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Abstract. The last decade has seen growing research in pro-
ducing probabilistic hydro-meteorological forecasts and in-
creasing their reliability. This followed the promise that, sup-
plied with information about uncertainty, people would take
better risk-based decisions. In recent years, therefore, re-
search and operational developments have also started fo-
cusing attention on ways of communicating the probabilistic
forecasts to decision-makers. Communicating probabilistic
forecasts includes preparing tools and products for visuali-
sation, but also requires understanding how decision-makers
perceive and use uncertainty information in real time. At the
EGU General Assembly 2012, we conducted a laboratory-
style experiment in which several cases of flood forecasts and
a choice of actions to take were presented as part of a game
to participants, who acted as decision-makers. Answers were
collected and analysed. In this paper, we present the results
of this exercise and discuss if we indeed make better deci-
sions on the basis of probabilistic forecasts.

1 Introduction

There is a common concern in today’s world about the vul-
nerability of water resources to fast-changing environments
and the capacity of our societies to efficiently mitigate socio-
economic impacts of extreme events. On regional, national
or international levels, efforts have been put into coupling
meteorological and hydrologic prediction models for im-
proved operational water management and a better anticipa-
tion of hydrologic extremes. Such forecasting and warning
systems have been developed and applied to improve flood
control and drought risk planning, as well as to optimise wa-
ter management and regulation for different economic uses

(domestic, industrial and agricultural water supply, hydro-
electricity and thermal power plants, etc.).

The increasing use of outputs from numerical atmospheric
models in hydrologic prediction systems, whether for climate
change impact analyses or for short- to long-term streamflow
forecasting, has been accompanied by an increasing inter-
est of hydrologists to develop appropriate techniques for the
quantification and propagation of uncertainties through the
prediction chain (e.g. Krzysztofowicz, 2001; Pappenberger
et al., 2005; Bogner and Pappenberger, 2011; Addor et al.,
2011). To make the best possible decisions, forecasts with
uncertainty estimates are essential. However, recognising
that probabilistic hydrological predictions are necessary is
not sufficient. In particular, probabilistic forecasts, predic-
tive distributions or ensemble traces of future evolution of
streamflows are not a guarantee that forecasts are going to be
useful. High quality data, sophisticated models and colourful
graphical representations may lose their value if probabilistic
forecasts do not reach their users, if the provider is not trusted
or if forecasts are not appropriately understood (Faulkner
and Ball, 2007; Faulkner et al., 2007; McCarthy et al., 2007;
Ramos et al., 2010; Frick and Hegg, 2011; Pappenberger et
al., 2013).

Efforts must be put into providing guidance on how to in-
terpret model outputs and how to use probabilistic predic-
tions to support decisions. This implies communicating fore-
cast verification information and building knowledge on the
weaknesses and strengths of probabilistic forecasts. Practice
is essential, but unfortunately not always easily acquired.
In a recent interview-based research, Demeritt el al. (2010)
showed that only 3 out of 24 flood forecasting centres in
Europe have their own fully operational hydrological en-
semble/probabilistic prediction system running, even though
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they have access to probabilistic meteorological predictions.
These three forecasting centres may have learned valuable
lessons, which can certainly be useful to other centres in
their own implementations. Knowledge transfer is important
for the community, but the question remains how to do it.
Operational systems must often be adapted to local contexts
and site-specific needs, and thus every new implementation is
usually accompanied by site-specific challenges. This leads
to a lack of practice on probabilistic-based systems and natu-
rally leaves forecasters and decision-makers uncertain when
an extreme event is predicted: how reliable is the system?
What probability level is crucial to my forecast situation?
How to act accordingly? On which scenario should I base my
decision? Is the risk of making a wrong decision acceptable?

Unfamiliarity with probabilistic forecast products is a real-
ity, even among well-trained operational forecasters and ex-
perienced managers. Although many are convinced that fore-
cast uncertainty information is useful and must be provided,
few claim that it does improve the entire decision-making
process. “Do probabilistic forecasts really lead to better de-
cisions?” This is the general question we address in this pa-
per. The experiment described in the next section was set up
to get hydrologists, forecasters, scientists and managers in-
volved in a practical example and to provide some quanti-
tative assessment of the benefits of uncertainty information
in decision-making in the case of flood forecasting. Partici-
pants were prompted to make decisions when forecasts were
provided with and without uncertainty information. Results
of the experiment are presented in Sect. 3, while Sect. 4 is
dedicated to discussion and conclusions.

2 Experimental setting

2.1 Background

In this paper, we present a very simple case of decision-
making under uncertainty for a hypothetical flood control
problem. It can be viewed as a laboratory-based study, which
is traditionally employed in experimental economics (Kagel
and Roth, 1995). A controlled experiment (in our case, a
simple game) is used to investigate decisions made by in-
dividuals when faced with forecasts that are displayed with
and without uncertainty information. Roulston et al. (2006)
demonstrate the value of such techniques to analyse risk ex-
posure and decision-making for a case on the use of prob-
abilistic information in temperature forecasts. With the aim
to investigate psychological factors that influence decisions,
Joslyn et al. (2011) also set up laboratory experiments where
the most likely scenarios of weather forecasts were presented
without or with the lower and/or upper bounds of the predic-
tive interval.

In our experiment, the focus is on hydrological forecast-
ing and flood protection. To implement our experiment, we
integrated the first basic parts of the analysis of a decision

problem, as identified by Wilks (1997) and Stewart (1997),
and adapted them to our case study:

1. identification of the user’s goals;

2. definition of the actions available to the decision-maker;

3. identification of the relevant information that should
be available for the decision-making, including a deci-
sion rule based on a flood threshold level and a payoff
function;

4. identification of the possible future unknown events that
may occur and the probabilities/uncertainty associated
with them;

5. specification of consequences following each possible
action-event pair.

The experiment was set up as a game, based on a hypo-
thetical situation. It was adapted to be conducted with atten-
dees of the session on probabilistic/ensemble forecasting at
the European Geophysical Union General Assembly meet-
ing 2012 (Session HS4.3/AS1.18/NH1.2 – Ensemble hydro-
meteorological forecasting for improved risk management:
across scales and applications). We had 15 min to explain the
rules and conduct the experiment with a group that we ex-
pected to be composed of people from different backgrounds
and levels of experience with probabilistic forecasts (the au-
dience included operational forecasters, decision-makers, re-
search scientists as well as students). Such time constraints
and diversity of participants had to be taken into account
when setting the experiment, as presented hereafter.

2.2 Definition of the decision problem

Figure 1 illustrates the decision problem as it was posed to
participants. Participants were informed that their company
had received 30 000 tokens for a flood protection contract,
and that they had to manage a gate which was the inlet of a
retention basin designed to protect the town of Bigrivers. The
decision they had to take was whether to open the gate to the
retention basin or not. It was explained to them that:

– if they open the gate, the retention basin is flooded
and the farmers in this basin demand a compensation
for flooding their land: the cost of opening the gate is
2000 tokens;

– if they decide not to open the gate and a flood occurs on
the river, the town is flooded and they have to pay a fine
of 7000 tokens.

Participants were informed that they would be presented with
several consecutive forecasts of the river water level and that
flooding on the river would occur if the actual water level
exceeded 3.9 m.

Hydrol. Earth Syst. Sci., 17, 2219–2232, 2013 www.hydrol-earth-syst-sci.net/17/2219/2013/
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Figure 1. Schematic of the game as presented to participants. 3 

  4 

Fig. 1.Schematic of the game as presented to participants.

2.3 Different levels of uncertainty information provided

To address the impact of uncertainty information on
decision-making, our experiment was played in two phases,
in the following order: Game 1 was designed to provide
participants with all available information (i.e. the expected
value, the error band on the expected value and the esti-
mated probability of flooding), while Game 2 was designed
to present first only the expected value of the forecast and
then also the error band on the expected value in the last
forecast cases. Due to time constraints, each game was com-
posed of only six rounds (i.e. six consecutive forecast cases),
of which two were associated with the occurrence of a flood.

The players in the room were not previously informed that
there would be two games to play. Besides, when moving to
Game 2, they were not warned about the differences on the
available forecast information between the games. Our aim
here was to create a “surprise effect” when facing the same
game again but then without information on uncertainty in
the forecasts.

2.3.1 Game 1

Forecasts were presented as an expected value (e.g. a model
output) with an error, and a probability of flooding. Figure 2
(top panel) shows the screen for Round 4 in Game 1.

The decision problem was stated as a question: “do you
want to open the gate to the retention basin?” Time was
given to participants and, once a decision was made (“yes”
or “no”), participants were informed if a flood event had oc-
curred or not. According to the appropriate situation (i.e. the
action-event pair of that round), they were told one of the
following consequences:

– if a flood occurred and they had decided to open the
gate, they had protected the city and had only to pay the
farmers;

– if a flood occurred, but they had decided not to open the
gate, the city was flooded and they had to pay the fine
of 7000 tokens;

– if it did not flood, and they had decided to open the gate,
they had to pay the farmers;

27 
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Figure 2. Example of the rounds as they were presented to participants for their 3 

decision-making: during Game 1 with uncertainty information (top); during Game 2 4 

without uncertainty information (bottom). Only the last two rounds of Game 2 showed 5 

+/- error bands in additional to the expected output value. 6 
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Fig. 2.Example of the rounds as they were presented to participants
for their decision-making: during Game 1 with uncertainty infor-
mation (top panel); during Game 2 without uncertainty information
(bottom panel). Only the last two rounds of Game 2 showed± error
bands in additional to the expected output value.

– if it did not flood, and they had decided not to open the
gate, neither the farmers nor the city were flooded and
they had nothing to pay.

Participants were invited to adjust their initial purse of
30 000 tokens accordingly. The next round was then pre-
sented and the exercise was repeated until the last round.

2.3.2 Game 2

After playing the six rounds of Game 1, participants were in-
vited to verify the final amount of money in their purse and to
continue to Game 2. The rules were re-explained (they were
the same) and a new 6-round play started, with a new initial
purse of 30 000 tokens. Game 2 started without information
on the forecast uncertainty, and only in Rounds 5 and 6 were
error bounds shown together with the forecast value. Figure 2

www.hydrol-earth-syst-sci.net/17/2219/2013/ Hydrol. Earth Syst. Sci., 17, 2219–2232, 2013
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(bottom panel) shows the screen for Round 3 as presented
to participants in Game 2. Game 2 was designed using the
same forecasts and events used in Game 1, but without dis-
playing the full information on uncertainties or probabilities,
and with a randomised order of appearance.

Table 1 shows the data used in the forecast cases and their
position (round number) in Game 1 and Game 2. It also indi-
cates the cases associated with the occurrence of a flood.

2.4 Evaluation

Two strategies were adopted for the evaluation of the
experiment.

1. During the game, helpers in the auditorium counted the
number of decisions made in favour to open the gate
and, subsequently, the number of decisions for not open-
ing it (participants were asked to raise hands). The re-
sulting majority vote was entered in the game during the
presentation. In this paper, this is noted as “ensemble re-
sult”, as it reflects the performance of all participants as
a whole.

2. In the beginning of the session, we distributed A5-size
worksheets and participants were encouraged to keep
note of their decisions and the results of each round (one
side contained a form for Game 1 and the other side for
Game 2). The worksheets were collected at the end of
the game. The results of their evaluation are presented
in the next section.

For the evaluation of the worksheets, we focused initially on
the relative frequencies of “yes” and “no” decisions for each
forecast case. We also investigated the changes in decisions
from “yes” (open the gate) to “no” (do not open the gate),
and vice-versa, between consecutive rounds. We restricted
our evaluation to a first-order process: the only relevant infor-
mation to explain the decision at one round is in the previous
round.

For each roundk ∈ [2, 6], the one-step transition proba-
bility from state i to statej is defined as the conditional
probability:

pij (k) = prob(Xat roundk = j |Xat̃roundk−1 = i) . (1)

In our case, two states are possible: = 1 (decision to open the
gate) or = 0 (decision not to open the gate). For each roundk,
we thus have the following 2× 2 transition matrix:

P(k) =
[
pij (k)

]
=

[
p11 p01
p10 p00

]
. (2)

Each transition probability matrix can be estimated by count-
ing the number of times, among all participants, the decisions
went from statei to statej , nij , when moving from round
k − 1 to roundk:

p̂ij (k) =
nij (k)∑

f orallj

nij (k)
. (3)

Table 1.Cases presented to participants with indication of the posi-
tion in each game (round) and the occurrence or not of a flood. The
level of flooding was set to 3.9 m.

Case Forecast± estimated Position Position Flood
error (m); probability in Game 1 in Game 2 occurred?
of flooding

1 3.81± 0.07; 9.74 % Round 1 Round 2 No
2 3.89± 0.25; 48.27 % Round 2 Round 6 No
3 3.71± 0.16; 12.53 % Round 3 Round 4 No
4 3.52± 0.51; 23.59 % Round 4 Round 3 No
5 3.58± 0.37; 20.10 % Round 5 Round 1 Yes
6 3.94± 0.61; 53.17 % Round 6 Round 5 Yes

For the “initial state” at roundk = 1, it is a vector with the
probabilities of “yes” decisions (open the gate) and “no” de-
cisions (do not open the gate) that can be estimated:

P(1) =

[
p1
p0

]
. (4)

In our analysis, we focused on thenij number of participants
that moved from statei to statej for each round transition.

In a second step, we evaluated, for each participant, the
differences between the remaining amounts of monetary re-
sources left after all rounds were played in Game 1 and
Game 2. They represent a loss (negative differences) or a gain
(positive differences) in final purses when the decisions were
taken without uncertainty information:

1P2−1 = Final purseGame 2− Final purseGame 1. (5)

They are also shown here as a percentage of the initial purse:

%1P2−1 =
1P2−1

30000
× 100. (6)

Finally, in order to investigate if there is a relationship be-
tween available monetary resources and decisions (e.g. are
participants more risk-avoiding, i.e. more inclined to answer
“yes” to open the gate, if they have less money available in
their purse?), we evaluated the distribution of the amounts of
money participants had in hand before making a decision in
roundk, for all k ∈ [1, 6], according to the type of decision
they made (“yes” or “no”) in that round.

3 Results

We collected a total of 101 sheets, of which only 3 were
incomplete. Here we present thus the results obtained from
98 players. When pertinent, the “ensemble result”, i.e. the
majority vote obtained from counting the hands raised dur-
ing the game, is also presented.

Hydrol. Earth Syst. Sci., 17, 2219–2232, 2013 www.hydrol-earth-syst-sci.net/17/2219/2013/
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3.1 General impact of uncertainty information on
attitude towards risk

Individuals may have different risk attitudes: they can be
risk-averse (or risk-avoiding), risk-neutral, or risk-loving (or
risk-seeking) persons. A first general look at the data aimed
at learning if there were any participants (and if so, how
many participants) who always decided for a “yes” or a “no”
answer during the games played, hence deciding towards a
more risk-avoiding or risk-seeking attitude, respectively.

Table 2 shows, for each game, the number of participants
who decided to open the gate to the retention basin atn = 0,
1, 2 . . . 6 times during the six rounds of each game. For in-
stance, if a player never decided to open the gate during the
six rounds (i.e. a risk-seeking participant), it will be counted
along with “0 yes answers during the six rounds” in Table 2.
It can be seen that 3 participants out of 98 always decided not
to open the gate during all the rounds of Game 1. This did not
happen in Game 2. In both games, 2 participants decided to
always open the gate (i.e. had a risk-avoiding attitude). In all
of these cases, the participants were different persons.

The results in Table 2 also show that 53 % of the partici-
pants decided more oftennot to openthe gate during Game 1,
while this percentage in Game 2 is of only 15 %. In Game 2,
46 % of the participants decided more oftento openthe gate
(and thus protect the town), while the corresponding percent-
age in Game 1 was only 26 %. It seems thus that participants
were more risk-seeking in Game 1 and, on the contrary, were
more towards a risk-averse attitude during Game 2, when
they had no or less information on forecast uncertainty.

However, one should not neglect a possible effect of learn-
ing. In the context of the present data, a less risk-averse at-
titude in Game 1 may have been prompted by the fact that
floods during this game occurred only in the last rounds
(Rounds 5 and 6). This may have given participants some
confidence in keeping the gate closed and not spending their
money. Also, it is important to remember that in Game 2 par-
ticipants were faced with a flood event already in Round 1.
This, in its turn, may have contributed to an increased risk-
avoiding attitude during Game 2. Participants may have been
more cautious in their decisions and tempted to decide on
opening the gate to protect the city from the risk of flooding.

3.2 Role played by forecast values and uncertainty
information in decisions

Figure 3 shows the relative frequencies of “yes” and “no” an-
swers to the decision-question of opening or not opening the
gate to the retention basin for each of the six cases played in
both games (see Table 1 for the forecast data of each case).
Frequencies were computed over all 98 participants. Results
are shown for Game 1 (forecasts with full uncertainty infor-
mation) and Game 2 (forecasts without uncertainty informa-
tion – Cases 1, 3, 4 and 5 – or with less uncertainty informa-
tion – Cases 2 and 6). The same case is shown across each

Table 2.Number of participants in Game 1 and Game 2 according
to the number of “yes” answers (i.e. number of decisions to open
the gate) during the six rounds.

Number Number of Number of Interpretation
of “yes” participants participants
answers in Game 1 in Game 2
during
the six
rounds

0 3 0 Always decide not to
open the gate

1 15 2 More often decide not
2 38 13 to open the gate

3 14 35 Decide to open the gate
as often as not to open it

4 25 38 More often decide to
5 1 8 open the gate

6 2 2 Always decide to open
the gate

Total 98 98

row in the figure to allow comparisons between Game 1 and
Game 2. Here we analyse the results without taking into ac-
count the order of presentation of the cases during the games.
Only the influence of displaying forecast uncertainty infor-
mation is considered.

The optimal decisions (based on an a posteriori knowledge
of the occurrence of a flood) would have been to answer “no”
in the cases of no flood (Cases 1 to 4) and “yes” in the cases
of flood (Cases 5 and 6). In Game 1, the majority of partic-
ipants followed the optimal decision in four cases: Cases 1,
3, 4, and 6. In Game 2, the optimal decision was only taken
by the majority in two cases: Cases 4 and 6 (we recall that
in Game 2 Case 4 was presented with no uncertainty infor-
mation and Case 6 was presented without information on the
probability of flooding, but with error bounds around the ex-
pected value). It is interesting to note that these two cases
of common optimal decisions in both games (Cases 4 and 6)
are those that have the lowest and the highest expected fore-
cast values (3.52 and 3.94 m, respectively, with 3.9 m being
the level of flooding in the games). Perhaps being presented
with expected forecast values far below or above the thresh-
old defining the level of flooding, compelled participants to
take the optimal decision, regardless of the uncertainty infor-
mation provided.

In Game 1, we can also see that the majority of partici-
pants did not follow the optimal “no” decision only in Case 2
(out of the four cases 1 to 4). It is interesting to note that
Case 1 and Case 2 are, however, fairly similar in terms of
expected value: in both cases, it is close to the 3.9 m level
of flooding (see Table 1). These cases mainly differ by the
width of the error bounds and the probability of flooding,

www.hydrol-earth-syst-sci.net/17/2219/2013/ Hydrol. Earth Syst. Sci., 17, 2219–2232, 2013
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Fig. 3. Frequencies (in %) of “yes” (decision to open the gate) and “no” (decision to not open the gate) answers for Game 1 (left panel) and
Game 2 (right panel), and for all six cases (see Table 1). Cases 5 and 6 are associated with a flood occurrence. The order of presentation of
the cases during the games was: Game 1 = [1, 2, 3, 4, 5, 6]; Game 2 = [5, 1, 4, 3, 6, 2,].

which are much more important in Case 2 (see Table 1). The
fact that during Game 1, when these cases were shown one
immediately after the other, the majority decided for the op-
timal “no” decision in Case 1 (i.e. decided towards a risk-
seeking attitude), but did not do the same in Case 2 may be
an indication of the influence of the uncertainty information.
It seems that the higher values of the quantified uncertainty
displayed in Case 2 prompted the participants to change to-
wards a more risk-averse attitude, thus deciding on opening
the gate to avoid the risk of flooding the city: there is a shift
from 6.1 to 78.6 % in the percentage of “yes” (risk-averse)
answers when we move from Case 1 to Case 2 in Game 1
(Fig. 3, left panel).

The suggestion that uncertainty information plays a role
in decisions and that its absence may compel people towards
a more risk-averse attitude is corroborated when we look at
the results of Case 1 and Case 2 in Game 2 (Fig. 3, right
panel). In Game 2, Case 1 is displayed without uncertainty
information. We can see that decisions concerning this case
change significantly from Game 1 to Game 2: the percentage
of “yes” (risk-averse) answers goes from 6.1 % when uncer-
tainty information is provided (Game 1) to 82.6 % when it is
not (Game 2). In Game 2, Case 2 is displayed in Round 6,
hence without information on probability of flooding but
with information on estimated value and error bounds only.
In this case, the percentage of “yes” (risk-averse) answers
goes from 78.6 % when uncertainty information is provided
(Game 1) to 85.7 % when it is not fully provided (Game 2).

Another interesting result concerning the role played by
forecast uncertainty information is given by Cases 3 and 4.
In Game 1 (Fig. 3, left panel), Case 4 displays a near par-
ity of participants who would open (44.9 %) or not open the

gate (56.1 %). Case 3, in its turn, displays a clear majority
of “no” (risk-seeking) answers (92.6 %). In Game 2 (Fig. 3,
right panel), where both cases were presented without uncer-
tainty information, it is the other way around: Case 4 displays
a clear majority for the “no” (risk-seeking) answers (89.8 %),
while it is in Case 3 that the participants seem to be more di-
vided in their decisions: 62.2 % voted for opening the gate,
while 37.8 % voted for not opening it. Although the fore-
cast value in Case 3 is much closer to the flooding thresh-
old than in Case 4, error bounds and probability of flood-
ing are lower, which may have prompted participants to take
the risk and answer “no” to opening the gate in Game 1. In
Game 2, without information on forecast uncertainty only the
expected value can influence the decision. The fact that this
forecast value was low in Case 4 may have thus induced the
majority of “no” answers observed in Game 2.

It is also interesting to note that in Game 2, the percentage
of “yes” answers in favour of opening the gate and protect-
ing the city from the risk of flooding increases as the ex-
pected (forecast) value of the water level increases (from the
highest to the lowest value, cases follow the order: 6, 2, 1,
3, 5, 4; see Table 1). Such a relationship is not found in the
results of Game 1. In Game 1, cases with narrower uncer-
tainty bounds and smaller probability of flooding (Cases 1, 3
and 5) seem to induce a more risk-seeking decision towards
not opening the gate (and thus leave the city to the risk of
flooding). For instance, if we compare the results for Cases 4
and 5 in Game 1, for which expected values are close, we can
see that the “no” answer in Case 5 is adopted by a larger num-
ber of participants (75.5 %, Fig. 3, left panel). Even though
Case 5 has a slightly higher expected value, the fact that it
displays the lowest values of error and probability of flooding
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Fig. 4.Combinations of “yes” (= 1) and “no” (= 0) answers (x-axis) observed during the six rounds of Game 1 (left panel) and Game 2 (right
panel) and the number of participants (out of 98 participants) having shared the same combination (y-axis). The first combination represents
the “ensemble result”.

may explain that more participants answered “no” to open
the gate. Contrary to Case 4, a flood did occur in Case 5. Par-
ticipants who had to pay the fine of 7000 tokens for flooding
the city must have been very disappointed here.

3.3 Impact of uncertainty information on diversity in
decisions

In order to analyse the diversity of decisions among partic-
ipants and between games, we studied all combinations of
“yes” and “no” answers and the number of times they were
repeated in our sample. This also allowed us to check if there
was a tendency for participants to “copy” the answers from
the “ensemble result” without marking in the worksheets
their own answers. Figure 4 shows the number of participants
having shared every combination of “yes” (marked by 1)
and “no” (marked by 0) answers found in Game 1 (left) and
Game 2 (right). We can see that 36 participants in Game 1
(32 in Game 2) had the same sequence of “yes” and “no”
answers as the one showed by the “ensemble result” (i.e. se-
quence 0-1-0-0-0-1 in Game 1 and 0-1-0-1-1-1 in Game 2).
However, we observed that only 11 participants “copied” the
“ensemble results” in both games. It seems that participants
were indeed marking their own answers in the worksheet and
not just systematically following the group.

A detailed analysis of Fig. 4 also shows that the number
of combinations of “yes” and “no” answers to the individ-
ual questions is higher in Game 2: 20 different combinations
were observed for this game, while Game 1 had only 14.
Also, the number of participants showing identical sequences
drops more quickly in Game 2. It seems that having all uncer-
tainty information available (the case of Game 1) narrows the
range of possible decisions. This may be a signal that provid-
ing uncertainty information together with the expected value
can help in assembling individual decisions.

3.4 Impact of sequential decision-making on risk
attitudes

In a decision-making game, the consequences of an observed
“action-event” pair in one round may influence the decisions
taken in the round immediately next. Figure 5 shows the
number of times (nij ) a decision went from one state to an-
other during each game and for each one-step transition of
rounds. Here again “yes” answers are marked by 1 and “no”
answers by 0. The results must be discussed per round transi-
tion and interpreted with caution as the number of rounds is
small in our dataset. Additionally, they have to be understood
in the light of the sequence of cases as displayed during each
game (see Table 1) and of the event observed (i.e. if flood
occurred or not).

In Game 1 (the sequence in which cases were presented
was 1, 2, 3, 4, 5 and 6), we observe that:

– in the first round, the majority of participants had
said “no” to open the gate (92 out of 98 participants,
i.e. 93.9 %, Case 1, Game 1, in Fig. 3), and that was
the optimal decision as no flood occurred. In Round 2
(Case 2), they were presented with a similar expected
value, but with larger uncertainty bounds and probabil-
ity of flooding. The transition to a “yes” answer is clear:
71 participants out of the 92 participants that said “no”
in Round 1, moved to a “yes” answer in Round 2 (n01 in
Fig. 5, Round 1 to 2, Game 1). Only 21 kept their “no”
decision from Round 1 to Round 2 (n00 in Fig. 5).

– The expected and uncertainty information values be-
come lower in Round 3 (Case 3). In the transition from
Round 2 to 3, the strongest signal isn10: 70 participants
(out of 77 that had decided to open the gate in Round 2)
moved their “yes” decision towards a more conservative
“no” answer to open the gate when going from Round 2
to 3.
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Fig. 5. Number of times a decision went from statei to statej (nij ) for Game 1 (top panel) and Game 2 (bottom panel) when moving from
roundk − 1 to the next roundk. States can be either 1 (open the gate) or 0 (not open the gate). Flood occurred at rounds 5 and 6 during
Game 1, and at rounds 1 and 5 during Game 2.

– Participants that had decided “no” in Round 3 (91 out
of 98 participants, Case 3, Game 1, Fig. 3) are basi-
cally divided in Round 4 into those moving towards
a “yes” answer (n01 = 36 participants, Fig. 5, Round 3
to 4, Game 1) and those that decide to keep the “no”
answer (n00 = 55 participants), with a stronger tendency
to keep a more risk-seeking “no” answer.

– In Round 5, Case 5 displays a slightly strong expected
value, although with narrower error bounds and lower
probability of flood comparatively to the previous round
(Case 4). Under this situation, moving to or keeping
a “no” answer is the strongest signal for the transition
from Round 4 to 5: 53 out of 55 participants kept their
“no” decision (n00 in Fig. 5), and almost half of the
participants that had given a “yes” (risk-averse) answer
in Round 4 (43 participants) moved to a “no” (risk-
seeking) answer in Round 5 (n10 = 21 in Fig. 5).

– In Round 5, a flood occurred and participants that had
said “no” to open the gate had to pay the fine of 7000 to-
kens for flooding the city. They were 74 (out of 98)
participants. In the round that follows (Round 6), 70 of
these participants moved their decision to a “yes” (more
risk-averse) answer (n01 in Fig. 5, for Round 5 to 6,
Game 1). This can be due to the impact of the flood
occurrence while they had decided not to protect the
city, but also due to the fact that Case 6 at Round 6 dis-
plays the highest expected value (even slightly higher
than the level of flooding), error bounds and probability
of flooding.

Considering Game 2 (the sequence in which cases were pre-
sented was 5, 1, 4, 3, 6, and 2):

– Flood occurred in the first round and the majority of par-
ticipants had said “no” (risk-seeking attitude) to open
the gate (87.8 %, Case 5, Game 2, in Fig. 3). Thus,
already in the beginning of the game, they had lost
7000 tokens from their initial purse. When we look at
the transitional behaviour from Round 1 to Round 2, we
can see that there is a strong signal of moving towards
a “yes” (more risk-averse) answer in the second round:
72 participants (out of the 86 that had decided “no” in
the first round) moved to a “yes” decision in Round 2
(n01 in Fig. 5, Round 1 to 2, Game 2). Also, the major-
ity of the 12 participants that had decided to open the
gate in Round 1 kept their decision in Round 2 (n11 = 9
in Fig. 5). In this case, decisions seem to have been in-
fluenced by the previous “action-event” pair.

– In Round 3, the expected value was much lower (3.52 m,
Case 4, Table 1) comparatively to the previous round
(Round 2 in Game 2, Case 1, Table 1). We observe
a strong transition towards a “no” decision: 73 out of
81 participants that had decided “yes” in Round 2 move
to a “no” decision in Round 3 (n10 in Fig. 5, Round 2
to 3, Game 2). In Round 2, flood had not occurred
and the high number of participants that had decided
to open the gate had to cope with a non-optimal deci-
sion and to subtract 2000 tokens from their purse. This
may have encouraged 90 % of them to decide towards
a “no” answer (risk-seeking attitude) in Round 3 (if no
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Fig. 6. Ranked differences in final purses (as percentage of the initial purse, %1P2−1) for the 98 participants and the “ensemble result”.
Differences< 0 mean that more money was lost when decisions were made without uncertainty information than with it, and vice-versa.

flood occurred they had a chance of keeping their purse
without losses).

– The transition from Round 2 to 3 was the only mo-
ment in Game 2 where the number of participants go-
ing from a “yes” decision to a “no” decision (n10) is
significantly higher than the other transitional situations
(Fig. 5). In general, participants in Game 2 more often
move towards opening the gate (n01), or choose to main-
tain a “yes” (risk-averse) answer to the decision prob-
lem (n11). In Game 1, then01 transition is also impor-
tant, but together with then00 transition, i.e. the choice
to maintain a “no” (risk-seeking) answer to the decision
problem. These remarks corroborate the observed gen-
eral pattern of a more risk-avoiding attitude in Game 2
comparatively to Game 1 (Table 2).

3.5 Impact of decisions on economic performance and
vice versa

Figure 6 shows the distribution of differences in final purses
(%1P2−1) for all participants and for the “ensemble result”.
On average, participants ended Game 2 with 3000 tokens less
than the final amount they had after playing Game 1. Only
14 participants ended Game 2 with more money in their purse
(positive differences in Fig. 6). 12 participants ended Game 2
with the same amount of money as they did in Game 1, while
the majority of participants (72 out of 98) lost money when
making decisions without uncertainty information (negative
differences in Fig. 6). The majority that lost more money in
Game 2, comparatively to their final purse in Game 1, had
an average loss equivalent to approximately 15 % of the ini-
tial purse, with a maximum loss of up to 47 % (Fig. 6). The
minority that ended Game 2 with more money had an aver-
age gain equivalent to approximately 9 % of the initial purse,
with a maximum gain of 23 % of the initial purse (Fig. 6).

The fact that the majority of participants had a worse eco-
nomic performance when making their decisions without un-
certainty information is also illustrated in Fig. 7, where the
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Fig. 7. Histograms of final purses at the end of Game 1 with un-
certainty information (top panel) and at the end of Game 2 without
uncertainty information (bottom panel) computed over 98 partici-
pants. Initial purse was 30 000. Histograms cells are right-closed
(left open) intervals.

distribution of observed final purses for both games is rep-
resented. We can clearly see the shift to lower remaining
amounts when moving from Game 1 to Game 2. We note
that a participant that would know the results before playing,
thus having all the “optimal decisions” (i.e. the ones that cost
less money) would have ended both games with 26 000 to-
kens. A participant that, on the contrary, always made the
wrong decisions in both games (i.e. the ones that would cost
more money in all six rounds), would have ended both games
with 8000 tokens. From Fig. 7, it can be seen that there are
no occurrences of participants having followed these extreme
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Fig. 8. Distribution of the values of the purses when participants decided to open the gate (“yes” answers towards a risk-avoiding attitude,
left panel) or not to open the gate (“no” answers towards a risk-seeking attitude, right panel) during Game 1 with uncertainty information
(top panels) and Game 2 without uncertainty information (bottom panels). Histograms cells are right-closed (left open) intervals.

scenarios, always making optimal decisions or always mak-
ing more costly decisions in both games. Also, participants
making only “optimal decisions” in Game 1 but, inversely,
only making “more costly decisions” in Game 2 would end
up with a negative difference in final purses of 18 000 tokens
(or, vice versa, would end up with a positive difference in fi-
nal purses of the same amount). This represents a difference
in final purses (%1P2−1) equal to 60 % of the initial purse.
As can be seen from Fig. 6, these combinations of extreme
decisions cases were not observed in our experiment either.
The maximum (minimum) difference in final purses here ob-
served was 7000 (−14 000) tokens.

To investigate the assumption that people’s decisions de-
pend on the economic resources they have left (i.e. if they be-
come more risk-seeking when they still have a large amount
of money in their purses, or, vice versa, if they become
more risk-avoiding when they have less money remaining),
we represent in Fig. 8 the conditioned distributions of avail-
able monetary resources and decisions for both games. Val-
ues of the purse participants had at the moment of making
a decision are analysed separately, conditioned if the deci-
sion made was a “yes” answer to open the gate (i.e. a risk-
avoiding attitude) (Fig. 8, left panels) or a “no” answer to

open the gate (i.e. a risk-seeking attitude) (Fig. 8, right pan-
els). All rounds are considered to obtain the conditioned sam-
ples. Figure 8 shows that, in general, for both games, partici-
pants had a more risk-avoiding attitude (“yes” answers to the
decision problem) when they had less money in their purses.
On the contrary, when risk-seeking attitudes (“no” answers)
were taken, the values of remaining money in their purses
were higher. Finally, we note that this signal is more clearly
observed in the results from Game 1 (Fig. 8, top panels),
where all forecast uncertainty information was available to
the decision-makers.

4 Discussion and conclusions

In this paper, we presented a simple experiment conducted
during a conference, which aimed at making attendees play
the role of decision-makers in flood forecasting. The exper-
iment was presented as a flood control game, where partici-
pants had to make decisions based on forecasts that were pre-
sented with and without uncertainty information. The aim of
this exercise was not only to investigate the benefits of prob-
abilistic forecasts in the practice of decision-making, but also
to provoke a thought process in the hydrologic community on
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how to integrate the decision-making process on the design
of probabilistic forecast products and as part of daily rou-
tines of forecast systems. This issue needs to be investigated
to avoid leaving room for a sceptical view of the benefits
of probabilistic forecasts to end-users. By engaging people
in thinking about the need of forecast uncertainty informa-
tion to make better decisions, new ideas on how to produce,
present and interpret probabilistic forecasts can emerge and
be used for training purposes.

A similar question to the one asked in this study was
investigated by Roulston and Kaplan (2009), who focused
on the understanding of uncertainty using a 5-day tempera-
ture forecast. They show that uncertainty information leads
to a better decision, independently of the type of academic
background of the participants. Their study was followed
up by Marimo et al. (2012) who confirmed the previous re-
sults, but also noted a learning effect as the experiment pro-
gressed. The importance of training with decision support
products for probabilistic flood forecasts was pointed out by
Ramos et al. (2007). From the results of a workshop con-
ducted together with European operational forecasters on the
use of ensemble-based forecasts for flood warning situations,
Ramos et al. (2010) also draw attention to the way uncer-
tainty information can be missed when suddenly it is made
unavailable in a decision-making exercise. Comparing deci-
sions made with and without uncertainty information is also
the basis of a group of experiments presented by Joslyn and
Leclerc (2012). Their results suggest that forecasts provided
with reliable uncertainty estimates lead to better decisions
and can improve trust in the forecast information source.

The experiment presented here is a simple one, but already
yielded some interesting clues to the process of decision-
making with probabilistic flood forecasts, as follows.

– There is evidence that decisions are based on a combi-
nation of what is displayed by the expected (forecast)
value and what is given by the uncertainty information.

– The expected (forecast) value plays an important role in
the decision: forecasts close to the critical flood level,
although displaying large uncertainties, induced a ma-
jority of conservative risk-avoiding attitudes (here, it
means a decision to open the gate and protect the city
from an eventual flood event).

– However, uncertainty information also plays a role in
the decision-making process: given similar expected
values, decisions may differ according to the uncer-
tainty information displayed. The tendency observed
was: the higher the uncertainty information is, the more
risk-avoiding the decisions are.

– The presence of uncertainty information seems to re-
sult in more optimal decisions and more coherent an-
swers among individual decision-makers. There is evi-
dence that decisions from individuals tend to converge

when uncertainty information is provided, as it leads to
a lower variety in the sequence of decisions. Uncertainty
information leads thus not to a larger diversity in deci-
sions, but, on the contrary, to a smaller one.

– In the absence of uncertainty information, decision-
makers are compelled towards a more risk-averse atti-
tude. It was also observed that in this situation (i.e. when
forecast are provided without uncertainty information),
the percentage of risk-avoiding decisions among partici-
pants increased as the expected forecast value got closer
to the critical level of flooding.

– When considering penalties to each “action-event” pair,
more money was lost by a large majority of decision-
makers when they had to make decisions without uncer-
tainty information. The absence of uncertainty informa-
tion led to a worse economic performance in decision-
making. Besides, the highest money loss was consider-
ably more important than the higher gain registered.

– Despite the limitations of the present data, there is
evidence that decisions are influenced by the previ-
ous “action-event” pair. A previous “action-event” pair
may influence decisions coming immediately next, es-
pecially if the result of this previous “action-event” pair
is not favourable to the decision-maker (i.e. if at the end
of the action, less money would have been lost if the
other alternative action was taken).

– When decision-makers have less money in hand, they
more often decide towards a risk-avoiding attitude.
Risk-seeking attitudes were more often taken when the
values of remaining money in their purses were higher.

A generalisation of the results obtained from our experiment
should be considered with caution. The conduct of the game
during a conference presentation prompted for an experimen-
tal set-up that is not fully controlled. Several limitations to
our game can be pointed out: e.g. the reduced number of
cases played during the games, the time constraints (15 min
to carry out the whole experiment) that limited the assess-
ment of learning effects from previous decisions and from
one game to another, the absence of training rounds to make
sure that participants understood correctly the game and its
rules, the limited sample size (98 participants), the fact that
sampling was selective and predominately consisted of re-
search scientists and professionals in hydrological forecast-
ing and related fields, etc.

Additionally, the experiment presented in this paper rep-
resents an attempt to examine the question: “Do probabilis-
tic forecasts lead to better decisions?” The way we phrased
our question is fairly simplistic and can be challenged on
multiple accounts. For example, critical questions are: what
does one mean by “probabilistic”, how are these probabili-
ties generated, how trustworthy are they, are they a synonym
for uncertainties (see discussion in Koutsoyiannis, 2010 and
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Montanari, 2010)? In this paper we tried to avoid the discus-
sion by displaying a probabilistic forecast as an expression
of uncertainty around a mean (expected) forecast value and
a probability of flood occurrence. This already excludes cer-
tain decision-makers or decision frameworks (e.g. Dale et al.,
2012, present a decision-making framework which is based
on the worst case scenario and freeboard concept).

One can further question what actually constitutes a “bet-
ter decision” and how penalties can be assigned to “bad deci-
sions”. As noted by Wilks (1997), the “existence of a ’best’
decision implies preferences among at least some of the pos-
sible consequences: if a decision maker doesn’t care what
eventually happens, the decision question is not a meaning-
ful one”. Traditionally, the quest for better decision is often
broken down, either explicitly or implicitly, to the economic
value of a utility or service: better decisions are those that
provide the most economic benefit (higher gain or lower loss)
for a target use (e.g. tradeoffs in allocating water resources)
or the highest possible security to individuals (e.g. flood pro-
tection). In our exercise, a better decision is simply the one
that allows a reduced (or no) loss in virtual money.

In our exercise, the decision-making process was pre-
sented on a single level, meaning that the only option given
was to open or not the gate to the retention basin. Other levels
of decision-making could have included checking the func-
tioning of the gate or giving the farmers a warning to reduce
potential damage. Zhu et al. (2002) pointed out that “for eco-
nomic decision making it is imperative to use forecasts that
provide multiple decision levels”. Single-value or determin-
istic forecasts cannot fit the criteria, even if they are “perfect”
(unbiased and accurate) forecasts. Our experiment focused
on measuring the differences in final purses when decisions
were made with and without forecast uncertainty informa-
tion. Starting with 30 000 tokens, and considering the rules
specifying the costs of their decisions, participants were al-
lowed to play without economic pressures. It would, how-
ever, be interesting to investigate to what extent monetary
gains and losses can affect the decision-making process in
probabilistic streamflow forecasting. The use of probabilistic
forecasts to achieve an increased potential economic value
has been investigated in many disciplines such as meteorol-
ogy (Zhu et al., 2002; Buizza, 2008), irrigation (Cai et al.,
2011) or wind energy (Tina and Brunetto, 2010; Tsikalakis et
al., 2009). In hydrology, recent studies have proposed meth-
ods based on cost/loss ratio analysis (McCollor and Stull,
2008; Muluye, 2011; Verkade and Werner, 2011) or stochas-
tic optimisation models (Boucher et al., 2012). Based on
simple optimal decision-making and different target appli-
cations (continuous flow forecasts, flood forecasts and warn-
ings, inflows to hydroelectric production reservoirs), they all
basically show that probabilistic or ensemble-based forecasts
have the potential to generate higher benefits than climatol-
ogy or deterministic forecasts.

Studies on forecast value, in general, will often con-
sider decisions that are optimal or determined by the user’s

behaviour, as well as users that may or may not use infor-
mation in an optimal manner (Stewart, 1997). As pointed out
by Roulston et al. (2006), laboratory-based studies can pro-
vide complementary information to existing approaches and
help in connecting acquired knowledge. The whole decision-
making process is however a complex one. It is intrinsically
related to how valuable information that can help decision-
makers to reduce forecast uncertainty and avoid the more
costly errors is used (Joslyn et al., 2011). Most current
decision-making situations taking place at operational hydro-
logical forecasting centres are far more complex than what
laboratory-based studies can replicate.

As mentioned earlier, we are conscious of the limitations
of our experimental setting. Above all, the game presented
here suffers from the lack of real consequences for wrong de-
cisions. Decisions may be taken quite differently within the
pressured environment of a real forecasting centre. However,
a game setting, whatever it is, will hardly, and maybe even
never, be able to replicate reality, and provide statistically ro-
bust results that are needed for a quantitative assessment of
the role of uncertainty in decision-making. The experiment
presented in this paper represents a simple attempt to under-
stand the decision-making processes in one particular setting
and to draw the community’s attention to the need (and ad-
vantages) of promoting training and education on the use of
probabilistic forecasts.

It is a crucial issue to interactively consider the devel-
opment of training on decision-making under uncertainty
in order to increase effectiveness in the use of probabilis-
tic predictions to support decisions. Enhanced training may
comprise learning tools for probabilistic predictions, training
workshops or games, as the one presented here, designed to
allow modellers and decision-makers to practice how to take
actions (or which actions to take) based on uncertainty in-
formation. The development of understanding and practice
can be based on cases involving specific hydrologic needs
and situations, but also on more general pertinent cases, even
if they are outside the hydrologic domain. Currently, knowl-
edge and experiences still need to be put together to increase
practice and enable training for a confident use of proba-
bilistic outputs in decision-making. The community certainly
needs to pursue in addressing remaining problems of uncer-
tainty modelling, but this needs to be performed together
with studies also addressing how probabilistic forecasts can
be understood and used for improved water risk manage-
ment. Innovative training activities based on a collection of
case-studies and games will allow sharing problems and join-
ing efforts to find solutions to an efficient use of probabilistic
hydrologic predictions in decision-making.

In our opinion, a collection of training exercises, including
topical games, made available through a web-based platform
for exchange of e-learning tools can be a powerful tool to em-
power decision-makers with new capabilities and extended
flexibility to handle different situations encountered in haz-
ards prediction and mitigation. Training and games may be
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useful for both modellers and decision-makers. Training can
help modellers to channel their efforts to improve the predic-
tion chain. Its usefulness is also evident for decision-makers.
It offers a unique opportunity to practice how to take actions
(or which actions to take) based on uncertain information,
and to optimise the use of probabilistic approaches in a range
of applications. It can also help both actors to better under-
stand the interactions between model outputs and forecasters
or decision-makers. How much training can improve the use
and the value of a forecast is an open question for the scien-
tific and the operational communities. The value of a training
program may not only rely on its quality, but also on how it
integrates existing knowledge and capacities in operational
forecasting centres.

Resources and other available products

All material (including power point presentation and a longer
10-round version of the game) is available upon request,
and can be freely used by any interested group for teach-
ing or training. The authors would also like to mention some
available products: for instance, the exercises in weather
forecasts created by Kahl and Horwitz, available athttps:
//pantherfile.uwm.edu/kahl/www/WebQuests/, or the “Wind
Energy Game”, which is part of the training on Ensem-
ble Prediction System of the Meteorological Service of
Canada (available athttp://collaboration.cmc.ec.gc.ca/cmc/
ensemble/Formation-Training/, in English and French).
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