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Introduction

This work is motivated by the problem of segmentation of sets strongly elongated in some directions as, for example, tubes or thin plates in an image of dimension n ∈ {2; 3}. Let Ω ⊂ R n be an open bounded domain and g ∈ L ∞ (Ω). We denote by H n-1 the (n -1)-dimensional Hausdorff measure. The model we introduce in this paper consists in minimizing

E(u, K, M) = Ω\K (u -g) 2 dx + Ω\K |∇u| 2 dx + K Mν, ν 1/2 dH n-1 + Ω DM n+α dx (0.1)
where K is compact and H n-1 -rectifiable with unitary normal vector ν, α > 0 and M takes its values in a compact subset G of symmetric definite positive matrices. The associated minimizing problem is (P) : min{E(u, K, M) : Kcompact and H n-1 -rectifiable, u ∈ W 1,2 (Ω \ K), M ∈ W 1,n+α (Ω; G)}.

If we consider M ≡ Id n , we recognize the well-known Mumford-Shah model (see [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variationnal problems[END_REF] for the seminal paper). In this sense, our model is the anisotropic version of the Mumford-Shah energy.

At any point x ∈ K, the directions associated to the main eigenvalues of M(x) must represent the directions of elongation of the set K. For example, if we want to detect a tube in a twodimensional image, we may consider G as the subset of symmetric definite positive matrices with fixed eigenvalues {1; µ}, such that 1 µ. For the detection of thin plates in a three dimensional image, we may consider the fixed eigenvalues {1; µ; µ}. By this way, the third term of (0.1) will force ν to be in the same direction as the first eigenvector and then K to be elongated in the orthogonal directions. Moreover, we set α > 0 in the last term of (0.1) in order to force M to be at least continuous (α-Hölder), which corresponds to the assumption that the image g admits a local geometrical coherence.

This model does not consist in the detection of sets with codimension higher than one, as it has been done in [START_REF] Alberti | Variational convergence for functionals of Ginzburg-Landau type[END_REF] and [START_REF] Ghiraldin | Variational approximation of a functional of Mumford-Shah type in codimension higher than one[END_REF] for vector-valued functions. In our case, the sets we want to detect are with (small) positive volume.

In order to prove that (P) is a well posed problem, for u ∈ SBV(Ω), we introduce

E(u, M) = Ω (u -g) 2 dx + Ω |∇u| 2 dx + Ju Mν u , ν u 1/2 dH n-1 + Ω DM n+α dx (0.2)
where ∇u is the derivative of u with respect to the Lebesgue measure, J u is its jump set and ν u is unitary and orthogonal vector to J u . The associated minimizing problem is

(P ) : min{E(u, M) : u ∈ SBV(Ω), M ∈ W 1,n+α (Ω; G)},
We verify that (P ) admits a solution and, with a regularity result of the jump set of a minimizer, which has been established in a joint paper [START_REF] Vicente | Anisotropic Minkowski content and application to minimizers of free discontinuity problems[END_REF], we prove that a minimizer of (P ) naturally provides a solution for (P). In order to get a functional more adapted for a numerical implementation, we will approximate (0.2) by a family (E ε ) ε which only depends on the integration with respect to the Lebesgue measure. More precisely, we set

E ε (u, z, M) = Ω (u -g) 2 dx+ Ω |∇u| 2 (1 -z 2 ) 2 dx+ Ω ε M∇z, ∇z + z 2 4ε dx+ Ω DM n+α dx.
As it has been done in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF] for the initial Mumford-Shah model, the function z takes its values in [0; 1] and plays the role of a control on the gradient of u. The approximation takes place for ε → 0 + in the sense of the Γ-convergence.

In section 1 we recall some results on spaces of functions with bounded variation and we mention a regularity result that we have proved in a previous article. In section 2, we prove that the problem admits a solution. Section 3 in completely devoted to the approximation process. We introduce the family of functionals (E ε ) ε with their domains and we give the complete proof of Γ-convergence to E when ε → 0 + .

Functional framework and regularity result

We adopt the notations:

• v 1 , v 2 ∈ R for the canonical scalar product of v 1 , v 2 ∈ R n , • |v| for the euclidean norm of v ∈ R n , • M for the induced norm of M ∈ M n (R), • n-1 i=1 v i ∈ R n for the canonical vectorial product of v 1 , . . . , v n-1 ∈ R n , • dist for the euclidean distance in R n , • S + n (R) ⊂ M n (R)
for the subset of symmetric definite positive matrices, • GL n (R) ⊂ M n (R) for the subset of invertible matrices,

• O n (R) ⊂ GL n (R) for the subgroup of orthogonal matrices,

• B(Ω) the class of Borelian subsets of Ω,

• B(Ω) for the space of Borelian functions defined in Ω,

• L n for the Lebesgue measure in R n ,

• H k for the k-dimensional Hausdorff measure,

• M(Ω; R n ) for the space of vectorial Radon measures defined in Ω ⊂ R n ,

• A f (x)dx = 1 L n (A) A f (x)dx, for A ∈ B(Ω) and L n (A) > 0.
Let f be a function defined on open sets, we adopt the following vocabulary:

• f is superadditive if f (A ∪ B) ≥ f (A) + f (B)

for any disjoints sets A, B,

• f is non decreasing if f (A) ≤ f (B) for any sets A, B such that A ⊂ B.

Functional spaces

We assume throughout this paper that the following constraint is satisfieded by Ω which is obviously satisfied in the context of applications in Image Processing because the domain is a parallelepiped.

Definition 1.1. We say that Ω ⊂ R n satisfies the reflexion condition (R) if Ω is an open and bounded domain with Lipschitz regular boundary ∂Ω such that there exists a neighborhood U of ∂Ω and a bi-Lipschitzian homeomorphism ϕ : U ∩ Ω → U \ Ω such that, for any x ∈ ∂Ω, we have

lim y→x ϕ(y) = x.
For the classical definitions and results on BV and SBV we refer to [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]. In particular, for the definition of weak* convergence in BV, we refer to [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF] (Definition 1.58). However, for the need of notations, we mention that, if u ∈ BV(Ω), then its derivative Du belongs to the space M(Ω; R n ) of vectorial Radon measure. Moreover, if u ∈ SBV(Ω) then the Cantor part of Du is null and we obtain

Du = ∇u • L n + (u + -u -)ν u • H n-1 J u ,
where ∇u is the density of Du with respect to the Lebesgue measure L n , u + (resp. u -) is the approximate upper (resp. lower) limit and H n-1 J u is the restriction of H n-1 to its jump set J u . Now, we focus on some results which will be useful throughout the paper. First, we need the rectifiability of J u .

Theorem 1.1. Let u be a given function in BV(Ω). There exists a countable family

(C i ) i∈N of compact C 1 -hypersurfaces such that J u = N ∪ i∈N C i , where H n-1 (N ) = 0.
Then, we will need the following chain rule ( [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF], Theorem 3.99).

Theorem 1.2. Let u ∈ SBV(Ω) and let

f : R → R be a Lipschitz function. Then, v = f • u belongs to SBV(Ω) and Dv = f (u)∇u • L n + (f (u + ) -f (u -))ν u • H n-1 J u . (1.1)
The following is a straightforward consequence of [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF], Corollary 3.89. 

∀x ∈ U \ Ω, u(x) = u(ϕ -1 (x)),
Then, we have

H n-1 (J u ∩ ∂Ω) = 0.
We also need slicing results.

Definition 1.2. Let ν ∈ S n-1 be fixed. We denote by Π ν the hyperplane

{x ∈ R n : x • ν = 0} . If x ∈ Π ν , we set Ω x = {t ∈ R : x + tν ∈ Ω} , Ω ν = {x ∈ Π ν : Ω x = ∅} .
For any function u defined on Ω and any x ∈ Ω ν , we set

(u) x : Ω x → R t → u(x + tν).
The following Theorem is proved in [START_REF] Goffman | Sublinear functions of measures and variational integrals[END_REF].

Theorem 1.3. Let u ∈ L ∞ (Ω) be a function such that, for all ν ∈ S n-1 , i) (u) x ∈ SBV(Ω x ) for H n-1 a.e. x ∈ Ω ν , ii) Ων Ωx |∇(u) x |dt + H 0 (J (u)x ) dH n-1 (x) < +∞; then, u ∈ SBV(Ω) and H n-1 (J u ) < +∞. Conversely, let u ∈ SBV(Ω) ∩ L ∞ (Ω) be such that H n-1 (J u ) < +∞. Then i) and ii) are satisfied. Moreover, we have iii) ∇u(x + tν), ν = ∇(u) x (t), for a.e. t ∈ Ω x and H n-1 -a.e. x ∈ Ω ν , iv) Ju ν u , ν dH n-1 (x) = Ων H 0 (J (u)x )dH n-1 (x).
We need a generalization of the Coarea formula. For that, we introduce the following

Definition 1.3. The function f : Ω × R n → R + is sublinear with respect to the second variable,if i) f (x, v 1 + v 2 ) ≤ f (x, v 1 ) + f (x, v 2 ) for any (x, v 1 , v 2 ) ∈ Ω × R n × R n , ii) f (x, tv) = tf (x, v) for any (x, v, t) ∈ Ω × R n × R + .
Suppose that µ 1 is a Radon measure and µ 2 is a vectorial Radon measure on Ω. According to Besicovitch derivation Theorem,

lim r→0 µ 2 (B(x, r)) µ 1 (B(x, r))
exists and is finite for µ 1 almost every x, we denote by dµ2 dµ1 (x) this limit when it exists. We recall that µ 2 is absolutely continuous with respect to µ 1 if µ 2 (A) = 0 whenever µ 1 (A) = 0. When this holds, we write µ 2 µ 1 . We consider the convex functional defined on the space M(Ω; R n ) by

Φ : µ 2 ∈ M(Ω; R n ) → Ω f x, dµ 2 dµ 1 dµ 1 , (1.2)
where µ 1 is a positive measure such that µ 2 µ 1 . It is shown in [START_REF] Maso | Integral representation on bounded variation spaces of Γ-limits of variational integrals[END_REF] that the integral in (1.2) does not depend on the choice of µ 1 . For that reason, we will write it in the condensed form

Φ(µ 2 ) = Ω f (x, µ 2 ).
We give a variant of the Coarea formula extended to the sublinear functionals which can be found in [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF].

Proposition 1.2. Let Φ(x, s, v) a Borel function of Ω × R × R n which is sublinear in v.
Let p be a Lipschitz continuous function on Ω and, for t > 0, we set S t = {x ∈ Ω; p(x) < t}. Then, for almost all t ∈ R, 1 St belongs to BV(Ω) and we have

Ω Φ(x, p, Dp)dx = R dt Ω Φ(x, t, D1 St ).

Minkowski content and regularity result for the jump set

For M : Ω → S + n (R) and (x, v) ∈ R n × R n , we set φ(x, v) = M -1 (x)v, v 1/2 .
This functional is a Riemannian metric, so, for S ⊂ Ω and x, y ∈ Ω, we may define its associated distance as

dist φ (x, y) = inf 1 0 φ γ, dγ dt dt : γ ∈ W 1,1 ([0; 1]; R n ), γ(0) = x, γ(1) = y , dist φ (x, S) = inf {dist φ (x, y) : y ∈ S} .
The associated anisotropic Minkowski (n -1)-dimensional upper and lower contents are defined by the limits

M M (S) = lim sup ρ→0 + L n ({x : dist φ (x, S) < ρ}) 2ρ , M M (S) = lim inf ρ→0 + L n ({x : dist φ (x, S) < ρ}) 2ρ .
(1.3) If M M (S) = M M (S), we call their common value the (n -1)-dimensional anisotropic Minkowski content M M (S). In [START_REF] Vicente | Anisotropic Minkowski content and application to minimizers of free discontinuity problems[END_REF], we have proved the following

Theorem 1.4. Let M : Ω → S + n (R) be continuous, h ∈ L ∞ (Ω), γ > 0 and u ∈ SBV(Ω) a minimizer of E γ,h,M (v) = γ Ω (v -h) 2 dx + Ω |∇v| 2 dx + Jv Mν v , ν v 1/2 dH n-1 : v ∈ SBV(Ω) .
Then, we have

H n-1 (J u \ J u ) = 0, M M (J u ) = Jv Mν v , ν v 1/2 dH n-1 .

Existence result for (P)

In order to prove that (P) admits a solution, we prove that (P ) is well posed and that it provides a minimizer for (P).

Existence result for the relaxed problem (P )

The main result of the section is the following Theorem 2.1. The problem (P ) admits a solution.

The proof is a straightforward consequence of Lemmas 2.1 and 2.2.

Lemma 2.1. Let (u k ) k ⊂ SBV(Ω) ∩ L ∞ (Ω) and (M k ) k ⊂ W 1,n+α (Ω; G) be such that sup k E(u k , M k ) < ∞.
Then, there exist subsequences, still denoted by

(u k ) k and (M k ) k , and (u, M) ∈ SBV(Ω) × W 1,n+α (Ω; G), such that (u k ) k is weakly* convergent to u in SBV(Ω) and (M k ) k is weakly conver- gent to M in W 1,n+α (Ω).
Proof. As G ⊂ S + n (R) is compact, there exists 0 < λ < Λ such that, for any (M, v) ∈ G × R n , the following ellipticity condition is satisfied

λ|v| 2 ≤ M v, v ≤ Λ|v| 2 .
(2.1)

It yields Ω |∇u k | 2 dx + H n-1 (J u k ) ≤ max 1; λ -1/2 E(u k , M k ). (2.2) 
As E(u k , M k ) is bounded, Theorem 4.8. in [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF] implies that there exists a subsequence (u k ) k weakly* convergent in BV(Ω) to u ∈ SBV(Ω). According to (2.1), we have 

M n+α W 1,n+α (Ω) ≤ Λ (n+α)/2 + E(u k , M k ), so (M k ) k is a bounded sequence of W
E(u, M) ≤ lim inf k→∞ E(u k , M k ).
Proof. We may assume that lim inf E(u k , M k ) < +∞, otherwise the result is ensured. Weak* convergence in SBV(Ω) and weak convergence in

W 1,n+α (Ω) give lim inf k→∞ Ω (u k -g) 2 dx + Ω DM k n+α dx ≤ Ω (u -g) 2 dx + Ω DM n+α dx. (2.3) According to inequality (2.2), Ω |∇u k | 2 dx + H n-1 (J u k ) is bounded with respect to k. With [7],
Theorem 4.7., we deduce that

Ω |∇u| 2 dx ≤ lim inf k→∞ Ω |∇u k | 2 dx, H n-1 (J u ) ≤ lim inf k→∞ H n-1 (J u k ). (2.4)
According to (2.3) and (2.4), it remains to prove that

Ju Mν u , ν u 1/2 dH n-1 ≤ lim inf k→∞ Ju k M k ν u k , ν u k 1/2 dH n-1 .
This result is proved in [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF], Theorem 5.2., for an homogeneous and fixed media (if M k does not depend on x ∈ Ω nor in k). In order to generalize this result, we introduce a piecewise constant approximation of M. For any vector e i ∈ S n-1 of the canonical basis, we set

Π i t = {x ∈ Ω : x, e i = t} , N i t = t ∈ R : H n-1 (J u ∩ Π i t ) > 0 ∪ t ∈ R : ∃k ∈ N, H n-1 (J u k ∩ Π i t ) > 0 .
As H n-1 (J u ) < ∞ (2.4) and H n-1 (J u k ) < ∞ for any k ∈ N, then N i t is at most countable. We fix η > 0 arbitrary small. Intersecting Ω with disjoint cubes with edges orthogonal to the axes of the canonical basis, there exists A a finite partition of Ω which, for any A ∈ A and for any k ∈ N, satisfies

diam(A) < η, H n-1 (J u ∩ ∂A) = 0, H n-1 (J u k ∩ ∂A) = 0. (2.

5)

For any A ∈ A, we fix one point x A ∈ A and we set M A (x) = M(x A ) for any x ∈ A. We have the decomposition

Ju k M k ν u k , ν u k 1/2 dH n-1 = Ju k M k ν u k , ν u k 1/2 -Mν u k , ν u k 1/2 dH n-1 + Ju k Mν u k , ν u k 1/2 -M A ν u k , ν u k 1/2 dH n-1 + Ju k M A ν u k , ν u k 1/2 dH n-1 .
(2.6)

In the three following Claim, we will estimate the limit of those three terms.

Claim 1:

lim k→∞ Ju k M k ν u k , ν u k 1/2 -Mν u k , ν u k 1/2 dH n-1 = 0.
According to Ellipticity inequality (2.1), we have

| M k ν u k , ν u k 1/2 -Mν u k , ν u k 1/2 | ≤ 1 2 √ λ | (M k -M)ν u k , ν u k |, ≤ 1 2 √ λ M k -M L ∞
and then

Ju k | M k ν u k , ν u k 1/2 -Mν u k , ν u k 1/2 |dH n-1 ≤ 1 2 √ λ M k -M L ∞ H n-1 (J u k ). As the inclusion W 1,n+α (Ω) ⊂ L ∞ (Ω) is compact and (M k ) k weakly converges to M, then (M k ) k uniformly converges to M. Moreover, (H n-1 (J u k )) k is bounded, it concludes the proof of the claim.
Claim 2: The sequence

lim η→0 + Ju k Mν u k , ν u k 1/2 -M A ν u k , ν u k 1/2 dH n-1 = 0
and the convergence takes place uniformly with respect to k ∈ N.

For A ∈ A and x ∈ A, ellipticity inequality (2.1) gives

| M(x)ν u k , ν u k 1/2 -M A (x)ν u k , ν u k 1/2 | ≤ 1 2 √ λ M(x) -M(x A ) .
As M ∈ W 1,n+α (Ω), there exist a constant C > 0 such that, for any x ∈ A, we have

M(x) -M(x A ) ≤ Cη α .

It yields

Ju k Mν u k , ν u k 1/2 -M A ν u k , ν u k 1/2 dH n-1 ≤ Cη α H n-1 (J u k ) 2 √ λ .
As (H n-1 (J u k )) k is a bounded sequence, it concludes the proof of the claim.

Claim 3:

Ju

M A ν u , ν u 1/2 dH n-1 ≤ lim inf k→∞ Ju k M A ν u k , ν u k 1/2 dH n-1 .

We denote by

• A the interior of the set A. According to [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF], Theorem 5.2., we have

Ju∩ • A M(x A )ν u , ν u 1/2 dH n-1 ≤ lim inf k→∞ Ju k ∩ • A M(x A )ν u k , ν u k 1/2 dH n-1 .
According to (2.5), the contribution of the boundaries is null, it gives

Ju∩A M(x A )ν u , ν u 1/2 dH n-1 ≤ lim inf k→∞ Ju k ∩A M(x A )ν u k , ν u k 1/2 dH n-1
and then

A∈A Ju∩A M(x A )ν u , ν u 1/2 dH n-1 ≤ A∈A lim inf k→∞ Ju k ∩A M(x A )ν u k , ν u k 1/2 dH n-1 , ≤ lim inf k→∞ A∈A Ju k ∩A M(x A )ν u k , ν u k 1/2 dH n-1 .
As A is a partition of Ω, it concludes the proof of Claim 3 :

Ju M A ν u , ν u 1/2 dH n-1 ≤ lim inf k→∞ Ju k M A ν u k , ν u k 1/2 dH n-1 .
Let δ > 0 be an arbitrary small number. With the same arguments as for Claim 2, we get

Ju Mν u , ν u 1/2 -M A ν u , ν u 1/2 dH n-1 ≤ Cη α H n-1 (J u ) 2 √ λ .
So, according to Claim 2, there exists a partition A which satisfies

         lim sup k→∞ Ju k Mν u k , ν u k 1/2 -M A ν u k , ν u k 1/2 dH n-1 ≤ δ, Ju Mν u , ν u 1/2 -M A ν u , ν u 1/2 dH n-1 ≤ δ.
According to (2.6), Claim 1 and Claim 3, we have

Ju Mν u , ν u 1/2 dH n-1 ≤ 2δ + lim inf k→∞ Ju k M k ν u k , ν u k 1/2 dH n-1 .
As δ > 0 is arbitrary, it concludes the proof of Lemma 2.2.

We now prove Theorem 2.1.

Proof. We denote by (u k , M k ) k ⊂ SBV(Ω) a minimizing sequence for E. As g ∈ L ∞ (Ω), we set

ϕ(t) =    -g L ∞ (Ω) if t ≤ -g L ∞ (Ω) , t if |t| ≤ g L ∞ (Ω) , g L ∞ (Ω) if t ≥ g L ∞ (Ω) .
(2.7)

We denote v k = ϕ • u k . As the function ϕ is 1-Lipshitz, we may apply Theorem 1.2 and then

v k ∈ SBV(Ω) ∩ L ∞ (Ω) with the decomposition Dv k = ϕ (u k )∇u k • L n + (ϕ(u + k ) -ϕ(u - k ))ν u k • H n-1 J u k . For any k, it is easy to check that E(v k , M k ) ≤ E(u k , M k ), so (v k , M k ) k is also a minimizing sequence for E.
According to Theorem 2.1, there exists v ∈ SBV(Ω) and a subsequence, still denoted (v k ) k weakly* convergent to v. With Theorem 2.2, we have

E(v, M) ≤ lim inf E(v k , M k ) and then (v, M) is a minimizer of E.

Existence result for (P)

In this section we prove that the problems (P) and (P ) have common solutions and then (P) is also well posed. First, we consider (u, K, M) in the domain of E. As in (2.7), we may define the truncated function v = ϕ(u) and then we have |v -g| ≤ |u -g| and |∇v| ≤ |∇u|. In particular, we get E(v, K, M) ≤ E(u, K, M). Thus, for any (u , K , M ) in the domain of E, we may assume that u ∈ L ∞ (Ω \ K). On the other hand, in [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF] (Proposition 4.4), is given the following

Proposition 2.1. Let Ω ⊂ R n be open and bounded, K ⊂ R n be closed, H n-1 (K ∩ Ω) < ∞ and u ∈ L ∞ (Ω \ K) ∩ W 1,1 (Ω \ K). Then, we have u ∈ SBV(Ω) and H n-1 (S u \ K) = 0.
As Ω is bounded and

u ∈ W 1,2 (Ω\K ), then we get u ∈ W 1,1 (Ω\K ). As K M ν, ν 1/2 dH n-1 < +∞, then Ellipticity condition (2.1) gives H n-1 (K ∩ Ω) < ∞. According to Proposition 2.1, we deduce that u ∈ SBV(Ω) and H n-1 (S u \ K ) = 0. It yields E(u , M ) ≤ E(u , K , M ),
and then min E ≤ min E. Conversely, according to Theorem 2.1, there exists a minimizer (u * , M * ) of E. In particular, with the notations of Theorem 1.4, u is a minimizer of E 1,g,M and then

H n-1 (J u \ J u ) = 0.
So, we set K = J u and then K is compact and

H n-1 -rectifiable, Ω \ K is open, u ∈ W 1,2 (Ω \ K ) and E(u , M ) = E(u , K , M ).
We may conclude that min E = min E and their minimizers coincide. Moreover, we have Proposition 2.2. Let u ∈ SBV(Ω) be a minimizer of (P),

then u ∈ C 1 (Ω \ J u ). Proof. Let B r (x) ⊂ Ω \ J u ; then u ∈ W 1,2 (B r (x)
) and it is a minimizer of the functional

I(v) = Br(x) (v -g) 2 dx + Br(x) |∇v| 2 dx among the functions v in u + W 1,2 0 (B r (x)
) and then classical regularity results give u ∈ C 1 (B r (x)).

Γ-convergence result

This section is entirely devoted to the approximation process. In 3.1 we define the domain for E ε and give the main Theorem of this paper. In 3.2 we prove, for ε > 0 fixed, that the minimization of E ε admits a solution. In 3.3, the most technical part of the paper, we give the complete proof of Γ-convergence. Finally, in 3.4, we conclude the proof of the main Theorem.

The functionals, their domain and the main Theorem

Formally, we define the functional E ε (u, z, M) as

E ε (u, z, M) = Ω (u -g) 2 dx+ Ω |∇u| 2 (1 -z 2 ) 2 dx+ Ω ε M∇z, ∇z + z 2 4ε dx+ Ω DM n+α dx.
As in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF], the function z : Ω → [0; 1] plays the role of control of the gradient of u. We need to introduce a domain for E ε that ensures the existence of a minimizer. If u, z ∈ W 1,2 (Ω), then this functional is well defined. However, the coefficient (1 -z 2 ) 2 removes the coercivity with respect to u and the existence result can not be achieved according to the Sobolev norm. If, by addition, u is bounded, we have

|∇(u(1 -z 2 ))| 2 = |∇u(1 -z 2 ) -2uz∇z| 2 , ≤ 2|∇u| 2 (1 -z 2 ) 2 + 4 u L ∞ (Ω) |∇z| 2 .
According to ellipticity inequality (2.1), it gives

Ω |∇(u(1 -z 2 ))| 2 dx ≤ 2 + 4 u L ∞ (Ω) λε E ε (u, z, M).
So, it is natural to set

D n (Ω) = (u, z) : u ∈ B(Ω), z ∈ W 1,2 (Ω; [0; 1]), ∀N ∈ N u N (1 -z 2 ) ∈ W 1,2 (Ω) ,
where u N is the truncated function defined, for any x ∈ Ω, by

u N (x) =    -N if u(x) ≤ -N, u(x) if |u(x)| ≤ N, N if u(x) ≥ N. (3.1) Assuming (u, z) ∈ D n (Ω) does not ensure that u ∈ W 1,2
(Ω) and ∇u can not be defined as the gradient of u in the Sobolev sense. However, we can define ∇u in the following sense.

Definition 3.1. Let u ∈ L 1 (Ω) and x ∈ Ω a Lebesgue point of u; we say that u is approximately differentiable at x if there exists L ∈ R n such that lim r→0 + B(x,r) |u(y) -u(x) -L, y -x | r dy = 0. (3.2)
If u is approximately differentiable at x then L, uniquely determined by (3.2), is called the approximate differential of u at x.

The following ensures that E ε (u, z, M) is well defined for (u, z) ∈ D n (Ω).

Proposition 3.1. If (u, z) ∈ D n (Ω), then u is approximately differentiable in {x ∈ Ω : z(x) = 1}
and z is approximately differentiable in Ω.

Proof.

As Ω is open and bounded then W 

∈ L ∞ (Ω), then v 1 v 2 is approximately differentiable almost everywhere; • if v 2 is approximately differentiable almost everywhere, then v 2 -1
is also approximately differentiable almost everywhere in {x : v 2 (x) = 0} (Proposition 3.71 in [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]).

We deduce that u N is approximately differentiable almost everywhere in {x : z(x) = 1}. This is true for any N ∈ N, so this is also true for u.

The main result of the paper is the following Theorem 3.1. Let Ω ⊂ R n be an open and bounded domain which satisfies reflexion condition (1.1), G be a compact subset of S + n (R) and α > 0 be fixed. We consider H : B(Ω)×W 1,n+α (Ω; G) → [0; +∞] defined as

H(u, M) = Ω (u -g) 2 dx + Ω DM n+α dx, E : B(Ω) × W 1,n+α (Ω; G) → [0; +∞] defined as E(u, M) =        H(u, M) + Ω |∇u| 2 dx + Ju Mν u , ν u 1/2 dH n-1 if u ∈ SBV(Ω), +∞ otherwise and E ε : B(Ω) × B(Ω) × W 1,n+α (Ω; G) → [0; +∞] defined as E ε (u, z, M) =        H(u, M) + Ω |∇u| 2 (1 -z 2 ) 2 dx + Ω ε M∇z, ∇z + z 2 4ε dx if (u, z) ∈ D n (Ω), +∞ otherwise.
Then, the following assertions are satisfied.

i) For any ε > 0, E ε admits a minimizer, denoted by (u ε , z ε , M ε ). Moreover, we can assume that u ε (x) = g(x) on {x ∈ Ω :

z ε (x) = 1}.
ii) For any (ε k ) k converging to 0 + , there exists a subsequence, still denoted by

(ε k ) k , and u ∈ SBV(Ω) such that (u ε k , z ε k ) k converges to (u, 0) almost everywhere, (M k ) k converges weakly to M and (u, M) is a minimizer of E.
We set

(P ε ) : Min{E ε (u, z, M) : (u, z, M) ∈ B(Ω) × B(Ω) × W 1,n+α (Ω; G)},
Theorem 3.1 i) implies that, for ε > 0 fixed, (P ε ) is a well posed problem. Theorem 3.1 ii) implies that, up to the extraction of a subsequence, the sequence of solutions of (P ε k ) converge to a solution of (P ).

Existence result for (P ε )

Theorem 3.1 i) is a straightforward consequence of Propositions 3.2 and 3.3.

Proposition 3.2. Let ε > 0 be fixed. There exists (u k , z k , M k ) k a minimizing sequence of E ε such that (u k ) k is a bounded sequence of L ∞ (Ω), (u k , z k ) k converges almost everywhere to (u, z) ∈ D n (Ω), u(x) = g(x) on {x ∈ Ω : z(x) = 1} and (M k ) k weakly converges to M ∈ W 1,n+α (Ω; G).
To prove it, we need the following Lemma which proof is given in Appendix 4.1.

Lemma 3.1. For (u, z) ∈ D n (Ω) and ν ∈ S n-1 fixed, we have (u x , z x ) ∈ D 1 (Ω x ) for H n-1 -almost every x ∈ Ω ν (see the notations of Definition 1.2), and

∇u x (t) = ∇u(x + tν), ν , ∇z x (t) = ∇z(x + tν), ν ,
for almost every t ∈ Ω x \ {s : z(x + sν) = 1}. Now, we prove Proposition 3.2.

Proof. Let (u k , z k , M k ) k be a minimizing sequence of E ε . We fix N ≥ g L ∞ (Ω) and we consider the truncated functions (u N k ) k defined in (3.1). As (u k , z k ) ∈ D n (Ω), we have u N k (1-z 2 k ) ∈ W 1,2 (Ω). As Ω is bounded, then W 1,2 (Ω) ⊂ SBV(Ω). According to Calderón-Zygmund Theorem ([7], Theorem 3.83), u N k (1 -z 2 k
) is approximately differentiable almost everywhere. For the same reasons, 1 -z 2 k is also approximately differentiable almost everywhere. According to Proposition 3.71 in [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF], we deduce that u N k is approximately differentiable almost everywhere in {x :

z k (x) = 1}. Moreover, ∇u N k (x) = 0 almost everywhere in {x : |u N k (x)| = N } and ∇u N k (x) = ∇u k (x) almost everywhere in {x : |u N k (x)| < N } (Proposition 3.73 in [7]), it gives Ω |∇u N k | 2 (1 -z 2 k ) 2 dx ≤ Ω |∇u k | 2 (1 -z 2 k ) 2 dx. (3.3) so E ε (u N k , z k , M k ) ≤ E ε (u k , z k , M k ) and then (u N k , z k , M k )
k is also a minimizing sequence. According to ellipticity inequality (2.1), we have

Ω |∇z k | 2 dx + Ω z 2 k dx ≤ 1 λε + 4ε E ε (u k , z k , M k ),
and then (z k ) k is a bounded sequence of W 1,2 (Ω). So, there exists a subsequence, still denoted by (z k ) k , which converges almost everywhere to z ∈ W 1,2 (Ω). As (z k ) k takes its values almost everywhere in [0; 1], then z takes also its values in [0; 1]. For

w k = u N k (1 -z 2 k ), we have Ω |∇w k | 2 dx + Ω w 2 k dx ≤ 2 Ω |∇u N k | 2 (1 -z 2 k ) 2 dx + 2N 2 Ω |∇z k | 2 dx + N 2 Ω (1 -z 2 k ) 2 dx
and then (w k ) k is a bounded sequence of W 1,2 (Ω). So, there exists a subsequence, still denoted by (w k ) k , which converges almost everywhere to w ∈ W 1,2 (Ω). In particular, (u N k (x)) k converges for almost every x ∈ {y : z(y) = 1} to u(x). We set u(x) = g(x) for x ∈ {y : z(y) = 1}. This construction ensures that (u, z) 1,n+α (Ω) and there exists a subsequence weakly convergent to M ∈ W 1,n+α (Ω). As weakly convergence in W 1,n+α (Ω) implies uniform convergence and G is closed, then M ∈ W 1,n+α (Ω; G).

∈ D n (Ω). As G ⊂ S + n (R) is compact, Ω is bounded and Ω DM k dx ≤ E ε (u k , z k , M k ), then (M k ) k is a bounded sequence of W
Proposition 3.3. If (u k , z k ) k ⊂ D n (Ω) converges almost everywhere to (u, z) ∈ D n (Ω), (u k ) k is a bounded sequence of L ∞ (Ω) and (M k ) k ⊂ W 1,n+α (Ω; G) weakly converges to M ∈ W 1,n+α (Ω; G), then lim inf k→∞ E ε (u k , z k , M k ) ≥ E ε (u, z, M).
Proof. Fatou Lemma and lower semi-continuity of the Sobolev semi-norm give

lim inf k→∞ Ω (u k -g) 2 dx + Ω z 2 k 4ε dx + Ω DM k n+α dx ≥ Ω (u -g) 2 dx+ Ω z 2 4ε dx+ Ω DM n+α dx.
So, to show Proposition 3.3, it suffices to prove that lim inf

k→∞ Ω ε M k ∇z k , ∇z k dx ≥ Ω ε M∇z, ∇z dx (3.4) and lim inf k→∞ |∇u k | 2 (1 -z 2 k ) 2 dx ≥ Ω |∇u| 2 (1 -z 2 ) 2 dx. (3.5) 
Proof of (3.4) On the other hand, we have

If lim inf k Ω |∇z k | 2 dx = +∞,
Ω ε M k ∇z k , ∇z k dx - Ω ε M∇z k , ∇z k dx ≤ ε M k -M L ∞ Ω |∇z k | 2 dx.
As the weakly convergence of (M k ) k in W 1,n+α (Ω) implies the uniform convergence, we may conclude that lim inf

k Ω ε M k ∇z k , ∇z k dx - Ω ε M∇z k , ∇z k dx = 0.
To prove inequality (3.4), it remains to verify that lim inf

k→∞ Ω ε M∇z k , ∇z k dx ≥ Ω ε M∇z, ∇z dx. As the application W 1,2 (Ω) → L 2 (Ω; R n ), z → ∇z
is continuous for the strong topology, it remains to prove that the application

L 2 (Ω; R n ) → R, Z → Ω MZ, Z dx is lower semi-continuous for the weak topology of L 2 (Ω; R n ). Let (Z k ) k ⊂ L 2 (Ω; R n ) be weakly convergent to Z ∈ L 2 (Ω; R n ). We set L : L 2 (Ω; R n ) → R, U → Ω MZ, U dx
According to ellipticity inequality (2.1), L ∈ (L 2 (Ω; R n )) and then (L(Z k )) k converges to L(Z). Moreover, for k fixed, the following polynomial function is positive

t → Ω M(Z + tZ k ), Z + tZ k dx.
Thus, its discriminant is negative and we deduce the following anisotropic Cauchy-Schwarz inequality

Ω MZ, Z k dx ≤ Ω MZ, Z dx 1 2 Ω MZ k , Z k dx 1 2
.

As (L(Z k )) k converges to L(Z), passing through the lim inf in the previous inequality yields

Ω MZ, Z dx ≤ Ω MZ, Z dx 1 2 lim inf k→∞ Ω MZ k , Z k dx 1 2
and then we may conclude the Proof of (3.4) by taking Z k = ∇z k , Z = ∇z in the previous inequality

Ω M∇z, ∇z dx ≤ lim inf k→∞ Ω M∇z k , ∇z k dx.
Proof of (3.5) We first consider the one-dimensional case n = 1 and then by a slicing argument we get the lower semi-continuity for the general case n ≥ 1. Let A ⊂ {x ∈ Ω : z(x) < 1} be an open and relatively compact subset of Ω ⊂ R. As (z k ) k weakly converges to z in W 1,2 (Ω), then (z k ) k uniformly converges to z. In particular, there exists δ > 0 and

k 0 ∈ N k ≥ k 0 ⇒ A ⊂ {x ∈ Ω : z k (x) ≤ 1 -δ}.
Thus, for any k ≥ k 0 , we have

A |∇u k | 2 dx ≤ 1 1 -(1 -δ) 2 E ε (u k , z k )
and then we deduce that (u k ) k is a bounded sequence of W 1,2 (A). As u k (1 -z 2 k ) converges almost everywhere to u(1 -z 2 ) in Ω, there exists a subsequence, still denoted by (u k ) k , which weakly converges to u in W 1,2 (A). In particular, (∇u k ) k weakly converges to ∇u in L 2 (A). For ξ ∈ L 2 (Ω), we decompose

A ξ ∇u k (1 -z 2 k ) -∇u(1 -z 2 ) dx = A ξ∇u k (z 2 -z 2 k )dx+ A ξ∇u k (1 -z 2 )dx+ A ξ∇u(z 2 -z 2 k )dx. (3.6) As (1 -z 2 )ξ ∈ L 2 (A) and (∇u k ) k weakly converges to ∇u in L 2 (A), then we have A ξ∇u k (1 -z 2 )dx → A ξ∇u(1 -z 2 )dx. (3.7)
Moreover, we have

A ξ∇u k (z -z k )dx ≤ ξ L 2 (A) ∇u k L 2 (A) z 2 -z 2 k L ∞ (A)
and

A ξ∇u(z -z k )dx ≤ ξ L 2 (A) ∇u L 2 (A) z 2 -z 2 k L ∞ (A) .
As a weakly convergent sequence is bounded, then (∇u k ) k is bounded in L 2 (A) and we deduce that

A ξ∇u k (z 2 -z 2 k )dx → 0, A ξ∇u(z 2 -z 2 k )dx → 0. (3.8)
According to (3.6), (3.7) and (3.8), we get

A ξ∇u k (1 -z 2 k )dx → A ξ∇u(1 -z 2 )dx and then (∇u k (1 -z 2 k )) k weakly converges to ∇u(1 -z 2 ) in L 2 (A).
As the norm is lower semicontinuous, we deduce

A |∇u| 2 (1 -z 2 ) 2 dx ≤ lim inf k→∞ A |∇u k | 2 (1 -z 2 k ) 2 dx, ≤ lim inf k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx.
Passing to the limit A ↑ {x ∈ Ω : z(x) < 1} gives

Ω |∇u| 2 (1 -z 2 ) 2 dx ≤ lim inf k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx.
We generalize this result to the dimension n ≥ 1. With the notation u x introduced in (1.2), using the previous result obtained in dimension 1, Lemma 3.1 and Fatou Lemma, give

A | ∇u, ν | 2 (1 -z 2 ) 2 dx = Aν Ax |∇u x (t)| 2 (1 -z x (t) 2 ) 2 dtdx, ≤ Aν lim inf k→∞ Ax |∇(u k ) x (t)| 2 (1 -(z k ) x (t) 2 ) 2 dtdx, ≤ lim inf k→∞ Aν Ax |∇(u k ) x (t)| 2 (1 -(z k ) x (t) 2 ) 2 dtdx, ≤ lim inf k→∞ Aν Ax | ∇u k (x + tν), ν | 2 (1 -z k (x + tν) 2 ) 2 dtdx, ≤ lim inf k→∞ A | ∇u k , ν | 2 (1 -z 2 k ) 2 dx, ≤ lim inf k→∞ A |∇u k | 2 (1 -z 2 k ) 2 dx,
for any open set A ⊂ Ω and every ν ∈ S n-1 . The function x → ∇u(x) |∇u(x)| is measurable in U = {x ∈ Ω : z(x) = 1, ∇u(x) = 0}. According to Lusin Theorem (1.45 of [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]), there exists an increasing sequence of compacts (K l ) l ⊂ U such that

L n (U \ K l ) ≤ 1 l , x → ∇u(x) |∇u(x)| is continuous in K l .
Thus, for any x ∈ K l , there exists r > 0 such that

y ∈ B(x, r) ⇒ ∇u(x) |∇u(x)| - ∇u(y) |∇u(y)| ≤ 1 l , ( 3.9) 
As a consequence of Besicovitch Covering Theorem (2.18 of [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]), there exists a countable, pairwise disjoint collection of balls (B i ) i∈I satisfying (3.9) such that

B i ⊂ Ω, L n K l \ i∈I B i = 0, for any ∀i ∈ I.
For any i ∈ I, we fix x i ∈ B i and we set

ν i = ∇u(xi) |∇u(xi)| ; then Bi | ∇u, ν i | 2 (1 -z 2 ) 2 dx ≤ lim inf k→∞ Bi |∇u k | 2 (1 -z 2 k ) 2 dx. As (B i ) i is pairwise dijoint, we deduce ∪iBi | ∇u, ν i | 2 (1 -z 2 ) 2 dx = i∈I Bi | ∇u, ν i | 2 (1 -z 2 ) 2 dx, ≤ i∈I lim inf k→∞ Bi |∇u k | 2 (1 -z 2 k ) 2 dx, ≤ lim inf k→∞ i∈I Bi |∇u k | 2 (1 -z 2 k ) 2 dx, ≤ lim inf k→∞ ∪iBi |∇u k | 2 (1 -z 2 k ) 2 dx, ≤ lim inf k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx.
Moreover, we have

∀x ∈ B i ∩ K l , |∇u| 2 -| ∇u, ν i | 2 ≤ ∇u, ∇u |∇u| 2 -∇u, ν i 2 , ≤ ∇u, ∇u |∇u| -ν i ∇u, ∇u |∇u| + ν i , ≤ 2 l |∇u| 2 .

It gives

Bi∩K l |∇u| 2 (1 -z 2 ) 2 dx ≤ l l -2 Bi∩K l | ∇u, ν i | 2 (1 -z 2 ) 2 dx. As L n (K l \ ∪ i B i ) = 0 and (B i ) i is pairwise disjoint, we get K l |∇u| 2 (1 -z 2 ) 2 dx = i Bi∩K l |∇u| 2 (1 -z 2 ) 2 dx, ≤ l l -2 i Bi∩K l | ∇u, ν i | 2 (1 -z 2 ) 2 dx, ≤ l l -2 ∪iBi∩K l | ∇u, ν i | 2 (1 -z 2 ) 2 dx, ≤ l l -2 ∪iBi | ∇u, ν i | 2 (1 -z 2 ) 2 dx, ≤ l l -2 lim inf k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx.
As (K l ) l is an increasing sequence such that L n (U \ K l ) → 0, passing to the limit l → ∞ gives

U |∇u| 2 (1 -z 2 ) 2 dx ≤ lim inf k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx
and we may conclude

Ω |∇u| 2 (1 -z 2 ) 2 dx ≤ lim inf k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx.

Γ-convergence result for ε → 0 +

This section is dedicated to the proof of Theorem 3.1 ii). For that, we will prove the following Γ-convergence result.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied. Let (ε k ) k be a sequence which converges to 0 + , we have

i) if u ∈ B(Ω) ∩ L ∞ (Ω), (u k , z k ) k ⊂ D n (Ω), (u k ) k is bounded in L ∞ (Ω), (u k , z k ) k converges to (u, 0
) almost everywhere and (M k ) k weakly converges to M, then

lim inf k→∞ E ε k (u k , z k , M k ) ≥ E(u, M); (3.10) ii) for any u ∈ B(Ω) ∩ L ∞ (Ω) and M ∈ W 1,n+α (Ω; G), there exists a sequence (u k , z k ) k ⊂ D n (Ω) such that (u k ) k is bounded in L ∞ (Ω), (u k , z k ) k converges to (u, 0
) almost everywhere and

lim sup k→∞ E ε k (u k , z k , M) ≤ E(u, M).
(3.11)

The inequality for the lower Γ-limit

We now prove the first inequality of Γ-convergence (3.10

). Let u ∈ B(Ω) ∩ L ∞ (Ω) and (u k , z k ) k ⊂ D n (Ω) such that (u k ) k is bounded in L ∞ (Ω), (u k , z k ) k converges to (u, 0
) almost everywhere and (M k ) k weakly converges to M. In the sequel, we emphasize on the domain of the function: for U an open subset of Ω, we adopt the following notation

F (u, M; U ) = U |∇u| 2 dx + Ju∩U Mν u , ν u 1/2 dH n-1 , F ε k (u k , z k , M k ; U ) = U |∇u k | 2 (1 -z 2 k ) 2 dx + U ε k M k ∇z k , ∇z k + z 2 k 4ε k dx,
Fatou Lemma and lower continuity for the Sobolev semi-norm yields

lim inf k→∞ Ω (u k -g) 2 dx + Ω DM k n+α dx ≥ Ω (u -g) 2 dx + Ω DM n+α dx
and then it suffices to prove that lim inf 

F ε k (u k , z k , M k ; Ω) ≥ F (u, M; Ω). Moreover, if lim inf k Ω ε k |∇z k | 2 dx =
Ω ε k M k ∇z k , ∇z k dx - Ω ε k M∇z k , ∇z k dx ≤ M k -M L ∞ ε k Ω |∇z k | 2 dx.
As the weakly convergence of (M k ) k to M in W 1,n+α (Ω) implies the uniform convergence, we may conclude that lim inf

k Ω ε k M k ∇z k , ∇z k dx - Ω ε k M∇z k , ∇z k dx = 0.
To prove inequality (3.10), it remains to verify that

lim inf k→∞ F ε k (u k , z k , M; Ω) ≥ F ε k (u k , z k , M; U ).
We perform the proof in two steps: the first step deals with dimension 1. The second generalizes it for dimension n ≥ 2.

The one-dimensional case

In this section, we assume that Ω = I is an open interval and the metric M is simply a constant m > 0. We assume in this section that m is fixed. To avoid confusion, we denote the approximating functional by

G ε (u, z; I) = I |∇u(t)| 2 (1 -z(t) 2 ) 2 dt + I mε|∇z(t)| 2 + z(t) 2 4ε dt, (3.12) 
where the domain is

D 1 (I) = {(u, z) : u ∈ B(I), z ∈ W 1,2 (I; [0; 1]), ∀N ∈ N u N (1 -z 2 ) ∈ W 1,2 (I)}.
We denote the lower Γ-limit, by

G -(u; I) = inf lim inf k→∞ G ε k (u k , z k ; I) ,
where the inf is taken over all sequence (u k , z k ) k ⊂ D 1 (I) such that (u k , z k ) converges almost everywhere to (u, 0) in I. We need the following Lemma which proof is given in appendix 4.2.

Lemma 3.2. Let I ⊂ R be an open interval, J ⊂ I be a set with finite cardinal. We have

u ∈ W 1,2 (I \ J) ⇒ u ∈ SBV(I), J u ⊂ J.
The main result of this subsection is given by the following. 

I |∇u(t)| 2 dt + m 1 2 H 0 (J u ∩ I) ≤ G -(u; I).
The proof of this Proposition consists in showing the two following Lemmas.

Lemma 3.3. If u ∈ W 1,2 (B η (x)), then we have G -(u; B η (x)) ≥ Bη(x) |∇u(t)| 2 dt. Lemma 3.4. If u ∈ W 1,2 (B ρ (x)) for any ρ ∈]0; η[, then for any ρ ∈]0; η[ we have G -(u; B ρ (x)) ≥ m 1/2 .
Suppose that Lemma 3.3 and 3.4 are proved, we deduce Proposition 3.4.

Proof. We set

J = x ∈ I : ∀ρ > 0, u ∈ W 1,2 (B ρ (x)) .
Let {x 1 , . . . , x N } ⊂ J and ρ > 0 be such that {B ρ (x i ) : i = 1, . . . , N } is pairwise disjoint. According to Lemma 3.4 we have

∀i ∈ {1, . . . , N }, G -(u; B ρ (x i )) ≥ m 1/2 and then N i=1 G -(u; B ρ (x i )) ≥ N m 1/2 . As G -(u; •) is superadditive, we have G -(u; ∪ N i=1 B ρ (x i )) ≥ N m 1/2 . and G -(u; •) is non decreasing, it gives G -(u; I) ≥ N m 1/2 .
As G -(u; •) < +∞, the set J is finite. So, there exists ρ > 0 such that {B ρ (x) : x ∈ J} is pairwise disjoint. As G -(u; • ) is superadditive and non decreasing, we have

x∈J G -(u; B ρ (x)) + G -(u; I \ ∪ x∈J B ρ (x)) ≤ G -(u; I).
According to Lemma 3.3 and 3.4, it gives

H 0 (J)m 1 2 + I\∪ x∈J Bρ(x) |∇u(t)| 2 dt ≤ G -(u; I).
Taking the limit ρ → 0 + yields

H 0 (J)m 1 2 + I\J |∇u(t)| 2 dt ≤ G -(u; I).
In particular u ∈ W 1,2 (I \ J) and, according to Lemma 3.2, we get u ∈ SBV(I), J u ⊂ J and then

H 0 (J)m 1 2 + I |∇u(t)| 2 dt ≤ G -(u; I).
Now, we prove lemma 3.3.

Proof. We can assume that G -(u; B η (x)) < +∞, otherwise the result is ensured. By a diagonal extraction, there exists a sequence (u k , z k ) k ⊂ D 1 (B ρ (x)) converging almost everywhere to (u, 0) and

G ε k (u k , z k ; B ρ (x)) → G -(u; B ρ (x)).
As G -(u; B η (x)) is finite, there exists C > 0 such that ∀k ∈ N,

Bη(x) ε k |∇z k | 2 + z 2 k 4ε k dt ≤ C. (3.13) Applying the inequality 2ab ≤ a 2 + b 2 with a 2 = ε k |∇z k | 2 and b 2 = z 2 k 4ε k gives ∀k ∈ N, Bη(x) |∇z k |z k dt ≤ C. (3.14) We set c k = 1 -z 2 k . As z k ∈ W 1,2 (B η (x)), then c k ∈ BV (B η (x)) and (3.14) is ∀k ∈ N, Bη(x) |∇c k |dt ≤ 2C.
Coarea formula (see [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]) yields ∀k ∈ N, Let σ < 1 in an arbitrary neighborhood of 1 and δ ∈]0; σ[ be fixed numbers. According to (3.15) and mean value Theorem, there exits

δ k ∈]δ; σ[ such that ∀k ∈ N, H 0 ({y ∈ B η (x) : c k (y) = δ k }) ≤ 2C σ -δ . (3.16) We set A k = {y ∈ B η (x) : c k (y) ≥ δ k }.
As (ε k ) k converges to 0, inequality (3.13) implies that (z k ) k converges to 0 and c k to 1 almost everywhere. As δ k < σ and σ < 1 then (L

1 (A k )) k converges to L 1 (B η (x)). Sobolev embedding Theorem ensures that W 1,2 (B η (x)) ⊂ C(B η (x))
, so c k is continuous and A k is a countable union of closed intervals of B η (x). According to (3.16), this union is finite and its cardinality is uniformly bounded by N . For any k, there exits a disjoint family of closed intervals

(I i k ) i=1...N such that A k = N i=1 I i k , ∀i ∈ {1, . . . , N -1}, max(I i k ) < min(I i+1 k )
. There exists a subsequence, still denoted by (I i k ) i=1...N , such that (min(I i k )) k and (max(I i k )) k converge for any i ∈ {1, . . . , N }. We set a i ∞ and b i ∞ the previous limits, 

I i ∞ =]a i ∞ ; b i ∞ [ and A = N i=1 I i ∞ . As (L 1 (A k )) k converges to L 1 (B η (x)),
|∇u k | 2 (1 -z 2 k ) 2 dt ≥ lim inf k→∞ O |∇u k | 2 (1 -z 2 k ) 2 dt.
As z k takes its values in [0; 1], we get lim inf

k→∞ Bη(x) |∇u k | 2 (1 -z 2 k ) 2 dt ≥ lim inf k→∞ O |∇u k | 2 δ 2 k dt, ≥ δ 2 lim inf k→∞ O |∇u k | 2 dt.
Moreover, there exists k 0 such that: 

k ≥ k 0 ⇒ O ⊂ A k , then we have ∀x ∈ O 1 -z 2 k ≥ δ. As u k (1 -z 2 k ) ∈ W 1,2 (Ω) and √ δ > 0, we get u k ∈ W 1,
|∇u k | 2 (1 -z 2 k ) 2 dt ≥ δ 2 Bη(x)
|∇u| 2 dt.

Letting δ to 1 -, it concludes the proof of lemma 3.3.

We prove lemma 3.4.

Proof. We can assume that G -(u; B ρ (x)) < +∞ for any ρ ∈]0; η[, otherwise the result is ensured.

As u ∈ W 1,2 (B ρ (x)), there exists three sequences (y 1 k ) k∈N , (y 2 k ) k∈N and (y 3 k ) k∈N such that:

       y 1 k → x, z k (y 1 k ) → 0, y 2 k → x, z k (y 2 k ) → 1, y 3 k → x, z k (y 3 k ) → 0, ∀k ∈ N, y 1 k < y 2 k < y 3 k . We have G(u k , z k ; B ρ (x)) ≥ x+ρ x-ρ ε k m|∇z k | 2 + z 2 k 4ε k dt.
The inequality a 2 + b 2 ≥ 2ab gives:

G(u k , z k ; B ρ (x)) ≥ x+ρ x-ρ m 1/2 |∇z k |z k dt. As [y 1 k , y 2 k ] ⊂ B ρ (x)
, we obtain:

G(u k , z k ; B ρ (x)) ≥ y 3 k y 1 k m 1/2 |∇z k |z k dt.
We have

G(u k , z k ; B ρ (x)) ≥ m 1/2 y 2 k y 1 k |∇z k (t)|z k (t) dt + m 1/2 y 3 k y 2 k |∇z k (t)|z k (t) dt. Since z k ∈ W 1,2 (B η (x))
, we may use the change of variable s = z k (t). This yields:

( ) 2 k ≥ m 1/2 z k (y 2 k ) z k (y 1 k ) sds + m 1/2 z k (y 3 k ) z k (y 2 k ) sds, ≥ m 1/2 z 2 k (y 2 k ) -z 2 k (y 1 k ) 2 + z 2 k (y 2 k ) -z 2 k (y 3 k ) 2
By assumption, we have z k (y 1 k ) → 0, z k (y 2 k ) → 1 and z k (y 3 k ) → 0, so that we deduce:

z 2 k (y 2 k ) -z 2 k (y 1 k ) 2 + z 2 k (y 2 k ) -z 2 k (y 3 k ) 2 → 1.
We can conclude :

lim inf k→∞ G(u k , z k ; B ρ (x)) ≥ m 1/2 .

Generalization to dimension n ≥ 2

We give the proof of the first inequality of Γ-convergence (3.10) for n ≥ 2.

Proof. Let u ∈ SBV(Ω) ∩ L ∞ (Ω) and (u k , z k ) k ⊂ D n (Ω) converging almost everywhere to (u, 0) such that (u k ) k is bounded in L ∞ (Ω). We have to prove lim inf k→∞ F ε k (u k , z k , M; Ω) ≥ F (u, M; Ω). (3.17) 
We assume that lim inf F ε k (u k , z k , M; Ω) is finite, otherwise the result is ensured. As M ∈ W 1,n+α (Ω), then M is α-Hölder regular. So, there exists θ ≥ 0 such that, for any x, y ∈ Ω, we have

M(x) -M(y) ≤ θ|x -y| α . ( 3 

.18)

Claim: There exists

C(δ) such that i) lim δ→0 + C(δ) = 1, ii) for A ⊂ Ω open, a ∈ A, diam(A) ≤ δ and ν ∈ S n-1 , we have lim inf k→∞ F ε k (u k , z k , M; A) ≥ A ∇u, ω 2 dx + C(δ) Ju∩A |M(a)ν| M(a)ν, ν 1/2 ω, ν u dH n-1 ,
where ω = M(a)ν |M(a)ν| .

We denote by A an arbitrary open subset of Ω such that diam(A) ≤ δ and we fix a ∈ A. Let ν ∈ S n-1 be fixed. According to Hölder regularity (3.18) and ellipticity inequality (2.1), we have

∀(x, v) ∈ A × R n , | M(x)v, v -M(a)v, v | ≤ θδ α |v| 2 , ≤ θδ α λ -1 M(a)v, v . Then, we get ∀(x, v) ∈ A × R n , M(x)v, v ≥ (1 -θδ α λ -1 ) M(a)v, v
We set C(δ) = 1 -θδ α λ -1 . Then, we may write

∀x ∈ A, M(x)∇z k (x), ∇z k (x) 2 ≥ C(δ) M(a)∇z k (x), ∇z k (x) 2 .
As M(a) is a symmetric definite positive matrix, Cauchy-Schwartz inequality gives

∀v ∈ R n , M(a)ν, ν M(a)v, v ≥ M(a)ν, v 2 , which is equivalent to ∀v ∈ R n , M(a)v, v ≥ |M(a)ν| 2 M(a)ν, ν M(a)ν |M(a)ν| , v 2 . (3.19) We set ω = M(a)ν |M(a)ν| . If we apply inequality (3.19) to F ε k (u k , z k , M; A), we have F ε k (u k , z k , M; A) ≥ A |∇u k | 2 (1 -z 2 k ) 2 + C(δ) |M(a)ν| 2 M(a)ν, ν ε k ω, ∇z k 2 + z 2 k 4ε k dx.
With the notation introduced in (1.2), (v) y is the function defined on A y ω as (v) y (t) = v(y + tω). According to Lemma 3.1, we have ∇(u k ) y (t) = ∇u(y + tω), ω and ∇(z k ) y (t) = ∇z(y + tω), ω , so Fubini Theorem gives

F ε k (u k , z k , M; A) ≥ Aω A y ω |∇(u k ) y | 2 (1 -((z k ) y ) 2 ) 2 + C(δ) |M(a)ν| 2 M(a)ν, ν ε k |∇(z k ) y | 2 + ((z k ) y ) 2 4ε k dt dH n-1 (y).
With the one-dimensional notations (3.12), it gives

F ε k (u k , z k , M; A) ≥ Aω G ε k ((u k ) y , (z k ) y ; A y ω ) dH n-1 (y), where m = C(δ) |M(a)ν| 2 M(a)ν,ν for any x ∈ A. Fatou lemma yields lim inf k→∞ F ε k (u k , z k , M; A) ≥ Aω lim inf k→∞ G ε k ((u k ) y , (z k ) y ; A y ω ) dH n-1 (y)
and then lim inf

k→∞ F ε k (u k , z k , M; A) ≥ Aω G -((u) y ; A y ω ) dH n-1 (y). As lim inf F ε k (u k , z k , M; A) is finite, we deduce that G -((u) y ; A y ω )
is finite for H n-1 almost every y ∈ A ω . We may apply Proposition 3.4 with I = A y ω and u = (u) y , it gives that (u) y ω ∈ SBV(A y ω ) for H n-1 almost every y ∈ A ω and we have

lim inf k→∞ F ε k (u k , z k , M; A) ≥ Aω A y ω |∇(u) y | 2 dt + H 0 (J (u)y ∩ A y ω )m 1 2
dH n-1 (y).

As lim inf

F ε k (u k , z k , M; A) is finite, Theorem 1.3 implies Aω A y ω |∇(u) y | 2 dt + H 0 (J (u)y ∩ A y ω )m 1/2 dH n-1 (y) = Ω | ∇u, ω | 2 dx+ Ju∩A m 1/2 ω, ν u dH n-1 .
We deduce

lim inf k→∞ F ε k (u k , z k , M; A) ≥ A | ∇u, ω | 2 dx + Ju∩A m 1/2 ω, ν u dH n-1 .
If we replace m and ω by their values, it gives

lim inf k→∞ F ε k (u k , z k , M; A) ≥ A ∇u, ω 2 dx + C(δ) Ju∩A M(a)ν, ν u M(a)ν, ν 1/2 dH n-1
and the Claim is proved.

The function x → ∇u(x) |∇u(x)| is measurable in U = {x ∈ Ω : ∇u(x) = 0}.
According to Lusin Theorem (1.45 of [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]), there exists an increasing sequence of compacts (K l ) l ⊂ U such that

L n (U \ K l ) ≤ 1 l , x → ∇u(x) |∇u(x)| is continuous in K l .
Thus, for any x ∈ K l , there exists r > 0 such that

y ∈ B(x, r) ⇒ ∇u(x) |∇u(x)| - ∇u(y) |∇u(y)| ≤ 1 l , ( 3.20) 
As a consequence of Besicovitch Covering Theorem (2.18 of [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]), there exists a countable, pairwise disjoint collection of balls (B i ) i∈I satisfying (3.20) such that

∀i ∈ I, B i ⊂ Ω, diam(B i ) ≤ δ, L n K l \ i∈I B i = 0.
For any i ∈ I, we fix x i ∈ B i and we set

ν i = (M(a)) -1 ∇u(xi) |(M(a)) -1 ∇u(xi)| . According to First Step, with A = B i , a = x i and ν = ν i , we get lim inf k→∞ F ε k (u k , z k , M; B i ) ≥ Bi ∇u, ∇u(x i ) |∇u(x i )| 2 dx.
Moreover, we have

∀x ∈ B i ∩ K l , |∇u| 2 -∇u, ∇u(x i ) |∇u(x i )| 2 ≤ ∇u, ∇u |∇u| 2 -∇u, ∇u(x i ) |∇u(x i )| 2 , ≤ ∇u, ∇u |∇u| - ∇u(x i ) |∇u(x i )| ∇u, ∇u |∇u| + ∇u(x i ) |∇u(x i )| , ≤ 2 l |∇u| 2 .

It gives

Bi∩K l ∇u, ∇u(x i ) |∇u(x i )| 2 dx ≥ l l + 2 Bi∩K l |∇u| 2 dx. As lim inf F ε k (u k , z k , M; • ) is supperadditive and non decreasing, we have lim inf k→∞ F ε k (u k , z k , M; Ω) ≥ i∈I lim inf k→∞ F ε k (u k , z k , M; B i ), ≥ i∈I Bi ∇u, ∇u(x i ) |∇u(x i )| 2 dx, ≥ i∈I Bi∩K l ∇u, ∇u(x i ) |∇u(x i )| 2 dx, ≥ l l + 2 i∈I Bi∩K l |∇u| 2 dx, ≥ l l + 2 ∪iBi∩K l |∇u| 2 dx, As L n (K l \ ∪ i B i ) = 0, we deduce lim inf k→∞ F ε k (u k , z k , M; Ω) ≥ l l + 2 K l |∇u| 2 dx and taking the limit l → ∞ gives lim inf k→∞ F ε k (u k , z k , M; Ω) ≥ U |∇u| 2 dx = Ω |∇u| 2 dx.
In particular, Ω |∇u| 2 dx is finite. As u belongs to SBV(Ω), according to Theorem 1.1, there exists a pairwise disjoint family (C i ) i∈N of C 1 compact manifolds and M ∈ Ω such that:

J u = N ∪ i∈N C i , H n-1 (N ) = 0.
As lim inf F ε k (u k , z k , M; Ω) is finite, First Step and Theorem 1.3 imply that H n-1 (J u ) is also finite. According to ellipticity inequality (2.1), we deduce that Ju Mν u , ν u 1/2 dH n-1 is finite. Then, for a fixed δ > 0, there exists N ∈ N such that 

Ju\ N i=1 Ci Mν u , ν u 1/2 dH n-1 ≤ δ. ( 3 
y ∈ B(x, r) ∩ K ⇒ M(x)ν u (x) M(x)ν u (x), ν u (x) 1/2 - M(y)ν u (y) M(y)ν u (y), ν u (y) 1/2 ≤ δ. (3.24)
As a consequence of Besicovitch Covering Theorem (2.18 of [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]), there exists a countable, pairwise disjoint, collection of balls ( B j ) j∈ Ĩ satisfying (3.24) such that, for any j ∈ Ĩ, it satisfies

B j ⊂ K τ , diam( B j ) ≤ δ, H n-1   K \ j∈ Ĩ B j   = 0.
For any j ∈ Ĩ, we fix xj ∈ B j . According to First Step, with A = B j , a = xj and ν = ν u (x j ), we get

lim inf k→∞ F ε k (u k , z k , M; B j ) ≥ C(δ) Ju∩ Bj M(x j )ν u (x j ), ν u M(x j )ν u (x j ), ν u (x j ) 1/2 dH n-1 .
For any x ∈ B j ∩ K, we have

M(x j )ν u (x j ), ν u (x) M(x j )ν u (x j ), ν u (x j ) 1/2 -M(x)ν u (x), ν u (x) 1/2 ≤ M(x j )ν u (x j ) M(x j )ν u (x j ), ν u (x j ) 1/2 - M(x)ν u (x) M(x)ν u (x), ν u (x) 1/2 , ≤ δ.

It gives

Bj ∩K M(x j )ν u (x j ), ν u M(x j )ν u (x j ), ν u (x j ) 1/2 dH n-1 ≥ Bj ∩K Mν u , ν u 1/2 dH n-1 -δH n-1 ( B j ∩ K).
As lim inf F ε k (u k , z k , M; • ) is supperaddditive and non decreasing, we have 

lim inf k→∞ F ε k (u k , z k , M; K τ ) ≥ j∈ Ĩ lim inf k→∞ F ε k (u k , z k , M; B j ), ≥ j∈ Ĩ C(δ) Bj ∩K Mν u , ν u 1/2 dH n-1 -δH n-1 ( B j ∩ K) , ≥ C(δ) ∪j Bj ∩K Mν u , ν u 1/2 dH n-1 -δH n-1 (∪ j B j ∩ K) . As L n (K \ B j ) = 0, we get lim inf k→∞ F ε k (u k , z k , M; K τ ) ≥ C(δ) K Mν u , ν u 1/2 dH n-1 -δH n-1 (K) . ( 3 
F ε k (u k , z k , M; Ω) ≥ lim inf k→∞ F ε k (u k , z k , M; K τ ) + lim inf k→∞ F ε k (u k , z k , M; Ω \ K τ ), ≥ C(δ) K Mν u , ν u 1/2 dH n-1 -δH n-1 (K) + Ω\Kτ |∇u| 2 dx.
According to (3.22) and (3.21), we have

lim inf k→∞ F ε k (u k , z k , M; Ω) ≥ C(δ) Ju Mν u , ν u 1/2 dH n-1 -δ -δH n-1 (K) + Ω |∇u| 2 dx -δ. Letting δ → 0 + concludes the proof lim inf k→∞ F ε k (u k , z k , M; Ω) ≥ Ju Mν u , ν u 1/2 dH n-1 + Ω |∇u| 2 dx.

The inequality for the higher Γ-limit

In this section we prove the upper inequality of Γ-convergence, that is ii) of Theorem 3.2. Let u ∈ B(Ω) ∩ L ∞ (Ω) and M ∈ W 1,n+α (Ω; G) be fixed. It is sufficient to prove that there exists a sequence (

u k , z k ) k ⊂ D n (Ω) such that (u k , z k ) k converges to (u, 0) almost everywhere, (u k ) k is bounded in L ∞ (Ω) and lim sup k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx + Ω ε k M k ∇z k , ∇z k + z 2 k 4ε k dx ≤ Ω |∇u| 2 dx + Ju Mν u , ν u 1/2 dH n-1 .
We first prove a weaker result, where Ju Mν u , ν u 1 2 dH n-1 is replaced by its approximation with a Minkowski content. Then, with Theorem 1.4, we extend this result to the general setting.

Approximation with anisotropic Minkowski content

We set

F ε k (u, z, M) = Ω |∇u| 2 (1 -z 2 ) 2 dx + Ω ε k M∇z, ∇z + z 2 4ε k dx
and we prove the following Proposition 3.5. Assume that the conditions of Theorem 3.1 are satisfied. For u ∈ SBV(Ω) ∩ L ∞ (Ω) and M ∈ W 1,n+α (Ω; G), there exists a sequence

(u k , z k ) k ⊂ D n (Ω) such that (u k , z k ) k converges to (u, 0) almost everywhere (u k ) k is bounded in L ∞ (Ω) and lim sup k→∞ F ε k (u k , z k , M) ≤ Ω |∇u| 2 dx + M M (J u ),
where M M is defined in (1.3).

Proof. Without loss of generality, we may assume that |∇u| ∈ L 2 (Ω) and M M (J u ) < +∞, otherwise the result is obvious. If u ∈ W 1,2 (Ω), then J u = ∅ and the stationary sequence

u k = u, z k = 0 is a solution. If u ∈ W 1,2 (Ω), then J u = ∅ and (1 -z 2 k ) 2
has to be infinitesimal near of J u . For ρ > 0, we set (J u ) ρ = {x : d Ju φ (x) < ρ}. We separate Ω in three parts:

(J u ) b k , (J u ) a k +b k \ (J u ) b k , Ω \ (J u ) a k +b k with a k = -4ε k ln(ε k ), b k = ε 2 k . (3.26) Let Ψ k ∈ C ∞ 0 (Ω) such that Ψ k = 1 in (J u ) b k 2 and Ψ k = 0 in Ω \ (J u ) b k . We set u k = (1 -Ψ k )u and then u k = u in Ω \ (J u ) b k . As (b k ) k converges to 0 then u k converges to u almost everywhere. We set z k = 1 in (J u ) b k and z k = ε 2 k in Ω \ (J u ) a k +b k . In (J u ) a k +b k \ (J u
) b k we adopt the following construction: we introduce

θ k (t) = ε 2 k exp t 2ε k and we set zk (t) =    1 ∀t ∈ [0; b k ], θ k (a k + b k -t) ∀t ∈]b k ; a k + b k ], ε 2 k ∀t ∈]a k + b k ; +∞[. (3.27)
This is a continuous and decreasing function defined on [0; +∞[, moreover, for any

t ∈]b k ; a k + b k [, it satisfies ε k (z k (t)) 2 = (z k (t)) 2 4ε k . (3.28) We set z k = zk • d Ju φ . As z k is constant in (J u ) b k ∪ (Ω \ (J u ) a k +b k ), we have F ε k (u k , z k , M) = Ω\(Ju) a k +b k |∇u| 2 (1 -ε 4 k ) 2 dx + (Ju) a k +b k \(Ju) b k |∇u| 2 (1 -z 2 k ) 2 dx + (Ju) a k +b k \(Ju) b k ε k M∇z k , ∇z k + z 2 k 4ε k dx + ε 3 k 4 L n (Ω \ (J u ) a k +b k ) + 1 4ε k L n ((J u ) b k ) (3.29)
As |∇u| ∈ L 2 (Ω) and (a k + b k ) k converges to 0, the first term of (3.29) converges to Ω |∇u| 2 dx. As z k L ∞ ≤ 1, the second term converges to 0. As Ω is a bounded domain, the fourth term converges to 0. As M M (J u ) < +∞, there exists (ω k ) k a sequence which converges to 0 + such that

L n ((J u ) b k ) ≤ 2b k (M M (J u ) + ω k ) (3.30)
and then the fifth term is lower than 1 2 ε k (M M (J u ) + ω k ). So, the fifth term converges to 0. To compute the limit of (F ε k (u k , z k , M)) k , it remains to study the convergence of

A k (z k ) = (Ju) a k +b k \(Ju) b k ε k M∇z k , ∇z k + z 2 k 4ε k dx.
Ellipticity inequality (2.1) yields

|d Ju φ (x) -d Ju φ (y)| ≤ d φ (x, y), ≤ λ -1 2 |x -y|.
So, d Ju φ is Lipschitzian and Rademacher Theorem ensures that d Ju φ exists for almost every x ∈ Ω, in the sense of the approximate differentiability 3.2. Thus, for almost every

x ∈ (J u ) a k +b k \ (J u ) b k , we have ∇z k = z k • d Ju φ ∇d Ju φ . It gives A k (z k ) = (Ju) a k +b k \(Ju) b k ε k (z k • d Ju φ ) 2 M∇d Ju φ , ∇d Ju φ + (z k • d Ju φ ) 2 4ε k dx.
In [12], Theorem 3.2, it is proved that M(x)∇d Ju φ (x), ∇d Ju φ (x) = 1 for almost every x. So, we may write

A k (z k ) = (Ju) a k +b k \(Ju) b k ε k (z k • d Ju φ ) 2 + (z k • d Ju φ ) 2 4ε k M∇d Ju φ , ∇d Ju φ 1/2 dx.
We may apply Proposition 1.2 with Φ = φ and p = d Ju φ , it gives

A k (z k ) = a k +b k b k ε k z k (t) 2 + zk (t) 2 4ε k Ω MD1 (Ju)t , D1 (Ju)t 1/2 dt. (3.31) We set          H M (t) = Ω MD1 (Ju)t , D1 (Ju)t 1/2 , A M (s) = s 0 H M (t)dt.
Applying another time Proposition 1.2 gives 

A M (s 2 ) -A M (s 1 ) = s2 s1 Ω MD1 (Ju)t , D1 (Ju)t 1/2 dt, = (Ju)s 2 \(Ju)s 1 M∇d Ju φ , ∇d Ju φ 1/2 dx, = L n ((J u ) s2 \ (J u ) s1 ). So, A M ∈ W
A k (z k ) = a k +b k b k ε k z k (t) 2 + zk (t) 2 4ε k H M (t)dt, = a k +b k b k zk (t) 2 2ε k H M (t)dt, = (a k + b k ) 2 2ε k A M (a k + b k ) - b k 2ε k A M (b k ) - 1 ε k a k +b k b k z k (t)z k (t)A M (t).
The first term obviously converges to 0. As for (3.30), we have

A M (b k ) ≤ 2b k (M M (J u ) + ω k )
and then the second term converges to 0 too. As s → A M (s) is non decreasing, then

A M (t) ≤ 2t(M M (J u ) + ω k ) for any t ∈ [b k ; a k + b k ].
For the last term, we apply another time this inequality, it gives

- 1 ε k a k +b k b k z k (t)z k (t)A M (t)dt ≤ - (M M (J u ) + ω k ) ε k a k +b k b k 2tz k (t)z k (t)dt. (3.32)
Integrating by parts yields

a k +b k b k 2tz k (t)z k (t)dt = (a k + b k )z k (a k + b k ) 2 -b k zk (b k ) 2 - a k +b k b k zk (t) 2 dt. (3.33)
According to the definitions of (a k , b k , z k ) (3.26) and (3.27), we have

(a k + b k )z k (a k + b k ) 2 -b k zk (b k ) 2 = o(ε k ) (3.34)
and equation (3.28) gives 

a k +b k b k zk (t) 2 dt = 2ε k a k +b k b k |z k (t)|z k (t)dt, = ε k (1 -ε 2 k ). ( 3 
F ε k (u k , z k , M) ≤ Ω |∇u| 2 + M M (J u ).
To conclude the proof, it suffices to notice that (u k , z k ) k ⊂ D n (Ω).

Approximation in the general setting

The goal of this section is to replace M M (J u ) by Ju Mν u , ν u 

(u k , z k ) k ⊂ D n (Ω) such that (u k , z k ) k converges to (u, 0) almost everywhere (u k ) k is bounded in L ∞ (Ω) and lim sup k→∞ F ε k (u k , z k , M) ≤ F (u, M).
To prove this result, we need to introduce the following Definition 3.2. Let F(Ω) be the set of functions u ∈ SBV(Ω) for which, if F (u, M) < +∞, then there exists a sequence

(u k ) k ⊂ SBV(Ω)∩L ∞ (Ω) converging almost everywhere to u, lim k→∞ F (u k , M) = F (u, M) and ∀k ∈ N, M M (J u k ) = Ju k Mν u k , ν u k dH n-1 .
Proof. Assume F(Ω) = SBV(Ω). According to Proposition 3.5, by a diagonal extraction we may exhibit a sequence (u k , z k ) k ⊂ D n (Ω) such that (u k , z k ) k converges to (u, 0) almost everywhere and lim sup k→∞

F ε k (u k , z k , M) ≤ F (u, M).
So, to prove the upper inequality of Γ-convergence, it suffices to show that F(Ω) = SBV(Ω). We divide the proof in three Claims. By a direct diagonal extraction process, we have the following. For u ∈ SBV(Ω) and N > 0, we denote by u N the truncated function defined in (3.1). So, (u N ) N converges to u almost everywhere for N → ∞. Moreover, Theorem 1.2 gives

Du N = 1 -N ≤u≤N ∇uL n + ((u N ) + -(u N ) -)ν u H n-1 J u .
and then we deduce lim N →∞ F (u N ) = F (u, M). According to Claim 1, it suffices to prove that SBV(Ω) ∩ L ∞ (Ω) ⊂ F(Ω). We may assume that F (u, M) < +∞, otherwise the result is ensured. Let us extend M and u in Ω = Ω ∪ U as in Proposition 1.1, so we have

H n-1 (J u ∩ ∂Ω) = 0.
With the same arguments as for Theorem 2.1, we may prove that there exists v k ∈ SBV(Ω ) a minimizer of the following functional:

E u,k (v) = k Ω (v -u) 2 dx + Ω |∇v| 2 dx + Jv Mν v , ν v 1/2 dH n-1 .
In particular, E u,k (v k ) ≤ E u,k (u) for any k ∈ N, gives 

M M (J v k ) = Jv k Mν v k , ν v k 1/2 dH n-1 .
We introduce the sequence of positive Radon measures (µ k ) k and µ defined for any B ∈ B(Ω ) by

µ k (B) = B |∇v k | 2 dx + Jv k ∩B Mν v k , ν v k 1/2 dH n-1 , µ(B) = B |∇u| 2 dx + Ju∩B Mν u , ν u 1/2 dH n-1 .
With the same arguments as for Theorem 2. follows by the definition of v k . According to [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF], Proposition 1.80, the measures (µ k ) k weakly converge to µ. Thus, (µ k (B)) k converges to µ(B) if µ(∂B) = 0, and then (µ k (Ω)) k converges to µ(Ω), that is (F (v k )) k converges to F (u, M). According to Claim 1, we deduce that u ∈ F(Ω).

Proof of Theorem 3.1 ii)

Proof. With the same arguments as for Theorem 3.1 i), for any ε > 0, there exists (u ε , z ε ) a minimizer of E ε (•, •, M). According to (3.3), with N ≥ g L ∞ (Ω) , we have

L n ({x ∈ Ω : |u ε (x)| > N }) > 0 ⇒ E ε (u N ε , z ε , M) < E ε (u ε , z ε , M).
We deduce that u ε L ∞ (Ω) ≤ N for any ε > 0. For ω ε = u ε (1 -z 2 ε ), we get

∇ω ε = ∇u ε (1 -z 2 ε ) -2u ε z ε ∇z ε .
It yields 2 (E ε (u ε , z ε , M))

Ω |∇ω ε |dx ≤ L n (Ω) 1 2 Ω |∇u ε | 2 (1 -z 2 ε ) 2 dx
1 2 + 1 + 1 λ E ε (u ε , z ε , M).
According to Proposition 3.6, we deduce that (E ε k (u ε k , z ε k , M)) k is a bounded sequence. So, (ω ε k ) k is bounded in BV(Ω) and there exists a subsequence, still denoted by (ω ε k ) k which converges almost everywhere to ω ∈ BV(Ω). As Ω z 2 k dx ≤ ε k E ε k (u ε k , z ε k , M), then (z k ) k converges to 0 in L 2 (Ω) and there exists a subsequence, still denoted by (z k ) k , which converges almost everywhere to 0. As ω ε k = u ε k (1 -z 2 ε k ), then (u ε k ) k converges almost everywhere to u ∈ B(Ω) ∩ L ∞ (Ω). With the same arguments as for Theorem 2.1, E(•, M) admits a minimizer v ∈ SBV(Ω) and v ∈ L ∞ (Ω). According to Theorem 3.2 ii), there exists (v ε k , zε k ) k ⊂ D n (Ω) such that (v ε k , zε k ) k converges to (v, 0) almost everywhere and lim sup k→∞

E ε k (v ε k , zε k , M) ≤ E(v, M).
According to Theorem 3.2, i), we get

lim inf k→∞ E ε k (u ε k , z ε k , M) ≥ E(u, M). As (u ε k , z ε k ) is a minimizer of E ε k , we have ∀k ∈ N, E ε k (v ε k , zε k , M) ≥ E ε k (u ε k , z ε k , M).
We conclude that E(v, M) ≥ E(u, M) and then (u, M) is also a minimizer of E.

Appendix

Proof of Lemma 3.1

Proof. As Ω is bounded, then W 1,2 (Ω) ⊂ SBV(Ω) and then, according to Calderón-Zygmund Theorem (3.83 in [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF]), the derivative in the Sobolev sense is equal to the approximate differential for almost every point in Ω. Moreover, according to Theorem 3.107 of [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF], for v ∈ SBV(Ω) and ν ∈ S n- exist for any x ∈ I. As J is finite, then W 1,2 (I \ J) ⊂ W 1,1 (I \ J). According to the jump formula, it gives that Du ∈ M(I) and we have the decomposition Du = ∇uL 1 + (u(x + ) -u(x -))H 0 J.

So, we can conclude that u ∈ SBV(I) and J u ⊂ J.

Proposition 1 . 1 .

 11 Let Ω be an open and bounded domain satisfying (R) and Ω = U ∪ Ω. For u ∈ BV(Ω), we consider an extension in Ω by the following way

  according to Ellipticity condition (2.1), we have lim inf k Ω M k ∇z k , ∇z k dx = +∞ and the result of Proposition 3.3 is ensured. So, we may assume that lim inf Ω |∇z k | 2 dx < +∞.

Proposition 3 . 4 .

 34 Let I ⊂ R be an open interval and u ∈ B(I). If G -(u; I) < ∞, then u ∈ SBV(I) and

1 0H 0

 10 ({y ∈ B η (x) : c k (y) = t})dt ≤ 2C. (3.15)

  .21) We set K = N i=1 C i and K τ = {x ∈ Ω : dist(x, K) < τ }. As Ω |∇u| 2 dx is finite, there exists τ > 0 such that Ω\Kτ |∇u| 2 dx ≤ δ. (3.22)With the same arguments as before, we getlim inf k→∞ F ε k (u k , z k , M; Ω \ K τ ) νu(x),νu(x) 1/2 is continuous in K, for any x ∈ K there exists r > 0 such that

1 2 5 . 3 . 6 .

 1536 dH n-1 in Proposition 3.Proposition Assume that the conditions of Theorem 3.1 are satisfied. For u ∈ SBV(Ω) ∩ L ∞ (Ω) and M ∈ W1,n+α (Ω; G), there exists a sequence

Claim 1 :

 1 If u ∈ SBV(Ω) and (u k ) k ⊂ SBV(Ω) satisfy i) (u k ) k ⊂ F(Ω), ii) lim k→∞ F (u k , M) = F (u, M) and F (u, M) < ∞,iii) (u k ) k converges to u almost everywhere, then u ∈ F(Ω).

Claim 2 :

 2 It suffices to prove that SBV(Ω) ∩ L ∞ (Ω) ⊂ F(Ω).

Claim 3 :

 3 Let u ∈ SBV(Ω) ∩ L ∞ (Ω), we have u ∈ F(Ω).

  -u) 2 dx ≤ F (u, M) and then (v k ) k converges to u almost everywhere. As u ∈ L ∞ (Ω), Theorem 1.4 gives

1 ,

 1 F is lower semi-continuous in SBV, for any openA ⊂ Ω , it gives lim inf k→∞ µ k (A) ≥ µ(A).The inequality lim sup k→∞ µ k (Ω ) ≤ µ(Ω )

Ω 2 ε 2ε 1 2 and b = ε 1 2

 221 |∇z ε |z ε dx.(3.36)Applying the inequality 2ab ≤ a 2 + b 2 with a = z |∇z ε | gives Ω |∇z ε |z ε dx ≤ Ω ε|∇z ε | 2 dx + to ellipticity inequality (2.1), we get Ω ε|∇z ε | 2 dx ≤ 1 λ E ε (u ε , z ε , M). (3.38) By (3.36), (3.37) and (3.38), we deduce Ω |∇ω ε |dx ≤ L n (Ω)

1

 1 

v 2 x 4 . 2

 242 + |∇v x (t)| 2 dtdx < ∞, ⇒ v x ∈ W 1,2 (Ω x )for a.e. x ∈ Ω. Applying this property with v = z and v = u(1 -z 2 ) gives the result of Lemma 3.1. Proof of Lemma 3.2 Proof. For ]a; b[⊂ I \J, according to Theorem 2.8. of [7], there exists a unique function ũ ∈ C([a; b]) such that u(x) ∈ ũ(x) for L 1 -a.e. x ∈ I and then u(x -) := lim y→x - u(y) and u(x + ) := lim y→x + u(y)