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Abstract 

 

Random walks of n  steps taken into independent uniformly random directions in a d-

dimensional Euclidean space  2d  , which are characterized by a sum of  step lengths which 

is fixed and taken to be 1 without loss of generality, are named “Dirichlet” when this 

constraint is realized via a Dirichlet law of step lengths. The latter continuous multivariate 

distribution, which depends on n  positive parameters, generalizes the beta distribution 

 2n  . It is simply obtained from n  independent gamma random variables with identical 

scale factors. Previous literature studies of these random walks dealt with symmetric Dirichlet 

distributions whose parameters are all equal to a value q  which takes half-integer or integer 

values. In the present work, the probability density function of the distance from the endpoint 

to the origin is first made explicit for a symmetric Dirichlet random walk of two steps. It is 

valid for any positive value of q  and for all 2d  . The latter pdf is used in turn to express the 

related density of a random walk of two steps whose step length is distributed according to an 

asymmetric beta distribution which depends on two parameters, namely q  and q s  where s  

is a positive integer. 
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1. Introduction 

To model the infiltration rate of a given species into possible habitats, Pearson defined 

in 1905 a simple planar “random walk” (RW) which is made of a sequence of n steps with 

identical fixed lengths taken into uniformly random directions [1-2]. This idealized RW has 

been used recently to assess the electromagnetic compatibility of a group of N identical power 

electronic converters [3]. The cases of five to some tens of steps (N) were more particularly 

analyzed. The Pearson’s RW has been applied as well to the characterization of the cosmic 

microwave background (CMB) [4-5]. Complex coefficients are obtained in a spherical 

harmonic representation of temperature maps of the CMB. Different types of random walks, 

associated with the spherical harmonic mode l , are then performed in the phase space, one 

being a Pearson’s RW [4-5]. In addition, the analysis of the temperature and polarization of 

the CMB led Reimberg and Abramo [6-7] to define random flights made of two successive 

stages in spaces with different dimensions  1 2 1 2, 2d d d d  , both with deterministic step 

lengths. Such flights emerge from the treatment of Boltzmann equations which codify the 

interplay between collisional physics and free propagation. The coefficients of a multipole 

decomposition of the temperature and polarization of the CMB are determined from these 

equations. For each stage, the space dimension is determined by the order of the multipole 

which dominates it [7].  

Variations on the theme of Pearson’s random walk involve space dimensions higher 

than two, changes of step length distributions, deviations of step orientations from a uniform 

repartition and the introduction of correlations between steps [6-34]. A frequent change 

consists in allowing step lengths to vary according to some continuous probability law. Such 

modifications find applications in diverse fields such as physics, biology, ecology ([4-7, 9–20] 

and references therein). A few examples, by no means exhaustive, are given hereafter. 

Random walks with exponentially distributed step lengths were studied in 2D by Stadje [13] 

as a possible description of the motion of microorganisms on planar surfaces and in 3D by 

Vignolles et al. [14] to model the chemical vapor infiltration method used to prepare ceramic-

matrix composites. To study the relation between the Boltzmann equation and the underlying 

stochastic processes, Zoia et al. [15] investigated exponential flights in 
d

. The probability 

density of finding a particle at position r  at the n -th collision was determined for an infinite 

medium. The cases were 1,2d  find applications respectively in the field of electron 

transport in nanowires or carbon nanotubes and in the study of the dynamics of chemical and 
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biological species on surfaces. Exponential walks are quite naturally extended to random 

walks with gamma distributed step lengths (appendix A).
 

An important class of walks is that of Lévy flights whose step lengths have heavy-

tailed probability distributions. Many organisms are believed to perform Lévy flights in their 

search for resources [16-20]. The Levy-flight foraging hypothesis is the subject of much 

debate but there is presently a growing consensus that many organisms diffuse anomalously. 

Alternative models to Lévy flights or the emergence of Levy patterns from composite models, 

are regularly put forward and discussed controversially (see for instance [18]). We notice that 

a shifted gamma distribution, with a small shape factor ~0.3, was used for some time to 

account for flight durations of sea birds [17]. 

The applications of the previous random walks imply neither that the walk space is a 

physical space with a dimension of at most three nor that the step length distributions are 

limited to a few standard mathematical forms.  

The present work focuses on random walks in a d-dimensional Euclidean space 

 2d 
 
whose step lengths have a Dirichlet distribution. The Dirichlet distribution is applied 

for instance to model fragmentation or compositional data [35]. Further, gamma and Dirichlet 

distributions are strongly connected as are the associated random walks (appendix A).  

 

1.1 Dirichlet random walks of n  steps 

Random walks of n  steps in 
d

  2d 
 
taken into independent uniformly random 

directions, with unequal step lengths k
l   1,..,k n  which obey the additional constraint of a 

constant  total sum 
1

n

k
k

l S cst


  , were investigated recently [21-29]. The constant S  is 

taken hereafter as equal to 1 without loss of generality (eq. 5, section 2).  The problem of the 

step length distribution of such walks is thus directly related to the broken stick problem, i.e. 

the problem of the random splitting of a unit interval. The Dirichlet distribution has been 

more particularly considered as an appropriate step length distribution [22-29]. Following 

Letac and Piccioni [29], the associated random walks are named hereunder “Dirichlet random 

walks” and referred to as    , ,
n

W d n q . The Dirichlet distribution of the random vector 

   1 2, ,.., nn
L L LL

1

1

1
n

n k

k

L L




 
  

 
 , denoted here as   n

D q , with parameters 

   1,..., nn
q qq  has a multivariate probability density function (pdf) given by ([36], p. 18): 
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 
 

1

1

1

1
,..,

                                     1

1 ,    0,  1,..,  

n

m n

i

m

n i i

i

iq
if l l K l

l l l i n










    





 

 

where 1m n  ,

 

   
1

n

n i

i

K nq q


 
   

 
 , 

1

n

i

i

nq q


 . For 2n  , the Dirichlet distribution 

reduces to a beta distribution denoted hereafter as  1 2,Be q q (eq. 2). For convenience, these 

two-step beta random walks will still be named “Dirichlet”. In the literature, special attention 

has been paid to “symmetric” Dirichlet random walks,  , ,W d n q , i.e. to walks whose step 

lengths are distributed according to a symmetric Dirichlet distribution for which 

   , ,...,
n

q q qq . As the notation  , ,W d n q  is self-explanatory, the word “symmetric” is 

omitted to designate them.  There is a close connection between a symmetric Dirichlet 

random walk  , ,W d n q  and a gamma random walk  , ,G d n q whose step lengths have 

identical and independent gamma distributions  ,1q (appendix A). The pdf of the endpoint 

position of  , ,G d n q is obtained from a single integral from the pdf of the endpoint position 

of  , ,W d n q   (eq. A.8, [25-26]).  

One of the initial motivations for studying constrained exponential random walks, 

 , ,1W d n , was to answer the question as to whether it is possible to find triplets  , ,1d n  for 

which the endpoints are uniformly distributed on the unit ball of  d  [21]. The latter quest 

was extended to walks  , ,W d n q [25] and more generally to hyperuniform random walks 

where the word “hyperuniform” used in [29] is preferred here to the term “hyperspherical 

uniform” used in [25-26]. A n -step random walk in d is said to be  hyperuniform of type 

k d  if the distribution of the endpoint of the walk  in d is identical with the distribution of 

the projection in the walk space of a point uniformly distributed on the surface of the unit 

hypersphere of k [25-26,29]. The pdf of the position R of the endpoint of a Dirichlet random 

walk and that of the distance R= R
 
from the endpoint to the starting point will be denoted 

respectively as
 

 
 

n

d
pq r and 

 

 
 

n

d
P rq . These two pdf’s, which are simply related (eq. 4), can be 
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considered interchangeably.  For hyperuniform random walks, 
 

 
 

n

d
pq r  is  

 2
2 2

1
k d

r
 

  . 

A uniform random walk on the unit ball of d defined above is thus hyperuniform of type 

2k d  . 

The pdf’s 
 

 
 

n

d
pq r  were derived for any space dimension 0d d  and any 2n   for the 

three following families of walks  , ,W d n q : 2 1q d   with 0 3d   , 1q d    and q d , 

both with 0 2d    [25-26]. The walks with 2 1q d   and 1q d   were shown to be 

hyperuniform of type  2 2k n d    and  1 1k n d    respectively [25]. In addition, the 

pdf’s 
 

 
 

n

d
pq r

 
were obtained for particular values of two of the three parameters of the triplet 

 , ,d n q  such as  ,2,1d  [22] and  6, ,1n [24] or for particular values of these three 

parameters. Altogether, q  takes either half-integer or integer values in all cases where 

 

 
 

n

d
pq r has been made explicit. 

 

1.2  The focus on two-step Dirichlet random walks 

It is much simpler to study two-step Dirichlet random walks  ,2,W d q  than the 

general Dirichlet random walks mentioned above so that the question of their relevance might 

even arise. However, their unequalled advantage lies in the existence of an explicit expression 

of the pdf of the endpoint distance, 
 

 
 

 
 

2

d d

q,qP r P r
 
 
 

q , which is  valid for any value of 

0q   and for any 2d   such that   0q d  . To the best of our knowledge, the latter 

expression has not yet been given explicitly in the literature.  

In the present work, we obtain first the density 
 

 
d

q,qP r (section 3).  Second, the 

relevance and the usefulness of the permutation invariant distribution associated with an 

asymmetric step length distribution are discussed (section 4). The former distribution is used 

among others to establish that the two following families of Dirichlet random walks 

  , ,
n

W d n q , where 
 n

q is respectively  , ,...,q q q  and  1, ,...,q q q , are indistinguishable 

for any   0q d   (section 4). Last, the results of the two previous steps are applied to the 
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derivation of the pdf 
 

 
d

q+s,qP r of two-step random walks      2
, 2, ,2, ,W d W d q s q q

 

which depend on two different Dirichlet parameters, 0q 
 
and q s  where s  is a positive 

integer (section 5). A second formal representation of 
 

 
d

q+s,qP r  is derived. Both 

representations are shown to be equivalent by a method of moments. 

 

2. Notations 

 

As usual upper-case letters will be used to denote random variables (r.v.) and lower-

case letters for the values they take. The mean of a function  f X
 
of a continuous random 

variable X , with a pdf  Xp x  whose support is D ,  will be denoted hereafter as 

     X

D

f X f x p x dx  .  

 

The Pochhammer symbol  
k

a , its duplication formula [37],  the beta function 

 ,B    , the beta distribution,  1 2,L Be q q , whose pdf is  Lf l and its moments kL , 

will be used repeatedly throughout the text: 

 

 

           

 

         

   
 

 
 

       

 

21

11

11

1 2

1 2

1 2 1 2 1 1 2

0

2

1

0

= 1 .. 1 , 1

1
4

2 2

, 1                      2

1
,     0,1

,

, ,

qq

L

k

k
k k

k k

k

k

a a k a a a a k a

a b a b
a b

B l l dl

l l
L Be q q f l l

B q q

L B q k q B q q q q q

     




        


               

       


 

  



   

  

 

 

where  x is the classical gamma function, , 0   , 1 2, 0q q 
 
and k

 
is taken here to be a 

positive integer.  
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The position of the endpoint of a Dirichlet random walk   , ,
n

W d n q  is  2n  : 

 

   
1

                                                    3
n

d

i i

i

L


 R U  

 

where the  d

iU are n  independent unit vectors uniformly distributed over the surface of the 

hypersphere in d . The   1,..,iL i n follow a Dirichlet law   n
D q . For the spherically 

symmetric walks described by eq. 3, the pdf of the endpoint position R  and the pdf of the 

endpoint distance R= R
 
of a   , ,

n
W d n q

 
walk depend only on 0r = r . Both are 

related through: 

 

 
 

   

 
   1

2
2

                                            4
2

d

n n

d
d d

P r r p r
d

 


q q  

 

In the following, we will most often consider the pdf 
 

 
 

n

d
P rq .  As we will deal essentially 

with two-step walks, the components  1 2,q q of  
 2

q will be given explicitly in the notations. 

The position and distance pdf’s associated with any walk   1 2,2, ,W d q q will respectively be 

denoted as 
 

 
1 2,

d

q qp r and 
 

 
1 2,

d

q qP r .  Finally, once pdf’s are obtained for a walk   , ,
n

W d n q
 

of a total length of 1, then densities 
 

 
 

,

n

d S
pq r and 

 

 
 

,

n

d S
P rq are immediately calculated for an 

arbitrary total walk length S from: 

 

 
 

 

 

 

 
 

 

 
    

,

,

1

          0,                  5
1

n n

n n

d S d

d

d S d

p p
SS

r S
r

P r P
S S

  
  

  


      

q q

q q

r
r

 

 

Similar relations were given previously as eq. 16 of [25] and as eq. 2 of [26] where S  is 

replaced by l .  In the second relation of each equation, 
dl must be replaced by l . The results 

discussed in [25-26] are not affected by this error as they were obtained from the first part of 

eq. 5 followed by the application of eq. 4. 
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3.Two-step Dirichlet random walks  ,2,W d q  

The final position of a walk  ,2,W d q
 
is more simply written as (eq. 3): 

 

       1 2                                                    6
d d

L 1- L R U U  

 

From eq. 6, we obtain the square of the final distance 2 .R = R R  : 

 

        2

1 2 1- 2 1 1 .                                         7
d d

R L L = U U .  

Defining: 

 

   

   

 
2

1 2

2

4 1

1
                                             8

cos .

1 cos 2 sin 2

d d

Y L L

X R

Z

 


 


 
     

U U
 

eq. 7 becomes: 

                                                              9X YZ=  

 

In eq. 9, the r.v.’s Y  and Z  are independent and have beta distributions, respectively 

1
,
2

Y Be q
 
 
   

when  ,L Be q q
 

and 
1 1

,
2 2

d d
Z Be

  
 
   

[29]. Appendix B gives a 

derivation of the distribution of Y  for  1 2,L Be q q . The latter distribution is relevant for 

the discussion presented in section 4.  The distribution of Z is simply found to be

1 1
,

2 2

d d
Z Be

  
 
 

 from the pdf of the polar angle   (see for instance [36] p. 104),

    2sin 1 2, 1 2dp B d 

   . The moments of Z  are thus 

    -1 2 1k
kkd

Z d d 
  

(eq. 2). The moments of Y , 
1 2,

k

q q
Y   

1 2,
4 1

k

q q
L L   , 

are in turn readily obtained from eq. 2 for a walk    1 2,2, ,W d q q  whose length distribution 

is then  1 2,L Be q q . Eq. 9 yields finally: 

   
   

 

  
 

 1 22

1 21 2 1 2
1 2

, , ,, , 2

-1 2
1 4        10

1

kk k k k k k k

d q q q q dd q q k k

dq q
X R Y Z

q q d
     

 
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The pdf of a r.v., which is a product of two independent beta r.v.’s, is explicitly known as a 

function of the parameters of the two beta laws ([38-41] and appendix C). With 

1
,
2

Y Be q
 
 
   

and 
1 1

,
2 2

d d
Z Be

  
 
 

, the pdf of X  writes (eq. C.1): 

 
 

       2 1

2
2 212 1

1 1 , ; ;1     0,1               11
,1 2 2 2 2

d
dq

X

d d d
p x x x F q x x

B q


  

       
 

 

The common support of the distributions of X  and of R  is [0,1]. As r  is a monotonically 

decreasing function of x , 1r x  , the pdf of  R  is obtained from the pdf  Xp x  to be 

 
   2

, 2 1X

d

q qP r rp r  .  From eq. 11, we get then   2,  0, 0,1d q r   :  

 

 
 

 
   2 2

2 1

1

,

112 1
1 1 , ; ;                12

,1 2 2 2 2

dd

q q

qd d d d
P r r r F q r

B q

   
     

 
 

 

Transforming the Gauss hypergeometric function [42], eq.12 can be written equally as: 

 

 
 

 
   2 2

2 1,

1 3 212 1
1 1 , ; ;                        13

,1 2 2 2

d

q q

d dd d
P r r r F d q r

B q

 
 
 

   
     

 
 

The associated pdf’s of the endpoint position, 
 

 ,

d

q qp r , are readily obtained from eq. 4. 

Previously known pdf’s are retrieved from eq. 12 or from eq. 13, adding eq. 4 if 

necessary. For instance, the pdf 
 

 1,1

d
p r was given in [22]. The specific parameters 

2 1q d   and  1q d   of the two families of hyperuniform Dirichlet random walks 

mentioned in section 1.1 are seen to appear quite naturally when the first arguments of the 

hypergeometric functions of eq. 12 and of eq. 13 are made equal to zero. We obtain: 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 

1 4 2
1 2

1 3 2
1 2

1 1 3 2
2 2

,

2
1                     2 -1,  3     

2 1,1 2

2
1                      1,  2       14

1,1 2

2
1    ,  2  

, 1

d d
d

d d
d

d d d

d

q q

r r q d d
B d

P r r r q d d
B d

r
d r r q d d

B d d d

 


 


   


   





     



      
 
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These pdf’s agree with those of table 1 of [25] for 2,  2 1, 1n q d d     and with eq. 44 of 

[26] for 2,  n q d  . Finally, eqs 4 and 12 give
 
    3 26

1,1
8 3 6 5p r r in agreement with 

eq. 13 of [24] for 1S ct  .  

 

In addition, we performed Monte-Carlo simulations of  ,2,W d q random walks for 

arbitrary values of q . Figure 1  0s   gives an example, among many others, of a comparison 

between simulated and calculated results for 15 4q  .  

In the following, we will use the pdf 
 

 ,

d

q qP r determined above, to express the 

corresponding pdf’s for the random walks,   ,2, ,W d q s q , where s  is a positive integer. 

The independent step length of a walk   ,2, ,W d q s q  is distributed according to 

asymmetric beta distributions,  ,L Be q s q (eq. 2, fig. 1). Before calculating the 

abovementioned pdf’s, we first discuss the consequences of the use of such an asymmetric 

distribution. 

 

4. Asymmetric distributions of step lengths  

 

4.1  Simple considerations and their consequences 

We consider a n –step random walk in d  whose final position (eq. 3) is rewritten 

again as:  

 
   

   
1 1

                                             15
n n

d d

i i i i
i i

L L


 

  R U U  

where the sole constraint is still, 
1

1
n

i
i

L


 . In eq. 15,       1 , 2 ,.., n   
 
denotes any of 

the !n
 
permutations of  1,2,..,n . An asymmetric distribution of the iL ’s means here that the 

multivariate distribution of lengths  
1

1 2 1

1

, ,..,  1
n

n n n i

i

f l l l l l






 
  

 
  is not invariant under 

permutations of the il ’s . Thus, the univariate marginal distributions are not all identical. 

When convenient, the multivariate distribution, which is not necessarily a Dirichlet 

distribution, will equally be written hereafter as  1 2, ,.., nf l l l . The sum which gives  R  is 
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commutative (eq. 15). The !n
 
possible attributions of a set of lengths  , 1,..,k k nl   to the 

steps numbered 1,2,..,n  result then in undistinguishable walks. Then, the principle of 

indifference states that each permutation should be given a probability of 1 !n  with the 

consequence that all steps end up with identical length distributions independently of their 

(arbitrary) order. It suffices then to symmetrize the initial distribution of L  to make it 

invariant under permutations. We conclude that it is this permutation invariant distribution 

which is the sole meaningful step length distribution. An example is discussed in appendix B 

for 2n  . The permutation invariant distribution associated with  1 2, ,.., nf l l l

  1 2 1, ,..,n nf l l l   is: 

 

 
          1 2 1 1 2

1
, ,.., , ,..,                                      16

!
n nnf l l l f l l l

n
  





   

 

where the sum runs over the !n  permutations 
 
of  1,2,..,n . Constrained random walks with 

different initial length distributions are thus undistinguishable if and only if the distributions 

 
 1 2 1, ,.., nnf l l l 


 associated with them are identical. 

We apply now the previous discussion to random walks whose step length 

distributions are asymmetric Dirichlet distributions in the above sense. Dirichlet random 

walks with such step length distributions are not really “Dirichlet” as the relevant distribution 

(eq. 16) is no more a symmetric Dirichlet distribution, except in some particular cases (eq. 18 

below with 1 1q q  ), but a mixture of asymmetric Dirichlet distributions.  To distinguish 

between these two types of walks, the latter will be designated in abridged form as 

“asymmetric Dirichlet random walks”. 

 

4.2  Application to some asymmetric Dirichlet random walks 

We consider more particularly Dirichlet distributions of step lengths whose parameters 

are all equal except one taken to be the first, 
   1, ,..,
n

q q qq . The associated pdf (eq. 1) is 

explicitly: 
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 
  

     

1
1 1 1

1 2 11
2

1

1

1
, ,..,

                                          17

1       0 

n
q q

m in
i

n

n i i

i

n q q
f l l l l l

q q

l l l i

 






   


    


   






 

The marginal distributions of all   1
k

L k   are identical beta distributions 

 , 1  
k

q mqL Be  while that of  1L  is  1,  q mqBe  ([36] and eq. A.3). The permutation 

invariant distribution associated with eq. 17 is then: 

 

   
  

   
 1

1 1

1 2 1 1
11

1

11
, ,..,                       18

n n
q qq

n n i in
ii

n q q
f l l l l l

n q q

 

 


      
      

     
  

 

as all il  , except  one, play the same role. Thus, the permutation invariant density (eq. 18) 

reduces to the Dirichlet law whose parameters are all equal to q  when 1 1q q   because 

1

1
n

i
i

l


 . In other words, the asymmetric Dirichlet random walk whose parameters are 

 1, ,..,q q q  is identical with the symmetric Dirichlet random walk whose parameters are 

 , ,..,q q q . The latter conclusion is valid for any 0q  . This results in the identity of the pdf’s, 

 
 

 
 , ,..1, ,..

d d

q q qq q qp p r r  and
 

 
 

 
 , ,..,1, ,..

d d

q q qq q qP r P r  for any value of 2n  . In section 5 of 

[25], it was shown that the n -steps Dirichlet random walks in d , whose parameters are 

 , ,..,q q q  and  1, ,..,q q q   2 1, 1q d d   , yield both hyperuniform random walks of  

type k  where k
 
is  2 2n d    for 2 1q d   and  1 1n d  

 
for  1q d   . The families 

 , ,..,q q q  and  1, ,..,q q q
 
were incorrectly considered to be different [25].  

 

5.  Asymmetric Dirichlet random walks of two steps   ,2, ,W d q s q
 

 

In the case of two steps, now with 1q q s   where q  takes any positive value and s  

is a positive integer, the permutation invariant distribution (eq. 18) writes: 
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   
 

 
   2

1
1

1                               19  
2 ,

ss

q
l l

f l l l
B q s q




       

 
 

 

Two formal representations of the pdf 
 

 ,

d

q s qP r are obtained from this permutation invariant 

pdf by the simple methods described below. The first representation is derived from eq. 9, 

 X YZ=  (section 5.1) while the second (section 5.2) is based on an expansion of  1
ssl l  in 

terms of powers of  1l l .  

 

5.1 First representation of the pdf 
 

 ,

d

q s qP r  

In appendix B, the distribution of Y  4 1L L   (eq. 8) is shown to be a weighted sum 

of 1
2

s 
  
 

beta distributions with weights 
 

 2 1

, 1 2

2 2 ,
k q s

s B q k
c

k B q s q
 

 
  

 
0,..,

2

s
k
  

  
  

 (eq. 

B.6). The distribution of 21X YZ R    (eqs 8 and 9) is consequently a mixture of 1
2

s 
  
 

 

distributions of r.v.’s k
X ,    

2

0

 =X Xk

s

k
k

p x c p x

 
 


 . The distribution of each k

X
 
is that of a 

product of independent beta r.v.’s, kk
X Y Z , with  , 1 2

k
Y Be q k 

 
(eq. B.6) and 

1 1
,

2 2

d d
Z Be

  
 
 

 (section 3). It is given by the following relation (eq. C.1):  

 

   

  
      

 

2 11
2 1

1
1 1 , ; ;1

2 2 2
             20

1 2, 1 2

, 1 2 1 2, 1 2

k

k dq
X k

k

d d d
p x x x F q k k x

B d k

B q k B d d





   
        

 


  
   

 

 

The sought-after pdf is finally obtained from the relation, 
 

   2

, 2 1X

d

q s qP r rp r   (section 3): 
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 
 

   

 

      
  

 

2
1

1 2 2 2
, , 2 1

0

, 2 2

1
1 1 , ; ;

2 2 2
  21

1
  ,   1 2, 1 2

22 , 1 2, 1 2

s
qd d d k

q s q q s q k
k

d

q s q kq s

d d d
P r r r r F q k k r

s
B d k

kB q s q B d d

 

 

 
 


 



  

              
     
  

      
    



 

This first representation is a sum of 1
2

s 
  
 

non-negative contributions. This is not the case 

for the second one which is now derived. 

 

5.2 Second representation of the pdf 
 

 ,

d

q s qP r  

To express explicitly    2f l


 
(eq. 19) as a linear combination of symmetric pdf’s , we 

need first to expand  1
ssl l  in terms of powers of  1l l . For this end, we use a classical 

expansion [43-44]: 

        
2

2

0

1 ,                     22

s
s s j j s j

j

x y C s j xy x y

  




     

 

For reasons made clear later (eq. 32, appendix D), we prefer to write it as: 

 

 
   

 

 
 

2

2
0

1 ,                              23

ss s j
j

s j
j

xyx y
C s j

x y x y

  




 

 


 

 

 0x y  and 2s  . The case where 1s  , which reduces to 1=1, is solved in section 4.2 

with the result that 
 

 
 

 ,1,

d d

q qq qP r P r  .  This case is no longer considered even if eqs 26 and 

28 below hold for 1s  . The numbers  ,C s j , known as coefficients of Lucas (or Cardan) 

polynomials [45], are given by: 

 

 
 

 

1              0

,  0              24  1
 12

1 2

if j
s js s

C s j j s js s
jjs j

jj


     

                              
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From eq. 22, we write: 

           
2

0

1 1 , 1      2                  25

s
ss jj

j

l l C s j l l s

  



       
 

We are now ready to express explicitly    2f l


as a linear combination of 1
2

s 
  
   

beta 

distributions from which the pdf 
 

 ,

d

q s qP r can be obtained immediately from the known pdf 

 
 ', '

d

q qP r given in section 3 (eqs 12 and 13). First, eq. 19 writes: 

 

     
 

 
   2

2 1

0

1
1    2              26

,

s q j

j

j
j

l l
f l w s

B q j q j

  


 



       
   


 

With:  

   
   

 

       

   
 

2

2, , ,
                27

2 , 2 2

s j j
j

s j

q q qC s j B q j q j C s j
w

B q s q q q

 
   


 

 

We deduce then the sought-after pdf of R : 

 

 
   

 
     

2

, ,
0

1       0, 2              28

s
d dj

q s q j q j q j
j

P r w P r q s

  

  


   
 

 

The coefficients jw  of this expansion, which depend only on the distribution of L , remain 

the same for any space dimension d .  From eq. 13 (noticing that 
 

2 '
2

', '

d q

B q q



= 
 

12

',1 2

d

B q



), eq. 

28 can be written explicitly as:

  

 
 

 
 

 

   
 

2
3 22 1 1 2

2
, 2 1

0

2 1 1 , 1
1 , ; ;  29

, 2 24

s
dd q d j

d

q s q j
j

r r C s j d
P r F d q j r

B q s q

  

  




    
       

    


 

Equivalently, from eq. 12: 
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 
 

 
 

   
   

2

2 1 1
1 2

,

2 2
2 1

0

2
1

,

1 , 1
1 1 , ; ;             30  

2 2 24

s

d q qd d
q s q

j
j

j
j

P r r r
B q s q

C s j d d d
r F q j r

  

  






   


    
        

   


 

A direct proof of the identity of the two representations of the pdf 
 

 ,

d

q s qP r  might be 

obtained from a cascade of Gauss’ transformations between contiguous hypergeometric 

functions applied to eq. 21 as done in appendix E for 2,3s  . Indeed, the third argument 

'
2

d
k  of the hypergeometric functions 2

2 1

1
' 1 , ; ';

2 2 2

d d d
F q k k r

 
    

 
of eq. 21 must be 

transformed into 
2

d
 for any 'k ' 1,..,

2

s
k
  

  
  

. However, this calculation appears to be 

complicated. As distributions with bounded supports are uniquely determined by their 

moments of positive integer order k , it suffices to prove that both representations yield 

identical moments  2

, ,
, ,

1
k

k

d q s q
d q s q

X R




  (eq. 8) for the walks   ,2, ,W d q s q . 

Indeed, the pdf of  R  is obtained from the pdf  Xp x  as 
 

   2

, 2 1X

d

q s qP r rp r    (section 3), 

conversely  
     , 1 2 1X

d

q s qp x P x x   .  Thus, the identification of the distribution of 

X  from its moments leads ipso facto to that of R  and vice versa. 

 

5.2  The moments  2

, ,

1
k

d q s q

R


  of the walks   ,2, ,W d q s q  

The first representation of 
 

 ,

d

q s qP r  (eq. 21) is directly derived from eq. 9 which yields 

, , ,

k k k

d q s q q s q d
X Y Z

 
  . The moments 

,

k

q s q
Y


are for instance obtained from eq. 

B.8 for the mixture of distributions while k

d
Z is given above eq. 10. Thus: 

 

 
   

 

  
 

 2

, , 2

1 2
1 4                       31

2 1

k k k k k

d q s q k k

dq s q
R

q s d


   

 
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It is equivalent to apply eq. 10 to a walk whose step length is distributed according to an 

asymmetric beta distribution  ,Be q s q to get eq. 31. 

 

The calculation of the moments from the second representation (eq. 28) makes use of the 

following relation which mirrors eq. 23 in which powers are replaced by Pochhammer 

symbols: 

   

 
   

   

 
 

2

0 2

1 ,                                             32

s
j j js s

js j

x yx y
C s j

x y x y

  




 

 
  

 

  0, 2
s

x y s   . As we failed to find eq. 32 in the literature, we derive it in appendix D.  

Eqs 27 and 32 confirm readily that  
2

0

1 1

s
j

j
j

w

  



  . Eq.  10 applied now to the symmetric 

walk  ,2,W d q j  gives: 

 
   

 

  
 

 2

, , 2

1 2
1 4                        33

2 2 1

k k k k k

d q j q j k k

dq j q j
R

q j d 

 
  

 
.  

 

The factor 
   

 22 2

k k

k

q j q j

q j

 


 can be rewritten as  

   

 

 

   

   

 
2

2 2

2

2 2 2

j j jk k

k j j j

q q k q kq q

q q q q k

 
 


.   

Together with the expression of jw (eq. 27), the moment  2

, ,

1
k

d q s q

R


 becomes: 

 
   

 

 

 

  
 

   
   

 
 

2

2

, , 2

0 2

1 22
1 4

2 2 1

1 ,                                                    34
2 2

s

k k k k s k

d q s q k s k

j j j

j j

dq q q
R

q q d

q k q k
C s j

q k

  






    



   
  

  


 

The bracketed sum in the right-hand side of eq. 34 is equal to 
 

 

2

2 2

s

s

q k

q k




 (eq. 32). Then: 

   
 

 

 

 

 

 

  
 

 2

, , 2

1 22
1 4              35

2 2 2 1

k k k s s k
k

d q s q k s s k

dq q q k
R q

q q q k d

  
       

   
 

The bracketed product in eq. 35 simplifies into 
 

 22

k

k

q s

q s




, so that we obtain finally: 
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 
   

 

  
 

 2

, , 2

1 2
1 4                         36

2 1

k k k k k

d q s q k k

dq s q
R

q s d


   

 
 

which is identical with eq. 31. Without surprise, the previous calculation proves that the 

densities 
 

 ,

d

q s qP r  
obtained from eqs 21 and 29 are two representations of the same pdf.  It is 

indeed the permutation invariant length distribution    2f l


 (eq. 19) associated with the 

asymmetric beta distribution  ,Be q s q  which is the relevant one as it yields the exact pdf’s 

of the endpoint position and of the final distance. 

 

5.3  Some examples of random walks   ,2, ,W d q s q
 

For 2,3s  , eq. 28 becomes: 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
,2, 1, 1

,3, 1, 1

2 1

1 1
                           37

4 2 3

2 2

d d d

q qq q q q

d d d

q qq q q q

q q
P r P r P r

q q

q q
P r P r P r

q q

  

  

    
     

     


             

 

 

These linear combinations were previously derived by G. Letac (personal communication, 

2014). Explicit densities, which are obtained from the pdf’s of sections 5.1 and 5.2, are given 

in appendix E for 2,3s   where a direct calculation proves that the two representations of 

 
 ,

d

q s qP r are identical for these two values of s . 

 

We performed too Monte-Carlo simulations of   ,2, ,W d q s q random walks for 

15 4q 
 
with s  ranging between 1 and 6 (figure 1). The beta r.v.,   15 4 ,15 4L Be s

(fig. 1a), was simulated with a method described by Devroye (section IX.4 of [48]). As shown 

above, the asymmetric beta distribution  15 4 ,15 4Be s  and its permutation invariant 

counterpart    
1 1

15 4 ,15 4 15 4,15 4
2 2

Be s Be s
 

   
 

 give rise to identical walks  

  ,2, 15 4 ,15 4W d s . In numerical simulations, advantage is then taken from the fact that 

the simplest distribution to simulate is the former,  15 4 ,15 4Be s , despite the fact that it is  
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Figure 1: Comparison of the results of Monte-Carlo simulations of 8.10
7
 Dirichlet random 

walks of two steps in 
3
,   3,2, 15 4 ,15 4W s , with those calculated for 15 4q   and for 

s varying from 0 to 6 as indicated.  The differences between simulated and calculated results 

are of the order of line thicknesses. Calculated results are obtained from: 

a) eq. 2 for the step length pdf L ,   15 4 ,15 4Be s  

b) eq. 29 for the pdf of the final distance R : 
 

 
3

15 4 ,15 4sP r ( the pdf’s 
     
3

15 4,15 4  0P r s   and 

     
3

19 4,15 4  1P r s 

 

are identical as discussed in section 4.2). 
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the latter which is the reference distribution as confirmed by fig. 1b which compares the 

simulated pdf’s 
     
3

15 4 ,15 4  1,..,6
s

P r s


  to those obtained from the symmetrized distribution 

(eq. 29). When s  becomes larger and larger for a given q , the step length distribution  

 ,Be q s q concentrates more and more in the vicinity of 0l  . In consequence, one 

of the step lengths decreases progressively down to 0 while the other increases concomitantly 

up to 1. The resulting pdf of the endpoint distance becomes steeper and steeper in the vicinity 

of 1 as shown by fig. 1. 

 

 

6. Conclusion 

 

First, explicit relations (eqs 12-13) have been given for the pdf’s 
 

 ,

d

q qp r
 

and 

 
 ,

d

q qP r
 
of the endpoint position and of the final distance of a two-step Dirichlet random 

walk,  ,2,W d q , whose associated step length distribution is a symmetric beta distribution 

 ,Be q q . These expressions are valid for any value of 0q   and for any 2d   such that 

  0q d  . The specific parameters 2 1q d   and  1q d   of the two families of 

hyperuniform Dirichlet random walks are seen to emerge quite naturally from the previous 

pdf’s.  

 

Second, n -step random walks, whose step length densities are asymmetric, have been 

considered to conclude that the relevant distributions are actually the permutation invariant 

step length distributions associated with the initial distributions (eq. 16).  

 

Last, the previous results have been applied to the case of two-step random walks, 

  ,2, ,W d q s q , with an asymmetric step length distribution  ,Be q s q  , where q  has 

any positive value and s  is an integer   1s  . Two representations have been derived for the 

pdf 
 

 ,

d

q s qP r  (eqs 21, 29-30), both as sums in a number 1 2s     of terms.  The first one is a 

sum of non-negative terms and the second is a linear combination, with coefficients of 

opposite signs, of the pdf’s of symmetric Dirichlet walks  ,2,W d q j ,  0,.., 2j s    .
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Appendix A: Connections between gamma and Dirichlet distributions and between the 

associated random walks 

 

A gamma distributed random variable G , denoted for brevity as  ,G    , has a 

probability density function  Gp x  given by [36]: 

 

 
 

 
   

1 exp
   0                                          A.1G

x x
p x x







 

 
 


 

 

where 0   is the shape parameter and 0   the scale parameter while     is the Euler 

gamma function. The characteristic function of G  is    1 1itG
G t e i t


     [36].  

A sum G
 
of n

 
independent gamma random variables, iG    ,  1,..,iq i n   , with 

identical scale parameters and a priori different shape parameters, is  a gamma random 

variable  
1

, ,
n

i
i

G nq nq q 


 
 

 
  . This is readily deduced from the characteristic function 

of the sum 
1

n

k
k

G G


 ,      
1

1 1 1 1k

n
q nqitG

G
k

t e it it  


 
     

 
 . As the scale parameter 

is irrelevant in the present context, its value will be fixed at 1 from now on.  

 

The Dirichlet distribution can be obtained [36] from a set of 1n m 
 
independent gamma 

random variables    ,1  1,...,iiG q i n   by defining  
1

,1
n

j
j

G G nq


  and 

  1,..,j jL G G j n  . The distribution of 
   1 2, ,.., nn

L L LL  is then a Dirichlet distribution 

with parameters 
   1,..., nn

q qq  , 
    n n

DL q , and a pdf ([36], p. 17): 

 

 
 

1

1

1

1

,..,

                                     A.2

1 ,    0,  1,..,  

m

m

i i

i

i

n
q

n i
i

n

f l l K l

l l l i n











    





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where    
1

n

n i
i

K nq q


 
   

 
 .  If the n  components of 

    n n
DL q  are collected into 

k  groups and summed up to form k  new components 
 

 1

1

,.., , 1
k

k i

i
k

S S S


 
  

 
S , then the 

distribution of 
 k

S  is 
 
*

k
D
 
 
 
q  where each  * 1,..,iq i k  is the sum of the parameters jq ‘s of 

the components of 
 n

L  which add up to iS . This amalgamation property [36] results directly 

from the characteristics of the sum of
 
independent gamma random variables described above. 

The marginal distribution of any component   1,..,
k

L k n
 
is then obtained from the two 

components 1 k
S L

 

and 2 1

1,

1i

n

i i k

S L S
 

   . The marginal distribution  k
f l  of k

L
 
is thus 

a beta distribution whose pdf is [36]: 

 

 
 

 
   

11
1

    0,1                             A.3
,

kk
nq qq

k
k k

l l
f l l

B q nq q

 


 


 

 

We consider the stochastic relation between the n -dimensional random vectors 
 n

G and 
 n

L  

(section 4 of [26]): 

 

                                                                          A.4
n n

SG L   

where  A B  means that the random variables A and B  are identically distributed,

 

S  is 

gamma distributed,  ,1nq ,    1 2, ,.., nn
= L L LL  is Dirichlet distributed, 

    , ,..
n

D q q qq  and S and  n
L

 

are independent. Then the vector  

   1 1 2 2, ,.., n nn
G SL G SL G SLG  has independent  ,1q

 

components ([36], p. 

148). From

 
 n

G , we define a gamma random walk  , ,G d n q whose endpoint position is: 

 

     
1 1

                                       A.5
n n

d d

i i i i

i i

G G S L
 

 
  

 
 R U U  
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where 
    1,..,
d

i i nU
 

are n

 

independent and identically distributed unit vectors. Similarly 

 n
L  defines a Dirichlet random walk  , ,W d n q whose endpoint position is: 

 

   
1

                                                                  A.6
n

d

i i

i

L


 R U  

 

The connection between the endpoint positions GR

 

and R
 

of the random walks  , ,G d n q

and  , ,W d n q , which results from eq. A.4, can then be condensed in the following stochastic 

representation: 

                                                                  A.7G SR R  

 

where S and R are independent. We denote the pdf’s of the endpoint position and of the 

endpoint distance of the gamma walk  , ,G d n q respectively as 
 

 
 

n

d
g rq  

and 
 

 
 

n

d
G rq .  

Translating eq. A.7 in terms of pdf’s, 
 

 
 

n

d
g rq is related to the pdf of the endpoint position 

of the Dirichlet walk  , ,W d n q  by (section 4 of [26]):  

 

 

 
 

 
 

 

 
 1

1

1
exp                          A.8

n n

nq d
nq dd dr

g r rt t p dt
nq t


 


 

   
  

q q  

 

with 
 

 
  0

n

d
p r q  for 1r  . The pdf 

 

 
 

n

d
g rq  

is thus the Laplace transform of 

 

 
 1 1nq d

n

d
t p t 

q . The known pdf 
 

 
 

n

d
g rq of the walk  , ,G d n d  was used in [26] to derive 

 

 
 

n

d
p rq for the walk  , ,W d n d . Finally, 

 

 
 

n

d
G rq  is given by 

 

 
 

   

 
 

2
12

2n n

d
d ddG r r g r

d

 


q q  

(eq. 4). 

 

  

 

 
 

n

d
pq r
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Appendix B: Distribution of   4 1Y L L   for   1 2,L Be q q  

 

The continuous r.v.’s L  and Y  have a common support, [0,1]. When 2n  ,  the 

Dirichlet distribution (eq. 1) reduces to a beta distribution,  1 2,L Be q q (eq. 2). From the 

relation between probabilities: 

 

     
1 11 1

P  = P + P      0,1                       B.1
2 2 2 2

y y
Y y L L y

    
           

   
 

 

and from 
1

4 1

dl

dy y



, we get the pdf of Y : 

   
1 11 1 1

 = +                        B.2
2 2 2 2 4 1

L LY

y y
p y f f

y

      
               

 

 

When 1 2q q q  ,      
11 1 ,

qq

Lf l l l B q q
  , eq. B.2 becomes, after applying the 

duplication formula of the gamma function,  
   4 1 2

2
2

q
q q

q


 
 


: 

 

 
 

 

 
 

1 1 21
11 12 1 1 1

 = =         B.3
, 2 2 2 2 ,1 24 1

Y

q
q

y yy y
p y

B q q B qy

      
             

 

 

which shows that Y has a beta distribution, 
1

,
2

Y Be q
 
 
 

 [29]. 

When the distribution of L is asymmetric, 1 2q q ,      21
11

1 21 ,
qq

Lf l l l B q q


  , we 

define  1 2min ,q q q  ,  1 2max ,Q q q  and
 1 2q Q q q q     , to write: 

 

 
 

 
 

1 2

1 2

1
1 1 11 1

 =                           B.4
4 , 2 2 2 2

Y

q qq

q

y y y y
p y

B q q

          
          
     
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When 1q  , the pdf’s of Y  (eq. B.4) and consequently the pdf’s of the final distance 

R  (eqs 8 and 9), are seen to be identical when obtained either from the length distribution, 

 1 2,L Be q q , or from the symmetric mixture,    1 2 2 1

1 1
, ,

2 2
L Be q q Be q q . This point is 

further discussed in section 4. 

When q s  , where s  is a positive integer, the distribution of Y becomes a mixture of 

beta distributions. It reduces to a beta distribution,

 

1
,
2

Y Be q
 
 
 

, for 1s    (see too section 

4.2). Using the fact that: 

 

   
2

1-

0

1 11 1
 1                          B.5

22 2 2 2
=2

s
ks

k

s s
sy y

y
k

 
 



        
            

       

  

 

the distribution of Y (eq. B.4) becomes indeed: 

 

 
 

 

 

 

 

1 22 1

0

2 1

1
 =

, 1 2
                         B.6

, 1 2

2 2 ,

Y

ks q

k
k

k q s

y y
p y c

B q k

s B q k
c

k B q s q

 
 





 

     
   


  

   
 



 

It is a mixture of 1
2

s 
  
 

 beta distributions,    
2

0

 = YY k

s

k
k

p y c p y

 
 


  with

 
 , 1 2

k
Y Be q k  . 

As only normalized distributions have been dealt with all along the calculation, it follows that

2

0

1

s

k
k

c

 
 



  . Equivalently, the latter relation writes: 

     
2

2 1

0

, 1 2 2 ,                        B.7
2

s
q s

k

s
B q k B q s q

k

 
 

 



 
    

 
  

 

A direct proof of eq. B.7 is straightforward, being the converse of the previous calculation. 

The definition of the beta function (eq. 2), the use of eq. B.5 and a change of variable 

1x t   gives indeed: 
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     
1

0

2 2
1 21

0 0

, 1 2 1- 1-                               
2 2

s s
kq

k k

s s
B q k t t t

k k
dt

   
   



 

     
        

     

   

     
1

1

1 1 2 1
1 1 2 ,

q q s q s
x x dx B q s q



    
      

 

where the last equality results from integral 3.196.3 of [42]. Similarly the moments 
,

k

q s q
Y

  

are easily retrieved from the mixture of distributions, using eqs 2 , B.6 and B.7: 

 

 

 

 

 

 

 

 

 

   

 
 

2 2

2 1
0 0

2

2 1
0 2

, ,

, 1 2
=  

2 1 22 ,

4, 1 2 4 ,
= =         B.8

2 , 22 ,

s s
k k k

n n q s
n n k

s kk
k k

q s
n k

q s q q s q

qs B q n
Y c Y

n q nB q s q

q s qs B q k n B q s k q k

n B q s q q sB q s q

   
   

 
 

 
 

 


 

 
    

  

     
  

  

 



 

 

which is the contribution of  
,

k

q s q
Y


 in eq. 10 when  ,L Be q s q . 

 

Appendix C: Distribution of the product of two independent beta r.v.’s  

 

Let us consider a r.v. X  which is the product of two independent r.v.’s Y  and Z  

which are distributed according to beta distributions, respectively  1 1,Y Be  
 

and 

 2 2,Z Be   . Then the pdf of X is given by [38-41]: 

 

 
 

   
     1 2

2 1 1 1 2 2 1 2

1 1 2 2

1 21
11,

1- , ; ;1   C.1
, ,

X

B
p x x x F x

B B

  
     

   

 
       

 

  0,1x , where  2 1 , ; ;F a b c x  is a Gauss hypergeometric function. The moments kX  , 

where k  is chosen here to be a positive integer, are simply obtained from the product of the 

corresponding moments of Y  and Z  given both by eq. 2: 

   

   
 1 2

1 1 2 2

                           C.2k k

k k

k k kX Y Z
 

   
 

 
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Appendix D: The relation    
   

 

   

 

2

0 2

1 , =

n
j j j n n

j j n

x y x y
C n j

x y x y

  






 
  (eq. 32) 

 

Relations, in which powers are “replaced” by Pochhammer symbols, have been known 

for a long time. This is for instance the case for the expansion of the power of a binomial 

whose analog in term of Pochhammer symbols is the Vandermonde’s identity

     
0

n k n k
k

n n
x y x y

k 


 
   

 
 (see among others [37]). The relation we consider is similarly 

analogous to a polynomial identity, 
n nx y        

2
2

0

1 ,

n
j j n j

j

C n j xy x y

  




  (eqs 22 and 

23). Robbins [44] mentions that the latter identity would be due to Lucas and possibly to 

Lagrange while Gould [43] shows that it is a special case of a formula first established by 

Girard in 1629 and later given by Waring in the eighteen century. The validity of eq. 32 is 

proven here by a method which is likely only one among many others and is in no way 

claimed to be the simplest one. Another example of a pair of analogous relations is given by 

eqs D.7 and D.9 below. 

 

  Here, we consider the case where n
 
is an integer larger than 1 as the relation reduces 

to 1=1 for 1n  . We assume further that   0
n

x y  . We define first the sum: 

 

     
   

 

 
 

 

 

 

2

1 2

, 1 1 ,

                                D.1

, =  
1 2 !

n
j j j

n
j j

x y
S x y C n j

x y

n j n n jn
C n j

jn j n j j

  




  




   
  

    


 

 

where the  ,C n j  are the Lucas coefficients [45]. Because 
2

n
j

 
  
 

, the Pochhammer 

symbols  1
j

n  and  2 j
n  are different from zero for 1n  . The falling factorial is defined 

as: 

                1 1 1 ... 1 1                 D.2
j j

j
a a a j a a a j a              
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Thus: 

            

             
 

2

1 1 1     
          D.3

1 2 1 1 4 2 1 2

j j

j

j

j j j

n j n n n n

n j n n n n n

         


           


 

 

where the duplication formula (eq. 2) has been applied to  2 j
n . Finally, applying again the 

duplication formula to  2 j
x y , eq. D.1 becomes: 

 

 
    

 

   
 

2

1

2 1 2 1
, 1                     D.4

11 !

2 2

n
j j j j

n
j j

j j

n n x y
S x y

x y x yn j

  



 
   

      
   
   

  

 

The latter relation can be expressed in term of a generalized hypergeometric function: 

 

   4 3

1 1
, , , , ;1 , , ;1                    D.5

2 2 2 2
n

n n x y x y
S x y F x y n

    
   

 

 
 

Prudnikov et al. don’t give the value of the latter hypergeometric function but they give 

instead the following value (7.5.3.57 of [46]): 

 

   

  
 1 1

4 3

1 1
, , , ; , 1, ;1                    D.6

2 2 2 2 1

n n

n

x yn n x y x y
F x y n

x y x y

 
    

    
   

        

 

 

Reversing the method used above, eq. D.6 can be converted back into the following sum, 

which involves Pochhammer symbols, after dividing each member by  x y : 

 

 
   

 

   

  
 

2

1 1

0 2 1 1

1 =             D.7

n
j j j n n

j j n

x y x yn j

j x y x y x y

  
 

  

 
  

   
  

 

 

The polynomial identity given as eq. 22 of [43] is: 
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     
 

 
2 1 1

2

0

1 =             D.8

n n n
j n j j

j

n j x y
x y xy

j x y

    




  
  

 
  

 

Interestingly, eq. D.7 is then seen to be the analogous of the following identity obtained by 

dividing each member of eq. D.8 by  
1n

x y


 : 

 

 
    

 2 1

2 1 1

1
0

1 =             D-9
j

n j j n n
j

n
j

n j x y x y

j x y x y x y

  



 




  
  

   
  

 

Back to eq. D.6, we use first a relation between contiguous hypergeometric functions [47]: 

 

   

   

     

2 3 4 3

2 3 4 3

2 3 4 3

4 3

4 3

4 3

1, , , ; , 1, 1, ;

, , , ; , 1, , ;

, , , ; , , 1, ; 0                      D.10

F n z

F n z

F n z

         

         

         

    

   

    

 

 

With 
2 3 4 3

1 1
, , , , , ,

2 2 2 2

n n x y x y
x y n      

   
         , eq. D.10 becomes: 

 

 

 

   

4 3

4 3

4 3

1 1
2 ,1 , , ;1 , 1, ;1

2 2 2 2

1 1
, , , ;1 , , ;1

2 2 2 2

1 1
2 , , , ; , 1, ;1 0                 D.11

2 2 2 2

n n x y x y
x y n F x y n

n n x y x y
x y F x y n

n n x y x y
x y n F x y n

    
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 

    
    

 

    
       

 

 

 

From relation D.6, the first and the third hypergeometric functions in eq. D.11 are 

respectively equal to
   

   1
1

n n

n

x y

x y x y




  
 and 

   

  
1 1

1

n n

n

x y

x y x y

 


  
 while the second is the 

hypergeometric function we wish to express. Therefore: 
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      
   

      
   

  
            

4 3

1 1

1

1 1

1 1
, , , ;1 , , ;1

2 2 2 2

2 2

1 1

1
2 2 2              D.12

n n n n

n n

n n n n
n

n n x y x y
F x y n

x y n x y x y n x y

x y x y x y x y x y x y

x y x y n x y
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

 

    
   

 

     
  

       

      
  

 

 

Writing now: 

             2
n n n n

x y n x y x n y n x y          

         1 1n n n n
x y x y y n y y x x n x

 
           

          1 1
2 2

n n n n
x y x y x y

 
       

 

we obtain finally the relation sought for from eqs D.5 and D.12: 

 

   
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 

   
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j j j n n
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C n j

x y x y

  






 


 

 

When x y , the hypergeometric function (eq. D.5) becomes 

3 2

1 1
, ,  ;  1 ,  ;  1

2 2 2

n n
F x n x

 
   
 

 which can then be obtained from relation 7.4.4.113 of 

[46], 
   

   3 2

2 2 1 2 11 3
, ,  ;  ,  ;  1

2 2 2 4 1 2

n n
n

n n

b x b nn n
F x b x b n

b x b

    
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  
 . This leads in turn 

to eq. D.13 with x y . 
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Appendix E: The pdf’s  
 

 2,

d

q qP r  and 
 

 3,

d

q qP r  (eq. 37) 

 

For the first representation and for 2s  , eq. 21 gives: 
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 
 
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d
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      

 

while for 3s  : 
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d

  

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

       
            

      

 

 

For the second representation, eqs 12 and 37 yield respectively: 
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The hypergeometric function 2
2 1

1
2 , ; 1;

2 2 2

d d d
F q r

 
   

 
 is then expressed from a 

Gauss’relation for contiguous hypergeometric functions (eq. 15.2.20 of [49]) as: 
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  we obtain: 
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It suffices now to insert eq. E.5 into eq. E.1 and to use eq. E.6 to transform the first 

representation of the pdf  
 

 2,

d

q qP r  (eq. E.1) into the second (eq. E.3). Similarly: 
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The left hypergeometric function on the right-hand side of eq. E.2  is multiplied by four once 

eq. E.5 has been inserted into eq. E.2. Then, eq. E.7 transforms the first representation of the 

pdf  
 

 3,

d

q qP r  (eq. E.2) into the second (eq. E.4). The two representations of 
 

 ,

d

q s qP r  

(sections 5.1 and 5.2) are thus proven by a direct calculation to be identical for 2,3s  . 
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