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Joint Independent Subspace Analysis
Using Second-Order Statistics

Dana Lahat and Christian Jutten, Fellow, IEEE

Abstract—This paper deals with a novel generalization of
classical blind source separation (BSS)/independent component
analysis (ICA) in two directions. First, we relax the constraint
that the latent sources must be statistically independent. This
generalization is well-known and often termed independent
subspace analysis (ISA). Second, we deal with joint analysis of
several such ISA problems, where the link between mixtures is
formed by statistical dependence across corresponding sources in
different mixtures. For the case that the data is one-dimensional,
i.e., multiple ICA problems, this model, termed independent
vector analysis (IVA), is well-known and has already been studied.
Therefore, in this work, we generalize IVA to multidimensional
components and term this new model joint ISA (JISA). We
provide full performance analysis of this new model, including
closed-form expressions for minimal mean square error (MSE),
Fisher information matrix (FIM) and Cramér-Rao lower bound
(CRLB) in the separation of Gaussian data. We prove in theory
and validate in numerical simulations that this analysis predicts
the MSE also for non-Gaussian data, when second-order statistics
(SOS) are used. We present a Newton-based algorithm that
converges in a significantly smaller number of iterations than
the previously proposed relative gradient (RG) approach. We
show that all our results indeed generalize previously-known
results on IVA via SOS, including the ability to resolve static
mixtures of Gaussian stationary data and the individual arbitrary
permutation. Finally, we discuss some links between this model
and BSS of non-stationary multidimensional data.

Index Terms—Joint blind source separation, independent vec-
tor analysis, independent subspace analysis, multidimensional
independent component analysis, joint block diagonalization,
second-order methods, performance analysis, algorithms

I. INTRODUCTION

I n this work, we present a model inspired by two recently-
proposed extensions to blind source separation (BSS) that

until now have been dealt with only separately: (1) relaxing
the constraint that latent sources within a set of measurements
must be statistically independent, often termed multidimen-
sional independent component analysis (MICA) or indepen-
dent subspace analysis (ISA) [1]–[3], and (2) solving several
BSS problems simultaneously by exploiting statistical depen-
dencies between latent sources across sets of measurements, a
model usually known as independent vector analysis (IVA) or
joint BSS (JBSS) [4], [5]. The new model, termed joint ISA
(JISA) [6], is a generalization of JBSS to multidimensional
components.

The idea of solving the multidimensional components prob-
lem in terms of subspace separation through independent
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component analysis (ICA) was first demonstrated in [1], on
fetal electrocardiography (ECG) recordings. The perspective
of multidimensional ICA, of vector-valued components whose
representation is based on unambiguous projections on the
sources’ respective subspaces, was presented in [1], and an
elaborate geometric framework was suggested in [2]. A preva-
lent approach for ISA consists of using ICA-based algorithms
followed by a clustering step [7]–[10]. Algorithms that exploit
the true multidimensional nature of the data can be found,
for example, in [3], [11]–[16]. A theoretical analysis of the
advantage, in terms of component estimation error, of using
the true multidimensional model over the more prevalent
two-step approach of BSS followed by a clustering step is
given in [17] for real Gaussian piecewise-stationary data.
Identifiability and uniqueness of decompositions into invariant
subspaces of dimensions larger than one are discussed in [18]–
[21].

Multidimensional data may occur due to various complex
relations and processes within the underlying phenomena.
The dimension of a dependent group may not always re-
flect the number of its underlying physical elements. As a
result, in multidimensional models, there is not always a
physically meaningful interpretation to separating the multidi-
mensional components back into single-dimensional elements.
This holds, for example, in neurological activity observed
by functional magnetic resonance imaging (fMRI) [22] and
electroencephalography (EEG) [23], fetal ECG [1], [2], natural
images [3] and astrophysical processes [24]. For such data, a
one-dimensional model is often just an approximation. In this
work, we focus on separation into subspaces that represent
statistically independent multivariate components. Further de-
composition, within a dependent group, if admissible by the
application, is beyond the scope of this paper.

One of the earliest frameworks to simultaneously analyse
several datasets through statistical links between their latent
parameters is canonical correlation analysis (CCA) [25]. The
idea to simultaneously solve several ICA problems by exploit-
ing higher-order statistical dependence between latent sources
across sets of measurements was introduced by Kim et al. [4],
[26], and termed IVA. The method has been shown to be
able to resolve the permutation ambiguity that is inherent to
classical ICA up to a single permutation matrix that is common
to all sets of measurements [4], [26]. Li et al. [5] have shown
that the IVA framework, which they termed JBSS, provides
sufficient constraints for identifying real Gaussian stationary
processes that had been mixed by an invertible matrix, a
problem that is ill-posed with classical BSS/ICA, where each
mixture is processed separately [27]. Li et al. [28] have shown
that JBSS can be formulated as a coupled matrix diagonaliza-
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tion problem that minimizes a quadratic criterion, and solved
by exploiting either second- or higher-order statistics. This
observation, that coupled matrix factorizations enjoy more
relaxed uniqueness conditions, finds its tensor counterpart
in [21]. Recently, JBSS algorithms that minimize the maxi-
mum likelihood (ML), mutual information (MI) and entropy
have been proposed [29], [30]. When only two datasets are
involved, second-order statistics (SOS) JBSS amounts to CCA
and can be solved in closed-form using generalized eigenvalue
decomposition (GEVD) [31, Chapter 12]. A comprehensive
theoretical analysis of IVA can be found in [30] and references
therein.

Considering the growing evidence of IVA as a helpful tool
in various applications such as multiset data analysis [5],
[28], [30], hyperscanning [32] and dynamic systems [33],
and the fact that natural signals are often better modelled as
multidimensional, it is only natural to take advantage of the
benefits of both.

The JISA model, which is the core of this paper, and a
SOS-based relative gradient (RG) algorithm that achieves the
optimal separation in the presence of Gaussian data, were
first presented in [6]. The novelty and contribution of this
paper is in providing a comprehensive theoretical analysis to
the SOS approach in [6], including closed-form expressions
for the mean square error (MSE), Fisher information matrix
(FIM) and Cramér-Rao lower bound (CRLB), that also results
in a quasi-Newton (QN) algorithm that convergence in a
significantly smaller number of iterations than the previously-
proposed RG approach. We mention that a gradient algorithm
that performs JISA based on the multivariate Laplace distri-
bution has recently been proposed in [34].

In this paper, we adopt the analytical approach based on
small-error analysis that was used in [17], [35] to analyse
the performance of non-stationary multidimensional BSS. Al-
though the two models are essentially different, this approach
makes some interesting similarities and analogies between the
two models be manifested.

The following notations and conventions are used through-
out this paper. Bold lowercase letters denote vectors; regu-
lar lowercase letters denote scalars. Bold uppercase letters
denote matrices; regular uppercase letters denote functions
or operators; calligraphic uppercase letters denote sets. For
simplicity, we assume that all values are real. Trace is denoted
by tr{·}; (·)† denotes transpose. |a|2 = a†a for any vector a.
A−† = (A−1)† whenever the inverse exists. vec{·} denotes
the operator that stacks the columns of a P × Q matrix into
a PQ × 1 vector. The direct sum of K rectangular matrices
M[k] is denoted by ⊕Kk=1M

[k] and yields a block-diagonal
matrix with M[k] as its kth diagonal element. The operator
bdiagb{M}, given a P × P matrix M and a vector b of
positive integers that sum up to P , extracts from M a block-
diagonal matrix with block-pattern b and zeroes the off-
diagonal blocks. bdiag−1b {·} stands for (bdiagb{·})−1. Bb
denotes the subspace of all invertible block-diagonal matrices
with block-pattern b. 0 denotes a one- or two-dimensional
array of zeros. 1P denotes an P × 1 vector of ones. IP
stands for the P × P identity matrix, with dimensions that

are omitted if they are implicit. E{·} denotes expectation.
Cov(a) = E{aa†}, Cov(a,b) = E{ab†} for any stochastic
vectors a,b with E{a} = 0. ‖ · ‖2 denotes the Frobenius
norm; δij denotes the Kronecker delta. The Kronecker product
is denoted by ⊗. Let Aij and Bij denote the (i, j)th mi×nj
and pi × qj blocks of partitioned matrices A and B, respec-
tively. Then, the Khatri-Rao product [36]–[39] is defined as

A � B =

[
A11⊗B11 A12⊗B12 ···
A21⊗B21 A22⊗B22 ···

...
...

. . .

]
, where Aij ⊗ Bij and

A�B are mipi×njqj and (
∑
mipi)×(

∑
njqj), respectively.

Ω(f) stands for zero-mean stochastic terms whose standard
deviation is proportional to f , or to higher powers thereof.
O(f) stands for deterministic terms that are bounded above,
up to a constant factor, by f .

The rest of this paper is organized as follows. In Sec. II
we present and define the model that we denote JISA, and
formalize it mathematically. In Sec. III we present a SOS
approach to JISA. Sec. II–III recall results from [6], whereas
the novelty is in the sections that follow. Sec. IV provides
a theoretical SOS error analysis of the proposed approach.
Sec. V briefly discusses the well-posedness of the model.
In Sec. VI we present a QN algorithm that asymptotically
achieves the theoretical error derived in Sec. IV and thus
the minimal mean square error (MMSE) for Gaussian data.
Numerical experiments in Sec. VII validate the our results.
We conclude our paper with a discussion in Sec. VIII.

II. JISA: MODEL AND PROBLEM FORMULATION

Consider T observations of K vectors x[k](t), modelled as

x[k](t) = A[k]s[k](t) 1 ≤ t ≤ T , 1 ≤ k ≤ K , (1)

where A[k] are M ×M invertible matrices that may be differ-
ent ∀k, and x[k](t) and s[k](t) are M ×1 vectors. For fixed k,
each mixture (1) corresponds to classical BSS. In JBSS, the
elements of the K×1 vector sJBSS

i (t) = [s
[1]
i (t), . . . , s

[K]
i (t)]†,

i = 1, . . . ,M , are statistically dependent whereas the pairs
(sJBSS
i (t), sJBSS

j (t)) are statistically independent for all i 6= j ∈
{1, . . . ,M}. Therefore, JBSS aims at extracting M mutually
independent vector elements (whence the name IVA) from K
sets of measurements by exploiting not only the statistical
independence within each set of measurements but also the
dependence across sets of measurements.

Given the partition s[k](t) = [s
[k]†
1 (t), . . . , s

[k]†
N (t)]†, where

N ≤ M , s
[k]
i (t) are mi × 1 vectors, mi ≥ 1,

∑N
i=1mi =

M , and the probability density function (pdf) of each mi-
dimensional random process s

[k]
i (t) irreducible in the sense

that it cannot be factorized into a product of non-trivial pdfs,
then each mixture (1) represents a single ISA problem. The
model that we define1 as JISA corresponds to linking several
such ISA problems via the assumption that the elements of

1This formulation is sufficiently simple to keep notations and derivations
easily tractable yet at the same time sufficiently rich to encompass the
essential properties of JISA. Our results generalize straightforwardly to
multidimemsional components of different dimensions, as long as A[k], now
of different dimensions, remain invertible. One can also relax the statistical
dependence across mixtures, as long as uniqueness is preserved, see also
Sec. V, footnote 4 and Sec. VIII.
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the ni × 1 vector si(t) = [s
[1]†
i (t), . . . , s

[K]†
i (t)]†, where

ni = Kmi, are statistically dependent whereas the pairs
(si(t), sj(t)) are statistically independent for all i 6= j ∈
{1, . . . , N}.

Given M = {mi}Ni=1 and the set of observations X =
{x[k](t)}K ,T

k=1,t=1, the problem of JISA is that of finding linear
transformations A−[k] on X such that the source vectors
s1(t), . . . , sN (t) are as independent as possible. This notion
is given a definite meaning in Section III where we set up a
simple statistical model that, via its likelihood function, yields
a quantitative measure of independence.

The above partition of s[k](t) induces a corresponding
partition in the mixing matrices: A[k] = [A

[k]
1 | · · · |AN ] with

A
[k]
i the ith M×mi column-block of A[k]. The multiplicative

model (1) may now be rewritten as a sum of N ≤ M
multidimensional components:

x[k](t) =

N∑
i=1

x
[k]
i (t) (2)

where the ith M × 1 component x
[k]
i (t) is defined as

x
[k]
i (t) = A

[k]
i s

[k]
i (t) . (3)

In a blind context, the component vector x
[k]
i (t) is better

defined than the source vector s
[k]
i (t). Indeed, for any invert-

ible mi × mi matrix Z
[k]
ii , it is impossible to discriminate

between the representation of a component x
[k]
i (t) by the

pair (A
[k]
i , s

[k]
i (t)) and (A

[k]
i Z

−[k]
ii ,Z

[k]
ii s

[k]
i (t)), where Z

−[k]
ii

denotes (Z
[k]
ii )−1. This means that only the column space of

A
[k]
i , span(A

[k]
i ), can be blindly identified. Therefore, JISA

is in fact a (joint) subspace estimation problem. We further
note that (2) is invariant to arbitrary permutation of the source
indices. If all the linear transformations on {x[k](t)} that
maximize statistical independence between s1(t), . . . , sN (t)
yield the same components, we say that the JISA model is
unique.

Further insights can be obtained by rewriting (1) as

x(t) = As(t) (4)

where s(t) = [s[1]†(t), . . . , s[K]†(t)]† and x(t) =
[x[1]†(t), . . . ,x[K]†(t)]† are L × 1 vectors, where L = KM ,
and A = ⊕Kk=1A

[k] ∈ Bk where k = M1K . With these nota-
tions, s̃(t) = Φs(t), where s̃(t) = [s†1(t), . . . , s†N (t)]† and Φ
is the corresponding L×L permutation matrix. Combining (2)
and (3) in (4), one obtains that x(t) =

∑N
i=1(IK �Ai)si(t),

where Ai , [A
[1]
i | · · · |A

[K]
i ] and IK partitioned columnwise.

The latter implies that x(t) is invariant to permutation of the
indices i = 1, . . . , N for any arbitrary ordering of {1, . . . ,K}
(the ordering of the mixtures is chosen by the user and thus
known). This simple observation amounts to the fact that the
indexing of the latent components must be the same in all
the mixtures. This proves that the ability of IVA to provide a
single permutation matrix to all the involved mixtures (Sec. I)
indeed generalizes to the multidimensional case.

As we shall see later, it is useful to introduce the separating
projectors: these are the M ×M oblique projection matrices
P

[k]
i onto span(A

[k]
i ) along span(A

[k]
j ) ∀j 6= i. By definition,

they satisfy P
[k]
i A

[k]
j = δijA

[k]
i , unaffected if A

[k]
i is changed

into A
[k]
i Z

−[k]
ii and, most importantly, allow one to write

x
[k]
i (t) = P

[k]
i x[k](t) . (5)

Finally, note that if B[k] = A−[k] is partitioned into N

horizontal mi ×M blocks B
[k]
i , then the rank-mi ith oblique

projection is given by

P
[k]
i = A

[k]
i B

[k]
i . (6)

Alternatively, one can define oblique projections such that
Pix(t) = xi(t), xi(t) = [x[1]†(t), . . . ,x[K]†(t)]†. It is easy
to verify that Pi = ⊕Kk=1P

[k]
i .

In the rest of this paper, we focus on JISA using SOS. As-
suming sample independence ∀t 6= t′, the model assumptions

imply that S̃ , E{s̃(t)s̃†(t)} =

[
S11 0 0

0
. . . 0

0 SNN

]
= ⊕Ni=1Sii ∈

Bn, where S̃ is a L × L block-diagonal matrix with block-
pattern n = [n1, . . . , nN ]† and

S̃ = ΦSΦ† ∈ Bn . (7)

The (i, j)th ni × nj block of S̃ is Sij = E{si(t)s†j(t)}
for 1 ≤ i, j ≤ N . Its empirical counterpart is Sij =
1
T

∑T
t=1 si(t)s

†
j(t). The linear model (4) implies that X =

ASA† where S = E{s(t)s†(t)} and X = E{x(t)x†(t)}. In
the sequel, we assume that all Sii are invertible and do not
contain values fixed to zero; in practice, this assumption could
be relaxed, as explained in footnote 1; further discussion of
this matter is beyond the scope of this work. Typical structures
of A, Φ, S, S̃ and X are illustrated in Fig. 1.
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(h) X = ASA†

Fig. 1. Structure of typical matrices used in JISA. M = {1, 2, 3}, K = 4.
False colours.
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III. OPTIMAL COMPONENT SEPARATION USING SOS
In the following, we consider a Gaussian model in which

si(t) ∼ N (0ni×1,Sii) are mutually independent samples ∀t 6=
t′. The log-likelihood for the model just described is

log p(X ;A,S) , − Tφ(A,S) =

T∑
t=1

log p(x(t))

= − 1

2

T∑
t=1

(log det 2πX + x†(t)X−1x(t))

= − T

2

(
log det 2πX + tr{XX−1}

)
= − TD(X,X)− κ = − TD(X,ASA†)− κ
= − TD(ΦA−1XA−†Φ†, S̃)− κ (8)

where A = {A[k]}Kk=1 and X = 1
T

∑T
t=1 x(t)x†(t) is the

empirical counterpart of X. The term κ = T
2 (log det(2πX) +

L) is irrelevant to the maximization of the likelihood since
it depends only on the data and not on the parameters. The
second equality in (8) is due to the assumption of pairwise
sample independence for t 6= t′. The third equality is due to the
Gaussian assumption and (4) that imply x(t) ∼ N (0L×1,X).
The fourth equality uses the property a†Ra = tr{Raa†} for
any vector a and matrix R of appropriate dimensions. The
scalar

D(R1,R2) =
1

2
(tr{R1R

−1
2 } − log det(R1R

−1
2 )−M) , (9)

defined for any two M ×M symmetric positive-definite ma-
trices R1 and R2, is the Kullback-Leibler divergence (KLD)
between the distributions N (0,R1) and N (0,R2) [40]. The
last equality in (8) follows from (7), (9) and (46d). The
derivation of (8) follows similar lines as those used in [35,
Sec. III] and [41, Sec. 3].

A. Maximum Likelihood with respect to (w.r.t.) the Nuisance
Parameters and Contrast Function

Given the block-diagonal structure of S̃, the last step in (8)
gives rise to its ML estimate [35, Appendix B]̂̃

S
ML

= bdiagn{ΦA−1XA−†Φ†} (10a)

ŜML = Φ† bdiagn{ΦA−1XA−†Φ†}Φ (10b)

where (10b) is due to (7). We can now write

max
S

log p(X ;A,S) = − TC(A) + κ , (11)

where in the latter we have defined the contrast function [42]

C(A) = D(ΦA−1XA−†Φ†,bdiagn{ΦA−1XA−†Φ†}) (12)

It holds that D(R,bdiagb{R}) ≥ 0 with equality if and only
if (iff) R ∈ Bb. Hence, for any positive-definite matrix R,
D(R,bdiagb{R}) is a measure of the block-diagonality of
R. Therefore, minimizing the contrast function2 (12) amounts
to (approximate) block diagonalization of X by a permuted
block-diagonal matrix ΦA−1.

Note 1. The result in [41, Sec. 3.3] is a special case of (10b)
when mi = 1 ∀i.

2We assume that an optimum exists.

B. Estimating Equations

The next step is estimating A. This is achieved by charac-
terizing the stationary points of the contrast function (12). For
this purpose, we calculate the derivative of φ(A,S) w.r.t. each
A[k] separately, for fixed S and A\A[k], as we now explain.
Consider a relative variation A[k] → A[k](I + δ[k])−1, where
δ[k] is M ×M and has arbitrary values but such that I + δ[k]

is invertible3. Then, the first-order variation of φ(A,S) when
A[k] is replaced by A[k](I + δ[k])−1 can always be expressed
by the Taylor expansion

φ(
{
A \A[k],A[k](I + δ[k])−1

}
,S) = φ(A,S)

+ tr{(∇φ[k](A,S))†δ[k]}+O(‖δ[k]‖2) , (13)

where ∇φ[k](A,S) denotes the M × M RG of φ(A,S)
w.r.t. A[k]. Derivation similar to [35, Sec. III.D] yields

∇φ[k](A,S) = J†kS
−1A−1XA−†Jk − IM , (14)

where Jk is the kth L×M block of IL = [J1, . . . ,JK ]. The
K terms ∇φ[k](A,S) in (14) can be collected into

∇φ(A,S) ,
K∑
k=1

Jk∇φ[k](A,S)J†k = ⊕Kk=1∇φ[k](A,S)

= bdiagk{S−1A−1XA−†} − IL . (15)

It can be shown that the first-order variation of C(A)
w.r.t. A[k], derived similarly to (13)–(14), obeys

∇C [k](A) = ∇φ[k](A,S)
∣∣
S=ŜML . (16)

Given (15), (16), (10b) and ∇C(A) = ⊕Kk=1∇C [k](A), we
can now write

∇C(A) = ∇φ(A,S)|S=ŜML = (17)

bdiagk{Φ
† bdiag−1n {ΦA−1XA−†Φ†}ΦA−1XA−†} − I .

Values of A that maximize the likelihood and thus minimize
C(A) also satisfy ∇C(A) = 0. Hence, in the sequel, matrices
that satisfy the estimating equations

bdiagk{Φ
† bdiag−1n {ΦA−1XA−†Φ†}ΦA−1XA−†} = I

(18)

are denoted Â[k]ML. The associated oblique projections (6)
are denoted P̂

[k]ML
i . The corresponding component estimates

are given by

x̂
[k]ML
i (t) , P̂

[k]ML
i x[k](t) , (19)

which follows from (5).

3It should be emphasized that A is block-diagonal by definition and thus
there is absolutely no meaning to perturbing its off-block-diagonal entries.
This is the bifurcation point from which the derivation of the RG takes a
different path than that in [35].
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C. Figure of Merit: Mean Square Error

Our goal is component separation. Therefore, the problem
of JISA consists in estimating x

[k]
i (t) given only X and M.

Consequently, we define the figure of merit as the MSE in the
estimation of x

[k]
i (t),

M̂SE
[k]

i =
1

T

T∑
t=1

‖x̂[k]
i (t)− x

[k]
i (t)‖2 , (20)

where ‖·‖ denotes the Frobenius norm. Alternatively, we may
be interested in the (normalized) MSE in the estimation of
xi(t) = [x

[1]†
i (t), . . . ,x

[K]†
i (t)]†,

M̂SEi =
1

σ2
i

1

T

T∑
t=1

‖x̂i(t)− xi(t)‖2 , (21)

where σ2
i = E{‖xi(t)‖2}. For Gaussian data, estimates of

xi(t) obtained via (19) from matrices that satisfy (18) achieve
asymptotically (i.e., T →∞) the MMSE.

IV. ERROR ANALYSIS

We now turn to the error analysis of our model. This will
lead us to a closed-form expression for the FIM and CRLB in
the estimation of the oblique projections and to the MSE in
component estimation.

A. Error Decomposition

A difficulty in the error analysis of blind subspace esti-
mation stems from the inability to characterize the error in
the mixing matrices, due to severe indeterminacies they suffer
from (Sec. II). We thus begin by defining convenient error
terms. In order to focus on well-defined quantities, we consider
the errors

δP
[k]
i , P̂

[k]
i −P

[k]
i (22)

in P̂
[k]
i , the estimates of the oblique projectors P

[k]
i . Ac-

cordingly, the estimate of x
[k]
i (t) is x̂

[k]
i (t) = P̂

[k]
i x[k](t) =

x
[k]
i (t) + δP

[k]
i x[k](t), which follows from (5), (19) and (22).

Consequently, the component estimation error is given by

x̂
[k]
i (t)− x

[k]
i (t) = δP

[k]
i x[k](t) (23)

and (20) can be rewritten as

M̂SE
[k]

i =
1

T

T∑
t=1

‖δP[k]
i x[k](t)‖2

= tr{(X[k,k] ⊗ IM )vec{δP[k]
i }vec†{δP[k]

i }} (24)

where the last equality uses ‖a‖2 = tr{aa†} and Property A.1
in Appendix A. X

[k,l]
and X[k,l] denote the (k, l)th blocks,

according to block-partition k, of X and X, respectively. It
can be shown (Appendix B) that asymptotically,

MSE
[k]
i , E{M̂SE

[k]

i } (25)

= tr{(X[k,k] ⊗ IM ) Cov(vec{δP[k]
i })}+O( 1

T 3/2 ) .

In the following, we set out to obtain a closed-form expres-
sion for Cov(vec{δP[k]

i }) as a function only of the model
parameters, that will conclude the derivation of the MSE.

B. First-Order Approximation of δP[k]
i

In general, any estimate or approximation of A[k] can
be rewritten as a product of A[k] and some perturbation
matrix. In addition, as explained in Appendix D, the contrast
function (12) is invariant to right-multiplying each A[k] by any
Λ[k] ∈ Bm, m = [m1, . . . ,mN ]†. Hence, the most general
form of the minimizer of (12) can be formulated as

Â[k] = A[k](IM + E [k])−1Λ[k] , (26)

where the M ×M matrix E [k] reflects the relative change in
A[k], up to the scale ambiguity which is represented by Λ[k].
In Appendix E we show that

δP
[k]
i = A[k](

∑
j 6=i

EiE [k]
ij E†j −EjE [k]

ji E†i )A
−[k] (27)

+O(‖E [k]‖2)

where Ei is the ith M × mi block of IM = [E1, . . . ,EN ].
The mi ×mj matrix E [k]

ij denotes the (i, j)th block of E [k],
according to partition m. Since Λ[k] has vanished from (27),
we can proceed with our error analysis without worrying about
the scale ambiguity.

C. Influence Function

In order to evaluate the covariance of the error terms, we
first establish the first-order expansion of E [k]

ij in terms of
the sample covariance matrices. The key assumption for our
blind separation is source decorrelation: S

[k,l]
ij = E{S[k,l]

ij } =
0mi×mj for j 6= i and any k, l, where

S
[k,l]

ij =
1

T

T∑
t=1

s
[k]
i (t)s

[l]†
j (t) . (28)

However, because of finite sample size, its empirical counter-
part does not hold; that is, S

[k,l]

ij 6= 0mi×mj
. In this section,

we develop the error analysis in the regime of small errors;
that is, we analyze the error terms E = {E [k]}Kk=1 at first-order
in S

[k,l]

ij , when asymptotic conditions (Sec. III-C) hold.
The first-order expansion of the estimating equations (18)

yields (see Appendix F) KN(N − 1) equations that can be
written pairwise, for each i 6= j and all k, as

−[S−1ii Sij ]kk =

K∑
l=1

[S−1ii ]klE [l]
ijS

[l,k]
jj + (E [k]

ij )† + Ω( 1
T )

−[S−1jj Sji]kk =

K∑
l=1

[S−1jj ]klE [l]
jiS

[l,k]
ii + (E [k]

ji )† + Ω( 1
T )

(29)

where [·]kl stands for the (k, l)th block of the term in brackets
in the appropriate partition. Equation set (29) shows that
asymptotically, for each pair of components (i 6= j), the error
terms {E [k]

ij ,E
[k]
ji }Kk=1 are related to the corresponding pair of

matrices (Sij ,Sji) that represents the error in the decorrelation
of different groups of dependent sources. Such a pairwise
decoupling is customary in the asymptotic analysis of BSS
algorithms, e.g. , [43, Theorem 11] [17], [35], [44], [45].
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Using the vec{·} operator, (29) can be rewritten, for each
pair i 6= j, as

−g = He + Ω( 1
T ) (30)

where e and g are 2Kmimj × 1 vectors,

e =

[
eij
eji

]
, eij =


vec{E [1]

ij }
...

vec{E [K]
ij }

 , (31)

g =

[
gij
gji

]
, gij =

 vec{[S−1ii Sij ]11}
...

vec{[S−1ii Sij ]KK}

 (32)

and

H =

[
Sjj � S−1ii IK ⊗ T mj ,mi

IK ⊗ T mi,mj
Sii � S−1jj

]
(33)

is a 2Kmimj × 2Kmimj matrix.

Sjj � S−1ii =


S
[1,1]
jj ⊗ [S−1ii ]11 · · · S

[1,K]
jj ⊗ [S−1ii ]11

...
...

S
[K,1]
jj ⊗ [S−1ii ]K1 · · · S

[K,K]
jj ⊗ [S−1ii ]KK


is a Kmimj×Kmimj matrix whose (k, l)th block according
to the partition mimj1K is S

[k,l]
jj ⊗ [S−1ii ]kl. In the transition

from (29) to (30), (31), (32) and (33) we have used the
identities (46) in Appendix A. The commutation matrix [46]
TP,Q ∈ RPQ×PQ is such that vec{M†} = TP,Qvec{M} for
any M ∈ RP×Q. More properties of the commutation matrix
can be found in Appendix A. Assuming that H is invertible4,
we rewrite (30) as

e = −H−1g + Ω( 1
T ) i 6= j . (34)

Equation (34) shows how the empirical correlation between the
sources, that is, the fact that Sij is non-zero in finite sample
size, results in non-zero terms E . Equation (34) is the desired
closed-form, first-order expression for the error terms in (27).

D. Closed-From Expressions for Cov(vec{δP
[k]
i }) and MSE

The first step in expressing Cov(vec{δP[k]
i }) as a function

of the model parameters is vectorizing (27). Using iden-
tity (46c) we obtain

vec{δP
[k]
i } = (A−[k]† ⊗A[k])

N∑
j 6=i

(
(Ej ⊗Ei)vec{E [k]

ij }

− (Ei ⊗Ej)vec{E [k]
ji }
)

+ Ω( 1
T ) . (35)

The covariance of vec{δP
[k]
i } can be expressed as

Cov(vec{δP
[k]
i }) = (A−[k]† ⊗A[k]) (36)

(M11 + M12 + M21 + M22)(A−[k] ⊗A[k]†) +O( 1
T 3/2 )

4In the sequel, we assume that H in invertible. The invertibility of H is
associated with the uniqueness of the model. Further discussion of this point
is beyond the scope of this paper.

where

M ,

[
M11M12

M21M22

]
,

Nc∑
j 6=i

Fij Cov

([
vec{E [k]

ij }
vec{E [k]

ji }

])
F†ij , (37)

Fij ,

[
Ej ⊗Ei 0

0 −Ei ⊗Ej

]
and

Cov(e) =
1

T
H−1 Cov(g)H−1 =

1

T
H−1 +O( 1

T 3/2 ) , (38)

as we now explain. Eq. (38) follows from Appendix G, where
we show that Cov(g) = 1

TH. Eq. (38) fully characterizes the
covariance terms in (37). The asymptotic error term in (38)
and (36) and the elimination of the double sum in (37)
follow from Appendix G, which implies, combined with (34),
that the pairs (E [k]

ij ,E
[k]
ai ) and (E [k]

ij ,E
[k]
ia ) are asymptotically

uncorrelated ∀a 6= j. We have thus obtained a closed-form
expression (36) for the covariance of all the entries of δP[k]

i

that is a function only of the model parameters A, S and M
and that is invariant to the arbitrary scaling between A and S.
This expression can be substituted in (25) for a closed-form
expression of the MSE. Further simplification of the MSE can
be obtained by using property (46d) and the block-diagnoal
structure of S[k,k]. This allows us to write

MSE
[k]
i = tr

{
(X[k,k] ⊗ IM )(A−[k]† ⊗A[k])

(M11 + M22)(A−[k] ⊗A[k]†)
}

+O( 1
T 3/2 ) (39)

where the terms that depend on M12 and M21, defined in (37),
vanish.

E. FIM, CRLB and MMSE

For samples that follow the Gaussian model in Sec. II,
the results in this section have the following interpretation.
Eq. (36) is the asymptotically achievable CRLB on the esti-
mation of P

[k]
i and its inverse is the FIM. Accordingly, (39)

is the MMSE.
We point out that all the derivations in Sec. IV and the

related appendices do not rely on the Gaussian distribution
nor on statistics of order larger than two. Therefore, all the
equalities in this section hold also for non-Gaussian observa-
tions. That is, (36) and (39) still reflect the error covariance
and MSE if we apply the methods in Sec. III; however, the
CRLB, FIM and MMSE interpretation no longer applies.

V. WELL-POSEDNESS OF THE JISA SOS MODEL

We now discuss conditions under which blind identification
of the component subspaces is possible.

1) Degrees of Freedom: Let us compare the number of de-
grees of freedom in the model with the number of constraints
in the data, as in [35, Sec. V.A]. The data are represented by
a symmetric L × L matrix, such that the model tries to fit
Ndata = 1

2L(L− 1) scalar numbers.
The model consists of K M ×M mixing matrices and N

ni × ni source covariance matrices. These provide Nmodel =
K(M2−

∑N
i=1m

2
i ) + 1

2

∑
i=1 ni(ni− 1) effective free scalar
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parameters, when scale ambiguities are taken into account. It
is immediate to verify that

Ndata −Nmodel =
1

2
(K − 2)(M2 −

N∑
i=1

m2
i ) (40)

Hence, as soon as K > 1, there are as many scalar statistics
as free parameters in the model. The same calculation shows
that imposing statistical independence of all pairs (s[k]i , s

[k′ 6=k]
i )

yields a model that is never blindly identifiable using SOS.
This result is not surprising, since such a model amounts to
K separate BSS problems.

2) Uniqueness and Identifiability: The previous argument
makes it plausible that for randomly chosen source covariance
matrices, the component subspaces can be uniquely identified.
In fact, and generalizing IVA [47], the uniqueness of the
JISA model can be preserved even if not all entries of si(t)
are mutually statistically dependent; further discussion of this
point is beyond the scope of this paper. In the following, we
assume that the uniqueness conditions are satisfied. It is only
for the simplicity of presentation that, in this paper, we assume
that all corresponding components are mutually dependent,
i.e., no entries fixed to zero in Sii. Since the mixing matrices
are assumed to be invertible, uniqueness of the decomposition
implies identifiability of the model.

VI. ALGORITHM

The error analysis in Sec. IV gives rise to a QN algorithm,
which is given in pseudocode in Algorithm 1. In [6], a RG
algorithm based on the derivation in Sec. III was introduced.
Both algorithms maximize the same contrast function (12) and
thus obtain the same MSE, up to numerical precision. The
QN algorithm is based on approximations of the second-order
derivatives and thus enjoys improved convergence properties
such as a much smaller number of iterations.

Algorithm 1 An iterative algorithm for JISA

1: function JISA(X, Φ, Ainit, m, threshold, K)
2: A← Ainit, R← X . Init
3: while ‖∇C‖ > threshold do
4: for i=2:N, j=1:i-1 do . Sweep on (i, j 6= i)

5: g←
[

vecbdmi1K×mj1K
{R−1ii Rij}

vecbdmj1K×mi1K
{R−1jj Rji}

]
. (32)

6: H←
[

Rjj �R−1ii IK ⊗ T mj ,mi

IK ⊗ T mi,mj
Rii �R−1jj

]
. (33)

7: Evaluate E [k]
ij ,E

[k]
ji , k=1,. . . ,K . (34)

8: Set {E [k]
ij ,E

[k]
ji }Kk=1 in E = ⊕Kk=1E

[k]

9: T← I + E . E [k]
ii = 0

10: R← T−1RT−†

11: A← AT . For output only
12: end for
13: Y ← ΦA−1RA−†Φ†

14: ∇C ← bdiagk{Φ
† bdiag−1n {Y}YΦ} − I . (17)

15: end while
16: return A
17: end function

In line 5 of Algorithm 1 we introduced the operator
vecbdα×β{X} ,

[
vec†{X11} . . . vec†{XKK}

]†
,where

vecbdα×β{X} is a vector that consists only of the (vectorized)
entries of the block-diagonal blocks of matrix X. Matrices
Xkk are the blocks on the main diagonal of X where the
rows of X are partitioned according to α and the columns by
β.

Naturally, the elements of the gradient g (line 5 of Al-
gorithm 1) correspond to certain entries of ∇C(A) (line 14
of Algorithm 1). However, since g changes within the loop,
then ∇C(A), which consists of gradient values for all pairs
(i, j), has to be fully re-calculated again at the exit. In line 8,
it follows from (18) that bdiagk{∇C(A)} is invariant to
changes in X; therefore, we set E [k]

ii = 0.

VII. NUMERICAL VALIDATION

In this section, we validate the theoretical results that were
derived in previous sections. The main contribution of this
paper is illustrated in Fig. 3–4, in which we validate, using
the QN Algorithm 1, that the closed-form expression for the
MSE (25), developed in Sec. IV, indeed predicts correctly the
empirical MSE (21). Fig. 3–4 also illustrate the gain from us-
ing the true multidimensional approach (JISA) over analysis in
one-dimensional terms (IVA) followed by clustering the output
into the appropriate subspaces. Finally, Fig. 4 validates that
indeed our SOS analysis holds equally well for non-Gaussian
data, as explained in Sec. IV-E. The proper functioning of
the QN algorithm, in terms of convergence and small number
of iterations, is demonstrated in sec. VII-A. Its component-
separation capacities, as well as the theoretical validation of
the MSE prediction, are illustrated in Sec. VII-B.

In all the following numerical experiments, the real
positive definite matrices Sii are drawn as Sii =

diag−
1
2 {UΛU†}UΛU† diag−

1
2 {UΛU†}, where UΛV† is

the singular value decomposition (SVD) of a Kmi×Kmi ma-
trix whose independent and identically distributed (i.i.d.) en-
tries ∼ N (0, 1). The corresponding samples are created by
right-multiplying the transpose of the Cholesky factorization
of S̃ii with Kmi×T i.i.d. zero-mean, unit-variance numbers:
Gaussian in Sec. VII-A and Fig. 3, Gaussian mixture (GM)
with peaks centred at ±4 in Fig. 4. The stopping threshold is
set to 10−6, and T = 104. For “backwards compatibility” we
verified that our algorithm achieves the same optimum as the
JBSS SOS algorithm in [41] for m = 1M×1, up to acceptable
numerical variations.

Since the component estimates are invariant to block-
diagonal scaling (Sec. II), we are concerned only about per-
mutation issues. Permutation that is not properly corrected is
interpreted as significant errors in component reconstruction.
As follows from Sec. II, JISA usually does not suffer from
permutation errors, at least as long as deviations from the
model due to various errors are sufficiently small. Therefore,
our major concern is the global arbitrary permutation, that
implies that even if the algorithm has converged properly
and found the global minimum of the contrast function, the
evaluation of the MSE per component will fail if this arbitrary
permutation is not corrected w.r.t. the original ordering of the
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components. Since finding an arbitrary permutation requires
enumerating on all M !∏N

i=1(mi!)
options and thus impractical,

we bypassed this issue via the safety margins that we took in
choosing Ainit w.r.t. its true value. More specifically, we set
A[k] = pΥ + (1− p)I and A

[k]
init = pΥ + (1− p)A, p = 0.2,

unless stated otherwise. The entries of Υ are ∼ N (0, 1)

i.i.d. and drawn anew for each A[k] and A
[k]
init.

A. Convergence

We now illustrate the convergence properties of the algo-
rithm. In this example, m = [1, 2, 3]†, K = 4. Only Ainit
varies at each of the 40 Monte Carlo (MC) trials, A, S and S
(the empirical counterpart of S) remain fixed. Fig. 2 shows the
value of the contrast function (up) and number of iterations
(bottom) when the stopping criterion is achieved. At each
trial, the algorithm is run twice on the same data, in two
modes: in the first mode, the input parameter m (Algorithm 1
line 1) reflects the true model structure. In the second mode,
the input parameter is set to 1M×1, a vector of all ones.
The latter implies that the algorithm is ignorant of the true
multidimensional structure of the data and instead tries to fit
it to a one-dimensional model. This corresponds to applying, in
a first step, a classical SOS IVA/JBSS model to the data, with
M = 6 = N independent sources at each mixture. In a second
step, we cluster the output into the correct N multidimensional
components before evaluating the contrast function. We denote
this two-step approach “mismodeling” [17].

It is clear from Fig. 2 (up) that the QN algorithm indeed
converges to the same optimum (up to small variations due to
finite threshold) regardless of init, as expected. It is interesting
to note that in adverse conditions, that is, mismodeling, the
variance is slightly larger. We have noted that this property
becomes more pronounced as the mismodeling further departs
from the true data model. In addition, we note in Fig. 2
(bottom) that the mismodeled case requires a larger number
of iterations to converge. This, too, is expected, since the
algorithm is trying to block-diagonalize S̃ into smaller blocks
than is actually possible (by definition of the multidimesional
model) and thus doing unnecessary work. Comparison (not
presented in this paper) with the RG JISA algorithm [6] has
validated that the QN indeed converges in a much smaller
number of iterations, as expected.

B. Component Separation

We now evaluate the component separation quality of the
proposed model and algorithm. In the following experiment,
we run multiple trials for fixed S, A, and Ainit. Only S varies.
In Fig. 3, m = [6, 5, 1]†, K = 5 and Gaussian samples.
In Fig. 4, m = [3, 5, 4]†, K = 6 and the samples are
generated from numbers with a GM distribution, as explained
at the beginning of Sec. VII. Note that right-multiplying
non-Gaussian numbers with a Cholesky factorization of S̃ii
changes their distribution; however, it is still non-Gaussian.

As in Sec. VII-A, we compare JISA with JBSS. In the
latter case, we cluster the output into the correct N multidi-
mensional components before evaluating the MSE. In JBSS-
mismodeling, we have noted that as the true m departs

4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6
x 10−3

0

20

40

Contrast function

JISA: mean=0.0047±6.2e−13, JBSS+Clustering: mean=0.0055±8.9e−09
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20

40

Number of iterations

JISA: mean=6.9±0.8, JBSS+Clustering: mean=1.2e+02±22

 

 
JISA
JBSS+Clustering

Fig. 2. Convergence of the QN algorithm. Histogram of the value of the
contrast function (up) and number of iterations (bottom) when the stopping
criterion is achieved.

from 1M , at finite sample size, the algorithm becomes more
sensitive to the init, in the sense that the global permutation
matrix deviates from that induced by the original Ainit. In order
to overcome this for the error-analysis validation purpose,
we chose a more strict initialization strategy in which in the
first attempt Ainit is taken from the output of the JISA run,
and if the empirical MSE indicates global permutation that
does not fit the original components (recall explanation at the
introduction to Sec. VII), new Ainit are generated according to
the original procedure until no permutation issues are detected.
For each trial we evaluate the normalized empirical MSE (21).
Fig. 3–4 illustrate our results. Subplot i corresponds to com-
ponent i. Each subplot shows the results of two different runs
of the algorithm on the same data: once as true JISA with the
correct data model, and once mismodeled, as explained earlier
in this section. For each of the two runs of the algorithm,
the mean and standard deviation (std) of M̂SEi are written
above the corresponding sublot, together with the predicted
JISA MSE (25). The histograms represent 200 MC repetitions
of this experiment. The three MSE values are marked on the
histograms.

C. Discussion

Fig. 3–4 validate that the closed-form MSE (25) indeed
predicts the empirical value, both for Gaussian and non-
Gaussian data, as expected. This also serves as an implicit
validation that we are indeed in the small-errors regime. The
small values of the normalized M̂SEi in Fig. 3–4 confirm
that the components have been properly separated. Fig. 3–
4 show that for all three components, there is a significant
improvement (decrease) in MSE when the correct model is
used w.r.t. the mismodeled scenario, both in the mean and in
the std. This observation conforms with previous results on
multidimensional components [17], [35]. The larger std for
the mismodeling scenario, along with the larger std and larger
number of required iterations, observed in Fig. 2, are all due
to the considerable model misfit.

On the other hand, a possible advantage of the
JBSS+clustering approach, that still needs to be verified from
further numerical examinations, is that it is more robust than
JISA to initialization in the sense of convergence to the global
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Fig. 3. Component separation. Histogram of the normalized empirical MSE.
Subplots correspond to components with dimensions 6, 5 and 1, respectively.
K = 5, Gaussian data.

1 2 3 4 5 6 7 8 9
x 10−3

0

20

40

60
MSE:  JISA: 0.0024(predicted: 0.0023)±0.0003, JBSS+Clustering: 0.0051±0.0011

 

 
JISA
JBSS+Clustering
JISA Predicted
JISA Empirical
JBSS+Clustering Empirical

1 2 3 4 5 6 7
x 10−3

0

20

40

60
MSE:  JISA: 0.0017(predicted: 0.0017)±0.00021, JBSS+Clustering: 0.0039±0.00076

 

 
JISA
JBSS+Clustering
JISA Predicted
JISA Empirical
JBSS+Clustering Empirical

1 2 3 4 5 6 7 8
x 10−3

0

20

40

60
MSE:  JISA: 0.0019(predicted: 0.0019)±0.00025, JBSS+Clustering: 0.0044±0.00089

 

 
JISA
JBSS+Clustering
JISA Predicted
JISA Empirical
JBSS+Clustering Empirical

Fig. 4. Component separation. Histogram of the normalized empirical MSE.
Subplots correspond to components with dimensions 3, 5 and 4, respectively.
K = 6, non-Gaussian data.

minimum of the contrast function. We conjecture that since
JISA works in blocks, if the permutation induced by the
initialization does not perfectly fit the arbitrary permutation
of the data, then the algorithm will mix elements of different
blocks and thus will not converge to the global optimum. The
latter problem is prevalent also in other block decompositions
such as joint block diagonalization (JBD) [15].

It should be emphasized that the focus of this paper is on
validating the theoretical error analysis. Therefore, numerical
and practical issues such as: identifying the global permu-
tation, number and dimension of the latent sources, in the

absence of additional information, local minima, and choice
of proper initialization, are beyond the scope of this work.

VIII. DISCUSSION

A. Possible Extensions to the JISA Model

As explained in footnote 1, the basic JISA formulation in
Sec. II is rather basic. It assumes that the matrix and source
subspace partitions all have the same dimensions in all mix-
tures, and a determined (invertible) mixing. Obviously, one can
define a more general JISA model with different dimensions
in each mixture, as explicitly stated in [34]. We deliberately
chose this simplification because it is sufficiently simple to
keep notations and derivations clear and easily tractable yet
at the same time sufficiently rich to encompass the essential
properties of JISA. It is easy to verify that our results and
algorithm generalize straightforwardly to multidimemsional
components of different dimensions, as long as A[k], now of
different dimensions, remain invertible. That is, m[k]

i instead
of mi, M [k] instead of M , and so on. There is no need for new
derivations, only putting the right indices in the right places.
We avoid this in our paper since it clutters the notations and
does not add any fundamental new insights. A generalization
of IVA to matrices of different dimensions has been mentioned
in [28].

As mentioned in footnote 1 and Sec. V, one can relax the
statistical dependence across mixtures, as long as uniqueness
is preserved. This means that one can have also N [k] instead
of N ; this can be accommodated to in our model by setting
certain components to zero, to imply non-corresponding el-
ements. Uniqueness can still hold, in certain conditions, as
one can easily verify numerically. This result can be proved
(though beyond the scope of this paper) and is a generalization
of this property for IVA [30].

Finally, it is straightforward to fuse the JISA model, which
is based on the linked-between-datasets diversity, with the
nonstationarity diversity [17], [35]; this will generalize JISA to
non-stationary or coloured sources, in a straightforward way
as suggested by [32] and [28] for the one-dimensional case
of IVA. These are trivial extensions that do not require any
fundamental change of our derivations or algorithm, only a
weighted average of the likelihood.

B. Alternative Algebraic Representations of JISA

It is interesting to note that JISA has two alternative
algebraic representations. This is analogous to the multidimen-
sional nonstationary SOS-based BSS [17], [35], which can
be treated either as JBD or as a block term decomposition
(BTD) [18].

For the first algebraic form, generalizing IVA/JBSS [28],
JISA can be regarded as a coupled cyclic JBD model, as
follows. Let

S[k,l] , E{s[k](t)s[l]†(t)} =


S
[k,l]
11 0 0

0
. . . 0

0 0 S
[k,l]
NN

 (41)
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where k, l ∈ {1, . . . ,K} and

S
[k,l]
ij = E{s[k]i (t)s

[l]†
j (t)} ∈ Rmi×mj . (42)

The linear model (1) implies that

X[k,l] = A[k]S[k,l]A[l]† ∀k, l (43)

where

X[k,l] = E{x[k](t)x[l]†(t)} . (44)

Eq. (43) can be rewritten as

S[k,l] = A−[k]X[k,l]A−[l]† ∀k, l (45)

Eq. (45) alludes to the desired new coupled JBD problem,
which can be regarded as a “cyclic” form, since the K matrices
on the right-hand side (RHS) and left-hand side (LHS) come
from the same pool of K matrices. Note the analogy to JBD,
in which the RHS and LHS are either identical (symmetric)
or different (asymmetric) [18].

The second algebraic form of JISA is the one in Sec. II,
which can be rephrased as symmetric block-diagonalization
of a matrix by a permuted block-diagonal matrix.

C. Link With JBD and Nonstationary Multidimensional BSS

As briefly mentioned in Sec. I, in this paper, we have used
the same derivation guidelines as in [17], [35]. This is not
surprising, since the two models can be regarded as two dif-
ferent variations on a more general multi-set multidimensional
BSS scenario. In JISA, the added diversity, or link between
K disparate mixtures (1), is an additional assumption of joint
pdf between corresponding sources across mixtures, i.e., S

[k]
ij

generally non-zero. In multidimensional nonstationary BSS,
the diversity, or the property that generates the link, is forcing
A[k] = A (which reduces the number of degrees of freedom)
and then compensating for the lack of equations in the SOS
case (or for Gaussian data) with a nonstationarity assumption
on the sources. The structural similarity between the contrast
function (12) and Hessian in (33) and their counterparts
in [17], [35] expresses the analogy between these two models.

APPENDIX A
SOME ALGEBRAIC PROPERTIES

For ease of reference, we list some useful algebraic proper-
ties. Properties that are not proved below can be found in [46],
[48], [49].

For any matrices M,N,P,Q (with appropriate dimen-
sions),

(N⊗M)(P⊗Q) = NP⊗MQ (46a)

(N⊗M)† = N† ⊗M† (46b)

vec{MQN} = (N† ⊗M)vec{Q} (46c)
tr{PQ} = tr{QP} (46d)

tr{P†Q} = vec†{P}vec{Q} (46e)
det(MN) = det(NM) . (46f)

For any two matrices MM×P and NN×Q,

TM,N (N⊗M) = (M⊗N)TP,Q . (47a)

Property A.1. Let L,M,N be square matrices. Then
tr{MLN†} = tr{(L† ⊗ I)vec{M}vec†{N}}. The proof fol-
lows the same steps as [35, Property A.1].

Property A.2. The first-order Taylor expansion of (M+∆)−1

about M, where M and ∆ are square matrices, M and M+∆
invertible, is (M+∆)−1 = M−1−M−1∆M−1 +O(‖∆‖2).

APPENDIX B
ASYMPTOTIC EXPRESSION FOR THE MSE: PROOF OF (25)

Without vectorization, (24) can be equally rewritten as

M̂SE
[k]

i = tr{X[k,k]
(δP

[k]
i )†δP

[k]
i }

= tr{X[k,k](δP
[k]
i )†δP

[k]
i }

+ tr{δX[k,k](δP
[k]
i )†δP

[k]
i } (48)

where in the last step we have defined

X
[k,k]

= X[k,k] + δX[k,k] . (49)

Taking expectation of (48) we obtain that

E{M̂SE
[k]

i } = tr{X[k,k]E{(δP[k]
i )†δP

[k]
i }}

+ E{tr{δX[k,k](δP
[k]
i )†δP

[k]
i }} (50)

In Appendix C we show that both δX[k,k] and δP
[k]
i are

Ω( 1√
T

). Therefore, the second summand on the RHS of (50)
is (at worst) O( 1

T 3/2 ), which concludes our proof.

APPENDIX C
ASYMPTOTIC PROPERTIES OF δX[k,k], δP[k]

i , δS AND E
Under asymptotic conditions (T →∞), the sample covari-

ances X (defined in Sec. III) and S and the ML estimators
Â[k] and P̂

[k]
i (defined in Sec. III-B) converge, respectively, to

X, S, A[k] and P
[k]
i , at least in probability. As for the rate of

convergence, the entries of δX, δS, E [k] (26) and δP[k]
i (22)

are zero mean random variables with a standard deviation
proportional to 1/

√
T . For δX and δS this follows from the

central limit theorem. For the ML estimation errors E [k] and
δP

[k]
i this is due to sample independence. The fact that the

entries of E [k] decrease (asymptotically) with T at the same
rate as the entries of δP[k]

i can also be deduced from (27).
Assuming that asymptotic conditions hold, then P̂

[k]
i
∼= P

[k]
i .

APPENDIX D
INVARIANCE OF THE ESTIMATING EQUATIONS TO SCALE

AMBIGUITY OR EQUIVALENCE CLASS OF THE SOLUTIONS
TO THE ESTIMATING EQUATIONS (18)

Given the existence of a set A that satisfies the estimating
equations (18) and thus also achieves the minimum of the
contrast function (12), we now discuss its equivalence class.
That is, the subspace of matrices its generates that also
satisfy (18) and minimize (12).

Using the fact that the bdiagb{·} operator commutes with
any Λ,Λ′ ∈ Bb in the following manner,

bdiagb{ΛMΛ′} = Λ bdiagb{M}Λ
′ , ∀M ∈ RM×M , (51)
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and given

Φ
(
⊕Kk=1

(
⊕Ni=1Z

[k]
ii

))
=
(
⊕Ni=1

(
⊕Kk=1Z

[k]
ii

))
Φ , (52)

(9), (12) (46d) and (46f), we obtain that C(A) = C(AΛ′′),
where Λ′′ ∈ B1K⊗m coincides with the scale ambiguity of
the model (Section II). Similar steps show that the estimating
equations (18) are invariant to A→ AΛ′′.

APPENDIX E
DERIVATION OF (27)

In this section, we obtain (27). The proof follows steps
similar to those in [17, Appendix B]. Substituting (26) in (6),

P̂
[k]
i = A[k](I + E [k])−1Λ[k]EiE

†
iΛ
−[k](I + E [k])A−[k]

= A[k](I + E [k])−1EiE
†
i (I + E [k])A−[k]

= P
[k]
i + A[k](EiE

†
iE

[k] − E [k]EiE
†
i )A

−[k]

+O(‖E [k]‖2) . (53)

The first equality in (53) follows from A
[k]
i = A[k]Ei and

B
[k]
i = E†iB

[k]. The second equality is due to the fact
that Λ[k] ∈ Bm. The third equality uses Property A.2 in
Appendix A followed by P

[k]
i = A[k]EiE

†
iA
−[k], which is

due to (6). The last transition, from (53) to (27), follows from
E [k]Ei =

∑N
j=1 EjE [k]

ji and E†iE
[k] =

∑N
j=1 E

[k]
ij E†j .

APPENDIX F
FIRST-ORDER EXPANSION OF THE ESTIMATING

EQUATIONS

In this appendix, we show how a first-order expansion of
the estimating equations (18) leads to the linear relation (29)
between the error terms E and the sample covariance matrix S.
We begin by rewriting (18) with Â instead of A, emphasizing
the fact that solutions of (18) are estimates of A,

bdiagk{Φ
† bdiag−1n {ΦÂ−1XÂ−†Φ†}ΦÂ−1XÂ−†} = I .

(54)

The link between E and Â is given in (26). It follows from
Appendix D that the estimating equations (54) are invariant to
right-multiplication of Â by any matrix in B1K⊗m. Therefore,
in the sequel, we omit the scale ambiguity term of (26). It
follows from (4), (26) and the above arguments that (54) can
be rewritten as

bdiagk{Φ
† bdiag−1n {Φ(I + E)S(I + E)†Φ†}Φ

(I + E)S(I + E)†} = I . (55)

Given the factorization S = S + δS one has

(I + E)S(I + E)† = S + ES + SE† + Ω( 1
T )

= S + Ω( 1√
T

) , (56)

which is due to the fact that both E and δS are Ω( 1√
T

), as
explained in Appendix C. Left- and right-multiplying (56)
by Φ and Φ†, respectively, applying bdiag−1n {·} and then
Property A.2 in Appendix A, one obtains

bdiag−1n {Φ(I + E)S(I + E)†Φ†} = S̃−1 + Θ̃ (57)

where the entries of Θ̃ ∈ Bn are Ω( 1√
T

). The term within
bdiagk{·} in (55) can now be rewritten as

(S−1 + Θ)(I + E)S(I + E)†

= S−1S + S−1ES + E† + ΘS + Ω( 1
T ) (58)

where Θ = Φ†Θ̃Φ and

Φ†(S̃−1 + Θ̃)Φ = S−1 + Θ . (59)

Using (58), the estimating equations can now be rewritten as

bdiagk{S−1S}+ bdiagk{S−1ES}+ E†

+ bdiagk{ΘS}+ bdiagk{Ω( 1
T )} = I (60)

since E ∈ Bk.
It is clear that entries outside bdiagk{·} do not yield any

constraints on E . It can be further verified that entries on the
main diagonal of (60) with block-pattern 1K⊗m are identical
on both sides of (60) and thus do not have any effect. It follows
that the only non-trivial terms in (54) can be written as a set
of KN(N − 1) equations

[[S−1S]kk]ij + [[S−1ES]kk]ij + (E [k]
ji )†

+ [[ΘS]kk]ij + Ω( 1
T ) = 0mi×mj

, i 6= j (61)

where blocks indexed by k follow block-pattern k, those
indexed by i and j follow m, and [[E†]kk]ij = (E [k]

ji )†.
The next step is to simplify each of the summands in (61).

For the first summand,

[[S−1S]kk]ij = E†iJ
†
kΦ
†S̃−1S̃ΦJkEj

= U†kY
†
iΦΦ†S̃−1S̃ΦΦ†YjUk

= U†kS
−1
ii SijUk = [S−1ii Sij ]kk (62)

where the first step uses (7) such that S−1S =

Φ†S̃−1ΦΦ†S̃Φ = Φ†S̃−1S̃Φ. In the second step of (62) we
employ the observation that

JkEj = Φ†YjUk (63)

where Uk is ni × mi and Yi is L × ni such that Ini
=

[U1| · · · |UK ] and IL = [Y1| · · · |YN ], respectively5. The
third step uses [S̃−1S̃−1]ij = S−1ii Sij , which follows from
S̃ ∈ Bn. For the second summand in (61), we begin by writing
explicitly the term within [·]ij ,

[S−1ES]kk =

K∑
l=1

J†kS
−1JlE [l]J†lSJk =

K∑
l=1

[S−1]klE [l]S[l,k]

where E ,
∑K
l=1 JlE [l]J†l . It follows from (7) that S−1 has

the same zero-pattern as S such that [S−1]kl ∈ Bm and
[[S−1]kl]ii = [S−1ii ]kl. Hence,

[[S−1]klE [l]S[l,k]]ij = [[S−1]kl]iiE [l]
ijS

[l,k]
jj = [S−1ii ]klE [l]

ijS
[l,k]
jj

which is the desired form. We conclude the derivation of the
first equation in (29) by showing that [[ΘS]kk]ij = 0mi×mj

.

5Note that Uk implicitly depends on i; this is due to the special structure
of Φ. The symmetry between the two sides of (63) becomes more obvious
when one relaxes mi to m

[k]
i , since then Ej becomes dependent on k.
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This follows from noting that ΘS = Φ†Θ̃ΦΦ†S̃Φ =
Φ†Θ̃S̃Φ has the same zero-pattern as S and by definition,
[[S]kk]ij = 0mi×mj . The second equation in (29) is obtained
by exchanging i and j.

APPENDIX G
CLOSED-FORM EXPRESSION FOR Cov(g)

In this Appendix we derive a closed-form expression for
the covariance of the gradient vectors gij , defined in (32). By
the assumptions in Sec. III, these gradients have zero mean.
In the sequel, we show that

E{gijg†mn} =


1
T (Sjj � S−1ii ) (m,n) = (i, j)
1
T (IK ⊗ T mj ,mi) (m,n) = (j, i)
0 o.w.

(64)

The building blocks of (64) are terms of the type

[E{gijg†mn}]kl =

K∑
α=1

K∑
β=1

(I⊗ [S−1ii ]kα)

E{vec{[Sij ]αk}vec†{[Smn]βl}}(I⊗ [S−1mm]lβ)† , (65)

that relate the covariance of the gradients to the sample covari-
ance, for any i, j,m, n ∈ {1, . . . , N} and k, l ∈ {1, . . . ,K},
as we now explain. In (65) we reformulated the kth mimj×1
term of gij as

vec{[S−1ii Sij ]kk} =

K∑
α=1

(I⊗ [S−1ii ]kα)vec{[Sij ]αk} , (66)

which follows from applying vec{·} to

[S−1ii Sij ]kk =

K∑
α=1

[S−1ii ]kα[Sij ]αk (67)

and then (46c) in order to separate the stochastic and the
deterministic terms. The equality in (67) follows from Sii ∈
B1K⊗mi

. Using the explicit form

[Sij ]αk =
1

T

T∑
t=1

s
[α]
i (t)s

[k]†
j (t) (68)

and following steps similar to those in [35, Appendix D], one
obtains

[E{gijg†mn}]kl =


1
T (S

[k,l]
jj ⊗ [S−1ii ]kl) (m,n) = (i, j)

1
T T mj ,mi

δkl (m,n) = (j, i)
0 o.w.

which is the block-wise form of (64). As in [35, Appendix D],
the derivation is based on E{si(t)s†j 6=i(r)} = 0 ∀r, t,
E{si(t)} = 0 ∀i, t and sample decorrelation (in accordance
with Sec. III), without resorting to any further assumptions on
the distributions of the samples.
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