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C depletion and tree dieback in young peach trees: a possible consequence of N shortage?  C   

Key message: Bud burst  disruption,  carbon depletion  and tree  dieback in  spring was experimentally  

linked  to  N  shortage  the  previous  autumn.  Dieback  occurred  despite  tree  N  concentrations  were  

compatible with plant survival: their N stores being blocked in the roots and woody axes.  

Summary: 

Context: Tree dieback is generally linked to hydraulic failure or carbon (C) starvation, but seldom to poor 

nitrogen (N) resources. 

Aim: We provide here an experimental evidence linking autumn N shortage, C depletion and tree dieback 

in spring. 

Methods: Young peach trees were either N deprived or fertilized in autumn, then fed in excess in spring. 

Spring supplies were  15N-labelled. The effects of the deprivation on tree development, N uptake and C 

status was then assessed by coupling in situ measurements of shoot development with organ biochemical 

and isotopic determinations. 

Results: All deprived trees died within three months after burst. Bud burst was severely disrupted, and 

vegetative growth limited to the expansion of a few leaves. The dead trees absorbed between 39 and 117 

mg  15N in spring,  and their  roots and axes contained 758 mg more nitrogen than the fertilized trees, 

suggesting that  they did  not  mobilize  their  N reserves  in  spring.  They also had lower  non-structural 

carbohydrate concentrations (<3.9% DW) than the fertilized trees (>15.4% DW), which were below the 

threshold accepted for plant survival. 

Conclusion: Two  possible  causes  of  total  non-structural  carbon  (or  TNC)  depletion  are  discussed: 

insufficient storage due to advanced leaf senescence or increase in the C costs regarding winter embolism 

recovery. 

2

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

2



Introduction: 

Tree dieback has generally been linked to hydraulic failure and/or carbon (C) starvation (Sevanto 

et al. 2014; McDowell and Sevanto 2010; Sala et al. 2012). Numerous dedicated studies have 

focused on forest decline which has increased dramatically throughout the world during the past 

two decades as a consequence of global change (Allen et al. 2010). The consensus view has been 

that  higher  temperatures  coupled  with  frequent  and  severe  drought  events  decreased  carbon 

assimilation  and  increased  tree  respiration  (Granier  et  al.  2007;  Vickers  et  al.  2012),  thus 

compromising plant survival. The risk of tree death after an extreme climatic event is furthermore 

amplified by poor soil resources (Rozas and Sampedro 2013). However, although nitrogen (N) is 

a major constituent of plants, its specific role in tree dieback has, to our knowledge, never been 

explored. 

This point nevertheless  deserves consideration given the interdependency of C and N 

acquisition in plants.  An N deficiency causes leaf  yellowing and blighting  (Taiz and Zeiger 

2010),  decreases  leaf  N  concentrations  and  in  turn,  photosynthesis  (Cao  et  al.  2007). 

Additionally, N uptake is proportional to root respiration (Bloom et al. 1992; Reich et al. 1998) 

and is dependent on the carbohydrate supply to the roots (Jordan et al. 1998). 

Winter and spring are critical periods for the survival of stressed deciduous trees (Galvez 

et  al.  2013;  Bréda  et  al.  2006)  which  are  reliant  on  their  C and N reserves  to  ensure  their 

maintenance  (Sauter  and van  Cleve  1994),  the  development  of  cold  hardiness  (Charrier  and 

Ameglio 2011) and their first  growth flush (Stassen et al.  1981a and b; Millard and Neilsen 

1989). A deficit of N storage may be partially compensated for by the restoration of N uptake  

before bud burst, however the associated C costs are prohibitive (Thitihanakul et al. 2012; Jordan 

et al. 2014). Autumn storage is therefore of crucial importance to tree perenniality. 

Orchard trees are  likely more susceptible  to  poor nutrient conditions than forest  trees 
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because of (i) the large quantities of biomass lost each year due to fruit production and pruning 

(El-Jendoubi  et  al.  2013),  and  of  (ii)  their  wide  spacing which  limits  light  competition  and 

favours crown expansion. Therefore, they usually display higher growth rates than timber species 

and, until recently have benefited from significant water and nutrient supplies. However, orchard 

management techniques have evolved, favouring low input strategies in response to increasing 

ecological concerns and constraints, such as limited access to water and the implementation of 

restrictive  fertilisation  guidelines,  particularly in Western  Europe.  Moderate  stresses  are  now 

commonly applied to the risk of imposing suboptimal conditions for tree development. 

Low N supplies may therefore limit autumn storage and thereby compromise early spring 

development. This theory was evaluated in young peach trees (Prunus persica L. Batch) during 

the present study, which analysed the consequences of N deprivation applied in the autumn on 

spring development (or dieback). For this purpose, the trees were either N deprived, N limited or 

N  unlimited  in  autumn,  and  then  fed  in  excess,  regarding  their  growth  needs,  in  spring.  

Furthermore, the spring N supplies were 15N labelled. The effects of autumn N deprivation on (i) 

tree development, (ii) N uptake and (iii) C status (namely C depletion) could then be assessed by 

coupling in situ measurements of shoot development with destructive harvests and biochemical 

and isotopic determinations in plant organs. This study focused in particular on the fate of these  

deprived trees. Indeed, those trees died within three months after bud burst and had therefore 

been excluded from two previous studies analysing the effects of a non-zero but limited autumn 

N supply on tree architecture (Jordan et al. 2009), gross growth and nutrient status (Jordan et al.  

2012). Our aim here was therefore to document the link between N deprivation in autumn, C 

depletion and tree dieback in spring. 

Materials and Methods 
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Experimental  design. The  study  was  carried  out  at  the  INRA  Research  Centre  in  Avignon 

(southern  France).  Forty  one-year-old  peach  rootstocks  (Prunus  persica cv.  GF305)  with  a 

diameter of between 6 mm and 8 mm were grafted with pushing buds of peach (cv. RO52) on 

March 16, 1999 and then transplanted into 10 dm3 pots filled with a 50% vermiculite and 50% 

peat mixture. The trees were left in a greenhouse for 1 month and then moved outside. During the 

growth period, chemical treatments were applied regularly to deter pests. Two drippers per pot, 

each delivering 2 dm3 h-1, supplied a nutrient solution concentrated at 1g dm-3 of a commercial 

14/7/27% NPK fertiliser. The trees were irrigated for 6 minutes, ten times each day. 

At the end of shoot elongation, 18 trees were selected for their homogeneity and divided 

into groups of six individuals to receive three different levels of N supply (details below) between 

September  13  and  November  10.  Six  further  trees  were  kept  under  automatic  irrigation  for 

subsequent evaluation of the natural abundance of 15N. Leaf fall was monitored by counting the 

number  of  leaves  per  tree  on  eight  occasions  between  September  30  (100%  leaves)  and 

November 8 (0 leaves). 

On February 24, 2000, after soaking the roots in tap water for 3 hours, the trees were 

transplanted into 15 dm3 pots containing an “N-free” substrate composed of 60% sand (Biot B4, 

ref 16.14.2) and 40% pozzolana. The trees were left outside and fed until harvest with a  15N-

labelled solution (details below). The number of flower and vegetative buds were counted every 

two days; from February 28 to March 20 for flower buds and to March 30 for vegetative buds.  

The  buds  were  included  in  the  counts  when  the  petals  or  leaf  tissues  became  visible  after 

separation  of  the  bud scales.  The  number  of  expanded leaves  were  monitored  once a  week 

between April 11 and harvest. The small rosette leaves that had been preformed in the buds were  

counted separately from the larger ones inserted on the elongated axes that resulted from the 

plastochronal activity of apical meristems. 
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Nutrition  and treatments.  Between September  13  and November  10 each group of six  trees 

received a different level of N supply which was either null (0N treatment), too small to ensure 

optimal spring development (limiting treatment), or provided in excess according to plant needs 

(control treatment). These three autumn treatments corresponded to a weekly supply of 0, 1.3 and 

2.6 g NO3
- plant-1, respectively. Nitrate and other nutrients were supplied three times a week (on 

Monday,  Wednesday  and  Friday)  in  a  0.3  dm3 nutrient  solution  which,  depending  on  the 

treatment,  contained  0,  1.5,  or  3  g  NO3 dm-3 as  Ca(NO3)2.  The  solution  also  contained  the 

following in mol m-3: MgSO4 1; KCl 0.2; K2SO4 1.5; KH2SO4 0.5; Fe EDDHA (Ethylenediamine-

di(o-hydroxyphenylacetic  Acid))  0.1;  and in  µmol m-3:  H3BO3 206.58;  MnCl2 116.57;  CuSO4 

4.72;  ZnSO4 32.41;  MoNH4 28.15.  No  excess  solution  drained  from  the  pots.  On  the  four 

remaining days of each week, field capacity was restored by automatic irrigation with tap water 

for ten sequences of 6 minutes each (corresponding to a daily supply of 4 dm 3 tree-1). The number 

of irrigations per day was reduced to five (29 September), then to three (15 October) and finally 

to 0 (2 November). No irrigation was supplied between leaf fall and spring transplantation. 

On February 24, 2000, the NO3
- concentration in the nutrient solution was labelled with 

2.6 atom % 15N and adjusted to 1.5 mmol dm -3. The concentrations of the other nutrients were the 

same as in the solution used during the autumn. Each tree received 0.3 dm3 day-1 from March 2 to 

April 2, then 0.5 dm3 day-1 until April 18, 1 dm3 day-1 until May 4, 1.5 dm3 day-1 until May 15 and 

2 dm3 day-1 until tree sampling. The supply was adjusted so as to ensure that some of the solution 

was available to the plants throughout the day, in saucers placed under the pots. 

Tree sampling. Two destructive samplings of three limited and control trees were made at the end 
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of the first growth flush, i.e. on May 29 (Harvest 1) and June 13 (Harvest 2), respectively. The six 

trees used to evaluate the natural abundance of 15N were sampled on February 25.

For the 0N trees, the harvests were adjusted to plant death. A tree was assumed to be dead 

when all its vegetative buds had dried. The four trees which died during bud burst (see Results) 

were harvested on May 10 (Harvest 1). The two remaining trees were harvested on May 29 and 

on June 13, respectively, and grouped for the statistical analyses as they both died during the first  

growth stage, i.e. during the rapid leaf expansion stage.

The trees were sub-sampled for biochemical analyses as follows: thin and thick roots (less 

than and more than 0.5 cm in diameter, respectively), rootstock trunk, main axis, secondary axis, 

stems of current year shoots, leaves and fruits or flowers. Because N is stored preferentially in the 

bark, and non-structural C mainly accumulates in wood, the wood and bark were separated for 

biochemical analyses. 

Biochemical analyses.  All samples were kept at –20°C until freeze drying and weighing. The 

samples were ground in a stainless steel Dangoumeau grinder (Prolabo France) and cooled with 

liquid N2. Total N concentrations and  15N excess levels were determined using a Tracer-MAT 

continuous flow mass-spectrometer (Finnigan MAT, Hemel Hempstead,  UK).  15N enrichment 

was used to calculate the amount of labelled N taken up from the fertilizer solution in 2000, as 

described by Millard and Neilsen (1989). 

The extractions and determinations of soluble sugar concentrations were performed as 

described  by  Gomez  et  al.  (2002):  extraction  in  a  methanol-chloroform-water  medium  and 

determination by HPLC (Sugar PaK 1 column at 80°C and refractometer, Waters, Milford, MA). 

The starch concentration was determined on pellets, as described by Jordan and Habib (1996): 

solubilisation by autoclaving, depolymerisation and determination of the resulting glucose using 
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the reference enzymatic method. Total Non-structural Carbohydrate (TNC) was assumed to be 

the sum of soluble sugars and starch. 

The concentrations and contents of each compound thus determined in the sub-samples 

were calculated from the DW (Dry Weight)  and concentrations in (i)  the  perennial structure 

comprising the roots, bark and wood of the rootstock trunk, main and secondary axes, (ii) current  

year organs: stems, leaves, fruits or flowers, and (iii) the whole tree. 

Data analyses. Randomisation (or permutation) tests (Manly 1991) performed at 5% level were 

used to evaluate the effects of treatments and/or harvest dates. Empirical distributions of these 

variables  under  the  null  hypothesis  of  no  treatment  effect  were  derived  from 2500  random 

assignments of the trees to the different treatments and harvest dates (R 2.11.0 software, www.r-

project.org/). This random assignment was justified because the trees (i) had been raised under 

the same conditions, (ii) were equivalent in terms of size, and (iii) were randomly allocated to the 

groups. The test statistics were the pairwise differences between the means of the variables per 

group. Two observed means were considered to differ significantly if their difference was within 

the distribution tails of the empirical distributions of these differences under the null hypothesis. 

The effect of the treatments on leaf fall was analysed by comparing the number of leaves 

remaining on the trees at each counting date. The effects of treatment and harvest date on TNC 

and total  N organ  concentrations  and contents  were  assessed  by comparing  the  six  possible 

combinations of treatments and harvest dates. For tree 15N contents, the effect of harvest date was 

compared separately for each treatment, since the 0N trees contained about 20 times less 15N than 

the fertilized (limited and control) trees. 

Results:
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Leaf senescence. In autumn, the 0N trees could be rapidly identified by the yellow colour of their  

leaves. Indeed, yellowing started earlier and was more intense in the 0N trees than in fertilized 

trees. On the control trees, in particular, the leaves remained green almost up to leaf fall.  

Leaf fall started in October and comprised two phases (Fig 1). Until October 22, leaf fall  

remained limited and was earlier in the 0N trees, which had lost 11% of their leaves by October 

15 while the others had only lost 4%. This trend was reversed after October 22 once the fall rates 

had increased under all treatments, but the differences only became significant on November 5. 

At that date, the number of leaves remaining on the trees ranged from 13% (control trees) to 28% 

(0N trees). Leaf fall was then completed rapidly, i.e. before November 8, due to a wind storm. 

Flowering,  bud burst  and development.  Flower buds emerged before March 17 whatever the 

treatment, but the number of developing buds was very small on the 0N trees. Indeed, two of  

these trees did not flower at all, two produced only one flower, and the remaining two produced 

25 and 26 flowers, respectively. This was much less than the numbers counted on the limited 

trees (60 ± 9.3: SE or Standard Error) and control trees (88 ± 8.6). Full bloom was observed at  

around March 20, but none of the “0N flowers” produced a fruit. 

Vegetative bud burst was achieved on March 24 and was also very low on the 0N trees 

(Fig 2). All of them developed at least one vegetative bud, but huge variations in bud number and 

lifespan were observed among the trees. A vegetative bud was excluded from the counts when all 

its leaflets completely dried out. Four trees dried and died during March, i.e. before the leaves  

preformed in the initial rosettes had fully expanded. Three of them had developed fewer than six 

buds,  but  the  fourth developed 25 buds which was as  many as  the  two trees that  were still 

surviving at this stage. 

These remaining 0N trees dried out between April 19 and May 15 for the first one, and 
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between May 9 and June 7 for the second one. They had developed respectively 12 and 43 rosette 

leaves, but no axis leaves. By contrast,  the number of expanded leaves on the fertilized trees  

increased rapidly during April and May due to axis elongation. Indeed, on April 19, 36% (or 100 

±19) and 50% (or 201 ± 55) of the tree leaves were neoformed, i.e. inserted on the elongated axes 

of the limited and control trees, respectively. These proportions had reached 53% and 63% on 

May 9.

Spring N uptake. Spring N uptake was restored in all trees before dieback (Table 1) and increased 

significantly in line with survival time. Indeed, the 0N trees had absorbed 2.4%, (42 mg 15N) of 

their total N content in spring even if death occurred during bud burst. This percentage reached 

5.7% (78 mg 15N) in the tree which survived that stage. However, these intakes remained small 

when compared with the fact that the limited and control trees had absorbed more than 1000 mg 

15N by May 29. 

Tree N status. Tree N concentrations were similar in all trees whatever the treatment and harvest 

date (Fig 3a), while tree N contents were proportionate to tree DW and varied by a factor of 3.5 

(Fig  4a).  However,  the  0N trees  differed  markedly  from their  fertilized  counterparts,  firstly 

because their N pool was mainly composed of  14N, which represented only between 63% and 

66% of total N in the fertilized trees. Indeed, the limited and control trees absorbed one-third of  

their total N between bud burst and harvest. 

Secondly, the current year organs, i.e. the leafy shoots and fruits, represented less than 1% 

of the tree DW on the 0N trees, while in the fertilized trees, the new shoots and fruits accounted 

for between 47% and 61% of the tree DW and contained between 69% and 78% of the tree N 

content (Fig 4a). Indeed, the fertilized trees had higher total,  14N and 15N concentrations in their 
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current year organs (Fig 3b) than in their perennial structures (Fig 3c). 

In the perennial structures, i.e. the roots and old axes, the N concentrations and contents 

were significantly higher in the 0N trees than in the fertilized ones. The differences were mainly 

due to  14N. The fertilized trees were sampled after store emptying since the 14N content of their 

perennial structures was low (859 ± 122 mg 14N) and independent of treatment and harvest date. 

By contrast, the 0N trees contained 1617 ± 192 mg 14N, and the difference (758 mg 14N) probably 

reflected the N stored by the 0N trees, which was not mobilised from perennial organs to sustain 

shoot and fruit growth. Indeed, in the limited and control trees, the amounts of 14N incorporated 

into the current year organs reached 1450 ± 133 mg and 2130 ± 135 mg, respectively.

Tree TNC status. The tree TNC concentrations were three-fold lower in the 0N trees than in the 

fertilised ones (Fig 3d). The differences in the TNC contents were even more marked (Fig 4b). 

Indeed, the 0N trees contained less than 9 g TNC, versus around 60 g in the fertilized trees, with 

one exception: control trees at harvest 2 contained 115 g TNC. Furthermore, both concentrations 

and contents decreased slightly over time in the 0N trees (Table 2), passing from 5.5% to 2.3% 

DW and from 8.5 to 4.0 g TNC, when the survival time increased. In the fertilized trees, by 

contrast,  both concentrations and contents increased over time, but the differences were only 

significant in the controls. Starch contributed 24% to the TNC pool of the 0N trees, while this 

proportion ranged from 7% (control trees,  harvest 2) to 31% (limited trees, harvest 2) in the 

fertilized trees. 

In  the  current  year  organs  (Fig  3e),  the  variations  over  time  of  TNC concentrations 

resembled those observed for the whole trees, even though the mean concentrations were higher, 

i.e. between 22% and 30% DW. Indeed, current year organs contained between 70% (limited 

trees, harvest 2) and 89% (control trees, harvest 2) of the tree TNC (Fig. 4b). 
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Even  though  the  perennial  structures  of  the  fertilized  trees  contained  only  a  small 

proportion of the tree TNC, their TNC concentrations and contents were higher than in 0N trees  

(Fig 3f). The differences were the greatest between the 0N and the limited trees. The perennial 

structures  also  had  much  lower  concentrations  than  the  current  year  organs.  Indeed,  the 

concentrations were comprised between 2.9% DW (0N trees, harvest 2) and 9.3% DW (limited 

trees, harvest 2) for TNC, and between 2.16% and 4.10% DW for soluble sugars.

Discussion 

C depletion as a consequence of N shortage. In autumn, an N limitation reduces photosynthesis 

when the leaf N concentration drops below a threshold level, which is set at around 2.2% N DW 

for rosaceae species (Cheng and Fuchigami 2000). This has been observed in trees that were 

unable  to  correct  their  low N status  in  the  autumn through  N uptake,  which  were  therefore 

exporting N from their leaves to a greater extent (Cheng et al.  2002) and also earlier before  

abscission (Grassi  et al.  2005) compared with well-nourished trees. However, an N limitation 

does not only restrict C acquisition but also C expenses, because root respiration is proportional 

to N uptake (Bloom et al. 1992; Reich et al. 1998). The final outcome on tree TNC content at leaf  

fall is still a matter of discussion since contrasting results have been published, sometimes on the  

same species (Bollmark et al. 1999; Von Fricks et al. 1998; Cheng and Fuchigami 2000; Cheng et 

al. 2002). It is however admitted that reducing the N supply in autumn will increase the tree TNC 

content, unless it affects leaf senescence, which was probably the case in our study. Indeed the  

0N trees were characterized by rapid leaf yellowing and high leaf fall rate.

During winter and early spring, TNC expenses may also increase because of the necessary 

adaptation of the 0N trees to N shortage. Several C costly mechanisms have been identified in the 

literature. Firstly,  an N storage deficit can boost N uptake around bud burst, but this has not 
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always been observed (Thithikanakul et al. 2012; Jordan et al. 2012 and 2014), perhaps because it 

is solely reliant on TNC mobilisation. The respiration costs of the  15N uptake of the 0N trees 

could be estimated at between 0.18 and 0.88g equivalent glucose, assuming that three carbon 

atoms are released per NO3
- assimilated and transformed into asparagine (Sasakawa and LaRue 

1986; Amthor 2000). Secondly, an N limitation may stimulate root growth (Millard and Neilsen 

1989; Jordan et al. 2012) in order to increase the volume of prospected soil, in accordance with 

the theory of functional equilibrium. Newly developed fine white roots have thus been observed, 

but unlikely not quantified, on all dead trees at harvest. Thirdly, the C costs of restoring xylem 

function probably  increases in  line  with N deficiency because  winter  embolism is  related to 

xylem osmolarity, i.e. to the concentrations in soluble C and N compounds (Bréda et al. 2006; 

Sakr et al. 2003; Charrier and Ameglio 2011; Galvez et al. 2013). Despite the fact that peach 

wood porosity is diffuse, positive xylem pressure plays only a minor role in recovery from winter 

embolism  (Ameglio  et  al.  2002).  Xylem  function  must  therefore  be  restored  through  the 

production of new functional conduits, i.e. by cambial reactivation (Ameglio et al. 2002), which 

requires large amounts of TNC and renders the species susceptible to dieback under low TNC 

storage conditions (Barbaroux et al. 2003). 

Previous studies (Jordan et al. 1998 and 2012) had demonstrated that TNC concentrations 

of around 10% enable normal leaf out and growth in spring in the absence of N limitation, but if  

the tree N concentration is reduced by 50%, young trees need to contain at  least 15% TNC if 

spring development is not to be penalised (Jordan et al. 2014). Indeed, TNC mobilisation in early 

spring can  increase  significantly  (i.e.  up  to  26g TNC; Jordan et  al.  2014)  in  the  case  of  N 

limitation.  During  the  present  study,  all  0N  trees  were  TNC  depleted,  whatever  the  cause: 

insufficient storage coupled (or not) with high C losses. Indeed, they contained less than 1.3% 

starch, and their soluble sugar concentrations varied between 2.2% and 3.9% DW. 
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Shoot development and dieback.  Although they were not fertilized in the autumn, the 0N trees 

accumulated small but significant amounts of 14N, probably by remobilizing their leaf N prior to 

abscission. In spring, these N stores were blocked in the perennial structure, as a cause for, or a  

consequence of low bud break (see below). The fate of an axillary bud (i.e. its differentiation into 

a flower or a vegetative or blind bud) depends on the growth context of its parent internode (or 

growth unit) and is thus determined during vegetative growth (Kervella et al. 1995; Boonprakob 

et al. 1996), i.e. before the application of the treatments in the autumn. To our knowledge, bud 

burst  in  spring  has  never  been  investigated  in  terms  of  its  relationship  with  N  availability. 

However, low N storage is known to affect shoot development by (i) decreasing the proportion of 

rosettes that are transformed into elongated axes (Lobit et al. 2001; Grelet et al. 2003; Jordan et  

al. 2009), but not the number of developing buds set by a specific peach variety (Perezgonzalez 

1993), and (ii) delaying spring development (Jordan et al. 2014). 

The presence of significant amounts of unused  14N has advocated for a possible role of 

TNC in the disruption of bud burst. Indeed, partial bud break, which usually precedes dieback, 

could be considered as a marker of TNC shortage (Bréda et al. 2006; Marcais and Bréda 2006).  

According to this theory, low TNC availability would limit bud break, thus in turn preventing the 

recovery  of  photosynthesis.  Indeed,  bud  burst  is  dependent  on  the  hexose  content  of  the 

meristematic  tissues  (Maurel  et  al.  2004).  Photosynthesis  contributes  to  sustaining  tree 

metabolism but only after full expansion of the first leaves (Bieleski and Redgwell 1985), which 

occurs at around fruit set, i.e. around end of March in the RO52 cultivar. It could therefore be 

assumed that four 0N trees died before the photosynthesis would normally have been restored, 

and the two remaining individuals after that stage. However, C depletion continued in April in 

those two trees which developed only a few rosettes leaves and were therefore unable to ensure 
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significant levels of C acquisition. 

Dieback as a possible consequence of TNC starvation. Carbon starvation has been identified as a 

possible  cause  of  tree  mortality  following severe  stress  such as  defoliation (Landhauser  and 

Lieffers 2012) or drought (Adams et al., 2013; Galiano et al., 2011). Plant withering can last for 

several years (Marcais and Bréda 2006;  Bréda et al. 2006; Galiano et al. 2011), during which 

death (or recovery) depends on the plant's ability to rebuild its TNC reserves before the onset of a 

second stress (insect attack, frost or drought). Moreover, the mortality threshold varies according 

to  the  environment,  size  and  global  functioning  of  a  tree,  since  stored  C  contributes  to 

maintaining cell turgor and xylem integrity (Secchi et al. 2011; Sala et al. 2012; Pantin et al. 

2013) alongside other soluble compounds, which include calcium, potassium, amino acids and 

soluble proteins. In addition, some starch may be blocked in its reservoirs by partial hydraulic 

failure, and thus not be available for plant metabolism (Sala et al. 2012; Sevento et al. 2014). This 

failure may be due to an incomplete recovery from winter embolism (with radial growth being 

too small in early spring) or to midday embolism, which can be observed even under benign  

water stress conditions (Sala et al. 2012). Carbon starvation is possible even though the tree TNC 

content is above zero (McDowell and Sevanto 2010).

Markedly varying TNC concentrations in dead trees have been observed in the literature. 

According to Landhäuser and Lieffers (2012) and Hartman et al.  (2013), TNC starvation was 

limited to the roots, thus contributing to maintaining a water pressure deficit gradient throughout 

the trunk.  Galvez et  al.  (2013) found that  Populus tremuloides  and  Populus balsamifer trees 

undergoing  winter  mortality  contained  7%  and  12%  TNC,  respectively,  and  were  almost 

completely starch-depleted. We determined a mean value of 4.3% TNC. Hydraulic failure, which 

usually accompanies C starvation, may nonetheless contribute to tree death (Sevanto et al. 2014). 
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Although the 0N trees in our study exhausted their starch reserves before dieback,  this 

was not the case of the  1.5N trees,  which were also N limited.  The latter  thus  maintained a 

significant level of starch in spring which penalized spring N uptake and delayed shoot growth 

(Jordan et al. 2009 and 2012).  This could probably be explained by the constitution of “safety 

reserves” under stress conditions (Silpi et al. 2007) which become inaccessible unless the onset of 

a dramatic event compromises tree survival (Vargas et al. 2009). 

Conclusion

Our study provides an experimental evidence of the link between N shortage and TNC depletion, 

although we did not investigate the underlying mechanisms. TNC depletion occurred in trees 

whose N concentrations were compatible with plant survival, and whose N stores were blocked in 

the roots and woody axes. Further investigation is therefore necessary in order to: (i) explain the 

causes of TNC depletion: reduced storage or increased C expenses and (ii) to determine whether 

TNC depletion led to plant death, possibly through hydraulic failure. 
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Table 1 Spring N uptake (mg 15N tree-1) as a function of treatment and harvest date. 

The numbers are means and standard errors of two (harvest 2, 0N trees), three (limited and control trees) or 

four (harvest 1, 0N trees) replicates. The effect of harvest date was tested for each treatment, by randomization tests  

based of the generation of 2500 random orders. It was significant (5% level) if coded with different letters. The effect 

of treatment was not tested due to the important difference between the 0N and fertilized trees. 

0N trees Limited trees Control trees

Harvest 1 42 a  ± 8.1  1154 a  ± 220 1370 a  ± 67 

Harvest 2 78 b  ± 40 1349 a  ± 323 2004 b  ± 25 

Table 2 Tree TNC (Total non-structural carbon) concentration in relation to the date of death for 

the 0N trees. Each line represented a single tree of the 0N treatment, for which 100% mortality  

was observed. A tree was assumed to be dead when all its vegetative buds had dried. 

Date of death TNC concentration (% DW)

March 3 5.2

March 21 5.5

March 26 5.0

March 30 4.4

May 15 3.4

June 7 2.6
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Captions to Figures: 

Fig 1  Percentage of leaves remaining on the trees during leaf fall in autumn for the 0N (open circles, solid 

line), limited (full squares, dashed line) and control trees (full triangles, long dashed line). Each symbol is the 

mean of 6 trees plotted with standard errors. The means were ranked (a), (ab), (b) from the lowest to the highest  

values. They are significantly different if coded with different letters. Statistical significance was inferred from 

randomization tests based on the generation of 2500 random orders.

Fig 2  Dynamic response of bud burst (number of live green vegetative buds) for the 0N (open symbols, dashed 

lines), limited (full squares, solid line) and control trees (full triangles, solid lines). For the limited and control  

trees,  each symbol  is the mean of 6 trees plotted with standard errors.  For the 0N trees,  each dashed line  

associated with an open symbol represents a single individual.

Fig 3  N and TNC concentrations (means and standard errors in % DW) as a function of treatment and harvest  

date for (a) and (d) the whole trees, (b) and (e) the current  year organs,  i.e. the flowers,  fruits,  leaves and  

current year stems, and (c) and (f) the perennial structures, i.e. the roots and old axes. 

Harvests 1 and 2 are represented by dark and pale grey bars, respectively. Starch and 14N are shown by 

hatched areas, and the remainder,  15N and soluble sugars by non-hatched areas. The effect of treatment and 

harvest  date  was  tested  by  randomization  tests  based  on  the  generation  of  2500  random  orders.  It  was 

significant (5% level) if coded with different letters.

Fig 4  Tree contents (means and standard errors in g tree -1) as a function of treatment and harvest date for (a) N 

and (d) TNC. 

Harvests 1 and 2 are represented by dark and pale grey bars, respectively. The contents of perennial  

organs are shown in squared areas, and those of the current year shoots by non-hatched areas. The effect of 

treatment and harvest date was tested by randomization tests based on the generation of 2500 random orders. It  

was significant (5% level) if coded with different letters.
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