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Abstract

A new model is introduced for the segmentation problem of thin structures, like tubes or
thin plates, in an image. The energy is based on the Mumford-Shah model and it introduces as
a new variable a continuous and anisotropic perturbation of the Hausdorff measure. A relaxed
formulation in the special space of functions with bounded variations is given and the existence of
a solution is established. In order to get an energy more adapted for numerics, an approximation
with I'-convergence and its complete proof are given.

Introduction

This work is motivated by the problem of segmentation of sets strongly elongated in some directions
as, for example, tubes or thin plates in an image of dimension n € {2;3}. Let Q C R™ be an open
bounded domain and g € L*°(£2). We denote by H"~! the (n — 1)-dimensional Hausdorff measure.
The model we introduce in this paper consists in minimizing

(u— g)*dx + /

O\K

£(u, K, M) = /

|Vu|2dx+/ <My,y>1/2dw—1+/ IDM"+dz (0.1)
O\K K Q

where K is compact and H™ !-rectifiable with unitary normal vector v, a > 0 and M takes its
values in a compact subset G of symmetric definite positive matrices. The associated minimizing
problem is

(P): min{&(u, K,M): Kcompact and H" !-rectifiable, u € W'?(Q\ K), M € Wh"T*(Q; G)}.

If we consider M = Id,,, we recognize the well-known Mumford-Shah model (see [1] for the seminal
paper). In this sense, our model is the anisotropic version of the Mumford-Shah energy.

At any point x € K, the directions associated to the main eigenvalues of M(z) must represent
the directions of elongation of the set K. For example, if we want to detect a tube in a two-
dimensional image, we may consider G as the subset of symmetric definite positive matrices with
fixed eigenvalues {1; u}, such that 1 < u. For the detection of thin plates in a three dimensional
image, we may consider the fixed eigenvalues {1;u;pu}. By this way, the third term of (0.1) will
force v to be in the same direction as the first eigenvector and then K to be elongated in the
orthogonal directions. Moreover, we set o > 0 in the last term of (0.1) in order to force M to be
at least continuous (a-Hoélder), which corresponds to the assumption that the image g admits a
local geometrical coherence.

This model does not consist in the detection of sets with codimension higher than one, as it
has been done in [2] and [3] for vector-valued functions. In our case, the sets we want to detect
are with (small) positive volume.

In order to prove that (P) is a well posed problem, for u € SBV(Q2), we introduce

E(u,M) :/

(u—g)de-i-/ |Vu|2d:v+/ <Muu,uu>1/2d7{"—1+/ [DM]"t*dz  (0.2)
Q Q Ju Q

where Vu is the derivative of u with respect to the Lebesgue measure, J,, is its jump set and v, is
unitary and orthogonal vector to .J,. The associated minimizing problem is

(P : min{E(u, M): u € SBV(2),M € Wl’"+a(ﬂ; )},



We verify that (P’) admits a solution and, with a regularity result of the jump set of a minimizer,
which has been established in a joint paper [4], we prove that a minimizer of (P’) naturally provides
a solution for (P). In order to get a functional more adapted for a numerical implementation, we
will approximate (0.2) by a family (FE.). which only depends on the integration with respect to
the Lebesgue measure. More precisely, we set

2
E.(u, 2, M) :/ (u—g)Qdm+/ V(1 —22)2dm+/ <5<Mw,v2> + ze) dx+/ | DM+ da.
Q Q Q

Q

As it has been done in [5] for the initial Mumford-Shah model, the function z takes its values
in [0;1] and plays the role of a control on the gradient of u. The approximation takes place for
€ — 07 in the sense of the I'-convergence.

In section 1 we recall some results on spaces of functions with bounded variation and we
mention a regularity result that we have proved in a previous article. In section 2, we prove that
the problem admits a solution. Section 3 in completely devoted to the approximation process. We
introduce the family of functionals (E.). with their domains and we give the complete proof of
I-convergence to E when ¢ — 0F.

1 Functional framework and regularity result

We adopt the notations:
e (v1,vs) € R for the canonical scalar product of vy, vy € R™,
o |v] for the euclidean norm of v € R",
o |IM|| for the induced norm of M € M, (R),
. A?;llvi € R”™ for the canonical vectorial product of vq,...,v,_1 € R™,
e dist for the euclidean distance in R™,
e ST(R) € M, (R) for the subset of symmetric definite positive matrices,
o GL,(R) C M, (R) for the subset of invertible matrices,
e 0,(R) C GL,(R) for the subgroup of orthogonal matrices,
o B(Q) the class of Borelian subsets of €,
o B(Q) for the space of Borelian functions defined in €,
e L" for the Lebesgue measure in R™,
o H" for the k-dimensional Hausdorff measure,

M(Q;R™) for the space of vectorial Radon measures defined in Q@ C R™,
1
. ?{xf(x)dx = A /A f(z)dx, for A € B(Q?) and L"(A) > 0.
Let f be a function defined on open sets, we adopt the following vocabulary:

o [ is superadditive if f(AU B) > f(A) + f(B) for any disjoints sets A, B,
o fis non decreasing if f(A) < f(B) for any sets A, B such that A C B.

1.1 Functional spaces

We assume throughout this paper that the following constraint is satisfieded by Q which is obviously
satisfied in the context of applications in Image Processing because the domain is a parallelepiped.

Definition 1.1. We say that Q C R™ satisfies the reflexion condition (R) if Q is an open and
bounded domain with Lipschitz regular boundary 0S2 such that there exists a neighborhood U of OS2
and a bi-Lipschitzian homeomorphism ¢ : UNQ — U \ Q such that, for any x € 052, we have

lim p(y) = =.

Yy—x



For the classical definitions and results on BV and SBV we refer to [7]. In particular, for the
definition of weak* convergence in BV, we refer to [7] (Definition 1.58). However, for the need of
notations, we mention that, if u € BV(Q), then its derivative Du belongs to the space M(£2;R™)
of vectorial Radon measure. Moreover, if v € SBV(Q) then the Cantor part of Du is null and we
obtain

Du=Vu-L"+ (ut —u v, - H" 'y,

where Vu is the density of Du with respect to the Lebesgue measure £, u* (resp. u~) is the
approximate upper (resp. lower) limit and H"~!LJ, is the restriction of H"~! to its jump set J,.

Now, we focus on some results which will be useful throughout the paper. First, we need the
rectifiability of J,,.

Theorem 1.1. Let u be a given function in BV(Q2). There exists a countable family (C;)ien of
compact C*-hypersurfaces such that

Ju=NU <Ucl>

ieN
where H" "1 (N) = 0.
Then, we will need the following chain rule ([7], Theorem 3.99).

Theorem 1.2. Let uw € SBV(Q) and let f : R — R be a Lipschitz function. Then, v = fou
belongs to SBV(QY) and

Dv = f'(w)Vu-L" + (f(uh) — f(u )y - H" Ty (1.1)

The following is a straightforward consequence of [7], Corollary 3.89.
Proposition 1.1. Let Q be an open and bounded domain satisfying (R) and Q' = U UQ. For
u € BV(Q), we consider an extension in ' by the following way
VeeU\Q, u(z)=u(p (x)),
Then, we have
H (T, NOQ) = 0.
We also need slicing results.

Definition 1.2. Let v € S™! be fired. We denote by I1,, the hyperplane
{r eR": z-v=0}.

If v € 11,,, we set
Q = {teRiz+treQ},
Q, = {$EHVQx7£®}

For any function u defined on Q and any x € 0, we set
(Wy:Qy — R
t — u(x+tv).
The following Theorem is proved in [8].

Theorem 1.3. Let u € L>®(Q) be a function such that, for all v € S*71,
i) (u), € SBV(Q) for H' ™t a.e. x € Q,,
ii) [/ |V (u),|dt + HO(J(u)m)] dH™H(x) < +o0;
Q.

Qg

then, uw € SBV(Q) and H""(J,) < +oo. Conversely, let u € SBV(Q) N L>®(Q) be such that
H"1(J,) < +o0o. Then i) and ii) are satisfied. Moreover, we have

iii) (Vu(x +tv),v) = V(u).(t), for a.e. t € Q, and H" '-a.e. x € Q,,
' n—l = 0 n—1
) /Ju (U, VYdH" () = /Qu HO(Jwy, ) AH" ().



We need a generalization of the Coarea formula. For that, we introduce the following
Definition 1.3. The function f : Q x R™ — RT is sublinear with respect to the second variable,if
i) flx,vi+v2) < flz,vq) + f(z,v2) for any (z,vi,va) € A X R” x R",
ii) f(x,tv) =tf(z,v) for any (z,v,t) € QA x R" x R*.

Suppose that @1 is a Radon measure and ps is a vectorial Radon measure on 2. According to
Besicovitch derivation Theorem,
LB )

r—0 py (B(z, 7))

exists and is finite for py almost every x, we denote by 352 (z) this limit when it exists. We recall
1

that us is absolutely continuous with respect to py if p2(A) = 0 whenever p;(A) = 0. When this
holds, we write ps < 1. We consider the convex functional defined on the space M(;R™) by

Dy € M(OQ;R™) = / f (337 duz) dpq, (1.2)
Q dpg

where p; is a positive measure such that pg < pq. It is shown in [9] that the integral in (1.2) does
not depend on the choice of ;. For that reason, we will write it in the condensed form

@Wﬂzéf@wﬂ

We give a variant of the Coarea formula extended to the sublinear functionals which can be
found in [10].

Proposition 1.2. Let ®(z,s,v) a Borel function of Q x R x R™ which is sublinear in v. Let p
be a Lipschitz continuous function on Q and, for t > 0, we set Sy = {x € Q;p(x) < t}. Then, for
almost all t € R, 1g, belongs to BV() and we have

/‘I)(x,p,Dp)dx:/dt/@(z,t,Dlgt).
Q R Q

1.2 Minkowski content and regularity result for the jump set
For M : Q — S/(R) and (z,v) € R" x R™, we set
$(a,v) = (M~} (z)v,v)"/?,

This functional is a Riemannian metric, so, for S C Q2 and z,y € 2, we may define its associated

distance as
' dy v € WH([0;1;R™)
dist = inf — | dt: Y ’
1S ¢(1'7y) n {/0 @ <'Ya dt) ’Y(O) _ 37,’}/(1> =y }7
disty(z,S) = inf{disty(x,y): y € S}.

The associated anisotropic Minkowski (n — 1)-dimensional upper and lower contents are defined
by the limits

Mig(S) = lim sup £ 42 Asto@ 8) <p}) = gy  pim e U2 disto (2. 5) < p)
p—0F 2p p—0+ 2p

(1.3)
If M34(S) = M, (S), we call their common value the (n — 1)-dimensional anisotropic Minkowski
content My1(S). In [4], we have proved the following

Theorem 1.4. Let M : Q — ST(R) be continuous, h € L=(Q), v > 0 and u € SBV(Q) a
minimizer of

{E%h’M(v) = ’y/ (v—h)*de+ [ |Vv|?dz —|—/ (Muy, v,)2dH v e SBV(Q)} .
Q Q Ty
Then, we have

anl(Tu\ Ju) = O’ MM(Ju) = /J <Ml/v, Vﬂ>1/2dHn71.



2 Existence result for (P)

In order to prove that (P) admits a solution, we prove that (P’) is well posed and that it provides
a minimizer for (P).

2.1 Existence result for the relaxed problem (P’)
The main result of the section is the following
Theorem 2.1. The problem (P') admits a solution.

The proof is a straightforward consequence of Lemmas 2.1 and 2.2.

Lemma 2.1. Let (ug)r C SBV(2) N L>®(Q) and (My), C WE*(Q; G) be such that

sup E(ux, My) < 0.
k

Then, there exist subsequences, still denoted by (ux)r and (My)k, and (u,M) € SBV(Q)) x
Whnte(Q: G), such that (ug)i is weakly* convergent to u in SBV(Q) and (My,)y is weakly conver-
gent to M in Whnte(Q).

Proof. As G C ST (R) is compact, there exists 0 < X\ < A such that, for any (M,v) € G x R™, the
following ellipticity condition is satisfied

AP < (Mv,v) < Alv]. (2.1)
It yields
/ Vg |2dz + 1" (J,,) < max {1; )\_1/2} B (ug,, M) (2.2)
Q

As E(ug,My) is bounded, Theorem 4.8. in [7] implies that there exists a subsequence (ug)x
weakly* convergent in BV(Q2) to u € SBV(Q). According to (2.1), we have

”M”rvl[;rl?iWa(Q) < Ate/2 4 E(ug, My),

so (My)x is a bounded sequence of W1 +%(Q) and then there exists a subsequence which weakly
converges to M € Whnte(Q). It suffices to verify that M takes its values in G, which is true
because W +(Q) is injected in a continuous way into the space of continuous function and G is

closed.
O

Lemma 2.2. Let (ug)r C SBV(Q) be weakly® convergent to u € SBV(Q) and (M) be weakly
convergent to M in WHnT(Q). Then, we have

E(u,M) < liminf E(u, Mg).
k—o00

Proof. We may assume that liminf E(ug, M) < 400, otherwise the result is ensured. Weak*
convergence in SBV(Q) and weak convergence in W17 +(Q) give

lim inf (uk—g)de—i—/ |\DMk|\”+adx§/(u—g)2dx+/ | DM||"T*dz. (2.3)
Q Q Q

k—o0 Q

According to inequality (2.2), [i, |Vug*dz +H""1(Jy,) is bounded with respect to k. With [7],
Theorem 4.7., we deduce that

/ Vul?de < liminf / Vuplde,  HPN(J) < liminf M (). (2.4)
Q k—oc0 Q k—o0
According to (2.3) and (2.4), it remains to prove that

/ <M1/u,1/u>1/2d7-[n71 < liminf/ (Mkyuk,yuﬁlﬂd?-l”*l.
T J

k—o0
Jug



This result is proved in [7], Theorem 5.2., for an homogeneous and fixed media (if My, does not
depend on z €  nor in k). In order to generalize this result, we introduce a piecewise constant
approximation of M. For any vector e; € S*~! of the canonical basis, we set

I = {z € Q: (x,e;) = t},
N} ={teR: H" 1 (J,NIL}) >0} U {t € R: Ik € N,H""!(J,, NII}) >0} .

As H"1(J,) < oo (2.4) and H"1(J,,) < oo for any k € N, then N is at most countable. We
fix n > 0 arbitrary small. Intersecting 2 with disjoint cubes with edges orthogonal to the axes of
the canonical basis, there exists A a finite partition of Q which, for any A € A and for any k € N,
satisfies

diam(A4) <n,  H" Y J,NdA) =0,  H"'(J, NOA) =0. (2.5)

For any A € A, we fix one point 4 € A and we set M*(x) = M(z4) for any 2 € A. We have
the decomposition

/ (Myvy, , v, )/2dH Y = / ((Mkuuk,yuk>1/2 — (Muvy,,, I/uk>1/2) dH™

Juy, T,

+/J (<Myuml/uk>l/2 - <MAVUk7Vuk,>1/2) dHn_l (26)
uk

+ [ (MAvy, v )P

Ty,

In the three following Claim, we will estimate the limit of those three terms.

Claim 1:
lim ((Mkyuk, v, )2 — (Myuk,yuk>1/2> dH" 1 =0.

Uk

According to Ellipticity inequality (2.1), we have

‘<Mkl/uk71/uk>l/2 - <Ml/'uk7l/uk>1/2| <(Mk - M)Vukvyuk>|v

1
< -
- 2\5'

1
—— ||[Mg — M| L=
2\/x|| k HL

IN

and then

1
My, , Vo, )2 — (M, , v, VY2 [dH? ™ < ——
[ I 7 M) i <

As the inclusion WHnte(Q) ¢ L*°(Q) is compact and (My); weakly converges to M, then (M)
uniformly converges to M. Moreover, (H""!(Jy,,))x is bounded, it concludes the proof of the
claim.

M = M| o7 ().

Claim 2: The sequence

fim, (<Myuk’yuk>1/2 - <MAyuk; Vuk>1/2) dHn_l =0

n—0t J'“k

and the convergence takes place uniformly with respect to k € N.
For A € A and z € A, ellipticity inequality (2.1) gives

(ML (@) vy s v )2 = (M (@), v )P < () = M(za)l-

1
—|M
2v/A I
As M € Whnte(Q), there exist a constant C' > 0 such that, for any x € A, we have

[M(z) — M(za)| < Cn®.

6



It yields

/ ((Myuk,uuk)l/2 — <MAl/uk,l/uk>1/2> dH !
J.

Uk

As (H"1(Jy,))x is a bounded sequence, it concludes the proof of the claim.

Claim 3:
/ (MAv,, v, )2 dH™ ! < lim inf (MAv, v, )2 a1t
Ju

k—o0 Ju
k

We denote by A the interior of the set A. According to [7], Theorem 5.2., we have

/ 5 <M(1}A)Vu,yu)1/2d7-l"_1 < liminf/ . (M(wA)Vuk,Vuk>1/2dH”_l.
J J

WNA k—oo Jr,,nA

According to (2.5), the contribution of the boundaries is null, it gives

k—o0

/ (M (2 4) Vs v V2AH L < liminf/ (M (24, Vi, )/ 2dH Y
JuNA Ju, NA

and then

/ (M(4) v, v V2dH T < Zliminf (M (2 4) Vi vy, )/ 2dH L,
JuNA k— o0

AcA AcA JupNA

A

k—o0

< limian/ (M (2 4) Vs Vi, )/ 2dH L
AeA Juy,NA

As A is a partition of €2, it concludes the proof of Claim 3:

/ <MAl/u,I/u>1/2dan71 < liminf/ <MAVuk,1/uk>1/2d’H”71.
Ju J

k—o0

Let 6 > 0 be an arbitrary small number. With the same arguments as for Claim 2, we get

Cnaan—l (Ju)
< —F
2v/A

/ (<Myu7yu>1/2 _ <MAVu7Vu>1/2) dHn_l
Ju

So, according to Claim 2, there exists a partition 4 which satisfies

lim sup <9,

k—o0

up

/J ((Myuk,yuk>1/2 — <MAVukaVuk>1/2> dH !
é.

/ ((Myu, Vu>1/2 — (MAyu, Vu>1/2) dH 1 <
Ju

According to (2.6), Claim 1 and Claim 3, we have

/ (Mu,, 1/“>1/2d7-["71 < 260 + lim inf/ <Mk1/uk,yuk>1/2d7-["71.
T k—o0 Jup,
As § > 0 is arbitrary, it concludes the proof of Lemma 2.2. O

We now prove Theorem 2.1.

Proof. We denote by (ux, Mg)r C SBV(£2) a minimizing sequence for E. As g € L*°(Q), we set

=gl =) %ft < —llgllz= (>
p(t)=14 t if [t] < [lglle (), (2.7)
llgll Lo () if t > |||l o< (0)-



We denote v, = ¢ o ug. As the function ¢ is 1-Lipshitz, we may apply Theorem 1.2 and then
v € SBV(Q) N L () with the decomposition

Duy, = @' (ug) Vg - L7 + ((ul) — (g ) vy, - H* Ty,

For any k, it is easy to check that E(vg, My) < E(ug, M), so (vi, M)k is also a minimizing
sequence for E. According to Theorem 2.1, there exists v € SBV(2) and a subsequence, still
denoted (vy )y weakly* convergent to v. With Theorem 2.2, we have E(v, M) < liminf E(vy, M)
and then (v, M) is a minimizer of E.

O

2.2 Existence result for (P)

In this section we prove that the problems (P) and (P’) have common solutions and then (P) is
also well posed. First, we consider (u, K, M) in the domain of £. As in (2.7), we may define the
truncated function v = p(u) and then we have |[v — g| < |u — g| and |Vv| < |Vu|. In particular,
we get (v, K, M) < E(u, K,M). Thus, for any (us, Ky, M,) in the domain of £, we may assume
that u, € L= (Q\ K). On the other hand, in [7] (Proposition 4.4), is given the following

Proposition 2.1. Let Q C R"™ be open and bounded, K C R™ be closed, H" (K N Q) < oo and
ue L®(Q\ K)NWbHY(Q\ K). Then, we have u € SBV(2) and H" (S, \ K) = 0.

As Qis bounded and u, € W12(Q\K,), then we get u, € WHL(Q\K,). As fK* (M, v, V) /2dH 1 <
+00, then Ellipticity condition (2.1) gives H" (K, N Q) < oo. According to Proposition 2.1, we
deduce that u, € SBV(Q) and H" (S, \ K,) = 0. It yields

E(u*, M*) < 5(“*7 K*vM*)v

and then min F < min €. Conversely, according to Theorem 2.1, there exists a minimizer (u*, M*)
of E. In particular, with the notations of Theorem 1.4, u* is a minimizer of EX9M" and then

H 1 (Tar \ Jur) = 0.

So, we set K* = J,« and then K* is compact and H" !-rectifiable, 2\ K* is open, u* € W12(Q\
K*) and
E(u*,M*) = E(u*, K*,M").

We may conclude that min £ = min £ and their minimizers coincide. Moreover, we have

Proposition 2.2. Let u € SBV(Q) be a minimizer of (P), then u € C1(Q\ Jy)-

Proof. Let B,(z) C Q\ Jy; then u € W12(B,(z)) and it is a minimizer of the functional

IZ(v) = / (v— g)zdm +/ |Vv|2d:1:
Br(z) B,.(x)

among the functions v in u+ W, (B, (z)) and then classical regularity results give u € C!(B,(x)).
O

3 TI'-convergence result

This section is entirely devoted to the approximation process. In 3.1 we define the domain for F.
and give the main Theorem of this paper. In 3.2 we prove, for € > 0 fixed, that the minimization
of E. admits a solution. In 3.3, the most technical part of the paper, we give the complete proof
of I'-convergence. Finally, in 3.4, we conclude the proof of the main Theorem.

3.1 The functionals, their domain and the main Theorem

Formally, we define the functional E.(u,z, M) as

B (u, 2, M) = /

2
(u— g)zdx—t—/ |Vul?(1 — z2)2dx+/ (E(MVZ, Vz) + Z) dJ;—|—/ | DM|"+*dz.
Q Q Q de Q

8



As in [5], the function z : Q@ — [0;1] plays the role of control of the gradient of u. We need to
introduce a domain for E. that ensures the existence of a minimizer. If u, z € Wh? (), then this
functional is well defined. However, the coefficient (1 — 22)? removes the coercivity with respect
to u and the existence result can not be achieved according to the Sobolev norm. If, by addition,
u is bounded, we have

|V (u(1 - 2%))|? |Vu(l — 22) — 2uzVz|?

2|Vul*(1 = 22)? + 4|ul| < 0|V 2|

IN

According to ellipticity inequality (2.1), it gives
/Q IV (u(1 - 2%))]2dr < (2 + W) E.(u,z,M).
So, it is natural to set
D, () = {(u,2): u € B(Q), z.€ W(Q;[0;1]), YN e N aV(1-2%) e WH3(Q)},
where @ is the truncated function defined, for any z € Q, by

—N  ifu(x) <—N,
aV(x) =< w(x) if ju(z)] < N, (3.1)
N if u(x) > N.

Assuming (u, z) € D,,(Q) does not ensure that v € W"?(Q) and Vu can not be defined as the
gradient of u in the Sobolev sense. However, we can define Vu in the following sense.

Definition 3.1. Let u € LY(Q) and x € Q a Lebesgue point of u; we say that u is approzimately
differentiable at x if there exists L € R™ such that

lim [u(y) —u(z) — (L,y — z)|

r—0t B(z,r) r

dy = 0. (3.2)

If u is approzimately differentiable at x then L, uniquely determined by (3.2), is called the approz-
imate differential of u at x.

The following ensures that E.(u,z, M) is well defined for (u, z) € D,(Q).

Proposition 3.1. If (u,z) € D,(Y), then u is approximately differentiable in {x € Q: z(x) # 1}
and z is approximately differentiable in Q.

Proof. As Q is open and bounded then W'?(Q) ¢ BV(Q). According to Calderon-Zygmund (see
[7], Theorem 3.83), any function v € BV(2) is approximately differentiable at almost every point
r € Q. So, if (u,2) € D,u(Q), then z and u™ (1 — 22) are approximately differentiable almost
everywhere. The following properties are straightforward consequences of Definition 3.2

o if v1,v9 are approximately differentiable almost everywhere and v; € L*(2), then vyve is
approximately differentiable almost everywhere;
1

o if vy is approximately differentiable almost everywhere, then vy™" is also approximately
differentiable almost everywhere in {z: vy(z) # 0} (Proposition 3.71 in [7]).
We deduce that @ is approximately differentiable almost everywhere in {z: z(z) # 1}. This is
true for any NV € N, so this is also true for u. O
The main result of the paper is the following

Theorem 3.1. Let Q C R™ be an open and bounded domain which satisfies reflexion condition
(1.1), G be a compact subset of S, (R) and a > 0 be fivred. We consider H : B(Q) x Whn+e(Q; G) —
[0; +00] defined as

H(u,M):/ (u—g)2d$+/ | DMLt dx,
Q Q

E:B(Q) x Whnte(Q: G) — [0; +o0] defined as

H(u,M)—i—/ |Vu|2dx+/ My, v,)2dH"™Y if u € SBV(Q),
E(U,M) = @ Tu

400 otherwise



and E. : B(Q) x B(Q) x WHnT9(Q: G) — [0;+00] defined as

2’2

201 _ .2)\2 z .
B (M) — H(u,M)+/Q|VU\ (1-2%) dar:+/Q (e(MVz,VzH 4€> dr if (u,2) € Dn(9),

+00 otherwise.

Then, the following assertions are satisfied.

i) For any € > 0, E. admits a minimizer, denoted by (uc,z., M.). Moreover, we can assume
that ue(z) = g(x) on {z € Q: z.(x) = 1}.

ii) For any (ex)r converging to 07, there exists a subsequence, still denoted by (ex)k, and u €
SBV(Q) such that (ue,, 2e,, )i converges to (u,0) almost everywhere, (My)y converges weakly
to M and (u, M) is a minimizer of E.

We set
(P.) : Min{E. (u, z, M): (u,z, M) € B(Q) x B(Q) x W *(Q; G)},

Theorem 3.1 ) implies that, for e > 0 fixed, (P.) is a well posed problem. Theorem 3.1 4i) implies
that, up to the extraction of a subsequence, the sequence of solutions of (P, ) converge to a solution
of (P).

3.2 Existence result for (P.)

Theorem 3.1 ) is a straightforward consequence of Propositions 3.2 and 3.3.

Proposition 3.2. Let ¢ > 0 be fized. There exists (ug, zk, My)r a minimizing sequence of E.
such that (ug)k is a bounded sequence of L>°(Q), (uk, zk)r converges almost everywhere to (u,z) €
Dn(Q), u(z) = g(z) on {x € Q: z(x) = 1} and (My)y weakly converges to M € Whnte(Q; G).

To prove it, we need the following Lemma which proof is given in Appendix 4.1.
Lemma 3.1. For (u,z) € D,,(Q) and v € S"~! fived, we have (uy, 2;) € D1(Qy) for H"L-almost
every x € ), (see the notations of Definition 1.2), and

Vug(t) = (Vu(z+tv),v),
Ve (t) = (Vz(z +1tv),v),

for almost every t € Q, \ {s: z(x + sv) = 1}.

Now, we prove Proposition 3.2.

Proof. Let (ug, 2, My)x be a minimizing sequence of E.. We fix N > ||g]| L~ () and we consider the
truncated functions (u) )i defined in (3.1). As (ug, z1) € Dp(Q), we have wp (1—22) € WH2(Q). As
Q is bounded, then W"#(©2) € SBV(Q). According to Calderén-Zygmund Theorem ([7], Theorem
3.83), E{c\[ (1- z,%) is approximately differentiable almost everywhere. For the same reasons, 1 — z,%
is also approximately differentiable almost everywhere. According to Proposition 3.71 in [7], we
deduce that 7} is approximately differentiable almost everywhere in {z: z(z) # 1}. Moreover,
V@l () = 0 almost everywhere in {z: [} (z)| = N} and V@ (r) = Vug(r) almost everywhere
in {x: [@) (z)] < N} (Proposition 3.73 in [7]), it gives

/ (Vay |2(1 — 23)2dx < / |Vug[2(1 — 23)%da. (3.3)
Q Q

so E.(uy , 2k, My.) < E.(u, 21, My) and then (ud, 2, M)y is also a minimizing sequence. Ac-
cording to ellipticity inequality (2.1), we have

1
/ |Vzk|2da:+/ Zdr < ( —|—4<€) E.(ug, 2k, My),
Q Q Ae

and then (z;)x is a bounded sequence of W (). So, there exists a subsequence, still denoted
by (zr)r, which converges almost everywhere to z € W"?(Q). As (z3), takes its values almost
everywhere in [0; 1], then 2 takes also its values in [0; 1]. For wy = ul (1 — 22), we have

/Q|Vwk\2dm+/ﬂw,%dx§2/9\Vﬂg|2(1—z£)2dx+2N2/Q|Vzk\2dx—|—N2/Q(1—z,%)2dx

10



and then (wy); is a bounded sequence of Wl’Q(Q). So, there exists a subsequence, still denoted
by (wp)x, which converges almost everywhere to w € W?(Q). In particular, (7 (x))x con-
verges for almost every = € {y: 2(y) # 1} to u(x). We set u(z) = g(z) for z € {y: z(y) = 1}.
This construction ensures that (u,z) € Dn(2). As G C S} (R) is compact, Q is bounded and
Jo IDM||dz < E.(uk, 21, My), then (My);, is a bounded sequence of Wm+%(Q) and there ex-
ists a subsequence weakly convergent to M € W1m+t*(Q). As weakly convergence in W1+ (Q)
implies uniform convergence and G is closed, then M € Wn+2(Q; G). O

Proposition 3.3. If (ug, zk)r C Dp(Q) converges almost everywhere to (u,z) € Dp(Q), (ur)k s a
bounded sequence of L°°(Q) and (Mg)r, C WhnT(Q; G) weakly converges to M € Wt (Q; G),
then

li]cfgg.}fEs(Uk7zk,Mk) > E.(u,z,M).

Proof. Fatou Lemma and lower semi-continuity of the Sobolev semi-norm give

2 2
lim inf /(uk—g)de—l—/ Z—kdx—i—/ | DM |+ dz 2/(u—g)2dx—|—/ idx+/ DM+ dz.
k—oo Q 945 O 9] Q4E Q

So, to show Proposition 3.3, it suffices to prove that

liminf/5<Mszk,Vzk>dx2/5<MVZ,Vz>dx (3.4)
and
lim inf/ |Vug[2(1 — 23)%dz > / |Vu|?(1 — 2%)2da. (3.5)
Proof of (3.4)

If lim inf}, fQ |Vzi|?dz = 400, according to Ellipticity condition (2.1), we have
hmkinf/ (MyVzp, Vzi)de = 400
Q

and the result of Proposition 3.3 is ensured. So, we may assume that liminf [, [Vz[?dz < +oo0.
On the other hand, we have

/€<Mszk,Vzk>dx—/5<MVzk,Vzk>dx
Q Q

< e||My —M||Loo/ |V 2| % da.
Q

As the weakly convergence of (My), in W1hmT(Q) implies the uniform convergence, we may
conclude that

limkinf </ e(MgVzg, Vzi)de — / 5<MVzk,Vzk>dz> =0.
Q Q

To prove inequality (3.4), it remains to verify that

lim inf zs(MVzk,Vzk)de/5<MVZ7Vz>dx.
k—o0 Q O

As the application
Wh(Q) — L*(R"),
z — Vz

is continuous for the strong topology, it remains to prove that the application

L2(Q;R") — R,
Z = Jo (MZ,Z)da

is lower semi-continuous for the weak topology of L*(€;R™). Let (Z;,)r C L*(Q;R"™) be weakly
convergent to Z € L?(Q; R™). We set

L:L*(QR") — R,
U = [y (MZ,U)d

11



According to ellipticity inequality (2.1), L € (L*(€;R™))" and then (L(Z))), converges to L(Z).
Moreover, for k fixed, the following polynomial function is positive

m/ (M(Z +123), Z + tZ3)da.
Q

Thus, its discriminant is negative and we deduce the following anisotropic Cauchy-Schwarz in-
equality

/Q<MZ,Zk>dx§ (/Q <MZ,Z>01:E>é (/Q (MZk,Zk>dx>2.

As (L(Zy))y, converges to L(Z), passing through the liminf in the previous inequality yields

~/Q<MZ7Z>d$§ (/Q <MZ,Z>dx)§hkrgi£f (/Q <MZkVZk>dx>é

and then we may conclude the Proof of (3.4) by taking Z, = Vzp,Z = Vz in the previous
inequality

k—o0

/(MVz,Vz>dx§liminf/ (MVzy, Vzi)de.
Q Q

Proof of (3.5)

We first consider the one-dimensional case n = 1 and then by a slicing argument we get the
lower semi-continuity for the general case n > 1. Let A C {x € Q: z(x) < 1} be an open and
relatively compact subset of @ C R. As (zp)r weakly converges to z in W12(Q), then (z)x
uniformly converges to z. In particular, there exists § > 0 and kg € N

k>ky = AcC{xeQ:z(z)<1-4}.

Thus, for any k > kg, we have

1

and then we deduce that (ug)y, is a bounded sequence of W'?(A). As uy(1 — z7) converges almost
everywhere to u(1 — 22) in €, there exists a subsequence, still denoted by (uy)x, which weakly
converges to u in W?(A). In particular, (Vuy,), weakly converges to Vu in L*(A). For £ € L*(Q),
we decompose

/ ¢ [Vup(l = 27) — Vu(l — 22)] dz = / EVug (2% — zﬁ)der/ V(1 — Zz)d$+/ EVu(2? — 22)da.
A A A A

(3.6)
As (1 —2%)€ € L?(A) and (Vuy), weakly converges to Vu in L?(A), then we have

/ EVug(l — 2%)dr — / EVau(l — 2%)da. (3.7
A A
Moreover, we have

[ 69tz = 2o < ez 90z 122 = e

and
/A EVu(z — z)de < €]z IVull g |22 — 22l ca.

As a weakly convergent sequence is bounded, then (Vuy)y is bounded in L*(A4) and we deduce
that

/ EVug(2? — 23)dx — 0, / EVu(z? — z2)dx — 0. (3.8)
A A

12



According to (3.6), (3.7) and (3.8), we get
/ EVug(1 — 23)dx — / EVu(l — 2%)da
A A

and then (Vuy(1 — 2}7));, weakly converges to Vu(1 — 22) in L?(A). As the norm is lower semi-
continuous, we deduce

/ |Vu|*(1 — 2%)2dx
A

IN

liminf [ |Vugl?(1 — 23)%dz,
k—o0 A

IN

liminf [ [Vug*(1 - 27)%da.
k—oo Jq
Passing to the limit A 1 {z € Q: z(x) < 1} gives

/ |Vu)?( dz < hmmf/ |Vug[2(1 — 23)%da.

We generalize this result to the dimension n > 1. With the notation u, introduced in (1.2),
using the previous result obtained in dimension 1, Lemma 3.1 and Fatou Lemma, give

J v pa -2 - / / Vg (1) (1 — 2, (1)) Pdtdl,

< / hkmlnf/ IV () (D21 = (2)a(8)?)2dtda,
—00
< hmlnf/ / (1 = (2)2(t)?)2dtda,
k—o0
< likminf/ / (Vug(z +tv), V)2 (1 — z(z + tv)?)?dtda,
—00
< liminf [ [(Vug, v)|?(1 — 27)3de,
k—oc0 A
< liminf [ |[Vug|*(1 — 27)3da,
A

k—o0

for any open set A C  and every v € S®~1. The function  — gzg;l is measurable in U = {z €

z(z) # 1,Vu(z) # 0}. According to Lusin Theorem (1.45 of [7]), there exists an increasing
sequence of compacts (K;); C U such that

{ LMUN\K;) < ¢,

T — Wugi;‘ s continuous in Kj.

Thus, for any = € K, there exists r > 0 such that

yeBlor) = Vu(z) Vu(y) ’ 1

V()] V()| < T (3.9

As a consequence of Besicovitch Covering Theorem (2.18 of [7]), there exists a countable, pairwise
disjoint collection of balls (B;);er satisfying (3.9) such that

B; C Q, ok (Kl \ U Bi> =0, for any Vi € I.
i€l

For any 7 € I, we fix z; € B; and we set v; = %; then

/ |(Vu, 1;)]?(1 — 22)%dz < lim inf/ |Vur|?(1 — 22)%da.

13



As (B;); is pairwise dijoint, we deduce

UV,j2 *2221': 'LLI/Z — Z
/UiBi|<v,>|<1 12 Z/\v 2(1 - 22)de,

el

< hmlnf/ |V |? 1—Zk) z,

k—o00
< liminf *(1-22)°
< iy | V- e
el K

< liminf/ [Vug[*(1 — 23)*dw,
k—o00 U; B;

< liminf/ |Vaug|>(1 — 23)%da.
k—o00 Q

Moreover, we have

Vu
Vr € Bi n Kl, ||VU,‘2 - ‘<VU,Z/1>|2’ = ’<VU, W>2 - <VU,VZ'>2 s
Vu Vu
< Vu, — v {(Vu, — + 1)/,
(g )T g 0
< %|Vu|2.

It gives
l
[ owara-pas [ (e Pa - 2R
B;NK; l - 2 B,NK;

As L"(K; \ U;B;) = 0 and (B;); is pairwise disjoint, we get
Z/ |Vul>(1 — 2%)?dx
i B,NK;
!
EZ/B (Va1 = )P,
i iNK;

l

l_ 2 U;B;NK;
< ZLZ/ |<Vu71/i>|2(1 — ,22)2d:137

/ (Vaul?(1 — 2%)2dx
K,

IN

IN

\(Vu,l/iﬂz(l - 22)2d:c,

<

hm mf/ |Vug|?(1 — 23)%da.
As (K7); is an increasing sequence such that £(U \ K;) — 0, passing to the limit [ — oo gives
/ |Vu?(1 — 2%)%dz < liminf/ |Vur|?(1 — 22)%dx
U k—o0 Q
and we may conclude

/ |Vul|?(1 — 2%)3dx < liminf/ |Vug[2(1 — 23)%da.
O k—o0 Q

3.3 TI'-convergence result for ¢ — 0"

This section is dedicated to the proof of Theorem 3.1 ii). For that, we will prove the following
T'-convergence result.

Theorem 3.2. Assume that the conditions of Theorem 5.1 are satisfied. Let (ex)r be a sequence
which converges to 0T, we have

14



i) if u € B(Q) N L®(Q), (ug,2x)r C Dn(RQ), (uk)r is bounded in L>®(Y), (ug, 2x)r converges to
(u,0) almost everywhere and (My,) weakly converges to M, then

liminf B, (ug, zr, My) > E(u, M); (3.10)

k—oc0

i) for any u € B(Q)NL>®(Q) and M € WHnT(Q; G), there exists a sequence (uk, 2k )k, C Dp()
such that (uy)g is bounded in L*°(QY), (ug, zx)r converges to (u,0) almost everywhere and

limsup E., (ug, zx, M) < E(u, M). (3.11)

k—o00

3.3.1 The inequality for the lower I'-limit

We now prove the first inequality of I'-convergence (3.10). Let uv € B(Q) N L () and (ug, 2x)x C
D, (Q) such that (ug)g is bounded in L= (), (ug, zk)r converges to (u,0) almost everywhere and
(M), weakly converges to M. In the sequel, we emphasize on the domain of the function: for U
an open subset of ), we adopt the following notation

Flu,M;U) = /|Vu|2d:v+/ (Muy, v, ) 2dH" 1,
U JuU

Fsk (Uk, 2k Mk)v U)

2
/ |Vuk‘2(1 — zi)de —l—/ <5k<Msz;€,Vzk> 4 Zk) dz,
U U 4Ek

Fatou Lemma and lower continuity for the Sobolev semi-norm yields

k—o0

liminf/ (ug — g)*dx —l—/ | DM ||" T *dx > / (u — g)*da +/ | DM||"t*dz
Q Q Q Q

and then it suffices to prove that lim inf F, (ug, 2k, My; Q) > F(u, M; Q). Moreover, if

liminf/ x| V2| ?de = +oo,
k Q
according to ellipticity condition (2.1), we have
limkinf/ (M Vzg, Vzi)de = +o00
Q

and (3.10) is ensured. So, we may assume that liminfy, [, ex|Vzi|*dz < +00. On the other hand,
we have

S HMk*M”L‘X’sk/ |Vzk|2dx
Q

Q Q

As the weakly convergence of (M) to M in W1m(Q) implies the uniform convergence, we may
conclude that

limkinf (/ (Mg Vzi, Vg )de — / 5k<MVzk,Vzk>dx) =0.
' Q Q
To prove inequality (3.10), it remains to verify that

lim inf F;, (uk, 2k, M; Q) > F., (ug, 25, M; U).

k— o0

We perform the proof in two steps: the first step deals with dimension 1. The second generalizes
it for dimension n > 2.

The one-dimensional case

In this section, we assume that {2 = I is an open interval and the metric M is simply a constant
m > 0. We assume in this section that m is fixed. To avoid confusion, we denote the approximating
functional by

Ge(u,z;I) = /I |Vu(t)|?(1 — 2(t)?)2dt —|—/I <m€|Vz(t)|2 + ZEQ) dt, (3.12)
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where the domain is
Di(I) = {(u,2): u € B(I),z € WH2(I;[0;1]),VN e N @™ (1 —2%) e W-3(I)}.

We denote the lower I'-limit, by

G_(u;I) = inf {liminfGEk(uk,zk;I)} ,

k—o0

where the inf is taken over all sequence (ug,zr)r C D1(I) such that (ug,zr) converges almost
everywhere to (u,0) in I. We need the following Lemma which proof is given in appendix 4.2.

Lemma 3.2. Let I C R be an open interval, J C I be a set with finite cardinal. We have
we W(I\J)=ue SBV(I), J, C J.

The main result of this subsection is given by the following.

Proposition 3.4. Let I C R be an open interval and uw € B(I). If G_(u;I) < oo, then u € SBV(I)
and

/ [Vu(t)]2dt +m2HO(J,NT) < G_(u;1).
I

The proof of this Proposition consists in showing the two following Lemmas.

Lemma 3.3. Ifu € W"?(B,(z)), then we have

G,(u;Bn(x))z/B IvuoPa

Lemma 3.4. Ifu ¢ W"2(B,(x)) for any p €]0;n[, then for any p €]0;n[ we have
G_(u; By(z)) > m!/2,
Suppose that Lemma 3.3 and 3.4 are proved, we deduce Proposition 3.4.

Proof. We set
J={zel:Vp>0,u¢g Wl’z(Bp(:z:))}.

Let {z1,...,zn} C J and p > 0 be such that {B,(z;): ¢ = 1,...,N} is pairwise disjoint.
According to Lemma 3.4 we have

Vie{l,....,N}, G_(u;B,(x;)) >m"/?

and then

As G_(u;-) is superadditive, we have
G_(u;UN, B, (x;)) > Nm'/2.
and G_(u;-) is non decreasing, it gives
G_(u;I) > Nm'/2,

As G_(u;-) < 400, the set J is finite. So, there exists p > 0 such that {B,(z): « € J} is pairwise
disjoint. As G_(u; - ) is superadditive and non decreasing, we have

S G (s By(a) + G (us 1\ Upe s B, (@) < G- (w; ).
z€J

According to Lemma 3.3 and 3.4, it gives

|Vu(t)|?dt < G_(u; I).

HO(J)ym? + /

N\UzesBy(x)
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Taking the limit p — 07 yields

HO(J)m? +/ |Vu(t)|?dt < G_(u;I).
nJ

In particular v € W?(I '\ J) and, according to Lemma 3.2, we get u € SBV(I), J, C J and then

HO(J)m? +/|Vu(t)|2dt <G_(w1).
I

Now, we prove lemma 3.3.

Proof. We can assume that G_(u; B, (x)) < 400, otherwise the result is ensured. By a diagonal
extraction, there exists a sequence (ug, zx)r C D1(B,(x)) converging almost everywhere to (u,0)
and

G (1, 213 By()) = G (us B (@).

As G_(u; B, (x)) is finite, there exists C' > 0 such that
52
vk € N, / (5k|Vzk|2 + k) dt < C. (3.13)
B, (z) dex
Applying the inequality 2ab < a? + b? with a? = &;|Vzx|? and b? = % gives
Vk €N, / V4|2t < C. (3.14)
By ()
We set ¢, = 1 — 27. As z;, € WH2(B,,(2)), then ¢, € BV (B, (z)) and (3.14) is
Vk € N, / Vepldt < 2C.
By (z)
Coarea formula (see [7]) yields
1
Vk €N, / HO({y € By(x): caly) = 1)t < 20 (3.15)
0

Let 0 < 1 in an arbitrary neighborhood of 1 and ¢ €]0; o[ be fixed numbers. According to (3.15)
and mean value Theorem, there exits 5 €]d; o[ such that

2C

VkeN, H'({y € B,(x): cx(y) = d}) < s

(3.16)

We set Ay, = {y € By(x): cx(y) > 0r}. As (eg)r converges to 0, inequality (3.13) implies that (zx)g
converges to 0 and ¢ to 1 almost everywhere. As 6§ < o and o < 1 then (£!(Ax))s converges to
LY(B,(z)).

Sobolev embedding Theorem ensures that W2(B,,(z)) C C(B,(z)), so ¢ is continuous and Ay
is a countable union of closed intervals of B, (z). According to (3.16), this union is finite and its
cardinality is uniformly bounded by N. For any k, there exits a disjoint family of closed intervals

(I})i=1..n such that N
Ap = Ui:l Iy, _ ‘
Vi € {1, .. .,N — 1}7 maX(I}C) < min([]zc—i-l).

There exists a subsequence, still denoted by (If)i=1..n, such that (min(Z}))x and (max(I}))x
converge for any i € {1,...,N}. We set al, and b’  the previous limits, I, =]al ;b [ and

A=UN, I As (L'(Ay))x converges to L'(B,(x)), then A is a subset of full measure in B, ().
Let O be an open subset such that O C A. For k with a sufficiently large value, we have

O C Aj and then

lim inf |Vug[2(1 — 23)%dt > likm inf/ |Vug 2 (1 — 27)%dt.
— 00 o)

k=00 By ()
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As zj, takes its values in [0; 1], we get

k—o0 k— o0

liminf/ \Vug[*(1 — 22)%dt > liminf/ |V |262dt,
B, (x) O

%

52 liminf/ |V |2dt.
o

k— o0
Moreover, there exists kg such that: k > kg = O C Ay, then we have
VeeO 1-—z;>6.

As up(1—27) € WH2(Q) and V/§ > 0, we get u, € WH?(0) and the lower semi-continuity property

of the Sobolev norm gives
lim inf/ |V [2dt > / |Vul|?dt.

As O is chosen arbitrary in A and A is of full measure in B,(x), it gives

lim inf |Vug[2(1 — 23)%dt > (52/ |Vu|?dt.
ko0 By (x) By (x)

Letting 6§ to 17, it concludes the proof of lemma 3.3.

We prove lemma 3.4.

Proof. We can assume that G_(u; B,(z)) < +oo for any p €]0;7[, otherwise the result is ensured.
As u g WH?(B,(x)), there exists three sequences (y})xen, (¥2)ren and (y3)ren such that:

y,i -, zk(yi) — 0,
yl% — Z‘, Zk(yl%) — 1a
yg -, Zk(yl%) — 0,
VEeN, yi <yl <uyj.

We have
T+p

2
G(uk, zi; Bp(x)) > / <5kazk2 + Zk) dt.
z—p 45k
The inequality a? + b? > 2ab gives:
x+p
G(uk, zi; Bp(x)) > / m1/2|Vzk|zk dt.
z—p
As [y, yi] C B,(x), we obtain:
Y
G(uk, zx; Bp(x)) 2/ ml/Q\Vzk\zkdt.
Yi

We have

Yi yi
G(uk, zx; Bp(x)) > m1/2/ |Vz(t)| 2k (t) dt+m1/2/ |V2(t)| 2, (t) dt.
y

1 2
Yk k

Since 2, € Wh?(B,(x)), we may use the change of variable s = 24 (t). This yields:

21 (y7) 2 (y})
mt/? sds +m!/? sds,
2k (yy) 2k (y3)

. ml/g(zi(yi)—zlf(yi) +zi(yi)—2§(y2)>

%)k

Y

2 2
By assumption, we have zx(y;) — 0, zx(y2) — 1 and z,(y;) — 0, so that we deduce:
3

)
2n(yi) — 2 wn) | ze(i) — 22 (wi)
k\Jk 5 k + k\Jk 5 k

(
2
k - 1.

We can conclude :
lim inf G(up, 2x; B, (x)) > m*/2.

k—oc0
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Generalization to dimension n > 2

We give the proof of the first inequality of I'-convergence (3.10) for n > 2.

Proof. Let uw € SBV(Q) N L>®(Q) and (ug, zk)r C Dpn() converging almost everywhere to (u,0)
such that (ug)y is bounded in L>°(2). We have to prove

likm inf F., (ug, 2k, M; Q) > F(u, M; Q). (3.17)
—00

We assume that liminf F, (uk, 2k, M; ) is finite, otherwise the result is ensured. As M €
Whnte(Q), then M is a-Holder regular. So, there exists § > 0 such that, for any z,y € Q,

we have
[M(z) — M(y)| < 0]z —y|*. (3.18)

Claim: There exists C(J) such that
i) lims_,o+ C(0) =1,
ii) for A C Q open, a € A, diam(A) < and v € S, we have

(Vu, w)? dx+C(6)/ IM@)v] oy apnt,

lim inf F M; 4) > (M(a)v, )1/
imin e (Uky 21, M )_/ Juna (M(a)v,v)1/?

A

where w = IMEZ% .

We denote by A an arbitrary open subset of Q such that diam(A) < § and we fix a € A. Let
v € S"7! be fixed. According to Holder regularity (3.18) and ellipticity inequality (2.1), we have

W) € Ax R, [(M@)v,v) — (Mawv,v)| < 05°[vP,
< 05N HM(a)v, V).

Then, we get
Y(z,v) € AxR" (M(z)v,v) > (1 — 05N\ (M(a)v, V)

We set C(5) = 1 — 05*\~1. Then, we may write
Ve e A, (M(2)Vzp(z), Vzr(x))? > C(0)(M(a)Vzi(z), Vi (2))?.
As M(a) is a symmetric definite positive matrix, Cauchy-Schwartz inequality gives
vv eR™,  (M(a)v,v)(M(a)v,v) > (M(a)v,v)?,

which is equivalent to

2 a)v 2
Vv eR", (M(a)v,v) > <|1\1>I/I((QC;)VV,V> <M< ) |,v> . (3.19)

We set w = |MEZ§Z| If we apply inequality (3.19) to Fr, (ug, zk, M; A), we have

M(a)v|? 22
cA) > 201 — 22)2 |7 2 k .
F., (uk, 2z, M; A) _/A(|Vuk| (1—2z;) +C(6)< (a)y,y)gk@’vzk) _|_4€k dz

With the notation introduced in (1.2), (v), is the function defined on AY, as (v),(t) = v(y + tw).
According to Lemma 3.1, we have V(ug)y(t) = (Vu(y + tw),w) and V(z)y(t) = (Vz(y + tw),w),
so Fubini Theorem gives

a)v 2 z 2
Folu M)z [ ] <|v<uk>y2<1<<2k>y>2>2+c<5> el Va2 + () ) at 4 ().

M(a)v,v)

With the one-dimensional notations (3.12), it gives

FL, (ug, 24, M; A) > / Gy () (2k)y: A) AHP 1 (y),
Aw
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where m = 0(6)% for any x € A. Fatou lemma yields

hk:m inf ng <uk’ “k> M’ A) > / lim inf GEk ((Uk)y7 (Zk)y’ Agz) dHn_l (y)
—00

Ay k—o0

and then
lim inf Fe, (ug, 25, M; A) 2/ G_((u)y; AY) dH" (y).
— 00 Ay

As liminf F;, (ug, 2, M; A) is finite, we deduce that G_((u),; AY) is finite for H" ' almost every
y € A,. We may apply Proposition 3.4 with I = AY, and u = (u),, it gives that (u)¥, € SBV(AY)
for H*~! almost every y € A,, and we have

lim inf Fy, (ug, 2, M; A) > /
k—o0 Aw

[/ [V (w)y|2dt + HO (T, mAg)mé] AR (y).
AY '

As liminf Fy, (ug, 2z, M; A) is finite, Theorem 1.3 implies

/ [/ |V(u)y|2dt+HO(J(u)yﬂA}j,)mlm] dyn—l(y):/\<vu,w>\2dx+/ m'2(w,v,) dH" L.
A, LJAY ) Q J

wNA

We deduce

liminf F, (ug, 2, M; A) 2/ |<Vu,w>\2dx+/ m'2(w,v,) dH™ L.
k=00 A JuNA

If we replace m and w by their values, it gives

liminf F;, (uk, 2k, M; A) > / dut
k—o0

9 (M(a)v,vy,)
[ (Vuwar+c) /

suna (M(a)v,v)'/?
and the Claim is proved.
The function = — ‘gzgg‘ is measurable in U = {z € Q : Vu(z) # 0}. According to Lusin

Theorem (1.45 of [7]), there exists an increasing sequence of compacts (K;); C U such that

{ LMUNK) < 7,

@] is continuous in Kj.

Thus, for any x € K, there exists » > 0 such that

) Vu(y)
) [Vu(y)

As a consequence of Besicovitch Covering Theorem (2.18 of [7]), there exists a countable, pairwise
disjoint collection of balls (B;);cr satisfying (3.20) such that

1
T (3.20)

Vu(z
B <
vesten) |G <

Viel,B; C Q,diam(B;) <6,  L" (Kl U Bz’) —0.
el

(M(a)) " Vu(a;)
[(M(a)) =" Vu(z)|*

1 <Vu, W>2 dx.

For any ¢ € I, we fix x; € B; and we set v; =
A= B;,a=x; and v = v;, we get

According to First Step, with

liminf F, (ug, 2k, M; B;) > /
k—o0

B. Vu(x;)|

Moreover, we have

Vu(z;) \ 2 Vu Vu(z;)
B;NK, 2 - o ~a) " Nalz)]
Vu Vu(z;) Vu Vu(x;) ‘
< VU, — VU, + )
o~ e S R
< %IWIZ-
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It gives
Vu(z;) >2 l 9
Vu, ——— de > —— Vul“dz.
/BK< V()] EY L

As liminf Fy, (ug, 2z, M; - ) is supperadditive and non decreasing, we have

liminf F;, (ug, 2k, M; Q) > Z lim inf F;, (ug, 2k, M; B;),
k—o0 k—o0

iel
Vu(z;) 2
> d
> 3, (emie)
icl g
Vu(z;) >2
> Vu, ——= dzx,
S S AT G
l / 9
> — [Vul” dz,
l + 2 ; B;NK;
> L/ |Vul|? dz,
l + 2 U; B;NK;
As L(K; \ U;B;) = 0, we deduce
. l
hkrgg.}stk(uk’ZkaM?Q) > Z+2/Kl |Vul|? dz

and taking the limit [ — oo gives
lim inf F;, (ug, 2, M; Q) > / |Vu|? dz :/ |Vul|? da.
k—o0 U O

In particular, [, |Vu|? dz is finite. As u belongs to SBV(Q), according to Theorem 1.1, there
exists a pairwise disjoint family (C;);en of C! compact manifolds and M € Q such that:

J,=NU (U Oi> ., HT'WN)=0.
1€EN

As liminf F., (ug, 21, M; Q) is finite, First Step and Theorem 1.3 imply that H"~1(.J,) is also finite.
According to ellipticity inequality (2.1), we deduce that [ 7. (Mvy,v,)Y/? dH™ ! is finite. Then,
for a fixed & > 0, there exists N € N such that

/ (Muy, v)V/2 dH 1 < 6. (3.21)
‘]“\Uivzl Ci

We set K = vazl C; and K, = {z € Q: dist(z,K) < 7}. As [, |Vu|? dz is finite, there exists
7 > 0 such that

/ |Vul? dz < 6. (3.22)
Q\K,
With the same arguments as before, we get
lim inf F., (ug, zx, M; Q\ K;) > / |Vu|? da. (3.23)
k— oo Q\K
Asz — (M(ziwwf(zfz;;si)m))lﬂ is continuous in K, for any x € K there exists r > 0 such that
M(z)vu(z) M(y)vu(y)

yEeBx,r)NK = (M(2)vy (), va ()72 (M(y)vu (), va(y)) /2

As a consequence of Besicovitch Covering Theorem (2.18 of [7]), there exists a countable, pairwise
disjoint, collection of balls (Bj>jef satisfying (3.24) such that, for any j € I, it satisfies

<. (3.24)

B; C K,, diam(B;)<s, H"'|K\|[JB;|=0.

jeI
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For any j € I, we fix #; € E; According to First Step, with A = E}, a=2Z; and v = v,(&;),
we get

<M((ﬁj)l/u(.’ij)7y > n—
lim inf £ (v, 21, M; B>>C<‘5)/Jm§j NG ag) vz 172 T

For anyméﬁ}ﬂlﬂ we have

M(z)v(z)

MEWLE) ) (3
M{@)u(@), () ‘<M<@> ) T T e

‘ <M(jj)yu(jj)v Vu(jj)>1/2

IA

INA
>,

It gives

(M(Z)vu(Z5), V) n—1 U VL2 n—1 _ sam—1/7.
/ng Y ICADRE DRI dH z/ng My, v,) = dH SH" (B, NK).

As liminf F, (ug, 2z, M; - ) is supperaddditive and non decreasing, we have

%Iggf Fe, (ug, zi, My K7) > Zlggicgf F., (ug, zi,, M; Bj),

jer
B NK
jEI
> C(9) (/ (M, v )2 AN — 57—["_1(Uj§; N K))
U;B;NK
As E"(K\E) =0, we get
lim inf P, (g, 25, M; Kr) > C(6) (/ (Muy, v, )2 dH" T — 5%”1(1‘()). (3.25)
— 0 K

According to (3.23) and (3.25), we deduce

liminf F., (ug, zx, M;Q) > liminf F., (ug, 2, M; K;) + iminf F., (ug, 2, M; Q\ K,),
k—o0 k—o0 k—o0

%

0(5) </ <MVuaVu>1/2 dHn_l - 5Hn_1(K)> +/ 7|VU|2 dz.
K O\K,
According to (3.22) and (3.21), we have

lim inf Pt (ug, 25, M; Q) > C(9) (/ (Muy, v, )2 dHP ™ — 6 — 0H™Y( > /|vu|2 dz —6
— 00 J

u

Letting 6 — 07 concludes the proof

likmianEk(uk,zk,M;Q) 2/ (Muy, v,)1/? dH™ 1 +/ |Vu|? dz.
— 00 Q

u

3.3.2 The inequality for the higher I'-limit

In this section we prove the upper inequality of I'-convergence, that is ii) of Theorem 3.2. Let
u € B(Q) N L>®(Q) and M € WHnT(Q;G) be fixed. It is sufficient to prove that there exists
a sequence (ug, zr)r C Dy (Q) such that (ux, 2x)r converges to (u,0) almost everywhere, (ug)y is
bounded in L () and

2
tinsup [ Vi1 e+ [ (ak<Mkak7vZk>+j;) do< [ VuPar [ (M) e,
Q Q k Q

k—o0 u

We first prove a weaker result, where [, (M, v.)2dH™ ! is replaced by its approximation with
a Minkowski content. Then, with Theorem 1.4, we extend this result to the general setting.
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Approximation with anisotropic Minkowski content

We set

2
ng(u,z,M):/ \Vu\z(l—zQ)deJr/ <€k<MVZ,VZ>+Z> da
Q Q 4ey,

and we prove the following

Proposition 3.5. Assume that the conditions of Theorem 3.1 are satisfied. For u € SBV(Q2) N
L>(Q) and M € WhnHe(Q: G), there ezists a sequence (ug,zk)r C Dn(Q) such that (ug,2i)k
converges to (u,0) almost everywhere (uy)x is bounded in L>®() and

limsustk(uk,zk,M)g/ |Vl de + Miyq(Ju),
Q

k—o0
where M3 is defined in (1.3).

Proof. Without loss of generality, we may assume that |Vu| € L*(Q) and M3,(J,) < +oo, other-
wise the result is obvious. If u € VV1’2(Q)7 then J, = () and the stationary sequence uj, = u, z, = 0
is a solution. If u ¢ W"?(Q2), then J, # 0 and (1 — 2?)? has to be infinitesimal near of .J,. For
p >0, we set

(u)p = {o: d(@) < pb.

We separate {2 in three parts:

(Ju)bk7 (Ju)akerk \ (Ju)bk7 Q \ (Ju)ak+bk
with

{ak = _45k1n(5k)7 (326)

bk = Ez.
Let Uy € C3°(2) such that ¥y =1 in (Jy,)s, and Ur =0 in Q\ (Jy)p,. We set up = (1 — TUy)u
2

and then uy = v in Q\ (Ju)p,- As (br)r converges to 0 then uy converges to u almost everywhere.
We set 2z, = 1in (Jy)p, and 2z = 5% in O\ (Ju)ag+br- In (Ju)ap+bs \ (Ju)p, we adopt the following

construction: we introduce
t
0, (t) = 2 exp [ —
(0 =ctew (5 )

and we set
1 Vt € [0; bk];
ék(t) = 0y, (ak + b, — t) Vit E]bk; ap + bk], (3.27)
2 Vt €]ay + by; 400l

This is a continuous and decreasing function defined on [0; +oo[, moreover, for any t €]by; ay + bi/,
it satisfies

o Z1(1))?
er(F (1)) = ( ’Z( )" (3.28)
£k
We set 2z, = Zi o dé“. As z, is constant in (Jy,)p, U (2 \ (Ju)ay+b, ), We have
F., (ug,zp, M) = / |Vul?(1 - 5i)2dx —|—/ |Vul?(1 — 27)%dz
Q\(Ju)a,k-u;k (Ju)ak+bk\(Ju)bk
< )
+/ (Ek MVz,, Vzi) + ) dz
Ty 0 \(Ju o dey, (3.29)
6% n 1 n
+ LN (Ju)a+on) + 7L ((Ju)b,)
4 4€k

As [Vu| € L*(Q) and (ay + bi)s, converges to 0, the first term of (3.29) converges to [, |Vu|?dz.
As ||zk||L < 1, the second term converges to 0. As ) is a bounded domain, the fourth term
converges to 0. As M3,(J,,) < +00, there exists (wg)x a sequence which converges to 0% such that

L((Ju)py,) < 200 (Mg (Ju) + wr) (3.30)
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and then the fifth term is lower than %Ek(/\/lfv[(Ju) + wg). So, the fifth term converges to 0. To
compute the limit of (Fy, (uk, 2k, M)), it remains to study the convergence of

z

2
Ak(zk) = / (€k<Mvzk,VZk> + k ) dx.
(T ag 45, \(Ju )by dey,

Ellipticity inequality (2.1) yields

g (x) — 3 (y)]

IN

dy (2, y),
)\_%|x—y|.

IN

So, d;“ is Lipschitzian and Rademacher Theorem ensures that d7* exists for almost every z € €,
in the sense of the approximate differentiability 3.2. Thus, for almost every = € (Jy)a,+by, \ (Ju)by s
we have
NESNEY SRS 5
Vz =z ody" Vdy".

It gives

’ T \2 7 7 (gk o) déu)Q
Ak(zk) = / Ek(zk o d¢“) <MVd¢“,Vd¢“> + —— " | dx.
(Ju)akerk\(Ju)bk 46]6

In [12], Theorem 3.2, it is proved that (M(ac)Vd;“ (m),Vdéu (x)) = 1 for almost every z. So, we
may write

’ 7. (Zk [¢] diu)Q 7 7
Ar(zr) =/ ex(Z 0d)r)? + ——2— | (MVd;", Vd ")/ *da.
(Ju)ay o5 \(Ju )y, dey,

We may apply Proposition 1.2 with ® = ¢ and p = dle it gives

Ap(z8) /ak+bk <skz;(t)2+ fk(t)Q) [/Q <MD1(Ju)t,D1(Ju)t>1/2] dt. (3.31)

br 45k
We set
Hm(t) = /<MD1(J”)HD1(J1L)¢>1/2’
Q
S
AM(S) = Hwm (t)dt.
0

Applying another time Proposition 1.2 gives
S2
Awlse) ~ salor) =[] [ D1, D10,
S1 Q

= / (Mvdjr, vd))2da,
(J )sz\(‘ju)él

= L((Jw)s \ (Ju)sy)-

So, Am € Wllc’)lc(]();+oo[) and VAy = Ha almost everywhere. Using equality (3.28) and then
integrating by parts (3.31) gives

ap+b 3
Ak(zk) = ‘/b (Eki;c(t)2+ k(t)2>HM(t)dt7

45k

arp+br =~ 2

k k Zk(t)
— ——Hm(t)dt,

/ e Mo

+ by)? b 1ot

- %AM(C% +bk) — %AM(’%) - a/b 2 (1) 2k (8) Am (1)
k

The first term obviously converges to 0. As for (3.30), we have

Am (br) < 26 (Mg (Ju) + wi)
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and then the second term converges to 0 too. As s — Anm(s) is non decreasing, then
Am(t) < 26(Myg(J) + wi)

for any t € [bg; ar + bg]. For the last term, we apply another time this inequality, it gives

1 aktbr X (T ap+bg ,
S 5 (020 Ane ()t < — M) T k) / 27, (1)2(1)dt. (3.32)
Ek br €k by
Integrating by parts yields
ap+bg , ap+bk
/ 22, ()2 (1)t = (a + be) 20 + b — b2 (bi)? — / S0t (3.33)
b, bi

According to the definitions of (ag, bx, z) (3.26) and (3.27), we have

(ar + br)Zk(ax + be)® — b2k (br)* = o(er) (3.34)
and equation (3.28) gives
ar+bg ~ ) ap+bi N _
/bk Z(t)"dt Z j:lfb_" . |21,(8) |21 (t)dt, (3.35)

From (3.32), (3.33), (3.34) and (3.35) we deduce that limsup;, Ax(zr) < M3,(J,) and, according
to the decomposition (3.29), we have

imsup L, (ug, 22, M) < [ [Vul’ + Mig( ).
Q

k—o0

To conclude the proof, it suffices to notice that (ug, zx)x C Dn(Q).

Approximation in the general setting
The goal of this section is to replace M3;(Jy) by fJ’ (Mu,,, z/uﬁd?-[”*l in Proposition 3.5.

Proposition 3.6. Assume that the conditions of Theorem 3.1 are satisfied. For u € SBV(Q2) N
L*(Q) and M € WHnTe(Q;G), there exists a sequence (uy, zx)r C Dn() such that (uy, zx)k
converges to (u,0) almost everywhere (uy )i is bounded in L> () and

lim sup Fy, (ug, zi, M) < F(u, M).

k—oc0
To prove this result, we need to introduce the following

Definition 3.2. Let F(Q) be the set of functions u € SBV(QY) for which, if F'(u,M) < +o00, then
there exists a sequence (uy)r C SBV(Q)NL>® () converging almost everywhere to u, limy_, oo F'(ug, M) =
F(u,M) and

VEeN, Mm(Jy,)= / (Mvy, , vy, )dH" ™ .

J’U/ k

Proof. Assume F(Q) = SBV(Q). According to Proposition 3.5, by a diagonal extraction we may
exhibit a sequence (uk, zx)r C Dp () such that (ug,z)r converges to (u,0) almost everywhere
and
lim sup Fy, (ug, 25, M) < F(u, M).
k—o00

So, to prove the upper inequality of I'-convergence, it suffices to show that F(2) = SBV(£2). We
divide the proof in three Claims.

By a direct diagonal extraction process, we have the following.

Claim 1: If w € SBV(Q) and (ux)r C SBV(Q) satisfy
i) (u)k C F(Q),
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i) limg_yo0 F(ug, M) = F(u,M) and F(u, M) < oo,
11i) (ug)r converges to u almost everywhere,

then u € F(Q).

Claim 2: It suffices to prove that SBV(Q2) N L>(Q) C F(Q).

For v € SBV(Q) and N > 0, we denote by @ the truncated function defined in (3.1). So,
(@) converges to u almost everywhere for N — co. Moreover, Theorem 1.2 gives

Dl = 1_N§uSNVU£n + ((EN)J'_ — (EN)_)Z/u'Hn_ll_Ju.
and then we deduce limy_,, F(u") = F(u,M). According to Claim 1, it suffices to prove that
SBV(Q) N L>(Q) C F(Q).
Claim 3: Let u € SBV(Q) N L (), we have u € F().

We may assume that F(u, M) < +o00, otherwise the result is ensured. Let us extend M and u
in Q' =QUU as in Proposition 1.1, so we have

H (T, NON) = 0.

With the same arguments as for Theorem 2.1, we may prove that there exists v, € SBV(QY') a
minimizer of the following functional:

Evk () = k/ (v —u)?dz + N |Vo|?da +/ (Mu,, v,)Y/2dH" L.
In particular, E%*(v;,) < E%F(u) for any k € N, gives
k o (v, — u)*dz < F(u, M)
and then (vy), converges to u almost everywhere. As u € L*(Q2), Theorem 1.4 gives

Ml*\,I(Jvk):/ (M, , v )/ 2dH 1.

Tuy

We introduce the sequence of positive Radon measures (ux)r and p defined for any B € B(Q?') by

ilB) = [ Voot [ Mo, e
B Ju, NB

u(B) = /\Vu\de—i—/ (Muy, v )Y/ 2dH™ L
B JuNB

With the same arguments as for Theorem 2.1, F' is lower semi-continuous in SBV, for any open
A CQ, it gives

liminf pg (A) > p(A).

k—o0

The inequality
lim sup 11, (2) < (')
k—o00
follows by the definition of vg. According to [7], Proposition 1.80, the measures (ug)r weakly
converge to p. Thus, (ux(B))g converges to u(B) if u(0B) = 0, and then (ur(Q2))x converges to
1(R2), that is (F(vg))i converges to F'(u, M). According to Claim 1, we deduce that u € F(2).
O
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3.4 Proof of Theorem 3.1 i)

Proof. With the same arguments as for Theorem 3.1 i), for any ¢ > 0, there exists (ue,z:) a
minimizer of E.(-,-, M). According to (3.3), with N > [|g| z (), we have

L'{z € Q: uc(z)] >N}) >0 = E.(u),2,M) < E.(uc, 2., M).
We deduce that |[u||p ) < N for any e > 0. For w, = u-(1 — 22), we get
Vw. = Vu:(1 — 22) — 2u.2.Vz..
It yields

/ Vw.|dz < £7()2 (/ |Vu)?(1 —z§)2dx> +2N/ |V 2|z d. (3.36)
Q Q Q

2
Applying the inequality 2ab < a? + b? with a = ;Z and b= ¢2 |Vz| gives
2

€

2
/|st|zsdx§/€|st|2dx+/ Ze 4. (3.37)
Q Q o de

According to ellipticity inequality (2.1), we get

1
/ |V 2dx < XEg(ug,zg,M). (3.38)
Q

By (3.36), (3.37) and (3.38), we deduce

(SIS

/ Vw.|dz < £7(Q)? (B (ue, 2, M))? + <1 + 1) E-(uc, z, M).
Q

A

According to Proposition 3.6, we deduce that (E., (ue,, 2e,, M))k is a bounded sequence. So, (we, )k
is bounded in BV(Q) and there exists a subsequence, still denoted by (we,, ), which converges almost
everywhere to w € BV(Q). As [, 27 dz < e E., (ue,, 2, M), then (2;)), converges to 0 in L*(Q)
and there exists a subsequence, still denoted by (zx)x, which converges almost everywhere to 0.
As w., =ug, (1 —22), then (uc, )r converges almost everywhere to u € B(Q2) N L>(€).

With the same arguments as for Theorem 2.1, E(-, M) admits a minimizer v € SBV(£2) and
v € L>®(). According to Theorem 3.2 4i), there exists (ve,, Ze, )k € Dn(2) such that (ve,, Ze, )k
converges to (v, 0) almost everywhere and

limsup E;, (ve, , Ze,, M) < E(v, M).

k—oc0

According to Theorem 3.2, i), we get

liminf E,, (ue,, ze,, M) > E(u, M).

k—o0
As (ug,, 2¢, ) is a minimizer of E.,, we have
Vk e N, E. (ve,, %, M) > E;, (ue,, 2e,,, M).

We conclude that E(v, M) > E(u, M) and then (u, M) is also a minimizer of E.

4 Appendix

4.1 Proof of Lemma 3.1

Proof. As Q is bounded, then W"#(Q) ¢ SBV(Q) and then, according to Calderén-Zygmund
Theorem (3.83 in [7]), the derivative in the Sobolev sense is equal to the approximate differential
for almost every point in Q. Moreover, according to Theorem 3.107 of [7], for v € SBV(2) and
v € S* ! we have

(Vo(z +tv),v) = Vug(t) ae. t € Qy
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for almost every = € £,,. So, we have
ve W (Q) = / (v + |Vv]?) dz < o0,
Q
= / / (02 + (Vo(z + tv),v)?) dtdz < oo,
Q, JQ.

= / / (02 + |V, (t)]?) dtdz < oo,
Q, J,
= v, € WLQ(QQJ) for a.e. x € Q.

Applying this property with v = z and v = u(1 — 22) gives the result of Lemma 3.1. O

4.2 Proof of Lemma 3.2

Proof. For |a;b[C I\ J, according to Theorem 2.8. of [7], there exists a unique function @ € C([a; b))
such that u(z) € @i(x) for L'-a.e. x € I and then

u(z™) = ylirgrvli u(y) and wu(zh):= ylggr u(y)

exist for any = € I. As J is finite, then W"2(I'\ J) ¢ WH(I'\ J). According to the jump formula,
it gives that Du € M(I) and we have the decomposition

Du = Vul + (uw(z™) —u(z™))HLJ.

So, we can conclude that v € SBV(I) and J,, C J.
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