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David Vicente
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Abstract
A new model is introduced for the segmentation problem of thin structures, like tubes or

thin plates, in an image. The energy is based on the Mumford-Shah model and it introduces as
a new variable a continuous and anisotropic perturbation of the Hausdorff measure. A relaxed
formulation in the special space of functions with bounded variations is given and the existence of
a solution is established. In order to get an energy more adapted for numerics, an approximation
with Γ-convergence and its complete proof are given.

Introduction
This work is motivated by the problem of segmentation of sets strongly elongated in some directions
as, for example, tubes or thin plates in an image of dimension n ∈ {2; 3}. Let Ω ⊂ Rn be an open
bounded domain and g ∈ L∞(Ω). We denote by Hn−1 the (n−1)-dimensional Hausdorff measure.
The model we introduce in this paper consists in minimizing

E(u,K,M) =
∫

Ω\K
(u− g)2dx+

∫
Ω\K
|∇u|2dx+

∫
K

〈Mν, ν〉1/2dHn−1 +
∫

Ω
‖DM‖n+αdx (0.1)

where K is compact and Hn−1-rectifiable with unitary normal vector ν, α > 0 and M takes its
values in a compact subset G of symmetric definite positive matrices. The associated minimizing
problem is

(P) : min{E(u,K,M) : Kcompact and Hn−1-rectifiable, u ∈W 1,2(Ω\K), M ∈W 1,n+α(Ω;G)}.

If we consider M ≡ Idn, we recognize the well-known Mumford-Shah model (see [1] for the seminal
paper). In this sense, our model is the anisotropic version of the Mumford-Shah energy.

At any point x ∈ K, the directions associated to the main eigenvalues of M(x) must represent
the directions of elongation of the set K. For example, if we want to detect a tube in a two-
dimensional image, we may consider G as the subset of symmetric definite positive matrices with
fixed eigenvalues {1;µ}, such that 1 � µ. For the detection of thin plates in a three dimensional
image, we may consider the fixed eigenvalues {1;µ;µ}. By this way, the third term of (0.1) will
force ν to be in the same direction as the first eigenvector and then K to be elongated in the
orthogonal directions. Moreover, we set α > 0 in the last term of (0.1) in order to force M to be
at least continuous (α-Hölder), which corresponds to the assumption that the image g admits a
local geometrical coherence.

This model does not consist in the detection of sets with codimension higher than one, as it
has been done in [2] and [3] for vector-valued functions. In our case, the sets we want to detect
are with (small) positive volume.

In order to prove that (P) is a well posed problem, for u ∈ SBV(Ω), we introduce

E(u,M) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2dx+

∫
Ju

〈Mνu, νu〉1/2dHn−1 +
∫

Ω
‖DM‖n+αdx (0.2)

where ∇u is the derivative of u with respect to the Lebesgue measure, Ju is its jump set and νu is
unitary and orthogonal vector to Ju. The associated minimizing problem is

(P ′) : min{E(u,M) : u ∈ SBV(Ω),M ∈W1,n+α(Ω;G)},
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We verify that (P ′) admits a solution and, with a regularity result of the jump set of a minimizer,
which has been established in a joint paper [4], we prove that a minimizer of (P ′) naturally provides
a solution for (P). In order to get a functional more adapted for a numerical implementation, we
will approximate (0.2) by a family (Eε)ε which only depends on the integration with respect to
the Lebesgue measure. More precisely, we set

Eε(u, z,M) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2(1− z2)2dx+

∫
Ω

(
ε〈M∇z,∇z〉+ z2

4ε

)
dx+

∫
Ω
‖DM‖n+αdx.

As it has been done in [5] for the initial Mumford-Shah model, the function z takes its values
in [0; 1] and plays the role of a control on the gradient of u. The approximation takes place for
ε→ 0+ in the sense of the Γ-convergence.

In section 1 we recall some results on spaces of functions with bounded variation and we
mention a regularity result that we have proved in a previous article. In section 2, we prove that
the problem admits a solution. Section 3 in completely devoted to the approximation process. We
introduce the family of functionals (Eε)ε with their domains and we give the complete proof of
Γ-convergence to E when ε→ 0+.

1 Functional framework and regularity result
We adopt the notations:

• 〈v1,v2〉 ∈ R for the canonical scalar product of v1,v2 ∈ Rn,
• |v| for the euclidean norm of v ∈ Rn,
• ‖M‖ for the induced norm of M ∈ Mn(R),
•
∧n−1
i=1 vi ∈ Rn for the canonical vectorial product of v1, . . . ,vn−1 ∈ Rn,

• dist for the euclidean distance in Rn,
• S+

n (R) ⊂ Mn(R) for the subset of symmetric definite positive matrices,
• GLn(R) ⊂ Mn(R) for the subset of invertible matrices,
• On(R) ⊂ GLn(R) for the subgroup of orthogonal matrices,
• B(Ω) the class of Borelian subsets of Ω,
• B(Ω) for the space of Borelian functions defined in Ω,
• Ln for the Lebesgue measure in Rn,
• Hk for the k-dimensional Hausdorff measure,
• M(Ω;Rn) for the space of vectorial Radon measures defined in Ω ⊂ Rn,

•
∮
A

f(x)dx = 1
Ln(A)

∫
A

f(x)dx, for A ∈ B(Ω) and Ln(A) > 0.

Let f be a function defined on open sets, we adopt the following vocabulary:
• f is superadditive if f(A ∪B) ≥ f(A) + f(B) for any disjoints sets A,B,
• f is non decreasing if f(A) ≤ f(B) for any sets A,B such that A ⊂ B.

1.1 Functional spaces
We assume throughout this paper that the following constraint is satisfieded by Ω which is obviously
satisfied in the context of applications in Image Processing because the domain is a parallelepiped.

Definition 1.1. We say that Ω ⊂ Rn satisfies the reflexion condition (R) if Ω is an open and
bounded domain with Lipschitz regular boundary ∂Ω such that there exists a neighborhood U of ∂Ω
and a bi-Lipschitzian homeomorphism ϕ : U ∩ Ω→ U \ Ω such that, for any x ∈ ∂Ω, we have

lim
y→x

ϕ(y) = x.
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For the classical definitions and results on BV and SBV we refer to [7]. In particular, for the
definition of weak* convergence in BV, we refer to [7] (Definition 1.58). However, for the need of
notations, we mention that, if u ∈ BV(Ω), then its derivative Du belongs to the spaceM(Ω;Rn)
of vectorial Radon measure. Moreover, if u ∈ SBV(Ω) then the Cantor part of Du is null and we
obtain

Du = ∇u · Ln + (u+ − u−)νu · Hn−1xJu,

where ∇u is the density of Du with respect to the Lebesgue measure Ln, u+ (resp. u−) is the
approximate upper (resp. lower) limit and Hn−1xJu is the restriction of Hn−1 to its jump set Ju.

Now, we focus on some results which will be useful throughout the paper. First, we need the
rectifiability of Ju.

Theorem 1.1. Let u be a given function in BV(Ω). There exists a countable family (Ci)i∈N of
compact C1-hypersurfaces such that

Ju = N ∪
(⋃
i∈N

Ci

)
,

where Hn−1(N ) = 0.

Then, we will need the following chain rule ([7], Theorem 3.99).

Theorem 1.2. Let u ∈ SBV(Ω) and let f : R → R be a Lipschitz function. Then, v = f ◦ u
belongs to SBV(Ω) and

Dv = f ′(u)∇u · Ln + (f(u+)− f(u−))νu · Hn−1xJu. (1.1)

The following is a straightforward consequence of [7], Corollary 3.89.

Proposition 1.1. Let Ω be an open and bounded domain satisfying (R) and Ω′ = U ∪ Ω. For
u ∈ BV(Ω), we consider an extension in Ω′ by the following way

∀x ∈ U \ Ω, u(x) = u(ϕ−1(x)),

Then, we have
Hn−1(Ju ∩ ∂Ω) = 0.

We also need slicing results.

Definition 1.2. Let ν ∈ Sn−1 be fixed. We denote by Πν the hyperplane

{x ∈ Rn : x · ν = 0} .

If x ∈ Πν , we set
Ωx = {t ∈ R : x+ tν ∈ Ω} ,
Ων = {x ∈ Πν : Ωx 6= ∅} .

For any function u defined on Ω and any x ∈ Ων , we set

(u)x : Ωx → R
t 7→ u(x+ tν).

The following Theorem is proved in [8].

Theorem 1.3. Let u ∈ L∞(Ω) be a function such that, for all ν ∈ Sn−1,
i) (u)x ∈ SBV(Ωx) for Hn−1 a.e. x ∈ Ων ,

ii)
∫

Ων

[∫
Ωx
|∇(u)x|dt+H0(J(u)x)

]
dHn−1(x) < +∞;

then, u ∈ SBV(Ω) and Hn−1(Ju) < +∞. Conversely, let u ∈ SBV(Ω) ∩ L∞(Ω) be such that
Hn−1(Ju) < +∞. Then i) and ii) are satisfied. Moreover, we have
iii) 〈∇u(x+ tν), ν〉 = ∇(u)x(t), for a.e. t ∈ Ωx and Hn−1-a.e. x ∈ Ων ,

iv)
∫
Ju

〈νu, ν〉dHn−1(x) =
∫

Ων
H0(J(u)x)dHn−1(x).
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We need a generalization of the Coarea formula. For that, we introduce the following
Definition 1.3. The function f : Ω× Rn → R+ is sublinear with respect to the second variable,if

i) f(x,v1 + v2) ≤ f(x,v1) + f(x,v2) for any (x,v1,v2) ∈ Ω× Rn × Rn,
ii) f(x, tv) = tf(x,v) for any (x,v, t) ∈ Ω× Rn × R+.
Suppose that µ1 is a Radon measure and µ2 is a vectorial Radon measure on Ω. According to

Besicovitch derivation Theorem,
lim
r→0

µ2(B(x, r))
µ1(B(x, r))

exists and is finite for µ1 almost every x, we denote by dµ2
dµ1

(x) this limit when it exists. We recall
that µ2 is absolutely continuous with respect to µ1 if µ2(A) = 0 whenever µ1(A) = 0. When this
holds, we write µ2 � µ1. We consider the convex functional defined on the spaceM(Ω;Rn) by

Φ : µ2 ∈M(Ω;Rn) 7→
∫

Ω
f

(
x,

dµ2

dµ1

)
dµ1, (1.2)

where µ1 is a positive measure such that µ2 � µ1. It is shown in [9] that the integral in (1.2) does
not depend on the choice of µ1. For that reason, we will write it in the condensed form

Φ(µ2) =
∫

Ω
f (x, µ2).

We give a variant of the Coarea formula extended to the sublinear functionals which can be
found in [10].
Proposition 1.2. Let Φ(x, s, v) a Borel function of Ω × R × Rn which is sublinear in v. Let p
be a Lipschitz continuous function on Ω and, for t > 0, we set St = {x ∈ Ω; p(x) < t}. Then, for
almost all t ∈ R, 1St belongs to BV(Ω) and we have∫

Ω
Φ(x, p,Dp)dx =

∫
R
dt
∫

Ω
Φ(x, t,D1St).

1.2 Minkowski content and regularity result for the jump set
For M : Ω→ S+

n (R) and (x,v) ∈ Rn × Rn, we set

φ(x,v) = 〈M−1(x)v,v〉1/2.

This functional is a Riemannian metric, so, for S ⊂ Ω and x, y ∈ Ω, we may define its associated
distance as

distφ(x, y) = inf
{∫ 1

0
φ

(
γ,

dγ
dt

)
dt : γ ∈W 1,1([0; 1];Rn),

γ(0) = x, γ(1) = y

}
,

distφ(x, S) = inf {distφ(x, y) : y ∈ S} .

The associated anisotropic Minkowski (n − 1)-dimensional upper and lower contents are defined
by the limits

M?
M(S) = lim sup

ρ→0+

Ln({x : distφ(x, S) < ρ})
2ρ , M?M(S) = lim inf

ρ→0+

Ln({x : distφ(x, S) < ρ})
2ρ .

(1.3)
IfM?

M(S) =M?M(S), we call their common value the (n−1)-dimensional anisotropic Minkowski
contentMM(S). In [4], we have proved the following
Theorem 1.4. Let M : Ω → S+

n (R) be continuous, h ∈ L∞(Ω), γ > 0 and u ∈ SBV(Ω) a
minimizer of{

Eγ,h,M(v) = γ

∫
Ω

(v − h)2dx+
∫

Ω
|∇v|2dx+

∫
Jv

〈Mνv, νv〉1/2dHn−1 : v ∈ SBV(Ω)
}
.

Then, we have

Hn−1(Ju \ Ju) = 0, MM(Ju) =
∫
Jv

〈Mνv, νv〉1/2dHn−1.
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2 Existence result for (P)
In order to prove that (P) admits a solution, we prove that (P ′) is well posed and that it provides
a minimizer for (P).

2.1 Existence result for the relaxed problem (P ′)
The main result of the section is the following

Theorem 2.1. The problem (P ′) admits a solution.

The proof is a straightforward consequence of Lemmas 2.1 and 2.2.

Lemma 2.1. Let (uk)k ⊂ SBV(Ω) ∩ L∞(Ω) and (Mk)k ⊂W 1,n+α(Ω;G) be such that

sup
k
E(uk,Mk) <∞.

Then, there exist subsequences, still denoted by (uk)k and (Mk)k, and (u,M) ∈ SBV(Ω) ×
W 1,n+α(Ω;G), such that (uk)k is weakly* convergent to u in SBV(Ω) and (Mk)k is weakly conver-
gent to M in W 1,n+α(Ω).

Proof. As G ⊂ S+
n (R) is compact, there exists 0 < λ < Λ such that, for any (M,v) ∈ G × Rn, the

following ellipticity condition is satisfied

λ|v|2 ≤ 〈Mv,v〉 ≤ Λ|v|2. (2.1)

It yields ∫
Ω
|∇uk|2dx+Hn−1(Juk) ≤ max

{
1;λ−1/2

}
E(uk,Mk). (2.2)

As E(uk,Mk) is bounded, Theorem 4.8. in [7] implies that there exists a subsequence (uk)k
weakly* convergent in BV(Ω) to u ∈ SBV(Ω). According to (2.1), we have

‖M‖n+α
W 1,n+α(Ω) ≤ Λ(n+α)/2 + E(uk,Mk),

so (Mk)k is a bounded sequence of W 1,n+α(Ω) and then there exists a subsequence which weakly
converges to M ∈ W 1,n+α(Ω). It suffices to verify that M takes its values in G, which is true
because W 1,n+α(Ω) is injected in a continuous way into the space of continuous function and G is
closed.

Lemma 2.2. Let (uk)k ⊂ SBV(Ω) be weakly* convergent to u ∈ SBV(Ω) and (Mk)k be weakly
convergent to M in W 1,n+α(Ω). Then, we have

E(u,M) ≤ lim inf
k→∞

E(uk,Mk).

Proof. We may assume that lim inf E(uk,Mk) < +∞, otherwise the result is ensured. Weak*
convergence in SBV(Ω) and weak convergence in W 1,n+α(Ω) give

lim inf
k→∞

∫
Ω

(uk − g)2dx+
∫

Ω
‖DMk‖n+αdx ≤

∫
Ω

(u− g)2dx+
∫

Ω
‖DM‖n+αdx. (2.3)

According to inequality (2.2),
∫

Ω |∇uk|
2dx +Hn−1(Juk) is bounded with respect to k. With [7],

Theorem 4.7., we deduce that∫
Ω
|∇u|2dx ≤ lim inf

k→∞

∫
Ω
|∇uk|2dx, Hn−1(Ju) ≤ lim inf

k→∞
Hn−1(Juk). (2.4)

According to (2.3) and (2.4), it remains to prove that∫
Ju

〈Mνu, νu〉1/2dHn−1 ≤ lim inf
k→∞

∫
Juk

〈Mkνuk , νuk〉1/2dHn−1.
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This result is proved in [7], Theorem 5.2., for an homogeneous and fixed media (if Mk does not
depend on x ∈ Ω nor in k). In order to generalize this result, we introduce a piecewise constant
approximation of M. For any vector ei ∈ Sn−1 of the canonical basis, we set{

Πi
t = {x ∈ Ω: 〈x, ei〉 = t} ,

N i
t =

{
t ∈ R : Hn−1(Ju ∩Πi

t) > 0
}
∪
{
t ∈ R : ∃k ∈ N,Hn−1(Juk ∩Πi

t) > 0
}
.

As Hn−1(Ju) < ∞ (2.4) and Hn−1(Juk) < ∞ for any k ∈ N, then N i
t is at most countable. We

fix η > 0 arbitrary small. Intersecting Ω with disjoint cubes with edges orthogonal to the axes of
the canonical basis, there exists A a finite partition of Ω which, for any A ∈ A and for any k ∈ N,
satisfies

diam(A) < η, Hn−1(Ju ∩ ∂A) = 0, Hn−1(Juk ∩ ∂A) = 0. (2.5)
For any A ∈ A, we fix one point xA ∈ A and we set MA(x) = M(xA) for any x ∈ A. We have

the decomposition∫
Juk

〈Mkνuk , νuk〉1/2dHn−1 =
∫
Juk

(
〈Mkνuk , νuk〉1/2 − 〈Mνuk , νuk〉1/2

)
dHn−1

+
∫
Juk

(
〈Mνuk , νuk〉1/2 − 〈MAνuk , νuk〉1/2

)
dHn−1

+
∫
Juk

〈MAνuk , νuk〉1/2dHn−1.

(2.6)

In the three following Claim, we will estimate the limit of those three terms.

Claim 1:
lim
k→∞

∫
Juk

(
〈Mkνuk , νuk〉1/2 − 〈Mνuk , νuk〉1/2

)
dHn−1 = 0.

According to Ellipticity inequality (2.1), we have

|〈Mkνuk , νuk〉1/2 − 〈Mνuk , νuk〉1/2| ≤
1

2
√
λ
|〈(Mk −M)νuk , νuk〉|,

≤ 1
2
√
λ
‖Mk −M‖L∞

and then∫
Juk

|〈Mkνuk , νuk〉1/2 − 〈Mνuk , νuk〉1/2|dHn−1 ≤ 1
2
√
λ
‖Mk −M‖L∞Hn−1(Juk).

As the inclusion W 1,n+α(Ω) ⊂ L∞(Ω) is compact and (Mk)k weakly converges to M, then (Mk)k
uniformly converges to M. Moreover, (Hn−1(Juk))k is bounded, it concludes the proof of the
claim.

Claim 2: The sequence

lim
η→0+

∫
Juk

(
〈Mνuk , νuk〉1/2 − 〈MAνuk , νuk〉1/2

)
dHn−1 = 0

and the convergence takes place uniformly with respect to k ∈ N.

For A ∈ A and x ∈ A, ellipticity inequality (2.1) gives

|〈M(x)νuk , νuk〉1/2 − 〈MA(x)νuk , νuk〉1/2| ≤
1

2
√
λ
‖M(x)−M(xA)‖.

As M ∈W 1,n+α(Ω), there exist a constant C > 0 such that, for any x ∈ A, we have

‖M(x)−M(xA)‖ ≤ Cηα.

6



It yields ∣∣∣∣∣
∫
Juk

(
〈Mνuk , νuk〉1/2 − 〈MAνuk , νuk〉1/2

)
dHn−1

∣∣∣∣∣ ≤ CηαHn−1(Juk)
2
√
λ

.

As (Hn−1(Juk))k is a bounded sequence, it concludes the proof of the claim.

Claim 3: ∫
Ju

〈MAνu, νu〉1/2dHn−1 ≤ lim inf
k→∞

∫
Juk

〈MAνuk , νuk〉1/2dHn−1.

We denote by
◦
A the interior of the set A. According to [7], Theorem 5.2., we have∫

Ju∩
◦
A

〈M(xA)νu, νu〉1/2dHn−1 ≤ lim inf
k→∞

∫
Juk∩

◦
A

〈M(xA)νuk , νuk〉1/2dHn−1.

According to (2.5), the contribution of the boundaries is null, it gives∫
Ju∩A

〈M(xA)νu, νu〉1/2dHn−1 ≤ lim inf
k→∞

∫
Juk∩A

〈M(xA)νuk , νuk〉1/2dHn−1

and then∑
A∈A

∫
Ju∩A

〈M(xA)νu, νu〉1/2dHn−1 ≤
∑
A∈A

lim inf
k→∞

∫
Juk∩A

〈M(xA)νuk , νuk〉1/2dHn−1,

≤ lim inf
k→∞

∑
A∈A

∫
Juk∩A

〈M(xA)νuk , νuk〉1/2dHn−1.

As A is a partition of Ω, it concludes the proof of Claim 3 :∫
Ju

〈MAνu, νu〉1/2dHn−1 ≤ lim inf
k→∞

∫
Juk

〈MAνuk , νuk〉1/2dHn−1.

Let δ > 0 be an arbitrary small number. With the same arguments as for Claim 2, we get∣∣∣∣∫
Ju

(
〈Mνu, νu〉1/2 − 〈MAνu, νu〉1/2

)
dHn−1

∣∣∣∣ ≤ CηαHn−1(Ju)
2
√
λ

.

So, according to Claim 2, there exists a partition A which satisfies
lim sup
k→∞

∣∣∣∣∣
∫
Juk

(
〈Mνuk , νuk〉1/2 − 〈MAνuk , νuk〉1/2

)
dHn−1

∣∣∣∣∣ ≤ δ,∣∣∣∣∫
Ju

(
〈Mνu, νu〉1/2 − 〈MAνu, νu〉1/2

)
dHn−1

∣∣∣∣ ≤ δ.
According to (2.6), Claim 1 and Claim 3, we have∫

Ju

〈Mνu, νu〉1/2dHn−1 ≤ 2δ + lim inf
k→∞

∫
Juk

〈Mkνuk , νuk〉1/2dHn−1.

As δ > 0 is arbitrary, it concludes the proof of Lemma 2.2.

We now prove Theorem 2.1.

Proof. We denote by (uk,Mk)k ⊂ SBV(Ω) a minimizing sequence for E. As g ∈ L∞(Ω), we set

ϕ(t) =

 −‖g‖L
∞(Ω) if t ≤ −‖g‖L∞(Ω),

t if |t| ≤ ‖g‖L∞(Ω),
‖g‖L∞(Ω) if t ≥ ‖g‖L∞(Ω).

(2.7)
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We denote vk = ϕ ◦ uk. As the function ϕ is 1-Lipshitz, we may apply Theorem 1.2 and then
vk ∈ SBV(Ω) ∩ L∞(Ω) with the decomposition

Dvk = ϕ′(uk)∇uk · Ln + (ϕ(u+
k )− ϕ(u−k ))νuk · Hn−1xJuk .

For any k, it is easy to check that E(vk,Mk) ≤ E(uk,Mk), so (vk,Mk)k is also a minimizing
sequence for E. According to Theorem 2.1, there exists v ∈ SBV(Ω) and a subsequence, still
denoted (vk)k weakly* convergent to v. With Theorem 2.2, we have E(v,M) ≤ lim inf E(vk,Mk)
and then (v,M) is a minimizer of E.

2.2 Existence result for (P)
In this section we prove that the problems (P) and (P ′) have common solutions and then (P) is
also well posed. First, we consider (u,K,M) in the domain of E . As in (2.7), we may define the
truncated function v = ϕ(u) and then we have |v − g| ≤ |u − g| and |∇v| ≤ |∇u|. In particular,
we get E(v,K,M) ≤ E(u,K,M). Thus, for any (u?,K?,M?) in the domain of E , we may assume
that u? ∈ L∞(Ω \K). On the other hand, in [7] (Proposition 4.4), is given the following

Proposition 2.1. Let Ω ⊂ Rn be open and bounded, K ⊂ Rn be closed, Hn−1(K ∩ Ω) < ∞ and
u ∈ L∞(Ω \K) ∩W 1,1(Ω \K). Then, we have u ∈ SBV(Ω) and Hn−1(Su \K) = 0.

As Ω is bounded and u? ∈W 1,2(Ω\K?), then we get u? ∈W 1,1(Ω\K?). As
∫
K?
〈M?ν, ν〉1/2dHn−1 <

+∞, then Ellipticity condition (2.1) gives Hn−1(K? ∩ Ω) < ∞. According to Proposition 2.1, we
deduce that u? ∈ SBV(Ω) and Hn−1(Su? \K?) = 0. It yields

E(u?,M?) ≤ E(u?,K?,M?),

and then minE ≤ min E . Conversely, according to Theorem 2.1, there exists a minimizer (u∗,M∗)
of E. In particular, with the notations of Theorem 1.4, u? is a minimizer of E1,g,M? and then

Hn−1(Ju? \ Ju?) = 0.

So, we set K? = Ju? and then K? is compact and Hn−1-rectifiable, Ω \K? is open, u? ∈W 1,2(Ω \
K?) and

E(u?,M?) = E(u?,K?,M?).
We may conclude that minE = min E and their minimizers coincide. Moreover, we have

Proposition 2.2. Let u ∈ SBV(Ω) be a minimizer of (P), then u ∈ C1(Ω \ Ju).

Proof. Let Br(x) ⊂ Ω \ Ju; then u ∈W 1,2(Br(x)) and it is a minimizer of the functional

I(v) =
∫
Br(x)

(v − g)2dx+
∫
Br(x)

|∇v|2dx

among the functions v in u+W 1,2
0 (Br(x)) and then classical regularity results give u ∈ C1(Br(x)).

3 Γ-convergence result
This section is entirely devoted to the approximation process. In 3.1 we define the domain for Eε
and give the main Theorem of this paper. In 3.2 we prove, for ε > 0 fixed, that the minimization
of Eε admits a solution. In 3.3, the most technical part of the paper, we give the complete proof
of Γ-convergence. Finally, in 3.4, we conclude the proof of the main Theorem.

3.1 The functionals, their domain and the main Theorem
Formally, we define the functional Eε(u, z,M) as

Eε(u, z,M) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2(1− z2)2dx+

∫
Ω

(
ε〈M∇z,∇z〉+ z2

4ε

)
dx+

∫
Ω
‖DM‖n+αdx.
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As in [5], the function z : Ω → [0; 1] plays the role of control of the gradient of u. We need to
introduce a domain for Eε that ensures the existence of a minimizer. If u, z ∈W1,2(Ω), then this
functional is well defined. However, the coefficient (1 − z2)2 removes the coercivity with respect
to u and the existence result can not be achieved according to the Sobolev norm. If, by addition,
u is bounded, we have

|∇(u(1− z2))|2 = |∇u(1− z2)− 2uz∇z|2,
≤ 2|∇u|2(1− z2)2 + 4‖u‖L∞(Ω)|∇z|2.

According to ellipticity inequality (2.1), it gives∫
Ω
|∇(u(1− z2))|2dx ≤

(
2 +

4‖u‖L∞(Ω)

λε

)
Eε(u, z,M).

So, it is natural to set

Dn(Ω) =
{

(u, z) : u ∈ B(Ω), z ∈W1,2(Ω; [0; 1]), ∀N ∈ N uN (1− z2) ∈W1,2(Ω)
}
,

where uN is the truncated function defined, for any x ∈ Ω, by

uN (x) =

 −N if u(x) ≤ −N,
u(x) if |u(x)| ≤ N,
N if u(x) ≥ N.

(3.1)

Assuming (u, z) ∈ Dn(Ω) does not ensure that u ∈W1,2(Ω) and ∇u can not be defined as the
gradient of u in the Sobolev sense. However, we can define ∇u in the following sense.
Definition 3.1. Let u ∈ L1(Ω) and x ∈ Ω a Lebesgue point of u; we say that u is approximately
differentiable at x if there exists L ∈ Rn such that

lim
r→0+

∮
B(x,r)

|u(y)− u(x)− 〈L, y − x〉|
r

dy = 0. (3.2)

If u is approximately differentiable at x then L, uniquely determined by (3.2), is called the approx-
imate differential of u at x.

The following ensures that Eε(u, z,M) is well defined for (u, z) ∈ Dn(Ω).
Proposition 3.1. If (u, z) ∈ Dn(Ω), then u is approximately differentiable in {x ∈ Ω: z(x) 6= 1}
and z is approximately differentiable in Ω.

Proof. As Ω is open and bounded then W1,2(Ω) ⊂ BV(Ω). According to Calderon-Zygmund (see
[7], Theorem 3.83), any function u ∈ BV(Ω) is approximately differentiable at almost every point
x ∈ Ω. So, if (u, z) ∈ Dn(Ω), then z and uN (1 − z2) are approximately differentiable almost
everywhere. The following properties are straightforward consequences of Definition 3.2

• if v1, v2 are approximately differentiable almost everywhere and v1 ∈ L∞(Ω), then v1v2 is
approximately differentiable almost everywhere;

• if v2 is approximately differentiable almost everywhere, then v2
−1 is also approximately

differentiable almost everywhere in {x : v2(x) 6= 0} (Proposition 3.71 in [7]).
We deduce that uN is approximately differentiable almost everywhere in {x : z(x) 6= 1}. This is
true for any N ∈ N, so this is also true for u.

The main result of the paper is the following
Theorem 3.1. Let Ω ⊂ Rn be an open and bounded domain which satisfies reflexion condition
(1.1), G be a compact subset of S+

n (R) and α > 0 be fixed. We consider H : B(Ω)×W 1,n+α(Ω;G)→
[0; +∞] defined as

H(u,M) =
∫

Ω
(u− g)2dx+

∫
Ω
‖DM‖n+αdx,

E : B(Ω)×W 1,n+α(Ω;G)→ [0; +∞] defined as

E(u,M) =


H(u,M) +

∫
Ω
|∇u|2dx+

∫
Ju

〈Mνu, νu〉1/2dHn−1 if u ∈ SBV(Ω),

+∞ otherwise
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and Eε : B(Ω)× B(Ω)×W 1,n+α(Ω;G)→ [0; +∞] defined as

Eε(u, z,M) =


H(u,M) +

∫
Ω
|∇u|2(1− z2)2dx+

∫
Ω

(
ε〈M∇z,∇z〉+ z2

4ε

)
dx if (u, z) ∈ Dn(Ω),

+∞ otherwise.

Then, the following assertions are satisfied.
i) For any ε > 0, Eε admits a minimizer, denoted by (uε, zε,Mε). Moreover, we can assume

that uε(x) = g(x) on {x ∈ Ω: zε(x) = 1}.
ii) For any (εk)k converging to 0+, there exists a subsequence, still denoted by (εk)k, and u ∈

SBV(Ω) such that (uεk , zεk)k converges to (u, 0) almost everywhere, (Mk)k converges weakly
to M and (u,M) is a minimizer of E.

We set

(Pε) : Min{Eε(u, z,M) : (u, z,M) ∈ B(Ω)× B(Ω)×W 1,n+α(Ω;G)},

Theorem 3.1 i) implies that, for ε > 0 fixed, (Pε) is a well posed problem. Theorem 3.1 ii) implies
that, up to the extraction of a subsequence, the sequence of solutions of (Pεk) converge to a solution
of (P ′).

3.2 Existence result for (Pε)
Theorem 3.1 i) is a straightforward consequence of Propositions 3.2 and 3.3.
Proposition 3.2. Let ε > 0 be fixed. There exists (uk, zk,Mk)k a minimizing sequence of Eε
such that (uk)k is a bounded sequence of L∞(Ω), (uk, zk)k converges almost everywhere to (u, z) ∈
Dn(Ω), u(x) = g(x) on {x ∈ Ω: z(x) = 1} and (Mk)k weakly converges to M ∈W 1,n+α(Ω;G).

To prove it, we need the following Lemma which proof is given in Appendix 4.1.
Lemma 3.1. For (u, z) ∈ Dn(Ω) and ν ∈ Sn−1 fixed, we have (ux, zx) ∈ D1(Ωx) for Hn−1-almost
every x ∈ Ων (see the notations of Definition 1.2), and

∇ux(t) = 〈∇u(x+ tν), ν〉,
∇zx(t) = 〈∇z(x+ tν), ν〉,

for almost every t ∈ Ωx \ {s : z(x+ sν) = 1}.
Now, we prove Proposition 3.2.

Proof. Let (uk, zk,Mk)k be a minimizing sequence of Eε. We fixN ≥ ‖g‖L∞(Ω) and we consider the
truncated functions (uNk )k defined in (3.1). As (uk, zk) ∈ Dn(Ω), we have uNk (1−z2

k) ∈W 1,2(Ω). As
Ω is bounded, then W1,2(Ω) ⊂ SBV(Ω). According to Calderón-Zygmund Theorem ([7], Theorem
3.83), uNk (1− z2

k) is approximately differentiable almost everywhere. For the same reasons, 1− z2
k

is also approximately differentiable almost everywhere. According to Proposition 3.71 in [7], we
deduce that uNk is approximately differentiable almost everywhere in {x : zk(x) 6= 1}. Moreover,
∇uNk (x) = 0 almost everywhere in {x : |uNk (x)| = N} and ∇uNk (x) = ∇uk(x) almost everywhere
in {x : |uNk (x)| < N} (Proposition 3.73 in [7]), it gives∫

Ω
|∇uNk |2(1− z2

k)2dx ≤
∫

Ω
|∇uk|2(1− z2

k)2dx. (3.3)

so Eε(uNk , zk,Mk) ≤ Eε(uk, zk,Mk) and then (uNk , zk,Mk)k is also a minimizing sequence. Ac-
cording to ellipticity inequality (2.1), we have∫

Ω
|∇zk|2dx+

∫
Ω
z2
kdx ≤

(
1
λε

+ 4ε
)
Eε(uk, zk,Mk),

and then (zk)k is a bounded sequence of W1,2(Ω). So, there exists a subsequence, still denoted
by (zk)k, which converges almost everywhere to z ∈ W1,2(Ω). As (zk)k takes its values almost
everywhere in [0; 1], then z takes also its values in [0; 1]. For wk = uNk (1− z2

k), we have∫
Ω
|∇wk|2dx+

∫
Ω
w2
kdx ≤ 2

∫
Ω
|∇uNk |2(1− z2

k)2dx+ 2N2
∫

Ω
|∇zk|2dx+N2

∫
Ω

(1− z2
k)2dx
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and then (wk)k is a bounded sequence of W1,2(Ω). So, there exists a subsequence, still denoted
by (wk)k, which converges almost everywhere to w ∈ W1,2(Ω). In particular, (uNk (x))k con-
verges for almost every x ∈ {y : z(y) 6= 1} to u(x). We set u(x) = g(x) for x ∈ {y : z(y) = 1}.
This construction ensures that (u, z) ∈ Dn(Ω). As G ⊂ S+

n (R) is compact, Ω is bounded and∫
Ω ‖DMk‖dx ≤ Eε(uk, zk,Mk), then (Mk)k is a bounded sequence of W 1,n+α(Ω) and there ex-
ists a subsequence weakly convergent to M ∈ W 1,n+α(Ω). As weakly convergence in W 1,n+α(Ω)
implies uniform convergence and G is closed, then M ∈W 1,n+α(Ω;G).

Proposition 3.3. If (uk, zk)k ⊂ Dn(Ω) converges almost everywhere to (u, z) ∈ Dn(Ω), (uk)k is a
bounded sequence of L∞(Ω) and (Mk)k ⊂ W 1,n+α(Ω;G) weakly converges to M ∈ W 1,n+α(Ω;G),
then

lim inf
k→∞

Eε(uk, zk,Mk) ≥ Eε(u, z,M).

Proof. Fatou Lemma and lower semi-continuity of the Sobolev semi-norm give

lim inf
k→∞

(∫
Ω

(uk − g)2dx+
∫

Ω

z2
k

4εdx+
∫

Ω
‖DMk‖n+αdx

)
≥
∫

Ω
(u− g)2dx+

∫
Ω

z2

4εdx+
∫

Ω
‖DM‖n+αdx.

So, to show Proposition 3.3, it suffices to prove that

lim inf
k→∞

∫
Ω
ε〈Mk∇zk,∇zk〉dx ≥

∫
Ω
ε〈M∇z,∇z〉dx (3.4)

and
lim inf
k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx ≥
∫

Ω
|∇u|2(1− z2)2dx. (3.5)

Proof of (3.4)

If lim infk
∫

Ω |∇zk|
2dx = +∞, according to Ellipticity condition (2.1), we have

lim inf
k

∫
Ω
〈Mk∇zk,∇zk〉dx = +∞

and the result of Proposition 3.3 is ensured. So, we may assume that lim inf
∫

Ω |∇zk|
2dx < +∞.

On the other hand, we have∣∣∣∣∫
Ω
ε〈Mk∇zk,∇zk〉dx−

∫
Ω
ε〈M∇zk,∇zk〉dx

∣∣∣∣ ≤ ε‖Mk −M‖L∞
∫

Ω
|∇zk|2dx.

As the weakly convergence of (Mk)k in W 1,n+α(Ω) implies the uniform convergence, we may
conclude that

lim inf
k

(∫
Ω
ε〈Mk∇zk,∇zk〉dx−

∫
Ω
ε〈M∇zk,∇zk〉dx

)
= 0.

To prove inequality (3.4), it remains to verify that

lim inf
k→∞

∫
Ω
ε〈M∇zk,∇zk〉dx ≥

∫
Ω
ε〈M∇z,∇z〉dx.

As the application
W1,2(Ω) → L2(Ω;Rn),

z 7→ ∇z
is continuous for the strong topology, it remains to prove that the application

L2(Ω;Rn) → R,
Z 7→

∫
Ω 〈MZ,Z〉dx

is lower semi-continuous for the weak topology of L2(Ω;Rn). Let (Zk)k ⊂ L2(Ω;Rn) be weakly
convergent to Z ∈ L2(Ω;Rn). We set

L : L2(Ω;Rn) → R,
U 7→

∫
Ω 〈MZ,U〉dx

11



According to ellipticity inequality (2.1), L ∈ (L2(Ω;Rn))′ and then (L(Zk))k converges to L(Z).
Moreover, for k fixed, the following polynomial function is positive

t 7→
∫

Ω
〈M(Z + tZk), Z + tZk〉dx.

Thus, its discriminant is negative and we deduce the following anisotropic Cauchy-Schwarz in-
equality ∫

Ω
〈MZ,Zk〉dx ≤

(∫
Ω
〈MZ,Z〉dx

) 1
2
(∫

Ω
〈MZk, Zk〉dx

) 1
2

.

As (L(Zk))k converges to L(Z), passing through the lim inf in the previous inequality yields∫
Ω
〈MZ,Z〉dx ≤

(∫
Ω
〈MZ,Z〉dx

) 1
2

lim inf
k→∞

(∫
Ω
〈MZk, Zk〉dx

) 1
2

and then we may conclude the Proof of (3.4) by taking Zk = ∇zk, Z = ∇z in the previous
inequality ∫

Ω
〈M∇z,∇z〉dx ≤ lim inf

k→∞

∫
Ω
〈M∇zk,∇zk〉dx.

Proof of (3.5)

We first consider the one-dimensional case n = 1 and then by a slicing argument we get the
lower semi-continuity for the general case n ≥ 1. Let A ⊂ {x ∈ Ω: z(x) < 1} be an open and
relatively compact subset of Ω ⊂ R. As (zk)k weakly converges to z in W 1,2(Ω), then (zk)k
uniformly converges to z. In particular, there exists δ > 0 and k0 ∈ N

k ≥ k0 ⇒ A ⊂ {x ∈ Ω: zk(x) ≤ 1− δ}.

Thus, for any k ≥ k0, we have∫
A

|∇uk|2dx ≤
1

1− (1− δ)2Eε(uk, zk)

and then we deduce that (uk)k is a bounded sequence of W1,2(A). As uk(1− z2
k) converges almost

everywhere to u(1 − z2) in Ω, there exists a subsequence, still denoted by (uk)k, which weakly
converges to u in W1,2(A). In particular, (∇uk)k weakly converges to ∇u in L2(A). For ξ ∈ L2(Ω),
we decompose∫
A

ξ
[
∇uk(1− z2

k)−∇u(1− z2)
]
dx =

∫
A

ξ∇uk(z2 − z2
k)dx+

∫
A

ξ∇uk(1− z2)dx+
∫
A

ξ∇u(z2 − z2
k)dx.

(3.6)
As (1− z2)ξ ∈ L2(A) and (∇uk)k weakly converges to ∇u in L2(A), then we have∫

A

ξ∇uk(1− z2)dx→
∫
A

ξ∇u(1− z2)dx. (3.7)

Moreover, we have ∫
A

ξ∇uk(z − zk)dx ≤ ‖ξ‖L2(A)‖∇uk‖L2(A)‖z2 − z2
k‖L∞(A)

and ∫
A

ξ∇u(z − zk)dx ≤ ‖ξ‖L2(A)‖∇u‖L2(A)‖z2 − z2
k‖L∞(A).

As a weakly convergent sequence is bounded, then (∇uk)k is bounded in L2(A) and we deduce
that ∫

A

ξ∇uk(z2 − z2
k)dx→ 0,

∫
A

ξ∇u(z2 − z2
k)dx→ 0. (3.8)
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According to (3.6), (3.7) and (3.8), we get∫
A

ξ∇uk(1− z2
k)dx→

∫
A

ξ∇u(1− z2)dx

and then (∇uk(1 − z2
k))k weakly converges to ∇u(1 − z2) in L2(A). As the norm is lower semi-

continuous, we deduce∫
A

|∇u|2(1− z2)2dx ≤ lim inf
k→∞

∫
A

|∇uk|2(1− z2
k)2dx,

≤ lim inf
k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx.

Passing to the limit A ↑ {x ∈ Ω: z(x) < 1} gives∫
Ω
|∇u|2(1− z2)2dx ≤ lim inf

k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx.

We generalize this result to the dimension n ≥ 1. With the notation ux introduced in (1.2),
using the previous result obtained in dimension 1, Lemma 3.1 and Fatou Lemma, give∫

A

|〈∇u, ν〉|2(1− z2)2dx =
∫
Aν

∫
Ax

|∇ux(t)|2(1− zx(t)2)2dtdx,

≤
∫
Aν

lim inf
k→∞

∫
Ax

|∇(uk)x(t)|2(1− (zk)x(t)2)2dtdx,

≤ lim inf
k→∞

∫
Aν

∫
Ax

|∇(uk)x(t)|2(1− (zk)x(t)2)2dtdx,

≤ lim inf
k→∞

∫
Aν

∫
Ax

|〈∇uk(x+ tν), ν〉|2(1− zk(x+ tν)2)2dtdx,

≤ lim inf
k→∞

∫
A

|〈∇uk, ν〉|2(1− z2
k)2dx,

≤ lim inf
k→∞

∫
A

|∇uk|2(1− z2
k)2dx,

for any open set A ⊂ Ω and every ν ∈ Sn−1. The function x→ ∇u(x)
|∇u(x)| is measurable in U = {x ∈

Ω: z(x) 6= 1,∇u(x) 6= 0}. According to Lusin Theorem (1.45 of [7]), there exists an increasing
sequence of compacts (Kl)l ⊂ U such that{

Ln(U \Kl) ≤ 1
l ,

x→ ∇u(x)
|∇u(x)| is continuous in Kl.

Thus, for any x ∈ Kl, there exists r > 0 such that

y ∈ B(x, r) ⇒
∣∣∣∣ ∇u(x)
|∇u(x)| −

∇u(y)
|∇u(y)|

∣∣∣∣ ≤ 1
l
, (3.9)

As a consequence of Besicovitch Covering Theorem (2.18 of [7]), there exists a countable, pairwise
disjoint collection of balls (Bi)i∈I satisfying (3.9) such that

Bi ⊂ Ω, Ln
(
Kl \

⋃
i∈I

Bi

)
= 0, for any ∀i ∈ I.

For any i ∈ I, we fix xi ∈ Bi and we set νi = ∇u(xi)
|∇u(xi)| ; then∫

Bi

|〈∇u, νi〉|2(1− z2)2dx ≤ lim inf
k→∞

∫
Bi

|∇uk|2(1− z2
k)2dx.
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As (Bi)i is pairwise dijoint, we deduce∫
∪iBi
|〈∇u, νi〉|2(1− z2)2dx =

∑
i∈I

∫
Bi

|〈∇u, νi〉|2(1− z2)2dx,

≤
∑
i∈I

lim inf
k→∞

∫
Bi

|∇uk|2(1− z2
k)2dx,

≤ lim inf
k→∞

∑
i∈I

∫
Bi

|∇uk|2(1− z2
k)2dx,

≤ lim inf
k→∞

∫
∪iBi
|∇uk|2(1− z2

k)2dx,

≤ lim inf
k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx.

Moreover, we have

∀x ∈ Bi ∩Kl,
∣∣|∇u|2 − |〈∇u, νi〉|2∣∣ ≤ ∣∣∣∣〈∇u, ∇u|∇u| 〉2 − 〈∇u, νi〉2

∣∣∣∣,
≤

∣∣∣∣〈∇u, ∇u|∇u| − νi〉〈∇u, ∇u|∇u| + νi〉
∣∣∣∣,

≤ 2
l
|∇u|2.

It gives ∫
Bi∩Kl

|∇u|2(1− z2)2dx ≤ l

l − 2

∫
Bi∩Kl

|〈∇u, νi〉|2(1− z2)2dx.

As Ln(Kl \ ∪iBi) = 0 and (Bi)i is pairwise disjoint, we get∫
Kl

|∇u|2(1− z2)2dx =
∑
i

∫
Bi∩Kl

|∇u|2(1− z2)2dx,

≤ l

l − 2
∑
i

∫
Bi∩Kl

|〈∇u, νi〉|2(1− z2)2dx,

≤ l

l − 2

∫
∪iBi∩Kl

|〈∇u, νi〉|2(1− z2)2dx,

≤ l

l − 2

∫
∪iBi
|〈∇u, νi〉|2(1− z2)2dx,

≤ l

l − 2 lim inf
k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx.

As (Kl)l is an increasing sequence such that Ln(U \Kl)→ 0, passing to the limit l→∞ gives∫
U

|∇u|2(1− z2)2dx ≤ lim inf
k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx

and we may conclude ∫
Ω
|∇u|2(1− z2)2dx ≤ lim inf

k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx.

3.3 Γ-convergence result for ε→ 0+

This section is dedicated to the proof of Theorem 3.1 ii). For that, we will prove the following
Γ-convergence result.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied. Let (εk)k be a sequence
which converges to 0+, we have
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i) if u ∈ B(Ω) ∩ L∞(Ω), (uk, zk)k ⊂ Dn(Ω), (uk)k is bounded in L∞(Ω), (uk, zk)k converges to
(u, 0) almost everywhere and (Mk)k weakly converges to M, then

lim inf
k→∞

Eεk(uk, zk,Mk) ≥ E(u,M); (3.10)

ii) for any u ∈ B(Ω)∩L∞(Ω) and M ∈W 1,n+α(Ω;G), there exists a sequence (uk, zk)k ⊂ Dn(Ω)
such that (uk)k is bounded in L∞(Ω), (uk, zk)k converges to (u, 0) almost everywhere and

lim sup
k→∞

Eεk(uk, zk,M) ≤ E(u,M). (3.11)

3.3.1 The inequality for the lower Γ-limit
We now prove the first inequality of Γ-convergence (3.10). Let u ∈ B(Ω) ∩L∞(Ω) and (uk, zk)k ⊂
Dn(Ω) such that (uk)k is bounded in L∞(Ω), (uk, zk)k converges to (u, 0) almost everywhere and
(Mk)k weakly converges to M. In the sequel, we emphasize on the domain of the function: for U
an open subset of Ω, we adopt the following notation

F (u,M;U) =
∫
U

|∇u|2dx+
∫
Ju∩U

〈Mνu, νu〉1/2dHn−1,

Fεk(uk, zk,Mk;U) =
∫
U

|∇uk|2(1− z2
k)2dx+

∫
U

(
εk〈Mk∇zk,∇zk〉+ z2

k

4εk

)
dx,

Fatou Lemma and lower continuity for the Sobolev semi-norm yields

lim inf
k→∞

∫
Ω

(uk − g)2dx+
∫

Ω
‖DMk‖n+αdx ≥

∫
Ω

(u− g)2dx+
∫

Ω
‖DM‖n+αdx

and then it suffices to prove that lim inf Fεk(uk, zk,Mk; Ω) ≥ F (u,M; Ω). Moreover, if

lim inf
k

∫
Ω
εk|∇zk|2dx = +∞,

according to ellipticity condition (2.1), we have

lim inf
k

∫
Ω
εk〈Mk∇zk,∇zk〉dx = +∞

and (3.10) is ensured. So, we may assume that lim infk
∫

Ω εk|∇zk|
2dx < +∞. On the other hand,

we have ∣∣∣∣∫
Ω
εk〈Mk∇zk,∇zk〉dx−

∫
Ω
εk〈M∇zk,∇zk〉dx

∣∣∣∣ ≤ ‖Mk −M‖L∞εk
∫

Ω
|∇zk|2dx.

As the weakly convergence of (Mk)k to M inW 1,n+α(Ω) implies the uniform convergence, we may
conclude that

lim inf
k

(∫
Ω
εk〈Mk∇zk,∇zk〉dx−

∫
Ω
εk〈M∇zk,∇zk〉dx

)
= 0.

To prove inequality (3.10), it remains to verify that

lim inf
k→∞

Fεk(uk, zk,M; Ω) ≥ Fεk(uk, zk,M;U).

We perform the proof in two steps: the first step deals with dimension 1. The second generalizes
it for dimension n ≥ 2.

The one-dimensional case
In this section, we assume that Ω = I is an open interval and the metric M is simply a constant
m > 0. We assume in this section thatm is fixed. To avoid confusion, we denote the approximating
functional by

Gε(u, z; I) =
∫
I

|∇u(t)|2(1− z(t)2)2dt+
∫
I

(
mε|∇z(t)|2 + z(t)2

4ε

)
dt, (3.12)
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where the domain is

D1(I) = {(u, z) : u ∈ B(I), z ∈W1,2(I; [0; 1]),∀N ∈ N uN (1− z2) ∈W1,2(I)}.

We denote the lower Γ-limit, by

G−(u; I) = inf
{

lim inf
k→∞

Gεk(uk, zk; I)
}
,

where the inf is taken over all sequence (uk, zk)k ⊂ D1(I) such that (uk, zk) converges almost
everywhere to (u, 0) in I. We need the following Lemma which proof is given in appendix 4.2.

Lemma 3.2. Let I ⊂ R be an open interval, J ⊂ I be a set with finite cardinal. We have

u ∈W1,2(I \ J)⇒ u ∈ SBV(I), Ju ⊂ J.

The main result of this subsection is given by the following.

Proposition 3.4. Let I ⊂ R be an open interval and u ∈ B(I). If G−(u; I) <∞, then u ∈ SBV(I)
and ∫

I

|∇u(t)|2dt+m
1
2H0(Ju ∩ I) ≤ G−(u; I).

The proof of this Proposition consists in showing the two following Lemmas.

Lemma 3.3. If u ∈W1,2(Bη(x)), then we have

G−(u;Bη(x)) ≥
∫
Bη(x)

|∇u(t)|2dt.

Lemma 3.4. If u 6∈W1,2(Bρ(x)) for any ρ ∈]0; η[, then for any ρ ∈]0; η[ we have

G−(u;Bρ(x)) ≥ m1/2.

Suppose that Lemma 3.3 and 3.4 are proved, we deduce Proposition 3.4.

Proof. We set
J =

{
x ∈ I : ∀ρ > 0, u 6∈W1,2(Bρ(x))

}
.

Let {x1, . . . , xN} ⊂ J and ρ > 0 be such that {Bρ(xi) : i = 1, . . . , N} is pairwise disjoint.
According to Lemma 3.4 we have

∀i ∈ {1, . . . , N}, G−(u;Bρ(xi)) ≥ m1/2

and then
N∑
i=1

G−(u;Bρ(xi)) ≥ Nm1/2.

As G−(u; ·) is superadditive, we have

G−(u;∪Ni=1Bρ(xi)) ≥ Nm1/2.

and G−(u; ·) is non decreasing, it gives

G−(u; I) ≥ Nm1/2.

As G−(u; ·) < +∞, the set J is finite. So, there exists ρ > 0 such that {Bρ(x) : x ∈ J} is pairwise
disjoint. As G−(u; · ) is superadditive and non decreasing, we have∑

x∈J
G−(u;Bρ(x)) +G−(u; I \ ∪x∈JBρ(x)) ≤ G−(u; I).

According to Lemma 3.3 and 3.4, it gives

H0(J)m 1
2 +

∫
I\∪x∈JBρ(x)

|∇u(t)|2dt ≤ G−(u; I).
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Taking the limit ρ→ 0+ yields

H0(J)m 1
2 +

∫
I\J
|∇u(t)|2dt ≤ G−(u; I).

In particular u ∈W1,2(I \ J) and, according to Lemma 3.2, we get u ∈ SBV(I), Ju ⊂ J and then

H0(J)m 1
2 +

∫
I

|∇u(t)|2dt ≤ G−(u; I).

Now, we prove lemma 3.3.

Proof. We can assume that G−(u;Bη(x)) < +∞, otherwise the result is ensured. By a diagonal
extraction, there exists a sequence (uk, zk)k ⊂ D1(Bρ(x)) converging almost everywhere to (u, 0)
and

Gεk(uk, zk;Bρ(x))→ G−(u;Bρ(x)).
As G−(u;Bη(x)) is finite, there exists C > 0 such that

∀k ∈ N,
∫
Bη(x)

(
εk|∇zk|2 + z2

k

4εk

)
dt ≤ C. (3.13)

Applying the inequality 2ab ≤ a2 + b2 with a2 = εk|∇zk|2 and b2 = z2
k

4εk gives

∀k ∈ N,
∫
Bη(x)

|∇zk|zkdt ≤ C. (3.14)

We set ck = 1− z2
k. As zk ∈W1,2(Bη(x)), then ck ∈ BV (Bη(x)) and (3.14) is

∀k ∈ N,
∫
Bη(x)

|∇ck|dt ≤ 2C.

Coarea formula (see [7]) yields

∀k ∈ N,
∫ 1

0
H0({y ∈ Bη(x) : ck(y) = t})dt ≤ 2C. (3.15)

Let σ < 1 in an arbitrary neighborhood of 1 and δ ∈]0;σ[ be fixed numbers. According to (3.15)
and mean value Theorem, there exits δk ∈]δ;σ[ such that

∀k ∈ N, H0({y ∈ Bη(x) : ck(y) = δk}) ≤
2C
σ − δ

. (3.16)

We set Ak = {y ∈ Bη(x) : ck(y) ≥ δk}. As (εk)k converges to 0, inequality (3.13) implies that (zk)k
converges to 0 and ck to 1 almost everywhere. As δk < σ and σ < 1 then (L1(Ak))k converges to
L1(Bη(x)).

Sobolev embedding Theorem ensures that W1,2(Bη(x)) ⊂ C(Bη(x)), so ck is continuous and Ak
is a countable union of closed intervals of Bη(x). According to (3.16), this union is finite and its
cardinality is uniformly bounded by N . For any k, there exits a disjoint family of closed intervals
(Iik)i=1...N such that {

Ak =
⋃N
i=1 I

i
k,

∀i ∈ {1, . . . , N − 1}, max(Iik) < min(Ii+1
k ).

There exists a subsequence, still denoted by (Iik)i=1...N , such that (min(Iik))k and (max(Iik))k
converge for any i ∈ {1, . . . , N}. We set ai∞ and bi∞ the previous limits, Ii∞ =]ai∞; bi∞[ and
A =

⋃N
i=1 I

i
∞. As (L1(Ak))k converges to L1(Bη(x)), then A is a subset of full measure in Bη(x).

Let O be an open subset such that O ⊂ A. For k with a sufficiently large value, we have
O ⊂ Ak and then

lim inf
k→∞

∫
Bη(x)

|∇uk|2(1− z2
k)2dt ≥ lim inf

k→∞

∫
O

|∇uk|2(1− z2
k)2dt.
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As zk takes its values in [0; 1], we get

lim inf
k→∞

∫
Bη(x)

|∇uk|2(1− z2
k)2dt ≥ lim inf

k→∞

∫
O

|∇uk|2δ2
kdt,

≥ δ2 lim inf
k→∞

∫
O

|∇uk|2dt.

Moreover, there exists k0 such that: k ≥ k0 ⇒ O ⊂ Ak, then we have

∀x ∈ O 1− z2
k ≥ δ.

As uk(1−z2
k) ∈W 1,2(Ω) and

√
δ > 0, we get uk ∈W1,2(O) and the lower semi-continuity property

of the Sobolev norm gives
lim inf
k→∞

∫
O

|∇uk|2dt ≥
∫
O

|∇u|2dt.

As O is chosen arbitrary in A and A is of full measure in Bη(x), it gives

lim inf
k→∞

∫
Bη(x)

|∇uk|2(1− z2
k)2dt ≥ δ2

∫
Bη(x)

|∇u|2dt.

Letting δ to 1−, it concludes the proof of lemma 3.3.

We prove lemma 3.4.

Proof. We can assume that G−(u;Bρ(x)) < +∞ for any ρ ∈]0; η[, otherwise the result is ensured.
As u 6∈W1,2(Bρ(x)), there exists three sequences (y1

k)k∈N, (y2
k)k∈N and (y3

k)k∈N such that:
y1
k → x, zk(y1

k)→ 0,
y2
k → x, zk(y2

k)→ 1,
y3
k → x, zk(y3

k)→ 0,
∀k ∈ N, y1

k < y2
k < y3

k.

We have
G(uk, zk;Bρ(x)) ≥

∫ x+ρ

x−ρ

(
εkm|∇zk|2 + z2

k

4εk

)
dt.

The inequality a2 + b2 ≥ 2ab gives:

G(uk, zk;Bρ(x)) ≥
∫ x+ρ

x−ρ
m1/2|∇zk|zk dt.

As [y1
k, y

2
k] ⊂ Bρ(x), we obtain:

G(uk, zk;Bρ(x)) ≥
∫ y3

k

y1
k

m1/2|∇zk|zk dt.

We have

G(uk, zk;Bρ(x)) ≥ m1/2
∫ y2

k

y1
k

|∇zk(t)|zk(t)dt+m1/2
∫ y3

k

y2
k

|∇zk(t)|zk(t)dt.

Since zk ∈W1,2(Bη(x)), we may use the change of variable s = zk(t). This yields:

(?)2
k ≥ m1/2

∫ zk(y2
k)

zk(y1
k
)
sds+m1/2

∫ zk(y3
k)

zk(y2
k
)
sds,

≥ m1/2
(
z2
k(y2

k)− z2
k(y1

k)
2 + z2

k(y2
k)− z2

k(y3
k)

2

)
By assumption, we have zk(y1

k)→ 0, zk(y2
k)→ 1 and zk(y3

k)→ 0, so that we deduce:

z2
k(y2

k)− z2
k(y1

k)
2 + z2

k(y2
k)− z2

k(y3
k)

2 → 1.

We can conclude :
lim inf
k→∞

G(uk, zk;Bρ(x)) ≥ m1/2.
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Generalization to dimension n ≥ 2
We give the proof of the first inequality of Γ-convergence (3.10) for n ≥ 2.

Proof. Let u ∈ SBV(Ω) ∩ L∞(Ω) and (uk, zk)k ⊂ Dn(Ω) converging almost everywhere to (u, 0)
such that (uk)k is bounded in L∞(Ω). We have to prove

lim inf
k→∞

Fεk(uk, zk,M; Ω) ≥ F (u,M; Ω). (3.17)

We assume that lim inf Fεk(uk, zk,M; Ω) is finite, otherwise the result is ensured. As M ∈
W 1,n+α(Ω), then M is α-Hölder regular. So, there exists θ ≥ 0 such that, for any x, y ∈ Ω,
we have

‖M(x)−M(y)‖ ≤ θ|x− y|α. (3.18)

Claim: There exists C(δ) such that
i) limδ→0+ C(δ) = 1,
ii) for A ⊂ Ω open, a ∈ A, diam(A) ≤ δ and ν ∈ Sn−1, we have

lim inf
k→∞

Fεk(uk, zk,M;A) ≥
∫
A

〈∇u, ω〉2 dx+ C(δ)
∫
Ju∩A

|M(a)ν|
〈M(a)ν, ν〉1/2 〈ω, νu〉 dH

n−1,

where ω = M(a)ν
|M(a)ν| .

We denote by A an arbitrary open subset of Ω such that diam(A) ≤ δ and we fix a ∈ A. Let
ν ∈ Sn−1 be fixed. According to Hölder regularity (3.18) and ellipticity inequality (2.1), we have

∀(x,v) ∈ A× Rn, |〈M(x)v,v〉 − 〈M(a)v,v〉| ≤ θδα|v|2,
≤ θδαλ−1〈M(a)v,v〉.

Then, we get
∀(x,v) ∈ A× Rn, 〈M(x)v,v〉 ≥ (1− θδαλ−1)〈M(a)v,v〉

We set C(δ) = 1− θδαλ−1. Then, we may write

∀x ∈ A, 〈M(x)∇zk(x),∇zk(x)〉2 ≥ C(δ)〈M(a)∇zk(x),∇zk(x)〉2.

As M(a) is a symmetric definite positive matrix, Cauchy-Schwartz inequality gives

∀v ∈ Rn, 〈M(a)ν, ν〉〈M(a)v,v〉 ≥ 〈M(a)ν,v〉2,

which is equivalent to

∀v ∈ Rn, 〈M(a)v,v〉 ≥ |M(a)ν|2
〈M(a)ν, ν〉

〈
M(a)ν
|M(a)ν| ,v

〉2
. (3.19)

We set ω = M(a)ν
|M(a)ν| . If we apply inequality (3.19) to Fεk(uk, zk,M;A), we have

Fεk(uk, zk,M;A) ≥
∫
A

(
|∇uk|2(1− z2

k)2 + C(δ) |M(a)ν|2
〈M(a)ν, ν〉εk〈ω,∇zk〉

2 + z2
k

4εk

)
dx.

With the notation introduced in (1.2), (v)y is the function defined on Ayω as (v)y(t) = v(y + tω).
According to Lemma 3.1, we have ∇(uk)y(t) = 〈∇u(y + tω), ω〉 and ∇(zk)y(t) = 〈∇z(y + tω), ω〉,
so Fubini Theorem gives

Fεk(uk, zk,M;A) ≥
∫
Aω

∫
Ayω

(
|∇(uk)y|2(1− ((zk)y)2)2 + C(δ) |M(a)ν|2

〈M(a)ν, ν〉εk|∇(zk)y|2 + ((zk)y)2

4εk

)
dt dHn−1(y).

With the one-dimensional notations (3.12), it gives

Fεk(uk, zk,M;A) ≥
∫
Aω

Gεk((uk)y, (zk)y;Ayω) dHn−1(y),
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where m = C(δ) |M(a)ν|2
〈M(a)ν,ν〉 for any x ∈ A. Fatou lemma yields

lim inf
k→∞

Fεk(uk, zk,M;A) ≥
∫
Aω

lim inf
k→∞

Gεk((uk)y, (zk)y;Ayω) dHn−1(y)

and then
lim inf
k→∞

Fεk(uk, zk,M;A) ≥
∫
Aω

G−((u)y;Ayω) dHn−1(y).

As lim inf Fεk(uk, zk,M;A) is finite, we deduce that G−((u)y;Ayω) is finite for Hn−1 almost every
y ∈ Aω. We may apply Proposition 3.4 with I = Ayω and u = (u)y, it gives that (u)yω ∈ SBV(Ayω)
for Hn−1 almost every y ∈ Aω and we have

lim inf
k→∞

Fεk(uk, zk,M;A) ≥
∫
Aω

[∫
Ayω

|∇(u)y|2dt+H0(J(u)y ∩A
y
ω)m 1

2

]
dHn−1(y).

As lim inf Fεk(uk, zk,M;A) is finite, Theorem 1.3 implies∫
Aω

[∫
Ayω

|∇(u)y|2dt+H0(J(u)y ∩A
y
ω)m1/2

]
dHn−1(y) =

∫
Ω
|〈∇u, ω〉|2dx+

∫
Ju∩A

m1/2〈ω, νu〉 dHn−1.

We deduce

lim inf
k→∞

Fεk(uk, zk,M;A) ≥
∫
A

|〈∇u, ω〉|2dx+
∫
Ju∩A

m1/2〈ω, νu〉 dHn−1.

If we replace m and ω by their values, it gives

lim inf
k→∞

Fεk(uk, zk,M;A) ≥
∫
A

〈∇u, ω〉2dx+ C(δ)
∫
Ju∩A

〈M(a)ν, νu〉
〈M(a)ν, ν〉1/2 dHn−1

and the Claim is proved.
The function x → ∇u(x)

|∇u(x)| is measurable in U = {x ∈ Ω : ∇u(x) 6= 0}. According to Lusin
Theorem (1.45 of [7]), there exists an increasing sequence of compacts (Kl)l ⊂ U such that{

Ln(U \Kl) ≤ 1
l ,

x→ ∇u(x)
|∇u(x)| is continuous in Kl.

Thus, for any x ∈ Kl, there exists r > 0 such that

y ∈ B(x, r) ⇒
∣∣∣∣ ∇u(x)
|∇u(x)| −

∇u(y)
|∇u(y)|

∣∣∣∣ ≤ 1
l
, (3.20)

As a consequence of Besicovitch Covering Theorem (2.18 of [7]), there exists a countable, pairwise
disjoint collection of balls (Bi)i∈I satisfying (3.20) such that

∀i ∈ I,Bi ⊂ Ω,diam(Bi) ≤ δ, Ln
(
Kl \

⋃
i∈I

Bi

)
= 0.

For any i ∈ I, we fix xi ∈ Bi and we set νi = (M(a))−1∇u(xi)
|(M(a))−1∇u(xi)| . According to First Step, with

A = Bi, a = xi and ν = νi, we get

lim inf
k→∞

Fεk(uk, zk,M;Bi) ≥
∫
Bi

〈
∇u, ∇u(xi)
|∇u(xi)|

〉2
dx.

Moreover, we have

∀x ∈ Bi ∩Kl,

∣∣∣∣∣|∇u|2 −
〈
∇u, ∇u(xi)
|∇u(xi)|

〉2
∣∣∣∣∣ ≤

∣∣∣∣〈∇u, ∇u|∇u| 〉2 − 〈∇u, ∇u(xi)
|∇u(xi)|

〉2
∣∣∣∣,

≤
∣∣∣∣〈∇u, ∇u|∇u| − ∇u(xi)

|∇u(xi)|
〉〈∇u, ∇u

|∇u|
+ ∇u(xi)
|∇u(xi)|

〉
∣∣∣∣,

≤ 2
l
|∇u|2.
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It gives ∫
Bi∩Kl

〈
∇u, ∇u(xi)
|∇u(xi)|

〉2
dx ≥ l

l + 2

∫
Bi∩Kl

|∇u|2dx.

As lim inf Fεk(uk, zk,M; · ) is supperadditive and non decreasing, we have

lim inf
k→∞

Fεk(uk, zk,M; Ω) ≥
∑
i∈I

lim inf
k→∞

Fεk(uk, zk,M;Bi),

≥
∑
i∈I

∫
Bi

〈
∇u, ∇u(xi)
|∇u(xi)|

〉2
dx,

≥
∑
i∈I

∫
Bi∩Kl

〈
∇u, ∇u(xi)
|∇u(xi)|

〉2
dx,

≥ l

l + 2
∑
i∈I

∫
Bi∩Kl

|∇u|2 dx,

≥ l

l + 2

∫
∪iBi∩Kl

|∇u|2 dx,

As Ln(Kl \ ∪iBi) = 0, we deduce

lim inf
k→∞

Fεk(uk, zk,M; Ω) ≥ l

l + 2

∫
Kl

|∇u|2 dx

and taking the limit l→∞ gives

lim inf
k→∞

Fεk(uk, zk,M; Ω) ≥
∫
U

|∇u|2 dx =
∫

Ω
|∇u|2 dx.

In particular,
∫

Ω |∇u|
2 dx is finite. As u belongs to SBV(Ω), according to Theorem 1.1, there

exists a pairwise disjoint family (Ci)i∈N of C1 compact manifolds and M ∈ Ω such that:

Ju = N ∪
(⋃
i∈N

Ci

)
, Hn−1(N ) = 0.

As lim inf Fεk(uk, zk,M; Ω) is finite, First Step and Theorem 1.3 imply that Hn−1(Ju) is also finite.
According to ellipticity inequality (2.1), we deduce that

∫
Ju
〈Mνu, νu〉1/2 dHn−1 is finite. Then,

for a fixed δ > 0, there exists N ∈ N such that∫
Ju\
⋃N

i=1
Ci

〈Mνu, νu〉1/2 dHn−1 ≤ δ. (3.21)

We set K =
⋃N
i=1 Ci and Kτ = {x ∈ Ω: dist(x,K) < τ}. As

∫
Ω |∇u|

2 dx is finite, there exists
τ > 0 such that ∫

Ω\Kτ
|∇u|2 dx ≤ δ. (3.22)

With the same arguments as before, we get

lim inf
k→∞

Fεk(uk, zk,M; Ω \Kτ ) ≥
∫

Ω\Kτ
|∇u|2 dx. (3.23)

As x→ M(x)νu(x)
〈M(x)νu(x),νu(x)〉1/2 is continuous in K, for any x ∈ K there exists r > 0 such that

y ∈ B(x, r) ∩K ⇒
∣∣∣∣ M(x)νu(x)
〈M(x)νu(x), νu(x)〉1/2 −

M(y)νu(y)
〈M(y)νu(y), νu(y)〉1/2

∣∣∣∣ ≤ δ. (3.24)

As a consequence of Besicovitch Covering Theorem (2.18 of [7]), there exists a countable, pairwise
disjoint, collection of balls (B̃j)j∈Ĩ satisfying (3.24) such that, for any j ∈ Ĩ, it satisfies

B̃j ⊂ Kτ , diam(B̃j) ≤ δ, Hn−1

K \⋃
j∈Ĩ

B̃j

 = 0.
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For any j ∈ Ĩ, we fix x̃j ∈ B̃j . According to First Step, with A = B̃j , a = x̃j and ν = νu(x̃j),
we get

lim inf
k→∞

Fεk(uk, zk,M; B̃j) ≥ C(δ)
∫
Ju∩B̃j

〈M(x̃j)νu(x̃j), νu〉
〈M(x̃j)νu(x̃j), νu(x̃j)〉1/2

dHn−1.

For any x ∈ B̃j ∩K, we have∣∣∣∣ 〈M(x̃j)νu(x̃j), νu(x)〉
〈M(x̃j)νu(x̃j), νu(x̃j)〉1/2

− 〈M(x)νu(x), νu(x)〉1/2
∣∣∣∣ ≤ ∣∣∣∣ M(x̃j)νu(x̃j)

〈M(x̃j)νu(x̃j), νu(x̃j)〉1/2
− M(x)νu(x)
〈M(x)νu(x), νu(x)〉1/2

∣∣∣∣ ,
≤ δ.

It gives∫
B̃j∩K

〈M(x̃j)νu(x̃j), νu〉
〈M(x̃j)νu(x̃j), νu(x̃j)〉1/2

dHn−1 ≥
∫
B̃j∩K

〈Mνu, νu〉1/2 dHn−1 − δHn−1(B̃j ∩K).

As lim inf Fεk(uk, zk,M; · ) is supperaddditive and non decreasing, we have

lim inf
k→∞

Fεk(uk, zk,M;Kτ ) ≥
∑
j∈Ĩ

lim inf
k→∞

Fεk(uk, zk,M; B̃j),

≥
∑
j∈Ĩ

C(δ)
(∫

B̃j∩K
〈Mνu, νu〉1/2 dHn−1 − δHn−1(B̃j ∩K)

)
,

≥ C(δ)
(∫
∪jB̃j∩K

〈Mνu, νu〉1/2 dHn−1 − δHn−1(∪jB̃j ∩K)
)
.

As Ln(K \ B̃j) = 0, we get

lim inf
k→∞

Fεk(uk, zk,M;Kτ ) ≥ C(δ)
(∫

K

〈Mνu, νu〉1/2 dHn−1 − δHn−1(K)
)
. (3.25)

According to (3.23) and (3.25), we deduce

lim inf
k→∞

Fεk(uk, zk,M; Ω) ≥ lim inf
k→∞

Fεk(uk, zk,M;Kτ ) + lim inf
k→∞

Fεk(uk, zk,M; Ω \Kτ ),

≥ C(δ)
(∫

K

〈Mνu, νu〉1/2 dHn−1 − δHn−1(K)
)

+
∫

Ω\Kτ
|∇u|2 dx.

According to (3.22) and (3.21), we have

lim inf
k→∞

Fεk(uk, zk,M; Ω) ≥ C(δ)
(∫

Ju

〈Mνu, νu〉1/2 dHn−1 − δ − δHn−1(K)
)

+
∫

Ω
|∇u|2 dx− δ.

Letting δ → 0+ concludes the proof

lim inf
k→∞

Fεk(uk, zk,M; Ω) ≥
∫
Ju

〈Mνu, νu〉1/2 dHn−1 +
∫

Ω
|∇u|2 dx.

3.3.2 The inequality for the higher Γ-limit
In this section we prove the upper inequality of Γ-convergence, that is ii) of Theorem 3.2. Let
u ∈ B(Ω) ∩ L∞(Ω) and M ∈ W 1,n+α(Ω;G) be fixed. It is sufficient to prove that there exists
a sequence (uk, zk)k ⊂ Dn(Ω) such that (uk, zk)k converges to (u, 0) almost everywhere, (uk)k is
bounded in L∞(Ω) and

lim sup
k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx+
∫

Ω

(
εk〈Mk∇zk,∇zk〉+ z2

k

4εk

)
dx ≤

∫
Ω
|∇u|2dx+

∫
Ju

〈Mνu, νu〉1/2dHn−1.

We first prove a weaker result, where
∫
Ju
〈Mνu, νu〉

1
2 dHn−1 is replaced by its approximation with

a Minkowski content. Then, with Theorem 1.4, we extend this result to the general setting.
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Approximation with anisotropic Minkowski content
We set

Fεk(u, z,M) =
∫

Ω
|∇u|2(1− z2)2dx+

∫
Ω

(
εk〈M∇z,∇z〉+ z2

4εk

)
dx

and we prove the following

Proposition 3.5. Assume that the conditions of Theorem 3.1 are satisfied. For u ∈ SBV(Ω) ∩
L∞(Ω) and M ∈ W 1,n+α(Ω;G), there exists a sequence (uk, zk)k ⊂ Dn(Ω) such that (uk, zk)k
converges to (u, 0) almost everywhere (uk)k is bounded in L∞(Ω) and

lim sup
k→∞

Fεk(uk, zk,M) ≤
∫

Ω
|∇u|2dx+M?

M(Ju),

whereM?
M is defined in (1.3).

Proof. Without loss of generality, we may assume that |∇u| ∈ L2(Ω) andM?
M(Ju) < +∞, other-

wise the result is obvious. If u ∈W1,2(Ω), then Ju = ∅ and the stationary sequence uk = u, zk = 0
is a solution. If u 6∈ W1,2(Ω), then Ju 6= ∅ and (1 − z2

k)2 has to be infinitesimal near of Ju. For
ρ > 0, we set

(Ju)ρ = {x : dJuφ (x) < ρ}.

We separate Ω in three parts:

(Ju)bk , (Ju)ak+bk \ (Ju)bk , Ω \ (Ju)ak+bk

with {
ak = −4εk ln(εk),
bk = ε2

k.
(3.26)

Let Ψk ∈ C∞0 (Ω) such that Ψk = 1 in (Ju) bk
2

and Ψk = 0 in Ω \ (Ju)bk . We set uk = (1 − Ψk)u
and then uk = u in Ω \ (Ju)bk . As (bk)k converges to 0 then uk converges to u almost everywhere.
We set zk = 1 in (Ju)bk and zk = ε2

k in Ω \ (Ju)ak+bk . In (Ju)ak+bk \ (Ju)bk we adopt the following
construction: we introduce

θk(t) = ε2
k exp

(
t

2εk

)
and we set

z̃k(t) =

 1 ∀t ∈ [0; bk],
θk(ak + bk − t) ∀t ∈]bk; ak + bk],
ε2
k ∀t ∈]ak + bk; +∞[.

(3.27)

This is a continuous and decreasing function defined on [0; +∞[, moreover, for any t ∈]bk; ak + bk[,
it satisfies

εk(z̃
′

k(t))2 = (z̃k(t))2

4εk
. (3.28)

We set zk = z̃k ◦ dJuφ . As zk is constant in (Ju)bk ∪ (Ω \ (Ju)ak+bk), we have

Fεk(uk, zk,M) =
∫

Ω\(Ju)ak+bk

|∇u|2(1− ε4
k)2dx+

∫
(Ju)ak+bk\(Ju)bk

|∇u|2(1− z2
k)2dx

+
∫

(Ju)ak+bk\(Ju)bk

(
εk〈M∇zk,∇zk〉+ z2

k

4εk

)
dx

+ε3
k

4 L
n(Ω \ (Ju)ak+bk) + 1

4εk
Ln((Ju)bk)

(3.29)

As |∇u| ∈ L2(Ω) and (ak + bk)k converges to 0, the first term of (3.29) converges to
∫

Ω |∇u|
2dx.

As ‖zk‖L∞ ≤ 1, the second term converges to 0. As Ω is a bounded domain, the fourth term
converges to 0. AsM?

M(Ju) < +∞, there exists (ωk)k a sequence which converges to 0+ such that

Ln((Ju)bk) ≤ 2bk(M?
M(Ju) + ωk) (3.30)
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and then the fifth term is lower than 1
2εk(M?

M(Ju) + ωk). So, the fifth term converges to 0. To
compute the limit of (Fεk(uk, zk,M))k, it remains to study the convergence of

Ak(zk) =
∫

(Ju)ak+bk\(Ju)bk

(
εk〈M∇zk,∇zk〉+ z2

k

4εk

)
dx.

Ellipticity inequality (2.1) yields

|dJuφ (x)− dJuφ (y)| ≤ dφ(x, y),

≤ λ−
1
2 |x− y|.

So, dJuφ is Lipschitzian and Rademacher Theorem ensures that dJuφ exists for almost every x ∈ Ω,
in the sense of the approximate differentiability 3.2. Thus, for almost every x ∈ (Ju)ak+bk \ (Ju)bk ,
we have

∇zk = z̃
′

k ◦ dJuφ ∇d
Ju
φ .

It gives

Ak(zk) =
∫

(Ju)ak+bk\(Ju)bk

(
εk(z̃

′

k ◦ dJuφ )2〈M∇dJuφ ,∇dJuφ 〉+
(z̃k ◦ dJuφ )2

4εk

)
dx.

In [12], Theorem 3.2, it is proved that 〈M(x)∇dJuφ (x),∇dJuφ (x)〉 = 1 for almost every x. So, we
may write

Ak(zk) =
∫

(Ju)ak+bk\(Ju)bk

(
εk(z̃

′

k ◦ dJuφ )2 +
(z̃k ◦ dJuφ )2

4εk

)
〈M∇dJuφ ,∇dJuφ 〉

1/2dx.

We may apply Proposition 1.2 with Φ = φ and p = dJuφ , it gives

Ak(zk) =
∫ ak+bk

bk

(
εkz̃

′

k(t)2 + z̃k(t)2

4εk

)[∫
Ω
〈MD1(Ju)t , D1(Ju)t〉

1/2
]
dt. (3.31)

We set 
HM(t) =

∫
Ω
〈MD1(Ju)t , D1(Ju)t〉

1/2,

AM(s) =
∫ s

0
HM(t)dt.

Applying another time Proposition 1.2 gives

AM(s2)−AM(s1) =
∫ s2

s1

[∫
Ω
〈MD1(Ju)t , D1(Ju)t〉

1/2
]
dt,

=
∫

(Ju)s2\(Ju)s1

〈M∇dJuφ ,∇dJuφ 〉
1/2dx,

= Ln((Ju)s2 \ (Ju)s1).

So, AM ∈ W1,1
loc(]0; +∞[) and ∇AM = HM almost everywhere. Using equality (3.28) and then

integrating by parts (3.31) gives

Ak(zk) =
∫ ak+bk

bk

(
εkz̃

′

k(t)2 + z̃k(t)2

4εk

)
HM(t)dt,

=
∫ ak+bk

bk

z̃k(t)2

2εk
HM(t)dt,

= (ak + bk)2

2εk
AM(ak + bk)− bk

2εk
AM(bk)− 1

εk

∫ ak+bk

bk

z̃
′

k(t)z̃k(t)AM(t).

The first term obviously converges to 0. As for (3.30), we have

AM(bk) ≤ 2bk(M?
M(Ju) + ωk)
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and then the second term converges to 0 too. As s→ AM(s) is non decreasing, then

AM(t) ≤ 2t(M?
M(Ju) + ωk)

for any t ∈ [bk; ak + bk]. For the last term, we apply another time this inequality, it gives

− 1
εk

∫ ak+bk

bk

z̃
′

k(t)z̃k(t)AM(t)dt ≤ − (M?
M(Ju) + ωk)

εk

∫ ak+bk

bk

2tz̃
′

k(t)z̃k(t)dt. (3.32)

Integrating by parts yields∫ ak+bk

bk

2tz̃
′

k(t)z̃k(t)dt = (ak + bk)z̃k(ak + bk)2 − bkz̃k(bk)2 −
∫ ak+bk

bk

z̃k(t)2dt. (3.33)

According to the definitions of (ak, bk, zk) (3.26) and (3.27), we have

(ak + bk)z̃k(ak + bk)2 − bkz̃k(bk)2 = o(εk) (3.34)

and equation (3.28) gives∫ ak+bk

bk

z̃k(t)2dt = 2εk
∫ ak+bk

bk

|z̃
′

k(t)|z̃k(t)dt,

= εk(1− ε2
k).

(3.35)

From (3.32), (3.33), (3.34) and (3.35) we deduce that lim supk Ak(zk) ≤ M?
M(Ju) and, according

to the decomposition (3.29), we have

lim sup
k→∞

Fεk(uk, zk,M) ≤
∫

Ω
|∇u|2 +M?

M(Ju).

To conclude the proof, it suffices to notice that (uk, zk)k ⊂ Dn(Ω).

Approximation in the general setting
The goal of this section is to replaceM?

M(Ju) by
∫
Ju
〈Mνu, νu〉

1
2 dHn−1 in Proposition 3.5.

Proposition 3.6. Assume that the conditions of Theorem 3.1 are satisfied. For u ∈ SBV(Ω) ∩
L∞(Ω) and M ∈ W 1,n+α(Ω;G), there exists a sequence (uk, zk)k ⊂ Dn(Ω) such that (uk, zk)k
converges to (u, 0) almost everywhere (uk)k is bounded in L∞(Ω) and

lim sup
k→∞

Fεk(uk, zk,M) ≤ F (u,M).

To prove this result, we need to introduce the following

Definition 3.2. Let F(Ω) be the set of functions u ∈ SBV(Ω) for which, if F (u,M) < +∞, then
there exists a sequence (uk)k ⊂ SBV(Ω)∩L∞(Ω) converging almost everywhere to u, limk→∞ F (uk,M) =
F (u,M) and

∀k ∈ N, MM(Juk) =
∫
Juk

〈Mνuk , νuk〉dHn−1.

Proof. Assume F(Ω) = SBV(Ω). According to Proposition 3.5, by a diagonal extraction we may
exhibit a sequence (uk, zk)k ⊂ Dn(Ω) such that (uk, zk)k converges to (u, 0) almost everywhere
and

lim sup
k→∞

Fεk(uk, zk,M) ≤ F (u,M).

So, to prove the upper inequality of Γ-convergence, it suffices to show that F(Ω) = SBV(Ω). We
divide the proof in three Claims.

By a direct diagonal extraction process, we have the following.

Claim 1: If u ∈ SBV(Ω) and (uk)k ⊂ SBV(Ω) satisfy
i) (uk)k ⊂ F(Ω),
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ii) limk→∞ F (uk,M) = F (u,M) and F (u,M) <∞,
iii) (uk)k converges to u almost everywhere,

then u ∈ F(Ω).

Claim 2: It suffices to prove that SBV(Ω) ∩ L∞(Ω) ⊂ F(Ω).

For u ∈ SBV(Ω) and N > 0, we denote by uN the truncated function defined in (3.1). So,
(uN )N converges to u almost everywhere for N →∞. Moreover, Theorem 1.2 gives

DuN = 1−N≤u≤N∇uLn + ((uN )+ − (uN )−)νuHn−1xJu.

and then we deduce limN→∞ F (uN ) = F (u,M). According to Claim 1, it suffices to prove that
SBV(Ω) ∩ L∞(Ω) ⊂ F(Ω).

Claim 3: Let u ∈ SBV(Ω) ∩ L∞(Ω), we have u ∈ F(Ω).

We may assume that F (u,M) < +∞, otherwise the result is ensured. Let us extend M and u
in Ω′ = Ω ∪ U as in Proposition 1.1, so we have

Hn−1(Ju ∩ ∂Ω) = 0.

With the same arguments as for Theorem 2.1, we may prove that there exists vk ∈ SBV(Ω′) a
minimizer of the following functional:

Eu,k(v) = k

∫
Ω′

(v − u)2dx+
∫

Ω′
|∇v|2dx+

∫
Jv

〈Mνv, νv〉1/2dHn−1.

In particular, Eu,k(vk) ≤ Eu,k(u) for any k ∈ N, gives

k

∫
Ω′

(vk − u)2dx ≤ F (u,M)

and then (vk)k converges to u almost everywhere. As u ∈ L∞(Ω), Theorem 1.4 gives

M?
M(Jvk) =

∫
Jvk

〈Mνvk , νvk〉1/2dHn−1.

We introduce the sequence of positive Radon measures (µk)k and µ defined for any B ∈ B(Ω′) by

µk(B) =
∫
B

|∇vk|2dx+
∫
Jvk∩B

〈Mνvk , νvk〉1/2dHn−1,

µ(B) =
∫
B

|∇u|2dx+
∫
Ju∩B

〈Mνu, νu〉1/2dHn−1.

With the same arguments as for Theorem 2.1, F is lower semi-continuous in SBV, for any open
A ⊂ Ω′, it gives

lim inf
k→∞

µk(A) ≥ µ(A).

The inequality
lim sup
k→∞

µk(Ω′) ≤ µ(Ω′)

follows by the definition of vk. According to [7], Proposition 1.80, the measures (µk)k weakly
converge to µ. Thus, (µk(B))k converges to µ(B) if µ(∂B) = 0, and then (µk(Ω))k converges to
µ(Ω), that is (F (vk))k converges to F (u,M). According to Claim 1, we deduce that u ∈ F(Ω).
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3.4 Proof of Theorem 3.1 ii)
Proof. With the same arguments as for Theorem 3.1 i), for any ε > 0, there exists (uε, zε) a
minimizer of Eε(·, ·,M). According to (3.3), with N ≥ ‖g‖L∞(Ω), we have

Ln({x ∈ Ω: |uε(x)| > N}) > 0 ⇒ Eε(uNε , zε,M) < Eε(uε, zε,M).

We deduce that ‖uε‖L∞(Ω) ≤ N for any ε > 0. For ωε = uε(1− z2
ε), we get

∇ωε = ∇uε(1− z2
ε)− 2uεzε∇zε.

It yields ∫
Ω
|∇ωε|dx ≤ Ln(Ω) 1

2

(∫
Ω
|∇uε|2(1− z2

ε)2dx
) 1

2

+ 2N
∫

Ω
|∇zε|zεdx. (3.36)

Applying the inequality 2ab ≤ a2 + b2 with a = z2
ε

2ε
1
2
and b = ε

1
2 |∇zε| gives∫

Ω
|∇zε|zεdx ≤

∫
Ω
ε|∇zε|2dx+

∫
Ω

z2
ε

4εdx. (3.37)

According to ellipticity inequality (2.1), we get∫
Ω
ε|∇zε|2dx ≤

1
λ
Eε(uε, zε,M). (3.38)

By (3.36), (3.37) and (3.38), we deduce∫
Ω
|∇ωε|dx ≤ Ln(Ω) 1

2 (Eε(uε, zε,M))
1
2 +

(
1 + 1

λ

)
Eε(uε, zε,M).

According to Proposition 3.6, we deduce that (Eεk(uεk , zεk ,M))k is a bounded sequence. So, (ωεk)k
is bounded in BV(Ω) and there exists a subsequence, still denoted by (ωεk)k which converges almost
everywhere to ω ∈ BV(Ω). As

∫
Ω z

2
k dx ≤ εkEεk(uεk , zεk ,M), then (zk)k converges to 0 in L2(Ω)

and there exists a subsequence, still denoted by (zk)k, which converges almost everywhere to 0.
As ωεk = uεk(1− z2

εk
), then (uεk)k converges almost everywhere to u ∈ B(Ω) ∩ L∞(Ω).

With the same arguments as for Theorem 2.1, E(·,M) admits a minimizer v ∈ SBV(Ω) and
v ∈ L∞(Ω). According to Theorem 3.2 ii), there exists (vεk , z̃εk)k ⊂ Dn(Ω) such that (vεk , z̃εk)k
converges to (v, 0) almost everywhere and

lim sup
k→∞

Eεk(vεk , z̃εk ,M) ≤ E(v,M).

According to Theorem 3.2, i), we get

lim inf
k→∞

Eεk(uεk , zεk ,M) ≥ E(u,M).

As (uεk , zεk) is a minimizer of Eεk , we have

∀k ∈ N, Eεk(vεk , z̃εk ,M) ≥ Eεk(uεk , zεk ,M).

We conclude that E(v,M) ≥ E(u,M) and then (u,M) is also a minimizer of E.

4 Appendix
4.1 Proof of Lemma 3.1
Proof. As Ω is bounded, then W1,2(Ω) ⊂ SBV(Ω) and then, according to Calderón-Zygmund
Theorem (3.83 in [7]), the derivative in the Sobolev sense is equal to the approximate differential
for almost every point in Ω. Moreover, according to Theorem 3.107 of [7], for v ∈ SBV(Ω) and
ν ∈ Sn−1, we have

〈∇v(x+ tν), ν〉 = ∇vx(t) a.e. t ∈ Ωx
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for almost every x ∈ Ων . So, we have

v ∈W1,2(Ω) ⇒
∫

Ω

(
v2 + |∇v|2

)
dx <∞,

⇒
∫

Ων

∫
Ωx

(
v2
x + 〈∇v(x+ tν), ν〉2

)
dtdx <∞,

⇒
∫

Ων

∫
Ωx

(
v2
x + |∇vx(t)|2

)
dtdx <∞,

⇒ vx ∈W1,2(Ωx) for a.e. x ∈ Ω.

Applying this property with v = z and v = u(1− z2) gives the result of Lemma 3.1.

4.2 Proof of Lemma 3.2
Proof. For ]a; b[⊂ I\J , according to Theorem 2.8. of [7], there exists a unique function ũ ∈ C([a; b])
such that u(x) ∈ ũ(x) for L1-a.e. x ∈ I and then

u(x−) := lim
y→x−

u(y) and u(x+) := lim
y→x+

u(y)

exist for any x ∈ I. As J is finite, then W1,2(I \J) ⊂W1,1(I \J). According to the jump formula,
it gives that Du ∈M(I) and we have the decomposition

Du = ∇uL1 + (u(x+)− u(x−))H0xJ.

So, we can conclude that u ∈ SBV(I) and Ju ⊂ J .
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