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Random walks of n steps taken into independent uniformly random directions in a d- dimensional Euclidean space   2 d  , which are characterized by a sum of step lengths which is fixed and taken to be 1 without loss of generality, are named "Dirichlet" when this constraint is realized via a Dirichlet law of step lengths. The latter continuous multivariate distribution, which depends on n positive parameters, generalizes the beta distribution   2 n  . It is simply obtained from n independent gamma random variables with identical scale factors. Previous literature studies of these random walks dealt with symmetric Dirichlet distributions whose parameters are all equal to a value q which takes half-integer or integer values. In the present work, the probability density function of the distance from the endpoint to the origin is first made explicit for a symmetric Dirichlet random walk of two steps. It is valid for any positive value of q and for all 2 d  . The latter pdf is used in turn to express the related density of a random walk of two steps whose step length is distributed according to an asymmetric beta distribution which depends on two parameters, namely q and qs  where s is a positive integer.

Introduction

To model the infiltration rate of a given species into possible habitats, Pearson defined in 1905 a simple planar "random walk" (RW) which is made of a sequence of n steps with identical fixed lengths taken into uniformly random directions [START_REF] Pearson | The problem of the random walk[END_REF][START_REF] Pearson | A Mathematical Theory of Random Migration, Mathematical Contributions to the Theory of Evolution XV[END_REF]. This idealized RW has been used recently to assess the electromagnetic compatibility of a group of N identical power electronic converters [START_REF] Bojarski | Pearson's random walk approach to evaluating interference generated by a group of converters[END_REF]. The cases of five to some tens of steps (N) were more particularly analyzed. The Pearson's RW has been applied as well to the characterization of the cosmic microwave background (CMB) [START_REF] Stannard | Random-walk statistics and the spherical harmonic representation of CMB Maps[END_REF][START_REF] Hansen | Pearson's random walk in the space of the CMB phases: Evidence for parity asymmetry[END_REF]. Complex coefficients are obtained in a spherical harmonic representation of temperature maps of the CMB. Different types of random walks, associated with the spherical harmonic mode l , are then performed in the phase space, one being a Pearson's RW [START_REF] Stannard | Random-walk statistics and the spherical harmonic representation of CMB Maps[END_REF][START_REF] Hansen | Pearson's random walk in the space of the CMB phases: Evidence for parity asymmetry[END_REF]. In addition, the analysis of the temperature and polarization of the CMB led Reimberg and Abramo [START_REF] Reimberg | CMB and Random Flights: temperature and polarization in position Space[END_REF][START_REF] Reimberg | Random flights through spaces of different dimensions[END_REF] to define random flights made of two successive stages in spaces with different dimensions

  1 2 1 2
,2 d d d d  , both with deterministic step lengths. Such flights emerge from the treatment of Boltzmann equations which codify the interplay between collisional physics and free propagation. The coefficients of a multipole decomposition of the temperature and polarization of the CMB are determined from these equations. For each stage, the space dimension is determined by the order of the multipole which dominates it [START_REF] Reimberg | Random flights through spaces of different dimensions[END_REF].

Variations on the theme of Pearson's random walk involve space dimensions higher than two, changes of step length distributions, deviations of step orientations from a uniform repartition and the introduction of correlations between steps . A frequent change consists in allowing step lengths to vary according to some continuous probability law. Such modifications find applications in diverse fields such as physics, biology, ecology ([4-7, 9-20] and references therein). A few examples, by no means exhaustive, are given hereafter.

Random walks with exponentially distributed step lengths were studied in 2D by Stadje [START_REF] Stadje | The exact probability distribution of a two-dimensional random walk[END_REF] as a possible description of the motion of microorganisms on planar surfaces and in 3D by Vignolles et al. [START_REF] Vignoles | Pearson random walk algorithms for fiber-scale modeling of Chemical Vapor Infiltration[END_REF] to model the chemical vapor infiltration method used to prepare ceramicmatrix composites. To study the relation between the Boltzmann equation and the underlying stochastic processes, Zoia et al. [START_REF] Zoia | Collision densities and mean residence times for d-dimensional exponential flights[END_REF] investigated exponential flights in d . The probability density of finding a particle at position r at the n -th collision was determined for an infinite medium. The cases were 1, 2 d  find applications respectively in the field of electron transport in nanowires or carbon nanotubes and in the study of the dynamics of chemical and biological species on surfaces. Exponential walks are quite naturally extended to random walks with gamma distributed step lengths (appendix A).

An important class of walks is that of Lévy flights whose step lengths have heavytailed probability distributions. Many organisms are believed to perform Lévy flights in their search for resources [START_REF] Viswanathan | Lévy flight search patterns of wandering albatrosses[END_REF][START_REF] Edwards | Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer[END_REF][START_REF] Benhamou | How many animals really do Lévy walk?[END_REF][START_REF] Viswanathan | The Physics of foraging an introduction to random searches and biological encounters[END_REF][START_REF] Humphries | Foraging success of biological Lévy flights recorded in situ[END_REF]. The Levy-flight foraging hypothesis is the subject of much debate but there is presently a growing consensus that many organisms diffuse anomalously.

Alternative models to Lévy flights or the emergence of Levy patterns from composite models, are regularly put forward and discussed controversially (see for instance [START_REF] Benhamou | How many animals really do Lévy walk?[END_REF]). We notice that a shifted gamma distribution, with a small shape factor ~0.3, was used for some time to account for flight durations of sea birds [START_REF] Edwards | Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer[END_REF].

The applications of the previous random walks imply neither that the walk space is a physical space with a dimension of at most three nor that the step length distributions are limited to a few standard mathematical forms.

The present work focuses on random walks in a d-dimensional Euclidean space   2 d  whose step lengths have a Dirichlet distribution. The Dirichlet distribution is applied for instance to model fragmentation or compositional data [START_REF] Aitchison | The Statistical Analysis of Compositional Data[END_REF]. Further, gamma and Dirichlet distributions are strongly connected as are the associated random walks (appendix A). , were investigated recently [START_REF] Franceschetti | When a random walk of fixed length can lead uniformly anywhere inside a hypersphere[END_REF][START_REF] Orsingher | Random flights in higher spaces[END_REF][START_REF] Kolesnik | Random motion at finite speed in higher dimensions[END_REF][START_REF] Kolesnik | The explicit probability distribution of a six-dimensional random flight[END_REF][START_REF] Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF][START_REF] Caër | A new family of solvable Pearson-Dirichlet random walks[END_REF][START_REF] Gregorio | Flying randomly in R d with Dirichlet displacements[END_REF][START_REF] Gregorio | A family of random walks with generalized Dirichlet steps[END_REF][START_REF] Letac | Dirichlet random walks[END_REF]. The constant S is taken hereafter as equal to 1 without loss of generality (eq. 5, section 2). The problem of the step length distribution of such walks is thus directly related to the broken stick problem, i.e.

the problem of the random splitting of a unit interval. The Dirichlet distribution has been more particularly considered as an appropriate step length distribution [START_REF] Orsingher | Random flights in higher spaces[END_REF][START_REF] Kolesnik | Random motion at finite speed in higher dimensions[END_REF][START_REF] Kolesnik | The explicit probability distribution of a six-dimensional random flight[END_REF][START_REF] Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF][START_REF] Caër | A new family of solvable Pearson-Dirichlet random walks[END_REF][START_REF] Gregorio | Flying randomly in R d with Dirichlet displacements[END_REF][START_REF] Gregorio | A family of random walks with generalized Dirichlet steps[END_REF][START_REF] Letac | Dirichlet random walks[END_REF]. Following Letac and Piccioni [START_REF] Letac | Dirichlet random walks[END_REF], the associated random walks are named hereunder "Dirichlet random walks" and referred to as
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,, n W d n q . The Dirichlet distribution of the random vector
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 , denoted here as

    n D q , with parameters     1 ,..., n n qq  q
has a multivariate probability density function (pdf) given by ( [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF], p. 18):

    1 1 1 1 ,.., 1 1 , 0, 1,.., n mn i m n i i i i q i f l l K l l l l i n                  where 1 mn  ,     1 n ni i K nq q         , 1 n i i nq q    . For 2
n  , the Dirichlet distribution reduces to a beta distribution denoted hereafter as  

12 , Be q q (eq. 2). For convenience, these two-step beta random walks will still be named "Dirichlet". In the literature, special attention has been paid to "symmetric" Dirichlet random walks,   ,, W d n q , i.e. to walks whose step lengths are distributed according to a symmetric Dirichlet distribution for which

    , ,..., n q q q  q
. As the notation

 

,, W d n q is self-explanatory, the word "symmetric" is omitted to designate them. There is a close connection between a symmetric Dirichlet random walk

 

,, W d n q and a gamma random walk   ,, G d n q whose step lengths have identical and independent gamma distributions   ,1 q  (appendix A). The pdf of the endpoint position of   ,, G d n q is obtained from a single integral from the pdf of the endpoint position of   ,, W d n q (eq. A.8, [25-26]).

One of the initial motivations for studying constrained exponential random walks,

 

, ,1 W d n , was to answer the question as to whether it is possible to find triplets   , ,1 dn for which the endpoints are uniformly distributed on the unit ball of d [START_REF] Franceschetti | When a random walk of fixed length can lead uniformly anywhere inside a hypersphere[END_REF]. The latter quest was extended to walks

 

,, W d n q [25] and more generally to hyperuniform random walks where the word "hyperuniform" used in [START_REF] Letac | Dirichlet random walks[END_REF] is preferred here to the term "hyperspherical uniform" used in [START_REF] Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF][START_REF] Caër | A new family of solvable Pearson-Dirichlet random walks[END_REF]. A n -step random walk in d is said to be hyperuniform of type kd  if the distribution of the endpoint of the walk in d is identical with the distribution of the projection in the walk space of a point uniformly distributed on the surface of the unit hypersphere of k [START_REF] Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF][START_REF] Caër | A new family of solvable Pearson-Dirichlet random walks[END_REF][START_REF] Letac | Dirichlet random walks[END_REF]. The pdf of the position R of the endpoint of a Dirichlet random walk and that of the distance R= R from the endpoint to the starting point will be denoted respectively as

      n d p q r and       n d Pr q
. These two pdf's, which are simply related (eq. 4), can be considered interchangeably. For hyperuniform random walks, d n q such as  

      n d p q r is    
, 2,1 d [START_REF] Orsingher | Random flights in higher spaces[END_REF] and   6, ,1 n [24] or for particular values of these three parameters. Altogether, q takes either half-integer or integer values in all cases where       n d p q r has been made explicit.

The focus on two-step Dirichlet random walks

It is much simpler to study two-step Dirichlet random walks

 

, 2, W d q than the general Dirichlet random walks mentioned above so that the question of their relevance might even arise. However, their unequalled advantage lies in the existence of an explicit expression of the pdf of the endpoint distance,

          2 dd q,q P r P r     q
, which is valid for any value of 0 q  and for any 2

d  such that   0 qd  .
To the best of our knowledge, the latter expression has not yet been given explicitly in the literature.

In the present work, we obtain first the density     d q,q Pr (section 3). Second, the relevance and the usefulness of the permutation invariant distribution associated with an asymmetric step length distribution are discussed (section 4). The former distribution is used among others to establish that the two following families of Dirichlet random walks

    ,, n W d n q , where   n q is respectively   , ,...,
q q q and   1, ,..., q q q  , are indistinguishable for any   0 qd  (section 4). Last, the results of the two previous steps are applied to the derivation of the pdf     d q+s,q Pr of two-step random walks

        2 , 2, , 2, , W d W d q s q  q
which depend on two different Dirichlet parameters, 0 q  and qs  where s is a positive integer (section 5). A second formal representation of

    d q+s,q
Pr is derived. Both representations are shown to be equivalent by a method of moments.

Notations

As usual upper-case letters will be used to denote random variables (r.v.) and lowercase letters for the values they take. The mean of a function   fX of a continuous random variable X , with a pdf   X px whose support is D , will be denoted hereafter as

      X D f X f x p x dx   .
The Pochhammer symbol   k a , its duplication formula [37], the beta function   , B  , the beta distribution,  

12 , L Be q q , whose pdf is   L fl and its moments k L , will be used repeatedly throughout the text:

                                            2 1 1 1 1 1 12 12 1 2 1 2 1 1 2 0 2 1 0 = 1 .. 1 , 1 1 4 22 ,1 2 
1 , 0,1 , ,, q q L k k kk kk k k a a k a a a a k a a b a b ab B l l dl ll L Be q q f l l B q q L B q k q B q q q q q                                                                    where   x  is the classical gamma function, ,0  , 12 ,0
qq and k is taken here to be a positive integer.

The position of the endpoint of a Dirichlet random walk

    ,, n W d n q is   2 n  :     1 3 n d ii i L    R U
where the   d i U are n independent unit vectors uniformly distributed over the surface of the hypersphere in d . The   . As we will deal essentially with two-step walks, the components   12 , qq of   2 q will be given explicitly in the notations.

               
The position and distance pdf's associated with any walk

    12
, 2, , W d q q will respectively be denoted as     

                          , , 1 0, 5 1 n n n n d S d d d S d p p S S r S r P r P S S                  q q
q q r r Similar relations were given previously as eq. 16 of [START_REF] Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF] and as eq. 2 of [START_REF] Caër | A new family of solvable Pearson-Dirichlet random walks[END_REF] where S is replaced by l . In the second relation of each equation, d l must be replaced by l . The results discussed in [START_REF] Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF][START_REF] Caër | A new family of solvable Pearson-Dirichlet random walks[END_REF] are not affected by this error as they were obtained from the first part of eq. 5 followed by the application of eq. 4.

3.Two-step Dirichlet random walks   , 2, W d q

The final position of a walk   , 2, W d q is more simply written as (eq. 3):

        1 2 6 d d L 1-L   R U U
From eq. 6, we obtain the square of the final distance 2 . R = R R :

          2 12 1-2 1 1 . 7 dd R L L  = U U .
Defining:

            2 1 2 2 41 1 8 cos . 1 cos 2 sin 2 d d Y L L X R Z                 UU eq. 7 becomes:   9 X YZ =
In eq. 9, the r.v.'s Y and Z are independent and have beta distributions, respectively 

 

12 , L Be q q . The latter distribution is relevant for the discussion presented in section 4. The distribution of Z is simply found to be 11 , 22

dd Z Be    
from the pdf of the polar angle  (see for instance [36] p. 104),

      2 sin 1 2, 1 2 d p B d     . The moments of Z are thus       -1 2 1 k k k d Z d d  (eq. 2). The moments of Y , 12 , k qq Y    12 , 41 k qq LL    ,
are in turn readily obtained from eq. 2 for a walk

    12 , 2, , W d q q whose length distribution is then  
12 , L Be q q . Eq. 9 yields finally:

                12 2 12 1 2 1 2 12 , , , ,, 2 -1 2 1 4 10 1 k k k k k k k k d q q q q d d q q kk d qq X R Y Z q q d       
The pdf of a r.v., which is a product of two independent beta r.v.'s, is explicitly known as a function of the parameters of the two beta laws ( [START_REF] Dennis | On the distribution of independent beta variables[END_REF][START_REF] Pham-Gia | The product and quotient of general beta distributions[END_REF][START_REF] Nagar | Distributions of the product and the quotient of independent Kummer-beta variables[END_REF][START_REF] Nadarajah | Reply to "Comments on 'Sums, Products, and Ratios of Non-Central Beta Variables by Saralees Nadarajah[END_REF] , the pdf of X writes (eq. C.1):

              21 2 22 1 21 1 1 , ; ;1 0,1 11 ,1 2 2 2 2 d d q X d d d p x x x F q x x Bq               The common support of the distributions of X and of R is [0,1]. As r is a monotonically decreasing function of x , 1 rx  , the pdf of R is obtained from the pdf   X px to be       2 , 21 X d qq P r rp r 
. From eq. 11, we get then

    2, 0, 0,1 d q r    :           22 21 1 , 1 1 21 1 1 , ; ; 12 ,1 2 2 2 2 d d qq q d d d d P r r r F q r Bq            
Transforming the Gauss hypergeometric function [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF], eq.12 can be written equally as: Previously known pdf's are retrieved from eq. 12 or from eq. 13, adding eq. 4 if necessary. For instance, the pdf     1,1 d p r was given in [22]. The specific parameters 21 qd  and 1 qd  of the two families of hyperuniform Dirichlet random walks mentioned in section 1.1 are seen to appear quite naturally when the first arguments of the hypergeometric functions of eq. 12 and of eq. 13 are made equal to zero. We obtain: 

          22 
                               1 42 12 1 32 12 11 32 22 , 2 1 2 -1, 3 2 1,1 2 2 1 1, 2 14 1,1 2 2 1 , 2 ,1 d d d d d d dd d d qq r r q d d Bd P r r r q d d Bd r d r r q d d B d d d                                        These pdf's agree with those of table 1 of [25] for 2, 2 1, 1 n q d d    
    ,2, , W d q s q 
, where s is a positive integer.

The independent step length of a walk

    ,2, , W d q s q  is distributed according to asymmetric beta distributions,

 

, L Be q s q  (eq. 2, fig. 1). Before calculating the abovementioned pdf's, we first discuss the consequences of the use of such an asymmetric distribution.

Asymmetric distributions of step lengths

Simple considerations and their consequences

We consider a n -step random walk in d whose final position (eq. 3) is rewritten again as:

          11 15 nn dd ii ii ii LL      R U U
where the sole constraint is still,

1 1 n i i L    . In eq. 15,         1 , 2 ,.., n      denotes any of the ! n permutations of   1, 2,.., n . An asymmetric distribution of the i L 's means here that the multivariate distribution of lengths   1 1 2 1 1 , ,.., 1 n n n n i i f l l l l l       
 is not invariant under permutations of the i l 's . Thus, the univariate marginal distributions are not all identical.

When convenient, the multivariate distribution, which is not necessarily a Dirichlet distribution, will equally be written hereafter as   12 , ,.., n f l l l . The sum which gives R is commutative (eq. 15). The ! n possible attributions of a set of lengths   , 1,.., k kn l  to the steps numbered 1, 2,.., n result then in undistinguishable walks. Then, the principle of indifference states that each permutation should be given a probability of 1! n with the consequence that all steps end up with identical length distributions independently of their (arbitrary) order. It suffices then to symmetrize the initial distribution of L to make it invariant under permutations. We conclude that it is this permutation invariant distribution which is the sole meaningful step length distribution. An example is discussed in appendix B for 2 n  . The permutation invariant distribution associated with

  12 , ,.., n f l l l     1 2 1 , ,.., nn f l l l   is:               1 2 1 12 1 , ,.., , ,.., 16 ! n n n f l l l f l l l n        
where the sum runs over the ! n permutations  of   1, 2,.., n . Constrained random walks with different initial length distributions are thus undistinguishable if and only if the distributions

    1 2 1 , ,.., n n f l l l  
associated with them are identical.

We apply now the previous discussion to random walks whose step length distributions are asymmetric Dirichlet distributions in the above sense. Dirichlet random walks with such step length distributions are not really "Dirichlet" as the relevant distribution (eq. 16) is no more a symmetric Dirichlet distribution, except in some particular cases (eq. 18 below with 1 1 qq ), but a mixture of asymmetric Dirichlet distributions. To distinguish between these two types of walks, the latter will be designated in abridged form as "asymmetric Dirichlet random walks".

Application to some asymmetric Dirichlet random walks

We consider more particularly Dirichlet distributions of step lengths whose parameters are all equal except one taken to be the first,     1 , ,.., n q q q  q . The associated pdf (eq. 1) is explicitly:

            1 1 1 1 1 2 1 1 2 1 1 1 , ,.., 17 1 0 n q q mi n i n n i i i n q q f l l l l l qq l l l i                          The marginal distributions of all   1 k Lk  are identical beta distributions   , 1 k q mq L Be  while that of 1 L is   1, q mq
Be  ( [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF] and eq. A.

3). The permutation invariant distribution associated with eq. 17 is then:

              1 1 1 1 2 1 1 1 1 1 1 1 , ,.., 18 n n qq q n n i i n i i n q q f l l l l l n qq                         
as all i l , except one, play the same role. Thus, the permutation invariant density (eq. 18) reduces to the Dirichlet law whose parameters are all equal to

q when 1 1 qq  because 1 1 n i i l   
. In other words, the asymmetric Dirichlet random walk whose parameters are   1, ,.., q q q  is identical with the symmetric Dirichlet random walk whose parameters are   , ,.., q q q . The latter conclusion is valid for any 0 q  . This results in the identity of the pdf's,         , ,.. 1, ,.. dd q q q q q q pp   rr and         , ,.., 1, ,.. dd q q q q q q P r P r   for any value of 2 n  . In section 5 of [START_REF] Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF], it was shown that the n -steps Dirichlet random walks in d , whose parameters are   , ,.., q q q and   1, ,.., q q q    , ,.., q q q and   1, ,.., q q q  were incorrectly considered to be different [START_REF] Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF].

Asymmetric Dirichlet random walks of two steps

    ,2, , W d q s q 
In the case of two steps, now with 1 q q s  where q takes any positive value and s is a positive integer, the permutation invariant distribution (eq. 18) writes:

            2 1 1 1 19 2, s s q ll f l l l B q s q             Two formal representations of the pdf     , d q s q
Pr  are obtained from this permutation invariant pdf by the simple methods described below. The first representation is derived from eq. 9,

X YZ = (section 5.1) while the second (section 5.2) is based on an expansion of   

1 s s ll  in terms of powers of   1 ll  . 5.1 First representation of the pdf     , d q s q Pr  In appendix B,
    21 , 1 2 2 2, k qs s B q k c k B q s q        0,.., 2 s k        (eq. 
B.6). The distribution of 

                  21 1 21 1 1 1 , ; ;1 222 20 1 2, 1 2 , 1 2 1 2, 1 2 k kd q X k k d d d p x x x F q k k x B d k B q k B d d                           
The sought-after pdf is finally obtained from the relation,

      2 , 21 X d q s q P r rp r   (section 3):                         2 1 1 2 2 2 ,, 21 0 , 22 1 1 1 , 
; ; 222 21 1 , 1 2, 1 2 2 2 , 1 2, 1 2 s q dd d k q s q q s q k k d q s q k qs d d d P r r r r F q k k r s B d k k B q s q B d d                                                          
This first representation is a sum of 1 2 s     non-negative contributions. This is not the case for the second one which is now derived. 



For reasons made clear later (eq. 32, appendix D), we prefer to write it as: . This case is no longer considered even if eqs 26 and 28 below hold for 1 s  . The numbers   , C s j , known as coefficients of Lucas (or Cardan) polynomials [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF], are given by: Pr  can be obtained immediately from the known pdf

           
      1 0 , 0 24 
            2 0 1 1 , 1 2 
    ', ' d qq
Pr given in section 3 (eqs 12 and 13). First, eq. 19 writes:

              2 2 1 0 1 1 2 26 , s qj j j j ll f l w s B q j q j                   With:                     2 2 , , , 27 2 , 2 2 
s j j j sj q q q C s j B q j q j C s j w B q s q q q      

We deduce then the sought-after pdf of R :

              2 , , 0 1 
0, 2 28 s dd j q s q j q j q j j P r

w P r q s          
The coefficients j w of this expansion, which depend only on the distribution of L , remain the same for any space dimension d . From eq. 13 (noticing that  

2' 2 ', ' dq B q q  =   1 2 ',1 2 d Bq 
), eq.

28 can be written explicitly as: 

               
j r B q s q                         
Equivalently, from eq. 12: 

                2 21 1 12 , 22 21 0 2 1 , 1, 1 1 1 , ; ; 30 222 4 s dq q d d q s q j j j j P r r r B q s q C s j d d d r F q j r                               A direct
1 k k d q s q d q s q XR    (eq. 8) for the walks     ,2, , W d q s q  .
Indeed, the pdf of R is obtained from the pdf

  X px as       2 , 21 X d q s q P r rp r   (section 3), conversely         , 1 2 1 X d q s q p x P x x     .
Thus, the identification of the distribution of X from its moments leads ipso facto to that of R and vice versa.

The moments

  2 ,, 1 k d q s q R   of the walks     ,2, , W d q s q 
The first representation of     , d q s q Pr  (eq. 21) is directly derived from eq. 9 which yields , , ,

k k k d q s q q s q d X Y Z   . The moments , k q s q Y 
are for instance obtained from eq. B.8 for the mixture of distributions while k d Z is given above eq. 10. Thus:

                2 ,, 2 12 1 4 31 21 k k k k k d q s q kk d q s q R q s d        
It is equivalent to apply eq. 10 to a walk whose step length is distributed according to an asymmetric beta distribution   , Be q s q  to get eq. 31.

The calculation of the moments from the second representation (eq. 28) makes use of the following relation which mirrors eq. 23 in which powers are replaced by Pochhammer symbols: 

                  2 0 2 1 ,
                2 ,, 2 12 1 4 33 2 2 1 k k k k k d q j q j kk d q j q j R q j d        .
The factor

      2 22
kk k q j q j qj   can be rewritten as

                  2 22
2 2 2 2 j j j kk k j j j q q k q k qq q q q q k    .

Together with the expression of j w (eq. 27), the moment   2 ,,

1 k d q s q R   becomes:                               2 2 ,, 2 
0 2 12 2 14 2 2 1 1 , 34 22 s k k k k s k d q s q k s k j jj j j d q q q R q q d q k q k C s j qk                   



The bracketed sum in the right-hand side of eq. 34 is equal to [START_REF] Pogorui | Random motion with gamma steps in higher dimensions[END_REF]. Then:

    2 22 s s qk qk   (eq.
                        2 ,, 2 12 2 1 4 35 2 2 2 1 k k k s s k k d q s q k s s k d q q q k Rq q q q k d                
The bracketed product in eq. 35 simplifies into

    2 2 k k qs qs  
, so that we obtain finally:

                2 ,, 2 12 1 4 36 21 k k k k k d q s q kk d q s q R q s d        
which is identical with eq. 31. Without surprise, the previous calculation proves that the densities       , Be q s q  which is the relevant one as it yields the exact pdf's of the endpoint position and of the final distance.

Some examples of random walks

    ,2, , W d q s q  For 2,3 s 
, eq. 28 becomes: q q d d d qq q q q q qq P r P r P r qq qq P r P r P r qq

                          , 2 , 1, 1 , 3, 1, 
                                          
These linear combinations were previously derived by G. Letac (personal communication, 2014). Explicit densities, which are obtained from the pdf's of sections 5.1 and 5.2, are given in appendix E for 2,3 s  where a direct calculation proves that the two representations of     , d q s q Pr  are identical for these two values of s .

We performed too Monte-Carlo simulations of ,W d q s q  random walks for 15 4 q  with s ranging between 1 and 6 (figure 1). The beta r.v.,

    ,2,

 

15 4 ,15 4 L Be s  (fig. 1a), was simulated with a method described by Devroye (section IX.4 of [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF]). As shown above, the asymmetric beta distribution   

Conclusion

First, explicit relations (eqs 12-13) have been given for the pdf's     

 

, 2, W d q , whose associated step length distribution is a symmetric beta distribution   , Be q q . These expressions are valid for any value of 0 q  and for any 2 d  such that   0 qd  . The specific parameters 21 qd  and 1 qd  of the two families of hyperuniform Dirichlet random walks are seen to emerge quite naturally from the previous pdf's.

Second, n -step random walks, whose step length densities are asymmetric, have been considered to conclude that the relevant distributions are actually the permutation invariant step length distributions associated with the initial distributions (eq. 16).

Last, the previous results have been applied to the case of two-step random walks,

    ,2, , W d q s q 
, with an asymmetric step length distribution   , Be q s q  , where q has any positive value and s is an integer   given by [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF]:

          1 exp 0 A.1 G xx p x x        
where 0   is the shape parameter and 0

  the scale parameter while     is the Euler gamma function. The characteristic function of G is     11 itG G t e i t       [36]. A sum G of n independent gamma random variables, i G     , 1,.., i q i n   , with
identical scale parameters and a priori different shape parameters, is a gamma random variable

  1 ,, n i i G nq nq q      
 . This is readily deduced from the characteristic function of the sum

1 n k k G G    ,       1 1 1 1 1 k n q nq itG G k t e it it                 .
As the scale parameter is irrelevant in the present context, its value will be fixed at 1 from now on.

The Dirichlet distribution can be obtained [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF] from a set of

1 nm  independent gamma random variables     ,1 1,..., i i G q i n   by defining   1 ,1 n j j G G nq     and   1,.., jj L G G j n  . The distribution of     12 , ,.., n n L L L  L is then a Dirichlet distribution with parameters     1 ,..., n n qq  q ,       nn D Lq ,
and a pdf ( [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF], p. 17):

    1 1 1 1 ,.., A.2 1 , 0, 1,.., m m ii i i n q n i i n f l l K l l l l i n                  where     1 n n i i K nq q         . If the n components of       nn D Lq
are collected into k groups and summed up to form

k new components     1 1 ,.., , 1 
k ki i k S S S       S , then the distribution of   k S is   * k D    q where each   * 1,.., i q i k 
is the sum of the parameters j q 's of the components of   n L which add up to i S . This amalgamation property [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF] results directly from the characteristics of the sum of independent gamma random variables described above.

The marginal distribution of any component

  1,.., k L k n 
is then obtained from the two

components 1 k SL  and 21 1, 1 i n i i k S L S      . The marginal distribution   k fl of k L is thus a beta distribution whose pdf is [36]:           1 1 1 0,1 A.3 , k k nq q q k kk ll f l l B q nq q     
We consider the stochastic relation between the n -dimensional random vectors   n G and   n L (section 4 of [START_REF] Caër | A new family of solvable Pearson-Dirichlet random walks[END_REF]):

      A.4 n n S G L
where AB means that the random variables A and

B are identically distributed, S is gamma distributed,   ,1 nq  ,     12 , ,.., n n = L L L L is Dirichlet distributed,       , ,.. n D q q q  q and S and   n L are independent.
Then the vector

    1 1 2 2 , ,.., n n n G SL G SL G SL  G has independent   ,1 q  components ([36], p.

148). From  

n G , we define a gamma random walk   ,, G d n q whose endpoint position is:

      1 1 A.5 n n d d i i i i i i G G S L            R U U 25 where     1,.., d i i n  U
are n independent and identically distributed unit vectors. Similarly   n L defines a Dirichlet random walk   ,, W d n q whose endpoint position is:

    1 A.6 n d i i i L   

R U

The connection between the endpoint positions G R and R of the random walks   ,, G d n q and   ,, W d n q , which results from eq. A.4, can then be condensed in the following stochastic representation:

  A.7 G S R R
where S and R are independent. We denote the pdf's of the endpoint position and of the endpoint distance of the gamma walk

  ,, G d n q respectively as       n d gr q and       n d Gr q .
Translating eq. A.7 in terms of pdf's,

      n d gr q
is related to the pdf of the endpoint position of the Dirichlet walk   ,, W d n q by (section 4 of [26]):

                1 1 1 exp A.8 n n nq d nq d d d r g r rt t p dt nq t           q q with       0 n d pr  q for 1 r  . The pdf       n d gr q is thus the Laplace transform of       1 1 nq d n d t p t  q
. The known pdf 

      n d gr q of the walk   ,, G d n d was used in [26] to derive       n d pr q for the walk   ,, W d n d . Finally,       n d Gr q is given by               2 1 2 2 nn d dd d G r r g r d     qq (eq. 4).       n d p q r       11 11 P = P + P 0,1 B.1 2 2 2 2 yy Y y L L y                       
                          When 12 q q q  ,       1 1 1, q q L f l l l B q q  



, eq. B.2 becomes, after applying the duplication formula of the gamma function,      

4 1 2 2 2 q qq q     :           1 12 1 1 11 2 1 1 1 = = B.3 , 2 2 2 2 
,1 2 41 Y q q yy yy py B q q B q y [START_REF] Letac | Dirichlet random walks[END_REF].

                          which shows that Y has a beta distribution, 1 , 2 Y Be q   
When the distribution of

L is asymmetric, 12 qq  ,       2 1 1 1 12 1, q q L f l l l B q q  



, we define   12 min , q q q  ,   12 max , Q q q  and 12 q Q q q q      , to write:

        12 12 1 1 11 11 = B.4 4 , 2 2 2 2 
Y qq q q yy yy py B q q

                              When 1 q ,
the pdf's of Y (eq. B.4) and consequently the pdf's of the final distance R (eqs 8 and 9), are seen to be identical when obtained either from the length distribution,   12 , L Be q q , or from the symmetric mixture,

    1 2 2 1 11 ,, 22 
L Be q q Be q q  . This point is further discussed in section 4.

When qs , where s is a positive integer, the distribution of Y becomes a mixture of beta distributions. It reduces to a beta distribution, 1 , 2

Y Be q   
, for 1 s  (see too section 4.2). Using the fact that:

    2 1- 0 11 11 1 B.5 2 2 2 2 2 =2 s k s k ss s yy y k                                 the distribution of Y (eq. B.4) becomes indeed:             12 2 1 0 21 1 = , 1 2 B.6 , 1 2 2 2, Y k s q k k k qs yy p y c B q k s B q k c k B q s q                               It is a mixture of 1 2 s     beta distributions,     2 0 = Y Y k s k k p y c p y     with   , 1 2 k Y Be q k  .
As only normalized distributions have been dealt with all along the calculation, it follows that 

      1 0 22 12 1 00 , 1 2 1- 1- 22 ss k q kk ss B q k t t t kk dt                                          1 1 11 21 1 1 2 , q q s qs x x dx B q s q           
where the last equality results from integral 3.196.3 of [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF]. Similarly the moments , k q s q Y  are easily retrieved from the mixture of distributions, using eqs 2 , B.6 and B.7: q s q q s q q s B q n Y c Y n qn B q s q q s q s B q k n B q s k q k n B q s q q s B q s q Z Be  . Then the pdf of X is given by [START_REF] Dennis | On the distribution of independent beta variables[END_REF][START_REF] Pham-Gia | The product and quotient of general beta distributions[END_REF][START_REF] Nagar | Distributions of the product and the quotient of independent Kummer-beta variables[END_REF][START_REF] Nadarajah | Reply to "Comments on 'Sums, Products, and Ratios of Non-Central Beta Variables by Saralees Nadarajah[END_REF]:

                        22 
                                       which is the contribution of , k q s q Y  in eq. 10 when   , L Be q s q  .
              12 2 1 1 1 2 2 1 2 1 1 2 2 12 1 1 1 , 1- , ; ;1 C.1 ,, X B p x x x F x BB                          0,1 x  , where   21 , ; ; F a b c x is a Gauss hypergeometric function. The moments k X ,
where k is chosen here to be a positive integer, are simply obtained from the product of the corresponding moments of Y and Z given both by eq. 2: [START_REF] Kolesnik | Random motion at finite speed in higher dimensions[END_REF]. Robbins [START_REF] Robbins | Vieta's triangular array and a related family of polynomials[END_REF] mentions that the latter identity would be due to Lucas and possibly to Lagrange while Gould [START_REF] Gould | The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences[END_REF] shows that it is a special case of a formula first established by Girard in 1629 and later given by Waring in the eighteen century. The validity of eq. 32 is proven here by a method which is likely only one among many others and is in no way claimed to be the simplest one. Another example of a pair of analogous relations is given by eqs D.7 and D.9 below.

          12 1 1 2 2 C.2 kk kk k k k X Y Z       
Here, we consider the case where n is an integer larger than 1 as the relation reduces to 1=1 for 1 n  . We assume further that   0 n xy  . We define first the sum: 

                      2 1 2 , 1 1 , D.1 , 
                  1 1 1 ... 1 1 D.2 j j j a a a j a a a j a              Thus:                                 2 1 1 1 D.3 1 2 1 1 4 2 1 2 jj j j jj j n j n n n n n j n n n n n                          
where the duplication formula (eq. 2) has been applied to   2 j n 

. Finally, applying again the duplication formula to   2 j xy  , eq. D.1 becomes:

                2 1 2 1 2 1 , 1 D.4 1 1! 22 n j j j j n j j jj nn xy S x y x y x y nj                         
The latter relation can be expressed in term of a generalized hypergeometric function: 

    43 11 , , , , ;1 , , ;1 D 
              
Reversing the method used above, eq. D.6 can be converted back into the following sum, which involves Pochhammer symbols, after dividing each member by   

xy  :                 



The polynomial identity given as eq. 22 of [START_REF] Gould | The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences[END_REF] is: 

         
             
F n z F n z F n z                                             With 2 3 4 3 11 , , 1, 1, ; , , , ; , 1, , ; , , , ; , , 1, ; 0 D.10 
n n x y x y x y n                     , , , , , 2 2 2 2 
                                             
From relation D.6, the first and the third hypergeometric functions in eq. D. 

                                           
For the second representation, eqs 12 and 37 yield respectively: 

                   
                                               and                     1 1 1 2 3,
                                         1 2 1 2 2 = E.6 2, 1 ,1 2 1 1,1 2 qq qq B q q q B q q B q                     
It suffices now to insert eq. E.5 into eq. E.1 and to use eq. E.6 to transform the first representation of the pdf     

q B q q B q                     
The left hypergeometric function on the right-hand side of eq. E.2 is multiplied by four once eq. E.5 has been inserted into eq. E.2. Then, eq. E.7 transforms the first representation of the pdf    

3, d qq

Pr  (eq. E.2) into the second (eq. E.4). The two representations of     , d q s q Pr  (sections 5.1 and 5.2) are thus proven by a direct calculation to be identical for 2,3 s  .

1. 1

 1 Dirichlet random walks of n steps Random walks of n steps in d  

r

  walk on the unit ball of d defined above is thus hyperuniform of were obtained for particular values of two of the three parameters of the triplet  ,,

  associated pdf's of the endpoint position,     , d qq p r , are readily obtained from eq. 4.

  random walks for arbitrary values of q . Figure 1   0 s  gives an example, among many others, of a comparison between simulated and calculated results for 15 4 q  . In the following, we will use the pdf     , d qq Pr determined above, to express the corresponding pdf's for the random walks,

  ). It is given by the following relation (eq. C.1):

5. 2

 2 Second representation of the pdf     19) as a linear combination of symmetric pdf's , we need first to expand   1 s s ll  in terms of powers of   1 ll  . For this end, we use a classical expansion [43-44]:

  The case where 1 s  , which reduces to 1=1, is solved in section 4.2 with the result that        

  21 and 29 are two representations of the same pdf. It is indeed the permutation invariant length distribution    

Figure 1 :s,

 1 Figure 1: Comparison of the results of Monte-Carlo simulations of 8.10 7 Dirichlet random walks of two steps in 3 ,

  endpoint position and of the final distance of a two-step Dirichlet random walk,

  , 29-30), both as sums in a number 12 s    of terms. The first one is a sum of non-negative terms and the second is a linear combination, with coefficients of opposite signs, of the pdf's of symmetric Dirichlet walks   , 2,W d q j ,   0,.., 2 js    .

Appendix A :

 : Connections between gamma and Dirichlet distributions and between the associated random walksA gamma distributed random variable G , denoted for brevity as

  of eq. B.7 is straightforward, being the converse of the previous calculation.The definition of the beta function (eq. 2), the use of eq. B.5 and a change of variable 1 xt  gives indeed:

Appendix C :

 : Distribution of the product of two independent beta r.v.'sLet us consider a r.v.X which is the product of two independent r.v.'s Y and Z which are distributed according to beta distributions, respectively



  . D.7 is then seen to be the analogous of the following identity obtained by dividing each member of eq. D.8 by   Back to eq. D.6, we use first a relation between contiguous hypergeometric functions [47]:

  and appendix C). With

	1 2  , Y Be q  	and	Z Be	11 , 22 dd    

  the distribution of Y

			  41 LL 	(eq. 8) is shown to be a weighted sum
	of 1	2 s    	beta distributions with weights

  proof of the identity of the two representations of the pdf    

	, q s q d Pr 	might be
	obtained from a cascade of Gauss' transformations between contiguous hypergeometric
	functions applied to eq. 21 as done in appendix E for ' 2  of the hypergeometric functions 21 ' 1  2,3 . Indeed, the third argument 2 1 , ; '; 222        of eq. 21 must be s  d k d d d F q k k r transformed into 2 ' 1,.., 2        . However, this calculation appears to be complicated. As distributions with bounded supports are uniquely determined by their d for any ' k s k moments of positive integer order k , it suffices to prove that both representations yield identical moments 2   ,, ,,

  eq. D.10 becomes:

		 x y n F 43 2		1	2	n	,1	2 n	, , ;1 , x y n	2 x y	1,	2 x y	1	;1
			 x y F 43	1	2	, n n 2	, , ;1 , x y n	, x y x y 2 2	1	;1
		2		 x y n F 43		1	2	, n n 2	, , ; , x y n	2 x y	1,	2 x y	1	;1 0		 D.11

  we obtain finally the relation sought for from eqs D.5 and D.12:

	11 , , , ;1 , , 2 2 2 2 n n x y x y x y n      ;1     Appendix E: The pdf's     F 2, d qq Pr  and     3, d qq Pr  (eq. 37) 
	22 11 1 2 2 2 n n n nn n n n n n x y n x y x y n x y x y x y x y x y x y x y x y x y n x x y x y                   n y                          2 n n n n x y n x y x n y n x y                      11 n n n n x y x y y n y y x x n x                          11 22 n n n n x y x y x y                        2 0 2 1 , = n j jj nn j jn xy xy C n j x y x y        xy  ,   Writing now: When the hypergeometric function (eq. D.5) 32 11 , , ; 1 , ; 1 2 2 2 nn F x n x        which can then be obtained from relation 7.4.4.113 of D.12   D.13 becomes [46],         32 2 2 1 2 1 13 , , ; , ; 1 2 2 2 4 1 2 nn n nn b x b n nn F x b x b n b x b               . This leads in turn to eq. D.13 with xy  . For the first representation and for 2           22 1 12 2, 2 2 2 2 1 2 1 2 1 2, 1 1 1 , ; ; 2 , ; 1; E.1 2 2 2 2 2 2                                             s  , eq. 21 gives: dq q d d qq P r r r B q q d d d r d d d F q r F q r d while for 3         32 1 12 3, 2 1 3, s  :   2 2 2 2 1 2 1 1 3 1 1 , ; ; 2 , ; 1; E.2 2 2 2 2 2 2

2 1
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Appendix B: Distribution

, L Be q q

The continuous r.v.'s L and Y have a common support, [0,1]. When 2 n  , the Dirichlet distribution (eq. 1) reduces to a beta distribution,   12 , L Be q q (eq. 2). From the relation between probabilities:

The hypergeometric function 

q Bq  we obtain: