FIM of the estimated parameters in the presence
of real Gaussian data. For non-Gaussian data, the closed-form
expression reflects the MSE when only SOS are used for the
separation. We presented an alternative algebraic formulation
of this criterion, as coupled matrix block-diagonalization,
which can be solved by a classical model-fit approach with
a Frobenius norm, and thus amounts to a new algorithm for
JISA. Numerical simulations validate our theoretical analysis,
and provide us with an insight on some of the assumptions
that are implicit in the separation criterion, namely the choice
of norm and the use of the correct block model. These
preliminary results indicate that the use of a true subspace or
block approach is potentially more important than the norm,
and that this matter deserves to be further looked into.

The focus of this paper is on the theoretical error analysis.
Therefore, numerical and practical issues such as identifying
the global permutation, number or dimension of the latent
sources, and choice of proper initialization in order to avoid
local minima in the absence of additional information, are
beyond the scope of this work.

APPENDIX A
SOME ALGEBRAIC PROPERTIES

For ease of reference, we list some useful algebraic proper-
ties. Properties that are not proved below can be found in [53],
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TABLE I
PERFORMANCE OF SECOND-ORDER JOINT INDEPENDENT SUBSPACE ANALYSIS. THEORETICALLY PREDICTED NORMALIZED MSEi VS. EMPIRICAL,

AVERAGED OVER MC TRIALS: NEWTON-BASED ALGORITHM (KLD) WITH TRUE m (M̂SEi) OR WITH m = [1, . . . , 1]> (M̂SE
mis

i ), AND TENSORLAB

(FROBENIUS NORM) WITH TRUE m (M̂SE
Fro

i ). EACH MODEL SETUP IS TESTED ONCE WITH GAUSSIAN AND ONCE WITH NON-GAUSSIAN SAMPLES.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Se
tu

p

i mi MSEi

D
is

tr.

M̂SEi std M̂SEi

MSEi
M̂SE

mis

i std M̂SE
mis
i

M̂SEi

M̂SE
Fro

i std M̂SE
Fro
i

M̂SEi

MC

Model KLD & correct model KLD & mismodeling Frobenius norm & correct model

#1

1 3 2.35e-03
N

or
m

al 2.36e-03 3.02e-04 1.00 5.47e-03 1.22e-03 2.31 5.09e-03 6.58e-04 2.15
2982 5 1.63e-03 1.63e-03 1.88e-04 1.00 4.04e-03 7.17e-04 2.47 3.31e-03 3.56e-04 2.03

3 4 2.02e-03 2.03e-03 2.35e-04 1.00 5.06e-03 9.66e-04 2.49 3.95e-03 4.78e-04 1.94
1 3 2.35e-03

G
M

2.38e-03 3.06e-04 1.01 5.54e-03 1.35e-03 2.32 5.02e-03 6.04e-04 2.11
2682 5 1.63e-03 1.65e-03 1.69e-04 1.01 4.05e-03 7.34e-04 2.45 3.30e-03 3.57e-04 2.00

3 4 2.02e-03 2.05e-03 2.29e-04 1.01 5.19e-03 1.12e-03 2.53 3.94e-03 4.59e-04 1.92

#2

1 6 1.25e-03

N
or

m
al 1.26e-03 1.67e-04 1.00 3.46e-03 1.11e-03 2.75 2.64e-03 3.24e-04 2.10

2742 5 1.58e-03 1.59e-03 2.17e-04 1.01 4.40e-03 1.44e-03 2.76 3.35e-03 4.06e-04 2.10
3 1 4.99e-03 4.95e-03 1.19e-03 0.99 7.80e-03 1.92e-03 1.57 9.51e-03 2.21e-03 1.92
1 6 1.25e-03

G
M

1.28e-03 1.57e-04 1.02 3.36e-03 8.93e-04 2.63 2.65e-03 3.56e-04 2.07
2482 5 1.58e-03 1.62e-03 2.01e-04 1.02 4.29e-03 1.14e-03 2.65 3.37e-03 4.62e-04 2.09

3 1 4.99e-03 5.06e-03 1.06e-03 1.02 7.64e-03 2.11e-03 1.51 9.62e-03 2.20e-03 1.90
� 1 � 1 ∼= 1 � 1 > 1 � 1 > 1

[58], [59].
For any matrices M,N,P,Q (with appropriate dimen-

sions),

(N⊗M)(P⊗Q) = NP⊗MQ (41a)

(N⊗M)> = N> ⊗M> (41b)

vec{MQN} = (N> ⊗M)vec{Q} (41c)
tr{PQ} = tr{QP} (41d)

tr{P>Q} = vec>{P}vec{Q} (41e)
det(MN) = det(NM) . (41f)

For any two matrices MM×P and NN×Q,

TM,N (N⊗M) = (M⊗N)TP,Q . (42a)

Property A.1. Let L,M,N be square matrices. Then
tr{MLN>} = tr{(L> ⊗ I)vec{M}vec>{N}}. The proof
follows the same steps as [41, Property A.1].

Property A.2. The first-order Taylor expansion of (M+∆)−1

about M, where M and ∆ are square matrices, M and M+∆
invertible, is (M+∆)−1 = M−1−M−1∆M−1+O(‖∆‖2).

APPENDIX B
ASYMPTOTIC EXPRESSION FOR THE MSE: PROOF OF (25)

Without vectorization, (24) can be equally rewritten as

M̂SE
[k]

i = tr{X[k,k]
(δP

[k]
i )>δP

[k]
i }

= tr{X[k,k](δP
[k]
i )>δP

[k]
i }

+ tr{δX[k,k](δP
[k]
i )>δP

[k]
i } (43)

where in the last step we have defined

X
[k,k]

= X[k,k] + δX[k,k] . (44)

Taking expectation of (43) we obtain that

E{M̂SE
[k]

i } = tr{X[k,k]E{(δP[k]
i )>δP

[k]
i }}

+ E{tr{δX[k,k](δP
[k]
i )>δP

[k]
i }} (45)

In Appendix C we show that both δX[k,k] and δP
[k]
i are

O( 1√
T
). Therefore, the second summand on the right-hand

side (RHS) of (45) is (at worst) O( 1
T 3/2 ), which concludes

our proof.

APPENDIX C
ASYMPTOTIC PROPERTIES OF δX[k,k] , δP[k]

i , δS AND E
Under asymptotic conditions (T → ∞), the sample co-

variances X (defined in Section III) and S, and the ML
estimators Â[k] and P̂

[k]
i (defined in Section III-B), converge,

respectively, to X, S, A[k] and P
[k]
i , at least in probability. As

for the rate of convergence, the entries of δX, δS, E [k] (26)
and δP[k]

i (22) are zero mean random variables with a standard
deviation proportional to 1/

√
T . For δX and δS, this follows

from the central limit theorem. For the ML estimation errors
E [k] and δP

[k]
i , this is due to sample independence. The

fact that the entries of E [k] decrease (asymptotically) with
T at the same rate as the entries of δP[k]

i can also be de-
duced from (27). Therefore, asymptotically, the approximation
P̂

[k]
i
∼= P

[k]
i holds.

APPENDIX D
INVARIANCE OF THE ESTIMATING EQUATIONS TO SCALE

AMBIGUITY OR EQUIVALENCE CLASS OF THE SOLUTIONS
TO THE ESTIMATING EQUATIONS (18)

Given the existence of a set A that satisfies the estimating
equations (18) and thus also achieves the minimum of the con-
trast function (12), we now discuss its equivalence class. That
is, the subspace of matrices it generates that also satisfy (18)
and minimize (12). Using the fact that the bdiagb{·} operator
commutes with any Λ,Λ′ ∈ Bb in the following manner,

bdiagb{ΛMΛ′} = Λbdiagb{M}Λ
′ , ∀M ∈ RM×M , (46)

and given

Φ
(
⊕Kk=1

(
⊕Ni=1Z

[k]
ii

))
=
(
⊕Ni=1

(
⊕Kk=1Z

[k]
ii

))
Φ , (47)
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Fig. 4. Component separation using JISA. Histogram of normalized empirical
MSE. Symbols ©, ♦, and � denote the empirical mean of the MSE of
the depicted MC trials for KLD, Frobenius norm, and KLD mismodeling,
respectively. Symbol ∗ denotes the predicted MSE for KLD. See Table I for
corresponding numerical values. (a) Subplots correspond to components with
dimensions 3, 5 and 4, respectively; K = 6, MC = 298, Gaussian data. (b)
Subplots correspond to components with dimensions 6, 5 and 1, respectively;
K = 5, MC = 248, Gaussian mixture (GM) data.

(9), (12) (41d) and (41f), we obtain that C(A) = C(AΛ′′),
where Λ′′ ∈ B1K⊗m coincides with the scale ambiguity of
the model (Section II). Similar steps show that the estimating
equations (18) are invariant to A→ AΛ′′.

APPENDIX E
DERIVATION OF (27)

In this section, we obtain (27). The proof follows steps
similar to those in [19, Appendix B]. Substituting (26) in (6),

P̂
[k]
i = A[k](I + E [k])−1Λ[k]EiE

>
i Λ−[k](I + E [k])A−[k]

= A[k](I + E [k])−1EiE
>
i (I + E [k])A−[k]

= P
[k]
i + A[k](EiE

>
i E

[k] − E [k]EiE
>
i )A

−[k]

+ higher-order terms in E [k] . (48)

The first equality in (48) follows from A
[k]
i = A[k]Ei and

B
[k]
i = E>i B[k], where Ei was defined in Section IV-B.

The second equality is due to the fact that Λ[k] ∈ Bm. The
third equality uses Property A.2 in Appendix A followed by
P

[k]
i = A[k]EiE

>
i A−[k], which is due to (6). The last transi-

tion, from (48) to (27), follows from E [k]Ei =
∑N
j=1 EjE [k]

ji

and E>i E
[k] =

∑N
j=1 E

[k]
ij E>j .

APPENDIX F
FIRST-ORDER EXPANSION OF THE ESTIMATING

EQUATIONS

In this appendix, we show how a first-order expansion of
the estimating equations (18) leads to the linear relation (28)
between the error terms E and the sample covariance matrix S.
We begin by rewriting (18) with Â instead of A, emphasizing
the fact that solutions of (18) are estimates of A,

bdiagk{Φ
> bdiag−1n {ΦÂ−1XÂ−>Φ>}ΦÂ−1XÂ−>}

= I . (49)

The link between E and Â is given in (26). It follows from
Appendix D that the estimating equations (49) are invariant to
right-multiplication of Â by any matrix in B1K⊗m. Therefore,
from now on, we omit the scale ambiguity term of (26). It
follows from (4), (26) and the above arguments that (49) can
be rewritten as

bdiagk{Φ
> bdiag−1n {Φ(I + E)S(I + E)>Φ>}Φ

(I + E)S(I + E)>} = I . (50)

Given the factorization S = S + δS, one has

(I + E)S(I + E)> = S + ES + SE> +O( 1
T )

= S +O( 1√
T
) , (51)

which is due to the fact that both E and δS are O( 1√
T
),

as explained in Appendix C. Left- and right-multiplying (51)
by Φ and Φ>, respectively, applying bdiag−1n {·} and then
Property A.2 in Appendix A, one obtains

bdiag−1n {Φ(I + E)S(I + E)>Φ>} = S̃−1 + Θ̃ (52)

where the entries of Θ̃ ∈ Bn are O( 1√
T
). The term within

bdiagk{·} in (50) can now be rewritten as

(S−1 + Θ)(I + E)S(I + E)>

= S−1S + S−1ES + E> + ΘS +O( 1
T ) (53)

where Θ = Φ>Θ̃Φ and

Φ>(S̃−1 + Θ̃)Φ = S−1 + Θ . (54)

Using (53), the estimating equations can now be rewritten as

bdiagk{S−1S}+ bdiagk{S−1ES}+ E>

+ bdiagk{ΘS}+ bdiagk{O( 1
T )} = I (55)
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since E ∈ Bk.
It is clear that entries outside bdiagk{·} do not yield any

constraints on E . It can be further verified that entries on the
main diagonal of (55) with block-pattern 1K⊗m are identical
on both sides of (55) and thus do not have any effect. It follows
that the only non-trivial terms in (49) can be written as a set
of KN(N − 1) equations

[[S−1S]kk]ij + [[S−1ES]kk]ij + (E [k]
ji )
>

+ [[ΘS]kk]ij +O( 1
T ) = 0mi×mj

, i 6= j (56)

where blocks indexed by k follow block-pattern k, those
indexed by i and j follow m, and [[E>]kk]ij = (E [k]

ji )
>.

The next step is to simplify the summands in (56). For the
first summand,

[[S−1S]kk]ij = E>i J>k Φ>S̃−1S̃ΦJkEj

= U>k Y>i ΦΦ>S̃−1S̃ΦΦ>YjUk

= U>k S−1ii SijUk = [S−1ii Sij ]kk (57)

as we now explain. The first step uses (7) such that S−1S =

Φ>S̃−1ΦΦ>S̃Φ = Φ>S̃−1S̃Φ. Jk and Ei were defined
in Sections III-B and IV-B, respectively. In the second step
of (57) we employ

JkEj = Φ>YjUk (58)

where Uk is ni × mi and Yi is L × ni such that Ini
=

[U1| · · · |UK ] and IL = [Y1| · · · |YN ]. The third step uses
[S̃−1S̃]ij = S−1ii Sij , which follows from S̃ ∈ Bn. For the
second summand in (56), we begin by writing explicitly the
term within [·]ij ,

[S−1ES]kk =

K∑
l=1

J>k S−1JlE [l]J>l SJk

=

K∑
l=1

[S−1]klE [l]S[l,k] (59)

where E ,
∑K
l=1 JlE [l]J>l . It follows from (7) that S−1

has the same zero-pattern as S such that [S−1]kl ∈ Bm and
[[S−1]kl]ii = [S−1ii ]kl. Hence, the (i, j)th block of the lth
summand on the RHS of (59) can be factorized as

[[S−1]klE [l]S[l,k]]ij = [[S−1]kl]iiE [l]
ijS

[l,k]
jj = [S−1ii ]klE [l]

ijS
[l,k]
jj .

This concludes the derivation of the second summand in (56).
The third summand in (56) remains unchanged. We conclude
the derivation of the first equation in (28) by showing that
[[ΘS]kk]ij = 0mi×mj

. This follows from noting that ΘS =

Φ>Θ̃ΦΦ>S̃Φ = Φ>Θ̃S̃Φ has the same zero-pattern as S
and by definition, [[S]kk]ij = 0mi×mj . The second equation
in (28) is obtained by exchanging i and j.

APPENDIX G
CLOSED-FORM EXPRESSION FOR Cov(g)

In this Appendix we derive a closed-form expression for the
covariance of the gradient vectors gij , defined in (31). By the

assumptions in Section III, these gradients have zero mean.
We now show that

E{gijg>mn} =


1
T (Sjj � S−1ii ) (m,n) = (i, j)
1
T (IK ⊗ T mj ,mi

) (m,n) = (j, i)
0 o.w.

(60)

The building blocks of (60) are terms of the type

[E{gijg>mn}]kl =
K∑
α=1

K∑
β=1

(I⊗ [S−1ii ]kα)

E{vec{[Sij ]αk}vec>{[Smn]βl}}(I⊗ [S−1mm]lβ)
> , (61)

that relate the covariance of the gradients to the sample covari-
ance, for any i, j,m, n ∈ {1, . . . , N} and k, l ∈ {1, . . . ,K},
as we now explain. In (61) we reformulated the kth mimj×1
term of gij as

vec{[S−1ii Sij ]kk} =
K∑
α=1

(I⊗ [S−1ii ]kα)vec{[Sij ]αk} , (62)

which follows from applying vec{·} to

[S−1ii Sij ]kk =

K∑
α=1

[S−1ii ]kα[Sij ]αk (63)

and then (41c) in order to separate the stochastic and the
deterministic terms. The equality in (63) follows from Sii ∈
B1K⊗mi

. Using the explicit form

[Sij ]αk =
1

T

T∑
t=1

s
[α]
i (t)s

[k]>
j (t) (64)

and following steps similar to those in [41, Appendix D], one
obtains

[E{gijg>mn}]kl =


1
T (S

[k,l]
jj ⊗ [S−1ii ]kl) (m,n) = (i, j)

1
T T mj ,mi

δkl (m,n) = (j, i)
0 o.w.

which is the block-wise form of (60). As in [41, Appendix D],
the derivation is based on E{si(t)s>j 6=i(r)} = 0 ∀r, t,
E{si(t)} = 0 ∀i, t and sample decorrelation (in accordance
with Section III), without resorting to any further assumptions
on the distributions of the samples.
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