
HAL Id: hal-01132277
https://hal.science/hal-01132277v1

Preprint submitted on 16 Mar 2015 (v1), last revised 27 Jan 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HEIGHT AND DIAMETER OF BROWNIAN TREE
Minmin Wang

To cite this version:

Minmin Wang. HEIGHT AND DIAMETER OF BROWNIAN TREE. 2015. �hal-01132277v1�

https://hal.science/hal-01132277v1
https://hal.archives-ouvertes.fr


HEIGHT AND DIAMETER OF BROWNIAN TREE ∗

Minmin WANG †

March 16, 2015

Abstract

By computations on generating functions, Szekeres proved in 1983 that the law of the diameter

of a uniformly distributed rooted labelled tree with n vertices, rescaled by a factor n−

1

2 , converges to

a distribution whose density is explicit. Aldous observed in 1991 that this limiting distribution is the

law of the diameter of the Brownian tree. In our article, we provide a computation of this law which

is directly based on the normalized Brownian excursion. Moreover, we provide an explicit formula

for the joint law of the height and diameter of the Brownian tree, which is a new result.

AMS 2010 subject classifications: 60J80.

Keywords: Brownian tree, Brownian excursion, continuum random tree, Jacobi theta function,

Williams’ decomposition.

1 Introduction

For any integer n ≥ 1, let Tn be a uniformly distributed random rooted labelled tree with n vertices

and we denote by Dn its diameter with respect to the graph distance. By computations on generating

functions, Szekeres [20] proved that

n− 1
2Dn

(law)
−−−→∆ , (1)

where ∆ is a random variable whose probability density f∆ is given by

f∆(y) =

√
2π

3

∑

n≥1

(

64

y4
(4b4n,y − 36b3n,y + 75b2n,y − 30bn,y) +

16

y2
(2b3n,y − 5b2n,y)

)

e−bn,y , (2)

where bn,y := 8(πn/y)2, for all y∈ (0,∞) and for all integers n≥ 1. This result is implicitly written in

Szekeres [20] p. 395 formula (12). See also Broutin and Flajolet [8] for a similar result for binary trees.

On the other hand, Aldous [2, 4] has proved that Tn, whose graph distance is rescaled by a factor n− 1
2 ,

converges in distribution to the Brownian tree (also called Continuum Random Tree) that is a random

compact metric space. From this, Aldous has deduced that ∆ has the same distribution as the diameter of

the Brownian tree: see [3], Section 3.4, (though formula (41) there is not accurate). As proved by Aldous

[4] and by Le Gall [16], the Brownian tree is coded by the normalized Brownian excursion of length 1
(see below for more detail). Then, the question was raised by Aldous [3] that whether we can establish

(2) directly from computations on the normalized Brownian excursion. (See also [18], Exercise 9.4.1.)

In this work, we present a solution to this question: we compute the Laplace transform for the law of

the diameter of the Brownian tree based on Williams’ decomposition of Brownian excursions. We also

provide a formula for the joint law of the total height and diameter of the Brownian tree, which appears

to be new. In a joint work with Duquesne [12], we generalize the present method to a Lévy tree and study

its total height and diameter. Before stating precisely our results, let us first recall the definition of the

Brownian tree coded by the normalized Brownian excursion.
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Normalized Brownian excursion. Let X = (Xt)t≥0 be a continuous process defined on a probabil-

ity space (Ω,F ,P) such that ( 1√
2
Xt)t≥0 is distributed as a linear standard Brownian motion such that

P(X0=0)= 1(the reason for the normalizing constant
√
2 is explained below). Thus,

∀u ∈ R, t ∈ R+, E
[

eiuXt
]

= e−tu2
.

For all t∈R+, we set It=infs∈[0,t]Xs. Then, the reflected process X−I is a strong Markov process, the

state 0 is instantaneous in (0,∞) and recurrent, and−I is a local time at level 0 for X−I (see Bertoin

[5], Chapter VI). We denote by N the excursion measure associated with the local time−I; N is a sigma

finite measure on the space of continuous paths C(R+,R+). More precisely, let
⋃

i∈I(ai, bi) =
{

t >
0 : Xt−It> 0

}

be the excursion intervals of the reflected process X−I above 0; for all i ∈ I , we set

ei(s)=X(ai+s)∧bi−Iai , s∈R+. Then,

∑

i∈I
δ(−Iai ,ei)

is a Poisson point measure on R+×C(R+,R+) with intensity dtN(de). (3)

We shall denote by e=(et)t≥0 the canonical process on C(R+,R+). We define its lifetime by

ζ=sup{t≥0 : et>0} , (4)

with the convention that sup∅ = 0. Then, N-a.e. e0 = 0, ζ ∈ (0,∞) and for all t ∈ (0, ζ), et > 0.

Moreover, one has

∀λ ∈ (0,∞), N
(

1−e−λζ
)

=
√
λ and N

(

ζ∈dr
)

=
dr

2
√
π r3/2

. (5)

See Blumenthal [6] IV.1 for more detail.

Let us briefly recall the scaling property of e under N. To that end, recall that X satisfies the following

scaling property: for all r∈(0,∞), (r−
1
2Xrt)t≥0 has the same law as X, which easily entails that

(

r−
1
2 ert

)

t≥0
under r

1
2 N

(law)
= e under N . (6)

This scaling property implies that there exists a family of laws on C(R+,R+) denoted by N( · | ζ = r),
r ∈ (0,∞), such that r 7→ N( · | ζ = r) is weakly continuous on C(R+,R+), such that N( · | ζ = r)-
a.s. ζ=r and such that

N =

∫ ∞

0
N( · | ζ=r)N

(

ζ∈dr
)

. (7)

Moreover, by (6),
(

r−
1
2 ert

)

t≥0
under N( · | ζ= r) has the same law as e under N( · | ζ=1). To simplify

notation we set

Nnr := N( · | ζ=1) . (8)

Thus, for all measurable functions F :C(R+,R+)→R+,

N
[

F (e)
]

=
1

2
√
π

∫ ∞

0
dr r−

3
2 Nnr

[

F
(

(

r
1
2 et/r

)

t≥0

)]

. (9)

Remark 1 The standard Ito measure N
+
Ito of positive excursions, as defined for instance in Revuz & Yor

[19] Chapter XII Theorem 4.2, is derived from N by the following scaling relations:

N
+
Ito is the law of

1√
2
e under

1√
2
N and thus, N+

Ito( · | ζ=1) is the law of
1√
2
e under Nnr.

Consequently, the law Nnr is not the standard version for normalized Brownian excursion measure.

However, we shall refer to it as the normalized Brownian excursion measure. �
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Real trees. Let us recall the definition of real trees that are metric spaces generalizing graph-trees: let

(T, d) be a metric space; it is a real tree if the following statements hold true.

(a) For all σ1, σ2 ∈ T , there is a unique isometry f : [0, d(σ1, σ2)] → T such that f(0) = σ1 and

f(d(σ1, σ2))=σ2. In this case, we set Jσ1, σ2K :=f([0, d(σ1, σ2)]).

(b) For any continuous injective function q : [0, 1]→T , q([0, 1])=Jq(0), q(1)K.

When a point ρ ∈ T is distinguished, (T, d, ρ) is said to be a rooted real tree, ρ being the root of T .

Among connected metric spaces, real trees are characterized by the so-called four-point inequality : we

refer to Evans [14] or to Dress, Moulton & Terhalle [10] for a detailed account on this property. Let us

briefly mention that the set of (pointed) isometry classes of compact rooted real trees can be equipped

with the (pointed) Gromov–Hausdorff distance which makes it into a Polish space: see Evans, Pitman &

Winter [15], Theorem 2, for more detail on this intrinsic point of view that we do not adopt here.

Coding of real trees. Real trees can be constructed through continuous functions. Recall that e stands

for the canonical process on C(R+,R+). We assume here that e has a compact support, that e0=0 and

that e is not identically null. Recall from (4) the definition of its lifetime ζ . Then, our assumptions on e
entail that ζ∈(0,∞). For s, t ∈ [0, ζ], we set

b(s, t) := inf
r∈[s∧t,s∨t]

er and d(s, t) := et + es − 2b(s, t) .

It is easy to see that d is a pseudo-distance on [0, ζ]. We define the equivalence relation ∼ by setting

s ∼ t iff d(s, t) = 0; then we set

T := [0, ζ]/ ∼ . (10)

The function d induces a distance on the quotient set T that we keep denoting by d for simplicity. We

denote by p : [0, ζ]→T the canonical projection. Clearly p is continuous, which implies that (T , d) is

a compact metric space. Moreover, it is shown that (T , d) is a real tree (see Duquesne & Le Gall [11],

Theorem 2.1, for a proof). We take ρ = p(0) as the root of T . The total height and the diameter of T
are thus given by

Γ = max
σ∈T

d(ρ, σ) = max
t≥0

et and D = max
σ,σ′∈T

d(σ, σ′) = max
s,t≥0

(

et + es−2b(s, t)
)

. (11)

We also define on T a finite measure m, called the mass measure, that is the pushforward measure

of the Lebesgue measure on [0, ζ] by the canonical projection p. Namely, for all continuous functions

f : T →R+,
∫

T
f(σ)m(dσ) =

∫ ζ

0
f(p(t)) dt . (12)

Note that m(T ) = ζ .

Brownian tree. The random rooted compact real tree (T , d, ρ) coded by e under the normalized

Brownian excursion measure Nnr defined in (8) is the Brownian tree. Here, we recall some properties of

the Brownian tree. To that end, for any σ∈T , we denote by n(σ) the number of connected components of

the open set T \{σ}. Note that n(σ) is possibly infinite. We call this number the degree of σ. We say that

σ is a branch point if n(σ)≥3 and that σ is a leaf if n(σ)=1. We denote by Lf(T ) :=
{

σ∈T : n(σ)=1
}

the set of leaves of T . Then the following holds true:

Nnr-a.s. ∀σ ∈ T , n(σ) ∈ {1, 2, 3}, m is diffuse and m
(

T \Lf(T )
)

= 0 , (13)

where we recall from (12) that m stands for the mass measure. The Brownian tree has therefore only

binary branch points (i.e. branch points of degree 3). The fact that the mass measure is diffuse and

supported by the set of leaves makes the Brownian tree a continuum random tree according to Aldous’

terminology (see Aldous [4]). For more detail on (13), see for instance Duquesne & Le Gall [11].
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The choice of the normalizing constant
√
2 for the underlying Brownian motion X is motivated by

the following fact: let T ∗
n be uniformly distributed on the set of rooted planar trees with n vertices. We

view T ∗
n as a graph embedded in the clockwise oriented upper half-plane, whose edges are segments of

unit length and whose root is at the origin. Let us consider a particle that explores T ∗
n as follows: it starts

at the root and then it moves continuously on the tree at unit speed from the left to the right, backtracking

as less as possible. During this exploration the particle visits each edge exactly twice and its journey

lasts 2(n−1) units of time. For all t∈ [0, 2(n−1)], we denote by C
(n)
t the distance between the root and

the position of the particle at time t. The process (C
(n)
t )t∈[0,2(n−1)] is called the contour process of T ∗

n .

Following an idea of Dwass [13], we can check that the contour process (C
(n)
t )t∈[0,2(n−1)] is distributed

as the (linear interpolation of the) simple random walk starting from 0, conditioned to stay nonnegative

on [0, 2(n−1)] and to hit the value−1 at time 2n−1. Using a variant of Donsker’s invariance principle,

the rescaled contour function (n− 1
2C

(n)
2(n−1)t)t∈[0,1] converges in law towards e under Nnr: see for instance

Le Gall [17]. Thus,

n− 1
2D∗

n

(law)
−−−→ D under Nnr,

where D∗
n stands for the diameter of T ∗

n and D is the diameter of the Brownian tree given by (11).

Remark 2 In the first paragraph of the introduction, we have introduced the random tree Tn, which is

uniformly distributed on the set of rooted labelled trees with n vertices. The law of Tn is therefore distinct

from that of T ∗
n , which is uniformly distributed on the set of rooted planar trees with n vertices. Aldous

[4] has proved that the tree Tn, whose graph distance is rescaled by a factor n− 1
2 , converges to the tree

coded by
√
2e under Nnr. Thus,

∆
(law)
=

√
2D under Nnr . (14)

See Remark 4 below. �

In this article, we prove the following result that characterizes the joint law of the height and diameter

of the Brownian tree.

Theorem 1 Recall from (8) the definition of Nnr and recall from (11) the definitions of Γ and D. We set

∀λ, y, z ∈ (0,∞), Lλ(y, z) :=
1

2
√
π

∫ ∞

0
e−λrr−

3
2 Nnr

(

r
1
2D>2y ; r

1
2Γ>z

)

dr . (15)

Note that

∀λ, y, z ∈ (0,∞), L1(y, z) = λ− 1
2Lλ

(

λ− 1
2 y , λ− 1

2 z
)

. (16)

Then,

L1(y, z) = coth(y∨z)− 1− 1

4
1{z≤2y}

sinh(2q)− 2q

sinh4(y)
, (17)

where q=y∧(2y−z). In particular, this implies that

∀λ, z ∈ (0,∞), Lλ(0, z) =
√
λ coth(z

√
λ)−

√
λ (18)

and

∀λ, y ∈ (0,∞), Lλ(y, 0) =
√
λ coth(y

√
λ)−

√
λ−
√
λ
sinh(2y

√
λ)− 2y

√
λ

4 sinh4(y
√
λ)

. (19)

Corollary 2 For all y, z∈(0,∞), we set

ρ = z ∨ y

2
and δ =

(2(y−z)

y
∨ 0
)

∧ 1 . (20)
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Then we have

Nnr

(

D>y ; Γ>z
)

= 2
∑

n≥1

(

2n2ρ2−1
)

e−n2ρ2+ (21)

1

6

∑

n≥2

n(n2−1)
[

[

(n+δ)2y2−2
]

e−
1
4
(n+δ)2y2−

[

(n−δ)2y2−2
]

e−
1
4
(n−δ)2y2 + δy(n3y3−6ny)e− 1

4
n2y2

]

and

Nnr

(

D≤y ; Γ≤z
)

=
4π5/2

ρ3

∑

n≥1

n2e−n2π2/ρ2− (22)

32π3/2

3

∑

n≥1

n sin(2πnδ)
( 2

y5
(2a2n,y − 9an,y + 6)− 3δ2 − 1

y3
(an,y − 1)

)

e−an,y+

16π1/2

3

∑

n≥1

δ cos(2πnδ)
( 1

y3
(6a2n,y − 15an,y + 3)− δ2 − 1

2y
an,y

)

e−an,y+

16π1/2

3

∑

n≥1

δ
( 1

y3
(4a3n,y − 24a2n,y + 27an,y − 3) +

1

2y
(2a2n,y − 3an,y)

)

e−an,y ,

where we have set an,y = 4(πn/y)2 for all y∈(0,∞) and for all n≥1 to simplify notation. In particular,

(21) implies

Nnr

(

Γ>y
)

= 2
∑

n≥1

(

2n2y2 − 1
)

e−n2y2 , (23)

and

Nnr

(

D>y
)

=
∑

n≥2

(n2 − 1)
(1

6
n4y4 − 2n2y2 + 2

)

e−n2y2/4. (24)

On the other hand, (22) implies

Nnr

(

Γ≤y
)

=
4π5/2

y3

∑

n≥1

n2e−n2π2/y2 , (25)

and

Nnr

(

D≤y
)

=

√
π

3

∑

n≥1

( 8

y3
(

24an,y − 36a2n,y + 8a3n,y
)

+
16

y
a2n,y

)

e−an,y . (26)

Thus the law of D under Nnr has the following density:

fD(y) =
1

12

∑

n≥1

(

n8y5 − n6y3(20 + y2) + 20n4y(3 + y2)− 60n2y
)

e−n2y2/4 (27)

=
2
√
π

3

∑

n≥1

(16

y4
(4a4n,y − 36a3n,y + 75a2n,y − 30an,y) +

8

y2
(2a3n,y − 5a2n,y)

)

e−an,y . (28)

Remark 3 We derive (22) from (21) using the following identity on the theta function due to Jacobi

(1828), which is a consequence of Poisson summation formula:

∀t ∈ (0,∞),∀x, y ∈ C,
∑

n∈Z
e−(x+n)2t−2πiny = e2πixy

(π

t

)
1
2
∑

n∈Z
e−

π2(y+n)2

t
+2πinx . (29)

See for instance Weil [21], Chapter VII, Equation (12). Not surprisingly, (29) can also be used to derive

(25) from (23), to derive (26) from (24), or to derive (28) from (27). �
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Remark 4 We obtain (27) (resp. (28)) by differentiating (24) (resp. (26)). By (14), we have

∀y ∈ (0,∞), f∆(y) =
1√
2
fD

( y√
2

)

,

which immediately entails (2) from (28), since an,y/
√
2 = 8(πn/y)2 = bn,y. �

Remark 5 Recall that Γ = maxt≥0 et. Equations (23) and (25) are consistent with previous results on

the distribution of the maximum of Brownian excursion: see for example Chung [9], though we need to

keep in mind the difference between Nnr and N
+
Ito, as explained in Remark 1. �

Acknowledgements. The author is deeply grateful to Thomas Duquesne for suggesting this problem and

for those fruitful discussions. The author would also like to thank Romain Abraham and Svante Janson

for a careful reading of an earlier version.

2 Preliminaries

A geometric property on diameters of real trees. We begin with a simple observation on the total

height and diameter of a real tree.

Lemma 3 Let (T, d, ρ) be a compact rooted real tree. Then Γ≤D≤2Γ, where

Γ=sup
u∈T

d(u, ρ) and D= sup
u,v∈T

d(u, v) .

Moreover, there exists a pair of points u0, v0∈T with maximal distance. Namely,

d(u0, v0) = sup
u,v∈T

d(u, v) = D . (30)

Without loss of generality, we assume that d(u0, ρ)≥ d(v0, ρ). Then the total height of T is attained at

u0. Namely

d(u0, ρ) = sup
u∈T

d(u, ρ) = Γ . (31)

Proof. Let u, v∈T. Recall from the definition of real trees (given in the introduction) that Ju, vK stands

for the unique geodesic path between u and v. To simplify notation, we set h(u) := d(u, ρ) for u ∈T.

The branch point u∧v of u and v is the unique point of T satisfying

Jρ, u ∧ vK = Jρ, uK ∩ Jρ, vK .

Then, we easily check that

d(u, v) = d(u, u ∧ v) + d(u ∧ v, v) = h(u) + h(v)− 2h(u ∧ v) .

The triangle inequality easily implies that D≤2Γ while the inequality Γ≤D is a direct consequence of

the definitions. As d : T2 → R+ is continuous and T is compact, there exists a pair of points u0, v0∈T
such that (30) holds true. To prove (31), we argue by contradiction: we assume that there exists w ∈T
such that h(w)>h(u0). Let us write b :=u0∧v0. Here we enumerate the three possible locations of w.

See Figure 1.

(i) Suppose that w ∧ u0 ∈ Ju0, bK. By hypothesis, we have h(w) > h(u0). In other words,

h(w) = d(w, b) + h(b) > h(u0) = d(u0, b) + h(b).

Thus, d(w, b) > d(u0, b) and

d(w, v0) = d(w, b) + d(b, v0) > d(u0, b) + d(b, v0) = d(u0, v0),

which contradicts (30).

6



v0

u0

b

ρ

w

w

w

(i)

(ii)

(iii)

Figure 1: Three possibilities for w

(ii) Suppose that w ∧ v0 ∈ Jv0, bK. In this case, we have

h(w) = d(w, b) + h(b) > h(u0) ≥ h(v0) = d(v0, b) + h(b).

Then d(w, b) > d(v0, b) and

d(w, u0) = d(w, b) + d(b, u0) > d(v0, b) + d(b, u0) = d(u0, v0).

This again contradicts (30).

(iii) Suppose that w ∧ u0 ∈ Jρ, bK. Then we deduce from

h(w) = d(w,w ∧ u0) + h(w ∧ u0) > h(u0) = d(u0, w ∧ u0) + h(w ∧ u0)

that d(w,w ∧ u0) > d(u0, w ∧ u0). Note that in this case w ∧ u0 = w ∧ v0. Therefore,

d(w, v0) = d(w,w ∧ v0) + d(w ∧ v0, v0) = d(w,w ∧ u0) + d(w ∧ u0, v0)

> d(u0, w ∧ u0) + d(w ∧ u0, v0)

> d(u0, b) + d(b, v0) = d(u0, v0),

which contradicts (30).

In short, there exists no w∈T such that h(w) = d(w, ρ) > h(u0) = d(u0, ρ), which entails (31). �

Williams’ decomposition of Brownian excursions. Let us recall the classical result of Williams’ path

decomposition of Brownian excursions (see for instance Revuz & Yor [19] Chapter XII Theorem 4.5).

Define

τ∗ := inf{t>0 : et=max
s≥0

es} . (32)

Then,

N-a.e. (Nnr-a.s.), τ∗ is the unique time at which e reaches its maximum value. (33)

Recall from (11) the definition of the total height Γ of the Brownian tree coded by e. Then, we have

Γ=eτ∗ .

We also recall the distribution of Γ under N:

N
(

Γ∈dr
)

=
dr

r2
. (34)

See Revuz & Yor [19] Chapter XII Theorem 4.5 combined with Remark 1.
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Williams’s decomposition entails that there is a regular version of the family of conditioned laws

N( · |Γ = r), r > 0. Namely, N( · |Γ = r)-a.s. Γ = r, r 7→ N( · |Γ = r) is weakly continuous on

C(R+,R+) and

N =

∫ ∞

0
N(Γ∈dr)N( · |Γ=r) . (35)

Let Z =(Zt)t≥0 be a continuous process defined on the probability space (Ω,F ,P) such that 1√
2
Z

is distributed as a Bessel process of dimension 3 starting from 0. Let τr = inf{t > 0 : Zt = r} be the

hitting time of Z at level r∈(0,∞). We recall that

∀λ ∈ R+, E
[

e−λτr
]

=
r
√
λ

sinh(r
√
λ)

. (36)

See Borodin & Salminen [7] Part II, Chapter 5, Section 2, Formula 2.0.1, p. 463, where we let x tend to

0 and take α=λ and z=r/
√
2, since Z=

√
2R(3).

We next introduce the following notation

←−e (t) = e(τ∗−t)+ ;
−→e (t) = eτ∗+t, t ≥ 0.

where (·)+ stands for the positive part function. Williams’ decomposition of Brownian excursion asserts

that

for all r∈(0,∞), under N( · |Γ=r), the two processes←−e and −→e are distributed as two indepen-

dent copies of (Z(τr−t)+)t≥0.

As a combined consequence of this decomposition and (36), we have

∀r∈(0,∞), N
(

e−λζ |Γ = r
)

= E
[

e−λτr
]2

=

(

r
√
λ

sinh(r
√
λ)

)2

, (37)

where we recall that ζ stands for the lifetime of the excursion. Therefore,

N

(

e−λζ
1{Γ>a}

)

=

∫ ∞

a
N
(

e−λζ |Γ = r
)

N(Γ ∈ dr) =

∫ ∞

a

λdr

sinh2(r
√
λ)

=
√
λ coth(a

√
λ)−

√
λ ,

by (34) and (37). Combined with the fact that N(1− e−λζ) =
√
λ, this entails that

N

(

1− e−λζ
1{Γ≤a}

)

=
√
λ coth(a

√
λ). (38)

This equation is used in the proof of Theorem 1.

Spinal decomposition Let us interpret Williams’ decomposition in terms of a Poisson decomposition

of the Brownian excursion. To that end, we need the following notation. Let h ∈ C(R+,R+) have

compact support. We assume that h(0)> 0. For all s ∈R+, we set h(s) = inf0≤u≤s h(u). Let (li, ri),
i∈I(h) be the excursion intervals of h−h away from 0; namely, they are the connected components of

the open set {s ≥ 0 : h(s)−h(s)>0}. For all i∈I(h), we next set

hi(s) =
(

h− h
)(

(li + s) ∧ ri
)

, s ≥ 0,

which is the excursion of h−h corresponding to the interval (li, ri). Then we set

P(h) =
∑

i∈I(h)
δ(h(0)−h(li), hi),
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that is a point measure on R+×C(R+,R+). We define

Q := P(−→e ) + P(←−e ) =:
∑

j∈J
δ(sj , ej) . (39)

We also introduce for all t∈(0,∞) the following notation

Nt = N
(

· ∩ {Γ≤ t}
)

. (40)

The following lemma is the special case of a general result due to Abraham & Delmas [1].

Lemma 4 (Proposition 1.1, Abraham & Delmas [1]) Let r∈ (0,∞). Then, Q under N( · |Γ= r) is a

Poisson point measure on R+×C(R+,R+) with intensity measure 2·1[0,r](t)dtNt.

Interpretation in terms of the Brownian tree and consequences. Let us interpret Q in terms of the

Brownian tree T coded by the Brownian excursion e. Recall that p : [0, ζ]→T stands for the canonical

projection and recall that ρ=p(0) is the root of T . The point p(τ∗) is the (unique) point of T that attains

the total height: d(ρ, p(τ∗))=Γ.

Denote by T o
j′ , j

′ ∈ J ′, the connected components of T \Jρ, p(τ∗)K. For all j′ ∈ J ′, there exists a

unique point σj′ ∈ Jρ, p(τ∗)K such that Tj′ := T o
j′ ∪ {σj′} is the closure of T o

j′ in T . Recall the notation

J from (39). It is not difficult to see that J ′ is in one-to-one correspondence with J . Moreover, after

a re-indexing, we can suppose that d(p(τ∗), σj) = sj and that (Tj, d, σj) is the real tree coded by the

excursion ej , for each j ∈ J . Then we set

∀j ∈ J , Γj := max
s≥0

ej(s) = max
γ∈Tj

d(σj , γ) , (41)

that is the total height of the rooted real tree (Tj , d, σj). We claim that

N-a.e. D = sup
j∈J

(sj + Γj) . (42)

Proof of (42). First observe that for all t ∈ (0,∞), Nt is an infinite measure because N is infinite and

because N(Γ>t)= 1/t by (34). By Lemma 4, N-a.e. the closure of the set {sj ; j ∈J } is [0,Γ]. This

entails that

N-a.e. Γ = sup
j∈J

sj ≤ sup
j∈J

(sj + Γj) . (43)

Next, for all j∈J , there exists γj ∈Tj such that d(σj , γj)=Γj . Then observe that

d(p(τ∗), γj) = d(p(τ∗), σj) + d(σj , γj) = sj + Γj . (44)

Note that Lemma 3 and (33) imply that D=maxγ∈T d(p(τ∗), γ). Comparing this with (44), we get

D ≥ sup
j∈J

(sj + Γj) . (45)

On the other hand, there exists γ∗∈T such that D=maxγ∈T d(p(τ∗), γ)=d(p(τ∗), γ∗) by Lemma 3. If

γ∗ /∈Jρ, p(τ∗)K, then there exists j∗∈J such that γ∗∈Tj∗. In consequence, we have D = d(p(τ∗), γ∗) ≤
sj∗ +Γj∗ , and then D=supj∈J (sj+Γj) when compared with (45). If γ∗∈Jρ, p(τ∗)K, then (43) implies

that γ∗=ρ and D=Γ. In both cases (42) holds true. �

We next denote by ζj the lifetime of ej for all j∈ J and prove the following statement.

N-a.e.
∑

j∈J
ζj = ζ . (46)

9



Proof of (46). Let σ ∈ Jp(τ∗), ρK be distinct from p(τ∗) and ρ. Then n(σ)≥ 2 and σ is not a leaf of T .

Recall from (12) the definition of the mass measure m and recall from (13) that Nnr-a.s. m is diffuse and

supported on the set of leaves of T . By (7), this property also holds true N-almost everywhere and we

thus get

N-a.e. m
(

Jp(τ∗), ρK
)

= 0 .

Recall that T o
j , j∈J , are the connected components of T \Jρ, p(τ∗)K. Thus,

N-a.e. m(T ) = m
(

Jp(τ∗), ρK
)

+
∑

j∈J
m
(

T o
j

)

=
∑

j∈J
m
(

T o
j

)

. (47)

Recall that Tj = T o
j ∪ {σj} and that m is N-a.e. diffuse, which entails m(Tj) = m(T o

j ), for all j ∈J .

Moreover, since (Tj , d, σj) is coded by the excursion ej , we have ζj = m(Tj). For a similar reason, we

also have ζ = m(T ). This, combined with (47), entails (46). �

3 Proof of Theorem 1

First we note that by (9),

Lλ(y, z) =
1

2
√
π

∫ ∞

0
dre−λrr−

3
2Nnr

(

r
1
2D>2y ; r

1
2Γ>z

)

= N

(

e−λζ
1{D>2y;Γ>z}

)

. (48)

Observe that the scaling property (16) is a direct consequence of the scaling property of N (see (6)).

We next compute the right hand side of (48). To that end, recall from (39) the spinal decomposition

of the excursion e and recall from (41) the notation Γj =maxs≥0 e
j(s), for all j ∈J ; also recall that ζj

stands for the lifetime of ej . Let r, y∈ (0,∞) be such that y≤ r≤2y. We apply successively (42), (46),

Lemma 4 and Campbell’s formula for Poisson point measures and find that

N

(

e−λζ
1{D≤2y}

∣

∣

∣
Γ = r

)

= N

(

∏

j∈J
e−λζj1{sj+Γj≤2y}

∣

∣

∣
Γ = r

)

= exp

(

−2
∫ r

0
dtNt

(

1−e−λζ
1{Γ≤2y−t}

)

)

. (49)

Recall from (40) that Nt = N
(

· ∩ {Γ≤ t}
)

and observe that

∫ r

0
dtNt

(

1−e−λζ
1{Γ≤2y−t}

)

=

∫ y

0
dtN

(

(1−e−λζ)1{Γ≤t}
)

+

∫ r

y
dtN

(

1{Γ≤t}−e−λζ
1{Γ<2y−t}

)

. (50)

By (38) and by (34),

N
(

(1−e−λζ)1{Γ≤t}
)

= N
(

1−e−λζ
1{Γ≤t}

)

−N
(

Γ>t
)

=
√
λ coth

(

t
√
λ
)

− 1

t
(51)

and

N
(

1{Γ≤t}−e−λζ
1{Γ<2y−t}

)

=N
(

1−e−λζ
1{Γ≤2y−t}

)

−N(Γ>t)=
√
λ coth

(

(2y−t)
√
λ
)

− 1

t
. (52)

Then observe that for all ε, a∈ (0,∞) such that ε<a,

∫ a

ε

(
√
λ coth(t

√
λ)− 1

t

)

dt = log
sinh a

√
λ

a
− log

sinh ε
√
λ

ε
.

Thus, as ε→ 0, we get

∀a ∈ R+,

∫ a

0

(
√
λ coth(t

√
λ)− 1

t

)

dt = log
sinh a

√
λ

a
√
λ

. (53)
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An easy computation based on (53), combined with (50), (51), (52) and (49), entails

N

(

e−λζ
1{D≤2y}

∣

∣

∣
Γ = r

)

=

(

r
√
λ sinh

(

(2y − r)
√
λ
)

)2

sinh4(y
√
λ)

.

Combining this with (37), we get

∀r, y∈(0,∞) : y≤r≤2y, N
(

e−λζ
1{D>2y}

∣

∣Γ=r
)

=

(

r
√
λ

sinh(r
√
λ)

)2

−

(

r
√
λ sinh

(

(2y−r)
√
λ
)

)2

sinh4(y
√
λ)

.

(54)

Next, let r, y∈(0,∞) be such that r>2y. By Lemma 3, Γ≤D≤2Γ. Therefore,

∀r, y∈(0,∞) : r>2y, N
(

e−λζ
1{D>2y}

∣

∣

∣
Γ = r

)

= N

(

e−λζ
∣

∣

∣
Γ = r

)

=

(

r
√
λ

sinh(r
√
λ)

)2

. (55)

Finally, let r < y. Then N(e−λζ
1{D>2y}|Γ= r) = 0, since Γ≤D≤ 2Γ. Combining this with (54) and

(55), we easily obtain that

N

(

e−λζ
1{D>2y,Γ>z}

)

=

∫ ∞

z
N

(

e−λζ
1{D>2y}

∣

∣

∣
Γ=r

)

N(Γ∈dr)

=

∫ 2y∨z

z∨y
N

(

e−λζ
1{D>2y}

∣

∣

∣
Γ=r

)

N(Γ∈dr) +
∫ ∞

2y∨z
N

(

e−λζ
∣

∣

∣
Γ=r

)

N(Γ∈dr)

=
√
λ
(

coth
(

(z∨y)
√
λ
)

−1
)

−1{z≤2y}

√
λ sinh(2q

√
λ)−2λq

4 sinh4(y
√
λ)

,

where we recall the notation q = y∧(2y−z). By (48), this concludes the proof of Theorem 1.

4 Proof of Corollary 2

We introduce the following notation for the Laplace transform on R+: for all Lebesgue integrable func-

tions f : R+ → R, we set

∀λ ∈ R+, Lλ(f) :=
∫ ∞

0
dx e−λxf(x),

which is well-defined. Note that if f, g are two continuous and integrable functions such that Lλ(f) =
Lλ(g) for all λ ∈ [0,∞), then we have f = g, by the injectivity of the Laplace transform and standard

arguments.

For all a, x∈ (0,∞), we set fa(x) =
a

2
√
π
x−3/2e−a2/4x. It is well-known that Lλ(fa) = e−a

√
λ for

all λ∈R+ (see for instance Borodin & Salminen [7] Appendix 3, Particular formulæ 2, p. 650). Then

we set

ga(x) = ∂xfa(x) =
1

8
√
π
x−

7
2 e−

a2

4x (a3−6ax) and ha(x) = −∂afa(x) =
1

4
√
π
x−

5
2 e−

a2

4x (a2−2x) .

Consequently, for all λ∈R+,

Lλ(ga) = λe−a
√
λ and Lλ(ha) =

√
λe−a

√
λ . (56)
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(See also Borodin & Salminen [7] Appendix 3, Particular formulæ 3 and 4, p. 650.) Moreover, we have

the following easy bounds: for all λ ∈ R+,

Lλ(|ga|)≤
1

8
√
π

∫ ∞

0
dx e−λxx−

7
2 e−

a2

4x (a3+6ax) = λe−a
√
λ+

6

a

√
λe−a

√
λ+

6

a2
e−a

√
λ, (57)

Lλ(|ha|)≤
1

4
√
π

∫ ∞

0
dx e−λxx−

5
2 e−

a2

4x (a2+2x) =
√
λe−a

√
λ+

2
a
e−a

√
λ. (58)

Let y, z∈(0,∞). Recall from (20) the notation ρ and δ. Next set

∀n ∈ N, un=
1
6
(n+ 3)(n + 2)(n + 1),

so that (1−x)−4=
∑

n≥0 unx
n, for all x∈ [0, 1). Then (17) implies that

L1(
1
2 y, z) = coth ρ−1− sinh(δy) − δy

4 sinh4(y/2)
=

2e−2ρ

1−e−2ρ
+

2e−2y(e−δy−eδy)
(1−e−y)4

+
4δye−2y

(1−e−y)4

=
∑

n≥1

2e−2nρ +
∑

n≥0

2un
(

e−(n+2+δ)y− e−(n+2−δ)y + 2δye−(n+2)y
)

=
∑

n≥1

2e−2nρ +
∑

n≥2

2un−2

(

e−(n+δ)y− e−(n−δ)y + 2δye−ny
)

.

Thus, by (16), we obtain that

1

2
√
π

∫ ∞

0
e−λrr−

3
2 Nnr

(

r
1
2D>y ; r

1
2Γ>z

)

dr = Lλ(
1
2 y, z) =

√
λL1(

1
2 y
√
λ, z
√
λ)

=
∑

n≥1

2
√
λe−2nρ

√
λ +

∑

n≥2

2un−2

(
√
λe−(n+δ)y

√
λ−
√
λe−(n−δ)y

√
λ + 2δyλe−ny

√
λ
)

=
∑

n≥1

2Lλ(h2nρ) +
∑

n≥2

2un−2Lλ
(

h(n+δ)y − h(n−δ)y + 2δygny
)

. (59)

Observe that for all r∈R+,
∑

n≥1

2 sup
[0,r]
|h2nρ|+

∑

n≥2

2un−2

(

sup
[0,r]
|h(n+δ)y |+ sup

[0,r]
|h(n−δ)y |+ 2δy sup

[0,r]
|gny|

)

<∞ . (60)

Then, for any r∈R+, we set

φy,z(r) := 2
∞
∑

n=1

h2nρ(r)e
−r +

∞
∑

n=2

2un−2

(

h(n+δ)y(r)e
−r − h(n−δ)y(r)e

−r + 2δygny(r)e
−r
)

,

which is well-defined and continuous thanks to (60). The bounds (57) and (58) imply that φy,z is

Lebesgue integrable. Moreover, (59) asserts that Lλ+1(
1
2y, z) = Lλ(φy,z). By the injectivity of the

Laplace transform for continuous integrable functions (as mentioned above), we get

∀r ∈ R+, φy,z(r) =
1

2
√
π
e−rr−

3
2 Nnr

(

r
1
2D>y ; r

1
2Γ>z

)

,

which entails (21) by taking r=1.

Since Γ≤D≤2Γ, if z=y, then Nnr(D>y; Γ>y)=Nnr(Γ>y) and (21) immediately implies (23)

because in this case ρ = y and δ=0. If z=y/2, then Nnr(D>y; Γ>y/2)=Nnr(D>y), ρ=y/2, δ=1
and (21) implies

Nnr(D>y) =
∑

n≥1

(

n2y2−2
)

e−
1
4
n2y2 +

1

6

∑

n≥2

n(n2−1)
[

[

(n+ 1)2y2−2
]

e−
1
4
(n+1)2y2−

[

(n−1)2y2−2
]

e−
1
4
(n−1)2y2 + y(n3y3−6ny)e− 1

4
n2y2

]

,
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which entails (24) by re-indexing the sums according to e−n2y2/4: we leave the detail to the reader. We

next derive (27) by differentiating (24). As mentioned in Remark 3, we use Jacobi identity (29) to derive

(22) from (21). The computations are long but straightforward: we leave them to the reader. Finally, for

the same reason as before, (22) entails (25) by taking ρ=y and δ=0. It also entails (26) by taking ρ= 1
2 y

and δ=1. Differentiating (26) gives (28). This completes the proof of Corollary 2.
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